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STARTING SOLUTIONS FOR SOME SIMPLE OSCILLATING
MOTIONS OF SECOND-GRADE FLUIDS
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The exact starting solutions corresponding to the motions of a second-grade fluid, due to
the cosine and sine oscillations of an infinite edge and of an infinite duct of rectangular
cross-section as well as those induced by an oscillating pressure gradient in such a duct,
are determined by means of the double Fourier sine transforms. These solutions, pre-
sented as sum of the steady-state and transient solutions, satisfy both the governing equa-
tions and all associate initial and boundary conditions. In the special case when a; — 0,
they reduce to those for a Navier-Stokes fluid.
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under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

The flow of a fluid induced by the oscillating shearing motion of a wall is found in many
engineering applications such as flows in vibrating media. This problem is termed as
Stokes’ second problem by Schlichting [1] if the fluid is bounded only by the moving wall.
However, it is termed as Couette flow if the fluid is bounded by two parallel walls. The
starting solutions of the Stokes problem for a viscous fluid caused by the cosine and sine
oscillations of a flat plate have been studied on depth by Erdogan [2]. These solutions
have been recently extended to second-grade fluids by Fetecau and Fetecau [3]. Such
motions are not only of fundamental theoretical interest but they also occur in many
applied problems such as acoustic streaming around an oscillating body.

The first exact solutions for the flows of a second-grade fluid due to a rigid plate oscil-
lating in its own plane and an oscillating pressure gradient seem to be those of Rajagopal
[4]. He has also studied the problem of an infinite rod undergoing torsional and longi-
tudinal oscillations in an incompressible second-grade fluid [5]. His simple but elegant
solutions have been later extended to a larger class of non-Newtonian fluids by Rajagopal
and Bhatnagar [6]. Similar solutions for different oscillating motions of non-Newtonian
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fluids have been also obtained by Hayat et al. [7-9], Siddiqui et al. [10], and Asghar
etal. [11]. Starting solutions for the motion of a second-grade fluid due to the longitudi-
nal and torsional oscillations of an infinite circular cylinder have been recently obtained
in [12].

The main purpose of this note is to establish starting solutions corresponding to the
motions of a second-grade fluid due to an oscillating edge and an oscillating channel of
rectangular cross-section. These solutions are presented as sum of the steady-state and
transient solutions and describe the motion of the fluid at small and large times after
its initiation. For large times, they tend to the steady-state solutions which are indepen-
dent of the initial conditions and periodic in time. Finally, for completeness, the exact
solutions for the motion of a second-grade fluid due to an oscillating pressure gradient
in a duct of rectangular cross-section are also presented. Exact solutions for some mo-
tions of second-grade fluids in such domains have been recently obtained by Erdogan
and Imrak [13].

2. Governing equation

The Cauchy stress T in an incompressible homogeneous fluid of second-grade is related
to the fluid motion in the following manner [3-5]:

T= —pI+S, S= #A] +o Ay +0£2A%, (21)

where —pI denotes the indeterminate spherical stress due to the constraint of incom-
pressibility, S is the extra-stress tensor, ¢ is the dynamic viscosity, «; and «, are the normal
stress moduli, while the kinematical tensors A, and A, are defined through

A, = (gradv) + (gradv)T, A, = % +A;(gradv) + (gradv)TAl. (2.2)

In the above equation, v denotes the velocity, grad denotes the gradient operator, and
(d/dt) denotes the material time differentiation. Of course, all motions are restricted to
be isochoric, so that A; is traceless.

Dunn and Fosdick [14] studied the thermodynamics of fluids of this type and showed
that material moduli must satisfy

=0, a;=0, a+ay=0. (2.3)

The sign of the material moduli «; and «; is the subject of much controversy. A compre-
hensive discussion on the restrictions for y, a1, and a, as well as a critical review can be
found in the work by Dunn and Rajagopal [15].

In the following we will seek a velocity field of the form [13]:

v=v(y,2,t) =v(y,2, i, (2.4)
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where i denotes the unit vector along the x-direction of the Cartesian coordinate system
x, y, and z. For these flows, the constraint of incompressibility is automatically satisfied.

Substituting (2.1)—(2.4) into the balance of linear momentum and neglecting the body
forces we attain to the linear partial differential equation (cf. [13, 16])

av(y,z,t) = —/%axp + (v+ad,) (3 + ) V(350 = 0, (2.5)

where v = y/p is the kinematic viscosity of the fluid (p being its constant density) and
a = a;/p. Equation (2.5) with appropriate boundary and initial conditions can be solved
in general by several methods. The Laplace transform can be applied to eliminate the time
variable. However, the inversion procedure for obtaining the solution is not always a triv-
ial matter. Furthermore, the solution so obtained for a second-grade fluid does not satisfy
the initial condition [17, 18]. This is due to the incompatibility between the prescribed
data. Here, we will use the double Fourier sine transform.

3. Starting flow due to an oscillating edge

Consider an incompressible second-grade fluid at rest occupying the space of the first
dial of a rectangular edge (—co < x < 005 y,z = 0). At time ¢ = 0%, the infinitely extended
edge begins to oscillate along of x-axis. Owing to the shear the fluid is gradually moved.
Its velocity is of the form (2.4), and the governing equation, in the absence of a pressure
gradient in the x-direction, is

ov(y,z,t) = (v+ady) (a§ +32)v(y,2,1), y,z,t>0. (3.1)
Accordingly, the boundary and initial conditions are
v(y,2,0) =0, y,2>0, (3.2)
v(0,2,t) = v(y,0,t) = Vcos(wt) or v(0,z,t) =v(y,0,t) = Vsin(wt), t>0, (3.3)
where w is the frequency of the velocity of the edge. The natural conditions [16]
v(y,z,t), Ov(y,zt), 0v(y,zt) — 0 asy’+z — o0, t>0, (3.4)

have to be also satisfied.
Multiplying both sides of (3.1) by (2/7)sin(¢y)sin(yz), integrating with respect to y
and z from 0 to o and having the conditions (3.2)—(3.4) in mind, we find that [19]

[1+a(&2+n%)]owvs(&,n,t) + (82 + 17 )vs(&,m, 1)

(3.5)
_WEsny [vcos(wt) — awsin(wt)], &n,t >0,
T &y

respectively,

[1+a(&2+n%)]0ms(&n,t) +v(E2 + 72) vs(E, 1, 1)

(3.6)
B o rawcost@d], £t 0,
n &y
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where the double Fourier sine transform vs(&,#,t) of v(y,z,t) has to satisfy the initial
condition

V(E)’/I)O) =0, 5)77 >0. (37)

Solving the ordinary differential equations (3.5) and (3.6) subject to the initial con-

dition (3.7) and inverting the results by means of the Fourier’s sine formula, we get for
v(y,2,t) the expressions (see also [19], the line 1 of Table 5)

v(y,2,t) = V cos(wt)

1+a(§+7%) sin(y§) sin(zn)

w
Ve | e s T R

o &2 +n? sin(y&) sin(zy)
B ) Rerere oy v e SR

J (& +n°) £2+11)+ocw2[1+a(€2+172)]}
(& 412) @1+ (@ + )]’
(&2 +1n?) sin(y&) sin(zy)
XeXp<_1+vc(£2+n2) ) gy
(3.8)
respectively,
v(y,2,t) = Vsin(wt)

_ Pw E+n? sin(y&) sin(zn)

e R e T L S L
40 1+a(&+74%) sin(y&) sin(zy)

Ve | et a@ T

4ywV H &+

wt o 2(@4n)’ + o1+ a(E2+ )]

v(&2+1?) sin(y€) sin(zn)
Xexp<_1+oc(£2+;72)t> 3 dédn.
(3.9)

For large values of ¢, the starting solutions (3.8) and (3.9) reduce to the steady-state so-
lutions which are independent of the initial condition and periodic in time. The first of
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them, for instance, can be written under the form (see the entry 1 of Table 5 from [19])

4w () (€ ) w1+ (€ 4 )]}
)= et vt satere T

o sin(y&) sin(zn)

3 d&dny

b 24y sin(y&)
+ sm(wt)ﬂ 2 (E2 1 12) +w2[1+06(f2+’72)]2 ¢

sin(zn) dédn,
n
(3.10)

4. Starting flow in a duct of rectangular cross-section oscillating parallel to its length

Let us now consider an incompressible second-grade fluid at rest in a duct of rectangular
cross-section whose sides are at y =0, y = d, z = 0, and z = h. At time t = 07, the duct
suddenly starts oscillating parallel to its length. By the influence of shear the fluid is grad-
ually moved. The governing equation is again (3.1), the initial condition is (3.2), while
the boundary conditions are

v(0,2,t) = v(d,z,t) = v(y,0,t) = v(y,h,t) = Vcos(wt), t>0, (4.1)
or
v(0,2,t) = v(d,z,t) = v(»,0,t) = v(y,h,t) = Vsin(wt), t>0. (4.2)

The solution of this problem can be determined by means of finite double Fourier sine
transforms. Thus, multiplying both sides of (3.1) by sin(A,, y) sin(u,z), integrating with
respect to y and z over [0,d] X [0,4], and taking into account (3.2) and (4.1), we find that
(see [20, Section 13])

Vi (1) + 1 ::j""%m Vi (1) = Vﬁ%””[i;”(n_(llzni[[%;)(_l)n] [vcos(wt) — awsin(wt)], t>0,

(4.3)

where A, = mn/d, p, = nn/h, B, = A2, + u2, and the Fourier sine transforms v,,,(f) of
v(x, y,t) have to satisfy the initial conditions

Vun(0) =0; myn=1,2,3,.... (4.4)

Solving the ordinary differential equations (4.3) subject to the initial conditions (4.4)
and using the Fourier inversion theorem (see [20, Section 13, equation 36]) we can write
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the velocity field v(y,z,t) in the form

v(y,2,t) = V cos(wt)

2 . .
B Vcos(wt) Z 1+aBiyn 2 sin (Apy) sin (unz)
dh a1 2By + 0 (1+aBiy) Am HN

2 . .
Vsm(wt) z Pun sin (Aay) sin (unz)
dh mn= 1V/>’MN+w2(1+ocﬂMN) Am Un

_leV Z B [V By + aw? (1+“ﬁMN)]
dh m,n=1 1/2ﬁM1\f""4’2(1"'0‘/5MN)

VBN t) sin (Apy) sin (unz)

X — >
xp ( 1+ 06/))12\,1]\, AM UN

where M =2m —1and N =2n— 1.
The starting solution corresponding to the boundary conditions (4.2) is

v(y,2,t) = Vsin(wt)

16w c Bin sin (Apy) sin (unz)

V cos(wt) Z

dh myn=1 Vzﬁ?VIN +w?(1+ ‘)‘ﬁlz\/IN)2 Am UN

2 . .
- 1—Vsm (wt) Z L+ oy sin(Ayy) sin (unz)

dh mn=1" ﬂMN"’wz(l"'“ﬁMN) Am bN

| lovoV > Biin
dh mn=1 ”Zﬁ?\m +w?(1+ “ﬁzzvm)z

VBian t) sin (Aary) sin (unz)

X ex —
b ( 1+ OC[))IZMN )LM UN

5. Starting flow due to an oscillating pressure gradient

Let us now assume that at time t = 0* a pressure gradient of the form

0xp = —pQcos(wt) or Jyp =—pQsin(wt)

(4.5)

(4.6)

(5.1)
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acts on the fluid laid in a duct of rectangular cross-section. The governing equation is
given by (2.5), the initial condition is (3.2), while the boundary conditions are

v(0,2,t) = v(d,z,t) = v(»,0,t) = v(y,h,t) =0, t>0. (5.2)

The exact solutions corresponding to these last two flows have the forms

Vhat) = % i YB3 cos(wt) + w(1+ afigy) sin(wt) sin (Ayy) sin (uyz)

mn=1 V2B + @ (1+ “:812va)2 An HN
_16vQ S Bin exp (_ VBiun t) sin (Ayy) sin (unz)
dh 2= 2B+ (1+apy)’ L+apion Au un o
(5.3)
respectively,
Y(yzt) = 16Q i YB3 sin(wt) — w(1+ afiy) cos(wt) sin (A y) sin (unz)
»e dh | 2By + w2 (1+afiy)’ Am YN
o 2
N 16wQ 1+ afyn i (5.4)
dh 5 V2B + @ (1+ aBiyy)
X exp ( - vﬂjzw;, t) sin (Ayry) sin (unz) .
1+ afyn Am UN

6. Conclusions

In this paper, the velocity fields corresponding to the motions of a second-grade fluid
due to the sine and cosine oscillations of an infinite edge and of an infinite channel of
rectangular cross-section as well as those produced by an oscillating pressure gradient
have been determined by means of the Fourier sine transforms. The solutions that have
been obtained, depending on the initial and boundary conditions, are presented as sum
of the steady-state and transient solutions. They describe the flows for small and large
times. For large values of time ¢, when the transients disappear, all motions are described
by the corresponding steady-state solutions, which are periodic in time and independent
of the initial condition.

Straightforward computations show that v(y,z,t), given by (3.8), (3.9), (4.5), (4.6),
(5.3), and (5.4), satisfies both the associate partial differential equations (2.5) and (3.1)
and all imposed initial and boundary conditions, the differentiations under integrals or
term by term in sums being clearly permissible. In the special case when a; — 0, corre-
sponding to a Reiner-Rivlin fluid, all solutions take the simpler forms. Equation (3.8), for
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example, takes the form (the last term giving the transient solution)

v(y,2,t) = V cos(wt)

4 1 sin(y&) sin(zy)
ﬂ2< ) V cos wt)ﬂ €2+’7) Ty & . d€dn

i w £2+;1 sin(y¢&) sin(zn)
2( )Vsm(wt)ﬂ &) +(w/v)2 3 p d&dny

f2+71 ) TR sin(y&) sin(zzy)
ﬂ (E2+12)" + (w/v)? exp[ — (& +77)1] 3 p ——=d&dy,
(6.1)

which is identical to that for a Navier-Stokes fluid. However, the surface tractions that
must be applied in order to produce the motion will vary according to the values of a;.
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