IJMMS 30:7 (2002) 383-392 PII. S0161171202012772 http://ijmms.hindawi.com © Hindawi Publishing Corp.

ON $\beta\text{-DUAL}$ OF VECTOR-VALUED SEQUENCE SPACES OF MADDOX

SUTHEP SUANTAI and WINATE SANHAN

Received 13 April 2001 and in revised form 10 October 2001

The β -dual of a vector-valued sequence space is defined and studied. We show that if an *X*-valued sequence space *E* is a BK-space having AK property, then the dual space of *E* and its β -dual are isometrically isomorphic. We also give characterizations of β -dual of vector-valued sequence spaces of Maddox $\ell(X, p)$, $\ell_{\infty}(X, p)$, $c_0(X, p)$, and c(X, p).

2000 Mathematics Subject Classification: 46A45.

1. Introduction. Let $(X, \|\cdot\|)$ be a Banach space and $p = (p_k)$ a bounded sequence of positive real numbers. Let \mathbb{N} be the set of all natural numbers, we write $x = (x_k)$ with x_k in X for all $k \in \mathbb{N}$. The X-valued sequence spaces of Maddox are defined as

$$c_{0}(X,p) = \left\{ x = (x_{k}) : \lim_{k \to \infty} ||x_{k}||^{p_{k}} = 0 \right\};$$

$$c(X,p) = \left\{ x = (x_{k}) : \lim_{k \to \infty} ||x_{k} - a||^{p_{k}} = 0 \text{ for some } a \in X \right\};$$

$$\ell_{\infty}(X,p) = \left\{ x = (x_{k}) : \sup_{k} ||x_{k}||^{p_{k}} < \infty \right\};$$

$$\ell(X,p) = \left\{ x = (x_{k}) : \sum_{k=1}^{\infty} ||x_{k}||^{p_{k}} < \infty \right\}.$$
(1.1)

When $X = \mathbb{K}$, the scalar field of X, the corresponding spaces are written as $c_0(p)$, c(p), $\ell_{\infty}(p)$, and $\ell(p)$, respectively. All of these spaces are known as the sequence spaces of Maddox. These spaces were introduced and studied by Simons [7] and Maddox [3, 4, 5]. The space $\ell(p)$ was first defined by Nakano [6] and is known as the Nakano sequence space. Grosse-Erdmann [1] has investigated the structure of the spaces $c_0(p)$, c(p), $\ell(p)$, and $\ell_{\infty}(p)$ and has given characterizations of β -dual of scalar-valued sequence spaces of Maddox.

In [8], Wu and Bu gave characterizations of Köthe dual of the vector-valued sequence space $\ell_p[X]$, where $\ell_p[X]$, 1 , is defined by

$$\ell_p[X] = \left\{ x = (x_k) : \sum_{k=1}^{\infty} |f(x_k)|^p < \infty \text{ for each } f \in X' \right\}.$$

$$(1.2)$$

In this paper, the β -dual of a vector-valued sequence space is defined and studied and we give characterizations of β -dual of vector-valued sequence spaces of Maddox $\ell(X,p), \ell_{\infty}(X,p), c_0(X,p)$, and c(X,p). Some results, obtained in this paper, are generalizations of some in [1, 3].

2. Notation and definitions. Let $(X, \|\cdot\|)$ be a Banach space. Let W(X) and $\Phi(X)$ denote the space of all sequences in X and the space of all finite sequences in X, respectively. A sequence space in X is a linear subspace of W(X). Let E be an X-valued sequence space. For $x \in E$ and $k \in \mathbb{N}$ we write that x_k stand for the kth term of x. For $x \in X$ and $k \in \mathbb{N}$, we let $e^{(k)}(x)$ be the sequence $(0, 0, 0, \dots, 0, x, 0, \dots)$ with x in the kth position and let e(x) be the sequence (x, x, x, \dots) . For a fixed scalar sequence $u = (u_k)$, the sequence space E_u is defined as

$$E_u = \{ x = (x_k) \in W(X) : (u_k x_k) \in E \}.$$
(2.1)

An *X*-valued sequence space *E* is said to be *normal* if $(y_k) \in E$ whenever $||y_k|| \le ||x_k||$ for all $k \in \mathbb{N}$ and $(x_k) \in E$. Suppose that the *X*-valued sequence space *E* is endowed with some linear topology τ . Then *E* is called a *K*-space if, for each $k \in \mathbb{N}$, the *k*th coordinate mapping $p_k : E \to X$, defined by $p_k(x) = x_k$, is continuous on *E*. In addition, if (E, τ) is a *Fréchet (Banach) space*, then *E* is called an FK-(BK)-space. Now, suppose that *E* contains $\Phi(X)$, then *E* is said to have *property AK* if $\sum_{k=1}^{n} e^{(k)}(x_k) \to x$ in *E* as $n \to \infty$ for every $x = (x_k) \in E$.

The spaces $c_0(p)$ and c(p) are FK-spaces. In $c_0(X,p)$, we consider the function $g(x) = \sup_k ||x_k||^{p_k/M}$, where $M = \max\{1, \sup_k p_k\}$, as a paranorm on $c_0(X,p)$, and it is known that $c_0(X,p)$ is an FK-space having property AK under the paranorm g defined as above. In $\ell(X,p)$, we consider it as a paranormed sequence space with the paranorm given by $||(x_k)|| = (\sum_{k=1}^{\infty} ||x_k||^{p_k})^{1/M}$. It is known that $\ell(X,p)$ is an FK-space under the paranorm defined as above.

For an *X*-valued sequence space *E*, define its Köthe dual with respect to the dual pair (X, X') (see [2]) as follows:

$$E^{\times}|_{(X,X')} = \left\{ (f_k) \subset X' : \sum_{k=1}^{\infty} |f_k(x_k)| < \infty \ \forall x = (x_k) \in E \right\}.$$
 (2.2)

In this paper, we denote $E^{\times}|_{(X,X')}$ by E^{α} and it is called the α -dual of *E*.

For a sequence space *E*, the β -dual of *E* is defined by

$$E^{\beta} = \left\{ (f_k) \subset X' : \sum_{k=1}^{\infty} f_k(x_k) \text{ converges } \forall \ (x_k) \in E \right\}.$$
 (2.3)

It is easy to see that $E^{\alpha} \subseteq E^{\beta}$.

For the sake of completeness we introduce some further sequence spaces that will be considered as β -dual of the vector-valued sequence spaces of Maddox:

$$M_{0}(X,p) = \left\{ x = (x_{k}) : \sum_{k=1}^{\infty} ||x_{k}|| M^{-1/p_{k}} < \infty \text{ for some } M \in \mathbb{N} \right\};$$
$$M_{\infty}(X,p) = \left\{ x = (x_{k}) : \sum_{k=1}^{\infty} ||x_{k}|| n^{1/p_{k}} < \infty \forall n \in \mathbb{N} \right\};$$

$$\ell_0(X,p) = \left\{ x = (x_k) : \sum_{k=1}^{\infty} ||x_k||^{p_k} M^{-p_k} < \infty \text{ for some } M \in \mathbb{N} \right\}, \quad p_k > 1 \ \forall k \in N;$$
$$cs[X'] = \left\{ (f_k) \subset X' : \sum_{k=1}^{\infty} f_k(x) \text{ converges } \forall x \in X \right\}.$$
(2.4)

When $X = \mathbb{K}$, the scalar field of X, the corresponding first two sequence spaces are written as $M_0(p)$ and $M_{\infty}(p)$, respectively. These two spaces were first introduced by Grosse-Erdmann [1].

3. Main results. We begin by giving some general properties of β -dual of vector-valued sequence spaces.

PROPOSITION 3.1. Let X be a Banach space and let E, E_1 , and E_2 be X-valued sequence spaces. Then

(i) $E^{\alpha} \subseteq E^{\beta}$.

- (ii) If $E_1 \subseteq E_2$, then $E_2^\beta \subseteq E_1^\beta$.
- (iii) If $E = E_1 + E_2$, then $E^{\beta} = E_1^{\beta} \cap E_2^{\beta}$.
- (iv) If *E* is normal, then $E^{\alpha} = E^{\beta}$.

PROOF. Assertions (i), (ii), and (iii) are immediately obtained by the definitions. To prove (iv), by (i), it suffices to show only that $E^{\beta} \subseteq E^{\alpha}$. Let $(f_k) \in E^{\beta}$ and $x = (x_k) \in E$. Then $\sum_{k=1}^{\infty} f_k(x_k)$ converges. Choose a scalar sequence (t_k) with $|t_k| = 1$ and $f_k(t_kx_k) = |f_k(x_k)|$ for all $k \in \mathbb{N}$. Since *E* is normal, $(t_kx_k) \in E$. It follows that $\sum_{k=1}^{\infty} |f_k(x_k)|$ converges, hence $(f_k) \in E^{\alpha}$.

If *E* is a BK-space, we define a norm on E^{β} by the formula

$$||(f_k)||_{E^{\beta}} = \sup_{\|(x_k)\| \le 1} \left| \sum_{k=1}^{\infty} f_k(x_k) \right|.$$
(3.1)

It is easy to show that $\|\cdot\|_{E^{\beta}}$ is a norm on E^{β} .

Next, we give a relationship between β -dual of a sequence space and its continuous dual. Indeed, we need a lemma.

LEMMA 3.2. Let *E* be an *X*-valued sequence space which is an FK-space containing $\Phi(X)$. Then for each $k \in \mathbb{N}$, the mapping $T_k : X \to E$, defined by $T_k x = e^k(x)$, is continuous.

PROOF. Let $V = \{e^k(x) : x \in X\}$. Then *V* is a closed subspace of *E*, so it is an FK-space because *E* is an FK-space. Since *E* is a *K*-space, the coordinate mapping $p_k : V \to X$ is continuous and bijective. It follows from the open mapping theorem that p_k is open, which implies that $p_k^{-1} : X \to V$ is continuous. But since $T_k = p_k^{-1}$, we thus obtain that T_k is continuous.

THEOREM 3.3. If *E* is a BK-space having property AK, then E^{β} and *E'* are isometrically isomorphic.

PROOF. We first show that for $x = (x_k) \in E$ and $f \in E'$,

$$f(x) = \sum_{k=1}^{\infty} f(e^k(x_k)).$$
 (3.2)

To show this, let $x = (x_k) \in E$ and $f \in E'$. Since *E* has property AK,

$$x = \lim_{n \to \infty} \sum_{k=1}^{n} e^{(k)}(x_k).$$
(3.3)

By the continuity of f, it follows that

$$f(x) = \lim_{n \to \infty} \sum_{k=1}^{n} f(e^{(k)}(x_k)) = \sum_{k=1}^{\infty} f(e^{(k)}(x_k)),$$
(3.4)

so (3.2) is obtained. For each $k \in \mathbb{N}$, let $T_k : X \to E$ be defined as in Lemma 3.2. Since E is a BK-space, by Lemma 3.2, T_k is continuous. Hence $f \circ T_k \in X'$ for all $k \in \mathbb{N}$. It follows from (3.2) that

$$f(x) = \sum_{k=1}^{\infty} (f \circ T_k)(x_k) \quad \forall x = (x_k) \in E.$$
(3.5)

It implies, by (3.5), that $(f \circ T_k)_{k=1}^{\infty} \in E^{\beta}$. Define $\varphi : E' \to E^{\beta}$ by

$$\varphi(f) = (f \circ T_k)_{k=1}^{\infty} \quad \forall f \in E'.$$
(3.6)

It is easy to see that φ is linear. Now, we show that φ is onto. Let $(f_k) \in E^{\beta}$. Define $f : E \to K$, where *K* is the scalar field of *X*, by

$$f(x) = \sum_{k=1}^{\infty} f_k(x_k) \quad \forall x = (x_k) \in E.$$
(3.7)

For each $k \in \mathbb{N}$, let p_k be the *k*th coordinate mapping on *E*. Then we have

$$f(x) = \sum_{k=1}^{\infty} (f_k \circ p_k)(x) = \lim_{n \to \infty} \sum_{k=1}^n (f \circ p_k)(x).$$
(3.8)

Since f_k and p_k are continuous linear, so is also continuous $f \circ p_k$. It follows by Banach-Steinhaus theorem that $f \in E'$ and we have by (3.7) that; for each $k \in \mathbb{N}$ and each $z \in X$, $(f \circ T_k)(z) = f(e^{(k)}(z)) = f_k(z)$. Thus $f \circ T_k = f_k$ for all $k \in \mathbb{N}$, which implies that $\varphi(f) = (f_k)$, hence φ is onto.

Finally, we show that φ is linear isometry. For $f \in E'$, we have

$$\|f\| = \sup_{\|(x_k)\| \le 1} |f((x_k))|$$

= $\sup_{\|(x_k)\| \le 1} \left| \sum_{k=1}^{\infty} f(e^{(k)}(x_k)) \right|$ (by (3.2))
= $\sup_{\|(x_k)\| \le 1} \left| \sum_{k=1}^{\infty} (f \circ T_k)(x_k) \right|$
= $\|(f \circ T_k)_{k=1}^{\infty}\|_{E^{\beta}}$
= $\||\varphi(f)\|_{E^{\beta}}.$ (3.9)

Hence φ is isometry. Therefore, $\varphi : E' \to E^{\beta}$ is an isometrically isomorphism from E' onto E^{β} . This completes the proof.

We next give characterizations of β -dual of the sequence space $\ell(X, p)$ when $p_k > 1$ for all $k \in \mathbb{N}$.

THEOREM 3.4. Let $p = (p_k)$ be a bounded sequence of positive real numbers with $p_k > 1$ for all $k \in \mathbb{N}$. Then $\ell(X, p)^\beta = \ell_0(X', q)$, where $q = (q_k)$ is a sequence of positive real numbers such that $1/p_k + 1/q_k = 1$ for all $k \in \mathbb{N}$.

PROOF. Suppose that $(f_k) \in \ell_0(X', q)$. Then $\sum_{k=1}^{\infty} ||f_k||^{q_k} M^{-q_k} < \infty$ for some $M \in \mathbb{N}$. Then for each $x = (x_k) \in \ell(X, p)$, we have

$$\sum_{k=1}^{\infty} |f_{k}(x_{k})| \leq \sum_{k=1}^{\infty} ||f_{k}|| M^{-1/p_{k}} M^{1/p_{k}} ||x_{k}|| \leq \sum_{k=1}^{\infty} (||f_{k}||^{q_{k}} M^{-q_{k}/p_{k}} + M||x_{k}||^{p_{k}}) = \sum_{k=1}^{\infty} ||f_{k}||^{q_{k}} M^{-(q_{k}-1)} + M \sum_{k=1}^{\infty} ||x_{k}||^{p_{k}} = M \sum_{k=1}^{\infty} ||f_{k}||^{q_{k}} M^{-q_{k}} + M \sum_{k=1}^{\infty} ||x_{k}||^{p_{k}} \leq \infty,$$

$$(3.10)$$

which implies that $\sum_{k=1}^{\infty} f_k(x_k)$ converges, so $(f_k) \in \ell(X, p)^{\beta}$.

On the other hand, assume that $(f_k) \in \ell(X, p)^{\beta}$, then $\sum_{k=1}^{\infty} f_k(x_k)$ converges for all $x = (x_k) \in \ell(X, p)$. For each $x = (x_k) \in \ell(X, p)$, choose scalar sequence (t_k) with $|t_k| = 1$ such that $f_k(t_k x_k) = |f_k(x_k)|$ for all $k \in \mathbb{N}$. Since $(t_k x_k) \in \ell(X, p)$, by our assumption, we have $\sum_{k=1}^{\infty} f_k(t_k x_k)$ converges, so that

$$\sum_{k=1}^{\infty} |f_k(x_k)| < \infty \quad \forall x \in \ell(X, p).$$
(3.11)

We want to show that $(f_k) \in \ell_0(X', q)$, that is, $\sum_{k=1}^{\infty} ||f_k||^{q_k} M^{-q_k} < \infty$ for some $M \in \mathbb{N}$. If it is not true, then

$$\sum_{k=1}^{\infty} ||f_k||^{q_k} m^{-q_k} = \infty \quad \forall m \in \mathbb{N}.$$
(3.12)

It implies by (3.12) that for each $k \in \mathbb{N}$,

$$\sum_{i>k} ||f_i||^{q_i} m^{-q_i} = \infty \quad \forall m \in \mathbb{N}.$$
(3.13)

By (3.12), let $m_1 = 1$, then there is a $k_1 \in \mathbb{N}$ such that

$$\sum_{k \le k_1} ||f_k||^{q_k} m_1^{-q_k} > 1.$$
(3.14)

By (3.13), we can choose $m_2 > m_1$ and $k_2 > k_1$ with $m_2 > 2^2$ such that

$$\sum_{k_1 < k \le k_2} ||f_k||^{q_k} m_2^{-q_k} > 1.$$
(3.15)

Proceeding in this way, we can choose sequences of positive integers (k_i) and (m_i) with $1 = k_0 < k_1 < k_2 < \cdots$ and $m_1 < m_2 < \cdots$, such that $m_i > 2^i$ and

$$\sum_{k_{i-1} < k \le k_i} ||f_k||^{q_k} m_i^{-q_k} > 1.$$
(3.16)

For each $i \in \mathbb{N}$, choose x_k in X with $||x_k|| = 1$ for all $k \in \mathbb{N}$, $k_{i-1} < k \le k_i$ such that

$$\sum_{k_{i-1} < k \le k_i} |f_k(x_k)|^{q_k} m_i^{-q_k} > 1 \quad \forall i \in \mathbb{N}.$$
(3.17)

Let $a_i = \sum_{k_{i-1} < k \le k_i} |f_k(x_k)|^{q_k} m_i^{-q_k}$. Put $y = (y_k)$, $y_k = a_i^{-1} m_i^{-q_k} |f_k(x_k)|^{q_k-1} x_k$ for all $k \in \mathbb{N}$ with $k_{i-1} < k \le k_i$. By using the fact that $p_k q_k = p_k + q_k$ and $p_k (q_k - 1) = q_k$ for all $k \in \mathbb{N}$, we have that for each $i \in \mathbb{N}$,

$$\sum_{k_{i-1} < k \le k_{i}} ||y_{k}||^{p_{k}} = \sum_{k_{i-1} < k \le k_{i}} ||a_{i}^{-1}m_{i}^{-q_{k}}|f_{k}(x_{k})|^{q_{k}-1}x_{k}||^{p_{k}}$$

$$= \sum_{k_{i-1} < k \le k_{i}} a_{i}^{-p_{k}}m_{i}^{-p_{k}q_{k}}|f_{k}(x_{k})|^{q_{k}}$$

$$= \sum_{k_{i-1} < k \le k_{i}} a_{i}^{-p_{k}}m_{i}^{-q_{k}}|f_{k}(x_{k})|^{q_{k}}$$

$$\leq a_{i}^{-1}m_{i}^{-1}\sum_{k_{i-1} < k \le k_{i}} m_{i}^{-q_{k}}|f_{k}(x_{k})|^{q_{k}}$$

$$\leq a_{i}^{-1}m_{i}^{-1}a_{i}$$

$$= m_{i}^{-1}$$

$$< \frac{1}{2^{i}},$$
(3.18)

so we have that $\sum_{k=1}^{\infty} \|y_k\|^{p_k} \le \sum_{i=1}^{\infty} 1/2^i < \infty$. Hence, $y = (y_k) \in \ell(X, p)$. For each $i \in \mathbb{N}$, we have

$$\sum_{k_{i-1} < k \le k_i} |f_k(y_k)| = \sum_{k_{i-1} < k \le k_i} \left| f_k \left(a_i^{-1} m_i^{-q_k} |f_k(x_k)|^{q_k - 1} x_k \right) \right|$$

$$= \sum_{k_{i-1} < k \le k_i} a_i^{-1} m_i^{-q_k} |f_k(x_k)|^{q_k}$$

$$= a_i^{-1} \sum_{k_{i-1} < k \le k_i} m_i^{-q_k} |f_k(x_k)|^{q_k}$$

$$= 1,$$

(3.19)

so that $\sum_{k=1}^{\infty} |f_k(y_k)| = \infty$, which contradicts (3.11). Hence $(f_k) \in \ell_0(X', q)$. The proof is now complete.

The following theorem gives a characterization of β -dual of $\ell(X, p)$ when $p_k \leq 1$ for all $k \in \mathbb{N}$. To do this, the following lemma is needed.

LEMMA 3.5. Let $p = (p_k)$ be a bounded sequence of positive real numbers. Then $\ell_{\infty}(X,p) = \bigcup_{n=1}^{\infty} \ell_{\infty}(X)_{(n^{-1/p_k})}$.

PROOF. Let $x \in \ell_{\infty}(X, p)$, then there is some $n \in \mathbb{N}$ with $||x_k||^{p_k} \le n$ for all $k \in \mathbb{N}$. Hence $||x_k|| n^{-1/p_k} \le 1$ for all $k \in \mathbb{N}$, so that $x \in \ell_{\infty}(X)_{(n^{-1/p_k})}$. On the other hand, if $x \in \bigcup_{n=1}^{\infty} \ell_{\infty}(X)_{(n^{-1/p_k})}$, then there are some $n \in \mathbb{N}$ and M > 1 such that $||x_k|| n^{-1/p_k} \le M$ for every $k \in \mathbb{N}$. Then we have $||x_k||^{p_k} \le nM^{p_k} \le nM^{\alpha}$ for all $k \in \mathbb{N}$, where $\alpha = \sup_k p_k$. Hence $x \in \ell_{\infty}(X, p)$.

THEOREM 3.6. Let $p = (p_k)$ be a bounded sequence of positive real numbers with $p_k \le 1$ for all $k \in \mathbb{N}$. Then $\ell(X, p)^\beta = \ell_\infty(X', p)$.

PROOF. If $(f_k) \in \ell(X, p)^{\beta}$, then $\sum_{k=1}^{\infty} f_k(x_k)$ converges for every $x = (x_k) \in \ell(X, p)$, using the same proof as in Theorem 3.4, we have

$$\sum_{k=1}^{\infty} |f_k(x_k)| < \infty \quad \forall x = (x_k) \in \ell(X, p).$$
(3.20)

If $(f_k) \notin \ell_{\infty}(X', p)$, it follows by Lemma 3.5 that $\sup_k ||f_k|| m^{-1/p_k} = \infty$ for all $m \in \mathbb{N}$. For each $i \in \mathbb{N}$, choose sequences (m_i) and (k_i) of positive integers with $m_1 < m_2 < \cdots$ and $k_1 < k_2 < \cdots$ such that $m_i > 2^i$ and $||f_{k_i}|| m_i^{-1/p_{k_i}} > 1$. Choose $x_{k_i} \in X$ with $||x_{k_i}|| = 1$ such that

$$|f_{k_i}(x_{k_i})|m_i^{-1/p_{k_i}} > 1.$$
 (3.21)

Let $y = (y_k)$, $y_k = m_i^{-1/p_k} x_{k_i}$ if $k = k_i$ for some i, and 0 otherwise. Then $\sum_{k=1}^{\infty} \|y_k\|^{p_k} = \sum_{i=1}^{\infty} 1/m_i < \sum_{i=1}^{\infty} 1/2^i = 1$, so that $(y_k) \in \ell(X, p)$ and

$$\sum_{k=1}^{\infty} |f_k(y_k)| = \sum_{i=1}^{\infty} |f_{k_i}(m_i^{-1/p_{k_i}} x_{k_i})|$$

= $\sum_{i=1}^{\infty} m_i^{-1/p_{k_i}} |f_{k_i}(x_{k_i})|$
= ∞ (by (3.21)), (3.22)

and this is contradictory to (3.20), hence $(f_k) \in \ell_{\infty}(X', p)$.

Conversely, assume that $(f_k) \in \ell_{\infty}(X', p)$. By Lemma 3.5, there exists $M \in \mathbb{N}$ such that $\sup_k ||f_k|| M^{-1/p_k} < \infty$, so there is a K > 0 such that

$$||f_k|| \le K M^{1/p_k} \quad \forall k \in \mathbb{N}.$$
(3.23)

Let $x = (x_k) \in \ell(X, p)$. Then there is a $k_0 \in \mathbb{N}$ such that $M^{1/p_k} ||x_k|| \le 1$ for all $k \ge k_0$. By $p_k \le 1$ for all $k \in \mathbb{N}$, we have that, for all $k \ge k_0$,

$$M^{1/p_k}||x_k|| \le \left(M^{1/p_k}||x_k||\right)^{p_k} = M||x_k||^{p_k}.$$
(3.24)

Then

$$\sum_{k=1}^{\infty} |f_{k}(x_{k})| \leq \sum_{k=1}^{k_{0}} ||f_{k}|| ||x_{k}|| + \sum_{k=k_{0}+1}^{\infty} ||f_{k}|| ||x_{k}||$$

$$\leq \sum_{k=1}^{k_{0}} ||f_{k}|| ||x_{k}|| + K \sum_{k=k_{0}+1}^{\infty} M^{1/p_{k}} ||x_{k}|| \quad (by \ (3.23))$$

$$\leq \sum_{k=1}^{k_{0}} ||f_{k}|| ||x_{k}|| + KM \sum_{k=k_{0}+1}^{\infty} ||x_{k}||^{p_{k}} \quad (by \ (3.24))$$

$$< \infty.$$

$$(3.25)$$

This implies that $\sum_{k=1}^{\infty} f_k(x_k)$ converges, hence $(f_k) \in \ell(X, p)^{\beta}$.

THEOREM 3.7. Let $p = (p_k)$ be a bounded sequence of positive real numbers. Then $\ell_{\infty}(X,p)^{\beta} = M_{\infty}(X',p)$.

PROOF. If $(f_k) \in M_{\infty}(X', p)$, then $\sum_{k=1}^{\infty} ||f_k|| m^{1/p_k} < \infty$ for all $m \in \mathbb{N}$, we have that for each $x = (x_k) \in \ell_{\infty}(X, p)$, there is $m_0 \in \mathbb{N}$ such that $||x_k|| \le m_0^{1/p_k}$ for all $k \in \mathbb{N}$, hence $\sum_{k=1}^{\infty} ||f_k(x_k)| \le \sum_{k=1}^{\infty} ||f_k|| ||x_k|| \le \sum_{k=1}^{\infty} ||f_k|| m_0^{1/p_k} < \infty$, which implies that $\sum_{k=1}^{\infty} f_k(x_k)$ converges, so that $(f_k) \in \ell_{\infty}(X, p)^{\beta}$.

Conversely, assume that $(f_k) \in \ell_{\infty}(X, p)^{\beta}$, then $\sum_{k=1}^{\infty} f_k(x_k)$ converges for all $x = (x_k) \in \ell_{\infty}(X, p)$, by using the same proof as in Theorem 3.4, we have

$$\sum_{k=1}^{\infty} |f_k(x_k)| < \infty \quad \forall x = (x_k) \in \ell_{\infty}(X, p).$$
(3.26)

If $(f_k) \notin M_{\infty}(X', p)$, then $\sum_{k=1}^{\infty} ||f_k|| M^{1/p_k} = \infty$ for some $M \in \mathbb{N}$. Then we can choose a sequence (k_i) of positive integers with $0 = k_0 < k_1 < k_2 < \cdots$ such that

$$\sum_{\substack{k_{i-1} < k \le k_i}} ||f_k|| M^{1/p_k} > i \quad \forall i \in \mathbb{N}.$$
(3.27)

And we choose x_k in X with $||x_k|| = 1$ such that for all $i \in \mathbb{N}$,

$$\sum_{k_{i-1} < k \le k_i} |f_k(x_k)| M^{1/p_k} > i.$$
(3.28)

Put $y = (y_k)$, $y_k = M^{1/p_k} x_k$. Clearly, $y \in \ell_{\infty}(X, p)$ and

$$\sum_{k=1}^{\infty} |f_k(\mathcal{Y}_k)| \ge \sum_{k_{i-1} < k \le k_i}^{\infty} |f_k(x_k)| M^{1/p_k} > i \quad \forall i \in \mathbb{N}.$$

$$(3.29)$$

Hence $\sum_{k=1}^{\infty} |f_k(y_k)| = \infty$, which contradicts (3.26). Hence $(f_k) \in M_{\infty}(X', p)$. The proof is now complete.

THEOREM 3.8. Let $p = (p_k)$ be a bounded sequence of positive real numbers. Then $c_0(X,p)^{\beta} = M_0(X',p)$.

PROOF. Suppose $(f_k) \in M_0(X', p)$, then $\sum_{k=1}^{\infty} ||f_k|| M^{-1/p_k} < \infty$ for some $M \in \mathbb{N}$. Let $x = (x_k) \in c_0(X, p)$. Then there is a positive integer K_0 such that $||x_k||^{p_k} < 1/M$ for all $k \ge K_0$, hence $||x_k|| < M^{-1/p_k}$ for all $k \ge K_0$. Then we have

$$\sum_{k=K_0}^{\infty} |f_k(x_k)| \le \sum_{k=K_0}^{\infty} ||f_k|| ||x_k|| \le \sum_{k=K_0}^{\infty} ||f_k|| M^{-1/p_k} < \infty.$$
(3.30)

It follows that $\sum_{k=1}^{\infty} f_k(x_k)$ converges, so that $(f_k) \in c_0(X, p)^{\beta}$.

On the other hand, assume that $(f_k) \in c_0(X, p)^\beta$, then $\sum_{k=1}^{\infty} f_k(x_k)$ converges for all $x = (x_k) \in c_0(X, p)$. For each $x = (x_k) \in c_0(X, p)$, choose scalar sequence (t_k) with $|t_k| = 1$ such that $f_k(t_k x_k) = |f_k(x_k)|$ for all $k \in \mathbb{N}$. Since $(t_k x_k) \in c_0(X, p)$, by our assumption, we have $\sum_{k=1}^{\infty} f_k(t_k x_k)$ converges, so that

$$\sum_{k=1}^{\infty} \left| f_k(x_k) \right| < \infty \quad \forall x \in c_0(X, p).$$
(3.31)

Now, suppose that $(f_k) \notin M_0(X', p)$. Then $\sum_{k=1}^{\infty} ||f_k|| m^{-1/p_k} = \infty$ for all $m \in \mathbb{N}$. Choose $m_1, k_1 \in \mathbb{N}$ such that

$$\sum_{k \le k_1} ||f_k|| m_1^{-1/p_k} > 1 \tag{3.32}$$

and choose $m_2 > m_1$ and $k_2 > k_1$ such that

$$\sum_{k_1 < k \le k_2} ||f_k|| m_2^{-1/p_k} > 2.$$
(3.33)

Proceeding in this way, we can choose $m_1 < m_2 < \cdots$, and $0 = k_1 < k_2 < \cdots$ such that

$$\sum_{k_{i-1} < k \le k_i} ||f_k|| m_i^{-1/p_k} > i.$$
(3.34)

Take x_k in X with $||x_k|| = 1$ for all $k, k_{i-1} < k \le k_i$ such that

$$\sum_{k_{i-1} < k \le k_i} |f_k(x_k)| \, m_i^{-1/p_k} > i \quad \forall i \in \mathbb{N}.$$
(3.35)

Put $y = (y_k)$, $y_k = m_i^{-1/p_k} x_k$ for $k_{i-1} < k \le k_i$, then $y \in c_0(X, p)$ and

$$\sum_{k=1}^{\infty} |f_k(y_k)| \ge \sum_{k_{i-1} < k \le k_i} |f_k(x_k)| m_i^{-1/p_k} > i \quad \forall i \in \mathbb{N}.$$
(3.36)

Hence we have $\sum_{k=1}^{\infty} |f_k(y_k)| = \infty$, which contradicts (3.31), therefore $(f_k) \in M_0(X', p)$. This completes the proof.

THEOREM 3.9. Let $p = (p_k)$ be a bounded sequence of positive real numbers. Then $c(X,p)^{\beta} = M_0(X',p) \cap cs[X']$.

PROOF. Since $c(X,p) = c_0(X,p) + E$, where $E = \{e(x) : x \in X\}$, it follows by **Proposition 3.1**(iii) and **Theorem 3.8** that $c(X,p)^{\beta} = M_0(X',p) \cap E^{\beta}$. It is obvious by definition that $E^{\beta} = \{(f_k) \subset X' : \sum_{k=1}^{\infty} f_k(x) \text{ converges for all } x \in X\} = cs[X']$. Hence we have the theorem.

ACKNOWLEDGMENT. The author would like to thank the Thailand Research Fund for the financial support.

REFERENCES

- [1] K.-G. Grosse-Erdmann, *The structure of the sequence spaces of Maddox*, Canad. J. Math. 44 (1992), no. 2, 298–302.
- [2] M. Gupta, P. K. Kamthan, and J. Patterson, *Duals of generalized sequence spaces*, J. Math. Anal. Appl. 82 (1981), no. 1, 152–168.
- [3] I. J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. Oxford Ser. (2) 18 (1967), 345-355.
- [4] _____, Paranormed sequence spaces generated by infinite matrices, Math. Proc. Cambridge Philos. Soc. 64 (1968), 335-340.
- [5] _____, Elements of Functional Analysis, Cambridge University Press, London, 1970.
- [6] H. Nakano, *Modulared sequence spaces*, Proc. Japan Acad. 27 (1951), 508–512.
- [7] S. Simons, *The sequence spaces* $l(p_{\nu})$ *and* $m(p_{\nu})$, Proc. London Math. Soc. (3) **15** (1965), 422-436.
- [8] C. X. Wu and Q. Y. Bu, *Köthe dual of Banach sequence spaces* $l_p[X]$ $(1 \le p < \infty)$ *and Grothendieck space*, Comment. Math. Univ. Carolin. **34** (1993), no. 2, 265–273.

SUTHEP SUANTAI: DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, CHIANG MAI UNI-VERSITY, CHIANG MAI 50200, THAILAND

E-mail address: malsuthe@science.cmu.ac.th

WINATE SANHAN: DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, CHIANG MAI UNI-VERSITY, CHIANG MAI 50200, THAILAND

Advances in **Operations Research**

The Scientific World Journal

Hindawi

Submit your manuscripts at http://www.hindawi.com

Algebra

Journal of Probability and Statistics

International Journal of Differential Equations

Complex Analysis

International Journal of

Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Abstract and Applied Analysis

Discrete Dynamics in Nature and Society

Function Spaces

International Journal of Stochastic Analysis

