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We study a vector-borne disease with age of vaccination. A nonlinear incidence rate includingmass action and saturating incidence
as special cases is considered. The global dynamics of the equilibria are investigated and we show that if the basic reproduction
number is less than 1, then the disease-free equilibrium is globally asymptotically stable; that is, the disease dies out, while if the
basic reproduction number is larger than 1, then the endemic equilibrium is globally asymptotically stable, which means that the
disease persists in the population. Using the basic reproduction number, we derive a vaccination coverage rate that is required for
disease control and elimination.

1. Introduction

Many of infections that have the important impact on human
health in terms of mortality or morbidity are vector-borne
disease. Mosquitoes [1] are perhaps the best known disease
vectors, with various species playing a role in the transmission
of infections such as malaria, yellow fever, dengue fever, and
West Nile virus. One of the effective methods in disease
prevention is the vaccination [2–5]. Several studies in the
literature have been carried out to investigate the role of
treatment and vaccination of the spread of diseases ([6–8] and
the references therein). An epidemic model with vaccination
for measles is derived by Linda [9]. The effect of vaccination
on the spread of periodic diseases, using discrete-timemodel,
was studied by Mickens [10].

The impact of vaccination in two SVIR models with per-
manent immunity is studied by Liu et al. [11]. Xiao and Tang
[12] have shown from an SIV model that complex dynamics
are induced by imperfect vaccination. Gumel and Moghadas
[13] investigated a disease transmissionmodel by considering
the impact of a protective vaccine and found the optimal
vaccine coverage threshold required for disease control and
elimination. The eradicating of an SEIRS epidemic model by
using vaccine was studied by Gao et al. [14]. Yang et al. [8]

derived a threshold value for the vaccination coverage of an
SIVS epidemicmodel.Manyprevious studies have shown that
the reemergence of some diseases is caused by the waning of
vaccine-induced immunity [15–17]. A consequence of this is
that it is important for health authorities to take into account
waning of vaccine-induced immunity in the disease control
and elimination campaign.

In this paper, we consider a vector-borne disease model
such as malaria that incorporates the waning of vaccine-
induced immunity. Additionally, we use incidences with a
nonlinear response to the number of infectious individuals
and infectious vectors. The incidences take the form 𝑆𝑓(𝐼)
and 𝑆𝑔(𝐼), respectively, for the human and vector populations.
We assume that 𝑓 and 𝑔 satisfy the following assumptions:(H1) For 𝑥 ∈ R+, 𝑓(𝑥) ≥ 0 with equality if and only if𝑥 = 0, 𝑓󸀠(𝑥) ≥ 0, and 𝑓󸀠󸀠(𝑥) ≤ 0.(H2) For 𝑥 ∈ R+, 𝑔(𝑥) ≥ 0 with equality if and only if𝑥 = 0, 𝑔󸀠(𝑥) ≥ 0, and 𝑔󸀠󸀠(𝑥) ≤ 0.

From the above assumptions and the Mean Value Theo-
rem, it follows that𝑓󸀠 (𝑥) 𝑥 ≤ 𝑓 (𝑥) ≤ 𝑓󸀠 (0) 𝑥,𝑔󸀠 (𝑥) 𝑥 ≤ 𝑔 (𝑥) ≤ 𝑔󸀠 (0) 𝑥. (1)
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Let 𝑆ℎ, 𝐼ℎ, and 𝑅ℎ denote, respectively, the number of suscep-
tible, infectious, and removed host individuals and 𝑆V, 𝐼V the
number of susceptible and infectious vectors.The susceptible
individuals are vaccinated at the rate 𝜃 ≥ 0. V(𝑡, 𝑎) denotes
the population size of the vaccinated compartment at time𝑡 with the vaccine age 𝑎. Let 𝜖(𝑎) be the rate at which the
vaccine-induced immunity wanes. We assume that 𝜖(𝑎) and
the following assumption:(H3) 𝜖 : [0,∞) → [0,∞) is bounded, nondecreasing,
and piecewise continuous with possibly many finite jumps.

We consider a relatively isolated community where there
is no immigration or emigration. Additionally, we assume
that all the newly recruited, including the newborns, are
susceptibles. Let, at any time 𝑡,Λ ℎ andΛ V be the recruitment
rate of host individuals and vectors, respectively. 𝜇ℎ and 𝜇V
are, respectively, the natural death rate of host individuals
and vectors. Let 𝛾 be the natural recovery rate from the
infected population and 𝛿 the disease induced death rate of
host individuals. The number of individuals moving from
the vaccinated class into the susceptible class at time 𝑡 is∫+∞0 V(𝑡, 𝑎)𝑑𝑎. From the above assumptions, we formulate our
vector-borne epidemic model in the following way:𝑑𝑆ℎ (𝑡)𝑑𝑡 = Λ ℎ − 𝜇ℎ𝑆ℎ (𝑡) − 𝑆ℎ (𝑡) 𝑓 (𝐼V (𝑡))− 𝜃𝑆ℎ (𝑡) + ∫∞

0
𝜖 (𝑎) V (𝑡, 𝑎) 𝑑𝑎,𝑑𝐼ℎ (𝑡)𝑑𝑡 = 𝑆ℎ (𝑡) 𝑓 (𝐼V (𝑡))− (𝜇ℎ + 𝛾 + 𝛿) 𝐼ℎ (𝑡) ,𝑑𝑅ℎ (𝑡)𝑑𝑡 = 𝛾𝐼ℎ (𝑡) − 𝜇ℎ𝑅ℎ (𝑡) ,𝜕V (𝑡, 𝑎)𝜕𝑡 + 𝜕V (𝑡, 𝑎)𝜕𝑎 = − (𝜇ℎ + 𝜖 (𝑎)) V (𝑡, 𝑎) ,𝑑𝑆V (𝑡)𝑑𝑡 = Λ V − 𝜇V𝑆V (𝑡) − 𝑆V (𝑡) 𝑔 (𝐼ℎ (𝑡)) ,𝑑𝐼V (𝑡)𝑑𝑡 = 𝑆V (𝑡) 𝑔 (𝐼ℎ (𝑡)) − 𝜇V𝐼V (𝑡) ,

V (𝑡, 0) = 𝜃𝑆ℎ (𝑡) ,𝑆ℎ (0) = 𝑆ℎ0 ≥ 0,𝐼ℎ (0) = 𝐼ℎ0 > 0,𝑅ℎ (0) = 𝑅ℎ0 ≥ 0,
V (0, ⋅) = V0 (⋅) ∈ 𝐿1+,𝑆V (0) = 𝑆V0 ≥ 0,𝐼V (0) = 𝐼V0 > 0,

(2)

where 𝐿1+ is the set of integrable functions from (0,∞) into
R+ = [0,∞). Since the removed host individual population

does not appear in the remaining equations of system (2), it
is sufficient to consider the following system:𝑑𝑆ℎ (𝑡)𝑑𝑡 = Λ ℎ − 𝜇ℎ𝑆ℎ (𝑡) − 𝑆ℎ (𝑡) 𝑓 (𝐼V (𝑡))− 𝜃𝑆ℎ (𝑡) + ∫∞

0
𝜖 (𝑎) V (𝑡, 𝑎) 𝑑𝑎,𝑑𝐼ℎ (𝑡)𝑑𝑡 = 𝑆ℎ (𝑡) 𝑓 (𝐼V (𝑡))− (𝜇ℎ + 𝛾 + 𝛿) 𝐼ℎ (𝑡) ,𝜕V (𝑡, 𝑎)𝜕𝑡 + 𝜕V (𝑡, 𝑎)𝜕𝑎 = − (𝜇ℎ + 𝜖 (𝑎)) V (𝑡, 𝑎) ,𝑑𝑆V (𝑡)𝑑𝑡 = Λ V − 𝜇V𝑆V (𝑡) − 𝑆V (𝑡) 𝑔 (𝐼ℎ (𝑡)) ,𝑑𝐼V (𝑡)𝑑𝑡 = 𝑆V (𝑡) 𝑔 (𝐼ℎ (𝑡)) − 𝜇V𝐼V (𝑡) ,

V (𝑡, 0) = 𝜃𝑆ℎ (𝑡) ,𝑆ℎ (0) = 𝑆ℎ0 ≥ 0,𝐼ℎ (0) = 𝐼ℎ0 > 0,𝑅ℎ (0) = 𝑅ℎ0 ≥ 0,
V (0, ⋅) = V0 (⋅) ∈ 𝐿1+,𝑆V (0) = 𝑆V0 ≥ 0,𝐼V (0) = 𝐼V0 > 0.

(3)

From [18, 19], we state that system (3) has a unique continuous
solution if the initial conditions satisfy the compatibility
condition

V0 (0) = 𝜃𝑆ℎ0. (4)

In the remaining part of this paper, we always assume that
condition (4) is satisfied.The existence and the nonnegativity
of the solution of (3) can be reached in Browne and Pilyugin
[20]. We next introduce a semiflow solution of system (3).

Define𝜒 = R ×R ×R × 𝐿1 ((0, +∞) ,R) ×R ×R,𝜒+ = R+ ×R+ ×R × 𝐿1+ ((0, +∞) ,R) ×R+ ×R+, (5)

and consider the linear operator 𝐴 : dom(𝐴) ⊂ 𝜒 → 𝜒
defined by

𝐴((((
(

𝑆ℎ𝐼ℎ(0
V
)𝑆V𝐼V
))))
)
=((((
(

−(𝜇ℎ + 𝜃) 𝑆ℎ− (𝜇ℎ + 𝛾 + 𝛿) 𝐼ℎ( −V (0)−V󸀠 − (𝜇ℎ + 𝜖 (𝑎)) V)−𝜇V𝑆V−𝜇V𝐼V
))))
)
, (6)
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with dom(𝐴) = R × R × {0} × 𝑊1,1((0, +∞),R) × R × R,
where 𝑊1,1 is a Sobolev space. Then, dom(𝐴) = R × R ×{0} × 𝐿1((0, +∞),R) × R × R is not dense in 𝜒. We consider
a nonlinear map 𝐹 : dom(𝐴) → 𝜒 which is defined by

𝐹((((
(

𝑆ℎ𝐼ℎ(0
V
)𝑆V𝐼V
))))
)

=(((((
(

Λ ℎ − 𝑆ℎ (𝑡) 𝑓 (𝐼V (𝑡)) + ∫∞
0
𝜖 (𝑎) V (𝑡, 𝑎) 𝑑𝑎𝑆ℎ (𝑡) 𝑓 (𝐼V (𝑡))(𝜃𝑆ℎ (𝑡)0𝐿1 )Λ V − 𝑆V (𝑡) 𝑔 (𝐼ℎ (𝑡))𝑆V (𝑡) 𝑔 (𝐼ℎ (𝑡))

)))))
)
,
(7)

and let𝑢 (𝑡) = (𝑆ℎ (𝑡) , 𝐼ℎ (𝑡) , ( 0V (𝑡, ⋅)) , 𝑆V (𝑡) , 𝐼V (𝑡))𝑇 . (8)

Set 𝜒0 fl dom (𝐴)= R ×R × {0} × 𝐿1 ((0, +∞) ,R) ×R ×R,𝜒+0 fl dom (𝐴) ∩ 𝜒+= R+ ×R+ × {0} × 𝐿1+ ((0, +∞) ,R) ×R+ ×R+.
(9)

Based on the above, we can reformulate system (3) as the
following abstract Cauchy problem:𝑑𝑢 (𝑡)𝑑𝑡 = 𝐴𝑢 (𝑡) + 𝐹𝑢 (𝑡) ,

for 𝑡 ≥ 0,with 𝑢 (0) ∈ 𝜒+0 . (10)
By applying the results given in [19, 21], we derive the
existence and uniqueness of the semiflow {Φ(𝑡)}𝑡≥0 on 𝜒+0
generated by system (3). By using the theory for dynamical
system (see [19]), we can further obtain the following lemma.

Lemma 1. System (3) generates a unique continuous semiflow{Φ(𝑡)}𝑡≥0 on 𝜒+0 that is asymptotically smooth and bounded
dissipative. Furthermore, the semiflow {Φ(𝑡)}𝑡≥0 has a compact
global attractorB ⊂ 𝜒+0 .

The total population size of human hosts and vectors is,
respectively,𝑁ℎ (𝑡) = 𝑆ℎ (𝑡) + 𝐼ℎ (𝑡) + ∫∞

0
V (𝑡, 𝑎) 𝑑𝑎,𝑁V (𝑡) = 𝑆V (𝑡) + 𝐼V (𝑡) . (11)

Then, from the time derivative of𝑁ℎ(𝑡) and𝑁V(𝑡), we get𝑑𝑁ℎ (𝑡)𝑑𝑡 ≤ Λ ℎ − 𝜇ℎ𝑁ℎ (𝑡) ,𝑑𝑁V (𝑡)𝑑𝑡 = Λ V − 𝜇V𝑁V (𝑡) , (12)

which implies

lim sup
𝑡→∞
𝑁ℎ (𝑡) ≤ Λ ℎ𝜇ℎ ,

lim sup
𝑡→∞
𝑁V (𝑡) ≤ Λ V𝜇V . (13)

We hence restrict our attention to solutions of (3) with initial
conditions inΓ = {(𝑆ℎ0, 𝐼ℎ0, 𝑆V0, 𝐼V0, V0 (⋅)) ∈ R4+ × 𝐿1+ : V0 (0)

= 𝜃𝑆ℎ0, 𝑁ℎ (0) ≤ Λ ℎ𝜇ℎ , 𝑁V (0) ≤ Λ V𝜇V } . (14)

The rest of the paper is structured as follows. In Section 2,
we study the existence and local stability of equilibria of
system (3). In Section 3, we present the results for the global
dynamics of equilibria of system (3). In Section 4, the paper
closes with conclusion.

2. Existence and Local Stability of Equilibria

In this part, we state the result about the existence and local
stability of equilibria of the model (3). We first start by the
existence of equilibria. We define𝜉 : R+ 󳨀→ R

+, (15)

as 𝜉 (𝑎) = 𝑒−𝜇ℎ𝑎−∫𝑎0 𝜖(𝑠)𝑑𝑠,
A = ∫∞

0
𝜖 (𝑎) 𝜉 (𝑎) 𝑑𝑎. (16)

Then,

A ≤ ∫∞
0
𝜖 (𝑎) 𝑒−∫𝑎0 𝜖(𝑠)𝑑𝑠𝑑𝑎 = 1. (17)

Let (𝑆ℎ, 𝐼ℎ, 𝑆V, 𝐼V, V(⋅)) be an equilibrium of (3). This impliesΛ ℎ − 𝜇ℎ𝑆ℎ − 𝑆ℎ𝑓 (𝐼V) − 𝜃𝑆ℎ + ∫∞
0
𝜖 (𝑎) V (𝑎) 𝑑𝑎 = 0,𝑆ℎ𝑓 (𝐼V) − (𝜇ℎ + 𝛾 + 𝛿) 𝐼ℎ = 0,𝑑V (𝑎)𝑑𝑎 = − (𝜇ℎ + 𝜖 (𝑎)) V (𝑎) ,Λ V − 𝜇V𝑆V − 𝑆V𝑔 (𝐼ℎ) = 0,𝑆V𝑔 (𝐼ℎ) − 𝜇V𝐼V = 0,

V (0) = 𝜃𝑆ℎ.
(18)
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From the third and the sixth equations of (18), we deduce that

V (𝑎) = 𝜃𝑆ℎ𝜉 (𝑎) . (19)

By the first equation of (18), we get𝑆ℎ = Λ ℎ𝑓 (𝐼V) + 𝜇ℎ + 𝜃 (1 −A) . (20)

From the fourth equation of (18), we have𝑆V = Λ V𝑔 (𝐼ℎ) + 𝜇V . (21)

Substituting 𝑆ℎ and 𝑆V into the second and the fifth equations
of (18) givesΛ ℎ𝑓 (𝐼V) − (𝜇ℎ + 𝛾 + 𝛿) (𝜇ℎ + 𝜃 (1 −A) + 𝑓 (𝐼V)) 𝐼ℎ= 0,Λ V𝑔 (𝐼ℎ) − 𝜇V𝐼V (𝜇V + 𝑔 (𝐼ℎ)) = 0. (22)

From the second equation of (22), we obtain

𝐼V = Λ V𝑔 (𝐼ℎ)𝜇V (𝜇V + 𝑔 (𝐼ℎ)) . (23)

Replacing 𝐼V in the first equation of (22) yields

(Λ ℎ − 𝜇ℎ𝐼ℎ) 𝑓( Λ V𝑔 (𝐼ℎ)𝜇V (𝜇V + 𝑔 (𝐼ℎ)))− (𝜇ℎ + 𝛾 + 𝛿) (𝜇ℎ + 𝜃 (1 −A)) 𝐼ℎ = 0. (24)

By (H1) and (H2), 𝐼ℎ = 0 is a solution of the above equation.
Thus, system (3) has a disease-free equilibrium

E0 = ( Λ ℎ𝜇ℎ + 𝜃 (1 −A) , 0, Λ V𝜇V , 0, 𝜃Λ ℎ𝜉 (𝑎)𝜇ℎ + 𝜃 (1 −A)) . (25)

Following the same method as [22], the basic reproduction
number for model (3) is

R (𝜃) = √ Λ ℎΛ V𝑓󸀠 (0) 𝑔󸀠 (0)𝜇2V (𝜇ℎ + 𝛾 + 𝛿) (𝜇ℎ + 𝜃 (1 −A)) . (26)

R(𝜃) describes a threshold for endemic persistence/spread
of the disease, the rate of increase in the number of cases
during an epidemic. Its magnitude allows determining the
effort necessary either to prevent an epidemic or to eliminate
an infection from a population.

Let (𝑆∗ℎ , 𝐼∗ℎ , 𝑆∗V , 𝐼∗V , V∗(⋅))be an endemic equilibrium.Then,𝐼∗ℎ ∈ (0, Λ ℎ/𝜇ℎ) and ℎ(𝐼∗ℎ ) = 0, whereℎ (𝐼ℎ) = (Λ ℎ − 𝜇ℎ𝐼ℎ) 𝑓( Λ V𝑔 (𝐼ℎ)𝜇V (𝜇V + 𝑔 (𝐼ℎ)))− (𝜇ℎ + 𝛾 + 𝛿) (𝜇ℎ + 𝜃 (1 −A)) 𝐼ℎ. (27)

The function ℎ is continuouswith ℎ(0) = 0 and ℎ(Λ ℎ/𝜇ℎ) ≤ 0.

Moreover, for 𝐼ℎ ∈ (0, Λ ℎ/𝜇ℎ),𝑑ℎ𝑑𝐼ℎ= (Λ ℎ − 𝜇ℎ𝐼ℎ) Λ V𝑔󸀠 (𝐼ℎ)(𝜇V + 𝑔 (𝐼ℎ))2𝑓󸀠 ( Λ V𝑔 (𝐼ℎ)𝜇V (𝜇V + 𝑔 (𝐼ℎ)))− 𝜇ℎ𝑓( Λ V𝑔 (𝐼ℎ)𝜇V (𝜇V + 𝑔 (𝐼ℎ)))− (𝜇ℎ + 𝛾 + 𝛿) (𝜇ℎ + 𝜃 (1 −A)) .
(28)

The sufficient condition for ℎ to have a zero in (0, Λ ℎ/𝜇ℎ) is
that ℎ is increasing at 0.Thus, there is an endemic equilibrium
if 𝑑ℎ𝑑𝐼ℎ (0) = (𝜇ℎ + 𝛾 + 𝛿) (𝜇ℎ + 𝜃 (1 −A)) (R2 (𝜃) − 1)> 0, (29)

which is equivalent toR(𝜃) > 1. Let 𝐼∗ℎ be a unique solution
in (0, Λ ℎ/𝜇ℎ) of ℎ(𝐼ℎ) = 0. Then, system (3) admits a unique
endemic equilibriumE∗ = (𝑆∗ℎ , 𝐼∗ℎ , 𝑆∗V , 𝐼∗V , V∗(⋅)), where𝑆∗ℎ= Λ ℎ𝑓 (Λ V𝑔 (𝐼∗ℎ ) /𝜇V (𝜇V + 𝑔 (𝐼∗ℎ ))) + 𝜇ℎ + 𝜃 (1 −A) ,𝑆∗V = Λ V𝜇V + 𝑔 (𝐼∗ℎ ) ,𝐼∗V = Λ V𝑔 (𝐼∗ℎ )𝜇V (𝜇V + 𝑔 (𝐼∗ℎ )) ,
V∗ (⋅)= Λ ℎ𝜃𝜉 (𝑎)𝑓 (Λ V𝑔 (𝐼∗ℎ ) /𝜇V (𝜇V + 𝑔 (𝐼∗ℎ ))) + 𝜇ℎ + 𝜃 (1 −A) .

(30)

We summarize the above analysis in the following result.

Theorem 2 (consider system (3)). IfR(𝜃) ≤ 1, then there is a
unique equilibrium, which is the disease-free equilibrium E0.

IfR(𝜃) > 1, then there are two equilibria, the disease-free
equilibrium E0 and the endemic equilibrium E∗.

We now deal with the local stability of the disease-free
equilibrium.We show the stability ofE0 by linearizing system
(3) about E0. The result is stated as follows.

Theorem 3 (consider system (3)). If R(𝜃) < 1, the disease-
free equilibrium E0 is locally asymptotically stable.

IfR(𝜃) > 1, the unique endemic equilibrium E∗ is locally
asymptotically stable.
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Proof. From the linearization of system (3) at E0, we deduce
the following characteristic equation:(𝜆 + 𝜇V) (𝜆 + 𝜇ℎ + 𝜃 (1 − Â (𝜆)))⋅ ((𝜆 + 𝜇ℎ + 𝛾 + 𝛿) (𝜆 + 𝜇V)

− Λ ℎ𝜇ℎ + 𝜃 (1 −A) Λ V𝜇V 𝑓󸀠 (0) 𝑔󸀠 (0)) = 0,
(31)

where

Â (𝜆) = ∫∞
0
𝜖 (𝑎) 𝜉 (𝑎) 𝑒−𝜆𝑎𝑑𝑎. (32)

From (31), the eigenvalues are −𝜇V and solutions of𝜆 + 𝜇ℎ + 𝜃 = 𝜃Â (𝜆) , (33)

(𝜆 + 𝜇ℎ + 𝛾 + 𝛿) (𝜆 + 𝜇V) = Λ ℎΛ V𝑓󸀠 (0) 𝑔󸀠 (0)𝜇V (𝜇ℎ + 𝜃 (1 −A)) . (34)

All roots of (33) and (34) have negative real parts; otherwise
let 𝜆0 be a root of (33) with Re(𝜆0) ≥ 0. Then, we have󵄨󵄨󵄨󵄨𝜆0 + 𝜇ℎ + 𝜃󵄨󵄨󵄨󵄨 > 𝜃,󵄨󵄨󵄨󵄨󵄨𝜃Â (𝜆0)󵄨󵄨󵄨󵄨󵄨 ≤ 𝜃A ≤ 𝜃. (35)

This leads to a contradiction.
Now, let 𝜆0 be a root of (34) with Re(𝜆0) ≥ 0. From (26),

we have󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 Λ ℎΛ V𝑓󸀠 (0) 𝑔󸀠 (0)𝜇V (𝜇ℎ + 𝜃 (1 −A)) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 =R (𝜃)2 𝜇V (𝜇ℎ + 𝛾 + 𝛿)< 𝜇V (𝜇ℎ + 𝛾 + 𝛿)≤ 󵄨󵄨󵄨󵄨(𝜆0 + 𝜇ℎ + 𝛾 + 𝛿) (𝜆0 + 𝜇V)󵄨󵄨󵄨󵄨 .
(36)

This also leads to a contradiction by using (34) and then
proves that E0 is locally asymptotically stable.

The characteristic equation atE∗ is

0 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜆 + 𝜇ℎ + 𝑓 (𝐼∗V ) + 𝜃 (1 − Â (𝜆)) 0 0 𝑆∗ℎ𝑓󸀠 (𝐼∗V )−𝑓 (𝐼∗V ) 𝜆 + 𝜇ℎ + 𝛾 + 𝛿 0 −𝑆∗ℎ𝑓󸀠 (𝐼∗V )0 𝑆∗V 𝑔󸀠 (𝐼∗ℎ ) 𝜆 + 𝜇V + 𝑔 (𝐼∗ℎ ) 00 −𝑆∗V𝑔󸀠 (𝐼∗ℎ ) −𝑔 (𝐼∗ℎ ) 𝜆 + 𝜇V

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
,

0 = (𝜆 + 𝜇V) [(𝜆 + 𝜇ℎ + 𝑓 (𝐼∗V ) + 𝜃 (1 − Â (𝜆))) (𝜆 + 𝜇ℎ + 𝛾 + 𝛿) (𝜆 + 𝜇V + 𝑔 (𝐼∗ℎ )) + 𝑆∗ℎ𝑆∗V𝑓󸀠 (𝐼∗V ) 𝑓 (𝐼∗V ) 𝑔󸀠 (𝐼∗ℎ ) 𝑔 (𝐼∗ℎ )− (𝜆 + 𝜇ℎ + 𝑓 (𝐼∗V ) + 𝜃 (1 − Â (𝜆))) 𝑆∗ℎ𝑆∗V𝑓󸀠 (𝐼∗V ) 𝑔󸀠 (𝐼∗ℎ )] .
(37)

By using 𝑆∗ℎ = (𝜇ℎ + 𝛾 + 𝛿)𝐼∗ℎ /𝑓(𝐼∗V ) and 𝑆∗V = 𝜇V𝐼∗V /𝑔(𝐼∗ℎ ), we
get

0 = (𝜆 + 𝜇V) [(𝜆 + 𝜇ℎ + 𝑓 (𝐼∗V ) + 𝜃 (1 − Â (𝜆)))⋅ (𝜆 + 𝜇ℎ + 𝛾 + 𝛿) (𝜆 + 𝜇V + 𝑔 (𝐼∗ℎ ))+ 𝜇V (𝜇ℎ + 𝛾 + 𝛿) 𝐼∗ℎ 𝐼∗V 𝑓󸀠 (𝐼∗V ) 𝑔󸀠 (𝐼∗ℎ )− (𝜆 + 𝜇ℎ + 𝑓 (𝐼∗V ) + 𝜃 (1 − Â (𝜆)))× 𝜇V (𝜇ℎ + 𝛾 + 𝛿) 𝐼∗ℎ 𝐼∗V𝑓 (𝐼∗V ) 𝑔 (𝐼∗ℎ ) 𝑓󸀠 (𝐼∗V ) 𝑔󸀠 (𝐼∗ℎ )] .
(38)

We show that the characteristic equation has no eigenvalues
with nonnegative real parts. The eigenvalues are −𝜇V and
solutions of(𝜆 + 𝜇ℎ + 𝑓 (𝐼∗V ) + 𝜃 (1 − Â (𝜆))) (𝜆 + 𝜇ℎ + 𝛾 + 𝛿)⋅ (𝜆 + 𝜇V + 𝑔 (𝐼∗ℎ )) + 𝜇V (𝜇ℎ + 𝛾 + 𝛿) 𝐼∗ℎ 𝐼∗V 𝑓󸀠 (𝐼∗V )⋅ 𝑔󸀠 (𝐼∗ℎ ) = (𝜆 + 𝜇ℎ + 𝑓 (𝐼∗V ) + 𝜃 (1 − Â (𝜆)))× 𝜇V (𝜇ℎ + 𝛾 + 𝛿) 𝐼∗ℎ 𝐼∗V𝑓 (𝐼∗V ) 𝑔 (𝐼∗ℎ ) 𝑓󸀠 (𝐼∗V ) 𝑔󸀠 (𝐼∗ℎ ) .

(39)

By way of contradiction, assume that there is one eigenvalue𝜆1 with Re(𝜆1) ≥ 0. Then,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨1 + 𝜇V (𝜇ℎ + 𝛾 + 𝛿) 𝐼∗ℎ 𝐼∗V 𝑓󸀠 (𝐼∗V ) 𝑔󸀠 (𝐼∗ℎ )(𝜆1 + 𝜇ℎ + 𝑓 (𝐼∗V ) + 𝜃 (1 − Â (𝜆1))) (𝜆1 + 𝜇ℎ + 𝛾 + 𝛿) (𝜆1 + 𝜇V + 𝑔 (𝐼∗ℎ )) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨× 󵄨󵄨󵄨󵄨(𝜆1 + 𝜇ℎ + 𝛾 + 𝛿) (𝜆1 + 𝜇V + 𝑔 (𝐼∗ℎ ))󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜇V (𝜇ℎ + 𝛾 + 𝛿) 𝐼∗ℎ 𝐼∗V𝑓 (𝐼∗V ) 𝑔 (𝐼∗ℎ ) 𝑓󸀠 (𝐼∗V ) 𝑔󸀠 (𝐼∗ℎ )󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 .
(40)
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From (1), it follows that󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜇V (𝜇ℎ + 𝛾 + 𝛿) 𝐼∗ℎ 𝐼∗V𝑓 (𝐼∗V ) 𝑔 (𝐼∗ℎ ) 𝑓󸀠 (𝐼∗V ) 𝑔󸀠 (𝐼∗ℎ )󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝜇V (𝜇ℎ + 𝛾 + 𝛿) .

(41)

Since

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨1 + 𝜇V (𝜇ℎ + 𝛾 + 𝛿) 𝐼∗ℎ 𝐼∗V 𝑓󸀠 (𝐼∗V ) 𝑔󸀠 (𝐼∗ℎ )(𝜆1 + 𝜇ℎ + 𝑓 (𝐼∗V ) + 𝜃 (1 − Â (𝜆1))) (𝜆1 + 𝜇ℎ + 𝛾 + 𝛿) (𝜆1 + 𝜇V + 𝑔 (𝐼∗ℎ )) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 > 1, (42)

we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨1 + 𝜇V (𝜇ℎ + 𝛾 + 𝛿) 𝐼∗ℎ 𝐼∗V 𝑓󸀠 (𝐼∗V ) 𝑔󸀠 (𝐼∗ℎ )(𝜆1 + 𝜇ℎ + 𝑓 (𝐼∗V ) + 𝜃 (1 − Â (𝜆1))) (𝜆1 + 𝜇ℎ + 𝛾 + 𝛿) (𝜆1 + 𝜇V + 𝑔 (𝐼∗ℎ )) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨× 󵄨󵄨󵄨󵄨(𝜆1 + 𝜇ℎ + 𝛾 + 𝛿) (𝜆1 + 𝜇V + 𝑔 (𝐼∗ℎ ))󵄨󵄨󵄨󵄨 > 𝜇V (𝜇ℎ + 𝛾 + 𝛿) . (43)

This leads to a contradiction.

3. Global Stability Analysis of Equilibria

In this section, we prove the global stability of the equilibria of
model (3). We first start by the global stability of the disease-
free equilibrium E0. To attend this, we need the Fluctuation
Lemma [23].

Let us introduce the notations𝜓∞ = lim inf
𝑡→∞
𝜓 (𝑡) ,𝜓∞ = lim sup

𝑡→∞
𝜓 (𝑡) . (44)

The Fluctuation Lemma is stated as follows.

Lemma 4 (See [23]). Let 𝜓 : R+ → R be a bounded and
continuously differentiable function. Then, there exist sequen-
ces {𝑠𝑛} and {𝑡𝑛} such that 𝑠𝑛 → ∞, 𝑡𝑛 → ∞, 𝜓(𝑠𝑛) → 𝜓∞,𝜓󸀠(𝑠𝑛) → 0, 𝜓(𝑡𝑛) → 𝜓∞, and 𝜓󸀠(𝑡𝑛) → 0 as 𝑛 → ∞.

We also need the following lemma for establishing the
global stability of E0.

Lemma 5 (See [18]). Suppose that 𝑓 : R+ → R is a bounded
function and 𝑘 ∈ 𝐿1((0, +∞),R). Then,

lim sup
𝑡→∞
∫𝑡
0
𝑘 (𝜁) 𝑓 (𝑡 − 𝜁) 𝑑𝜁 ≤ 𝑓∞ ‖𝑘‖1 ,

where ‖𝑘‖1 = ∫+∞
0
𝑘 (𝑠) 𝑑𝑠. (45)

We state the stability result of the disease-free equilibrium
E0 as follows.

Theorem 6. IfR(𝜃) < 1, then the disease-free equilibriumE0
is globally asymptotically stable.

Proof. Using Theorem 3, it is sufficient to show that E0 is
attractive in Γ.

Let (𝑆ℎ(𝑡), 𝐼ℎ(𝑡), 𝑆V(𝑡), 𝐼V(𝑡), V(𝑡, 𝑎)) be a solution of (3)
with (𝑆ℎ0, 𝐼ℎ0, 𝑆V0, 𝐼V0, V0(⋅)) ∈ Γ. We integrate the third
equation of (3) with the boundary conditions to obtain

V (𝑡, 𝑎) = {{{{{
𝜃𝑆ℎ (𝑡 − 𝑎) 𝜉 (𝑎) , 𝑡 ≥ 𝑎,
V0 (𝑎 − 𝑡) 𝜉 (𝑎)𝜉 (𝑎 − 𝑡) , 𝑡 < 𝑎. (46)

Using the Fluctuation Lemma 4, we derive𝑆∞ℎ ≤ Λ ℎ𝜇ℎ + 𝜃 (1 −A) ,𝑆∞V ≤ Λ V𝜇V . (47)

From (1) and (3), we get𝑑𝐼ℎ (𝑡)𝑑𝑡 = 𝑆ℎ (𝑡) 𝑓 (𝐼V (𝑡)) − (𝜇ℎ + 𝛾 + 𝛿) 𝐼ℎ≤ Λ ℎ𝜇ℎ + 𝜃 (1 −A)𝑓󸀠 (0) 𝐼V (𝑡)− (𝜇ℎ + 𝛾 + 𝛿) 𝐼ℎ (𝑡) ,𝑑𝐼V (𝑡)𝑑𝑡 = 𝑆V (𝑡) 𝑔 (𝐼ℎ (𝑡)) − 𝜇V𝐼V (𝑡)≤ Λ V𝜇V 𝑔󸀠 (0) 𝐼ℎ (𝑡) − 𝜇V𝐼V (𝑡) .
(48)

From (48), we have

(𝑑𝐼ℎ𝑑𝑡𝑑𝐼V𝑑𝑡 )
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≤ (− (𝜇ℎ + 𝛾 + 𝛿) Λ ℎ𝑓󸀠 (0)𝜇ℎ + 𝜃 (1 −A)Λ V𝑔󸀠 (0)𝜇V −𝜇V )(𝐼ℎ𝐼V) .
(49)

It is evident that all eigenvalues of the matrix

(−(𝜇ℎ + 𝛾 + 𝛿) Λ ℎ𝑓󸀠 (0)𝜇ℎ + 𝜃 (1 −A)Λ V𝑔󸀠 (0)𝜇V −𝜇V ) (50)

have negative real parts whenR(𝜃) < 1. This leads to𝐼∞ℎ 󳨀→ 0,𝐼∞V 󳨀→ 0. (51)

From Lemma 4, it follows that there exists a sequence {𝑡𝑛}
such that 𝑡𝑛 → ∞, 𝑆ℎ(𝑡𝑛) → 𝑆ℎ,∞, 𝑆V(𝑡𝑛) → 𝑆V,∞, and𝑆󸀠ℎ(𝑡𝑛) → 0, 𝑆󸀠V(𝑡𝑛) → 0 as 𝑛 → ∞.

Note that

lim
𝑛→∞
𝐼ℎ (𝑡𝑛) = 0,

lim
𝑛→∞
𝐼V (𝑡𝑛) = 0. (52)

Thus,𝑑𝑆ℎ (𝑡𝑛)𝑑𝑡 = Λ ℎ − (𝜇ℎ + 𝜃) 𝑆ℎ (𝑡𝑛) − 𝑆ℎ (𝑡𝑛) 𝑓 (𝐼V (𝑡𝑛))+ ∫𝑡𝑛
0
𝜖 (𝑎) 𝑆ℎ (𝑡𝑛 − 𝑎) 𝜉 (𝑎) 𝑑𝑎

+ ∫∞
𝑡𝑛
𝜖 (𝑎) V0 (𝑎 − 𝑡𝑛) 𝜉 (𝑎)𝜉 (𝑎 − 𝑡𝑛)𝑑𝑎,𝑑𝑆V (𝑡𝑛)𝑑𝑡 = Λ V − 𝜇V𝑆V (𝑡𝑛) − 𝑆V (𝑡𝑛) 𝑔 (𝐼ℎ (𝑡𝑛)) .

(53)

Let 𝑛 → ∞; then0 ≥ Λ ℎ − (𝜇ℎ + 𝜃) 𝑆ℎ,∞ − 𝑆ℎ,∞𝑓 (𝐼∞V )+ ∫∞
0
𝜖 (𝑎) 𝑆ℎ,∞𝜉 (𝑎) 𝑑𝑎,0 ≥ Λ V − 𝜇V𝑆V,∞ − 𝑆V,∞𝑔 (𝐼∞ℎ ) ,

(54)

which gives0 ≥ Λ ℎ − (𝜇ℎ + 𝜃 (1 −A)) 𝑆ℎ,∞ − 𝑆ℎ,∞𝑓 (𝐼∞V ) ,0 ≥ Λ V − 𝜇V𝑆V,∞ − 𝑆V,∞𝑔 (𝐼∞ℎ ) . (55)

Since 𝐼∞ℎ → 0 and 𝐼∞V → 0, we obtainΛ ℎ𝜇ℎ + 𝜃 (1 −A) ≤ 𝑆ℎ,∞ ≤ 𝑆∞ℎ ≤ Λ ℎ𝜇ℎ + 𝜃 (1 −A) ,Λ V𝜇V ≤ 𝑆V,∞ ≤ 𝑆∞V ≤ Λ V𝜇V . (56)

That is,

lim
𝑡→∞
𝑆ℎ (𝑡) = Λ ℎ𝜇ℎ + 𝜃 (1 −A) ,

lim
𝑡→∞
𝑆V (𝑡) = Λ V𝜇V . (57)

From (46), it follows that

lim
𝑡→∞

V (𝑡, 𝑎) = Λ ℎ𝜃𝜉 (𝑎)𝜇ℎ + 𝜃 (1 −A) . (58)

Therefore, (𝑆ℎ(𝑡), 𝐼ℎ(𝑡), 𝑆V(𝑡), 𝐼V(𝑡), V(𝑡, ⋅)) → E0 in R4+ × 𝐿1+
as 𝑡 → ∞.

We now deal with the global stability of the endemic
equilibriumE∗.

A total trajectory of Φ is a function 𝑋 : R → R4+ × 𝐿1+
such that Φ(𝑠, 𝑋(𝑡)) = 𝑋(𝑡 + 𝑠) for all 𝑡 ∈ R and all 𝑠 ∈ R+.

We define 𝜙 : (0,∞) → R by 𝜙(𝑥) = 𝑥 − 1 − ln𝑥. 𝜙 has
a strict global minimum at 1 with 𝜙(1) = 0 and 𝜙(𝑥) > 0,∀𝑥 ̸= 1.
Lemma 7 (see [24]). Define

𝐹 (𝑋) = 𝜙( 𝑓 (𝑋)𝑓 (𝑋∗)) − 𝜙 ( 𝑋𝑋∗ ) . (59)

If assumptions (H1) and (H2) are satisfied, then 𝐹(𝑋) ≤ 0,∀𝑋 > 0.
The result of the global stability of the endemic equilib-

rium is stated as follows.

Theorem 8. IfR(𝜃) > 1, then the endemic equilibrium E∗ is
globally asymptotically stable in Γ.
Proof. Evaluating both sides of (3) atE∗ givesΛ ℎ + ∫∞

0
𝜖 (𝑎) V∗ (𝑎) 𝑑𝑎 = (𝜇ℎ + 𝑓 (𝐼∗V ) + 𝜃) 𝑆∗ℎ , (60)𝑆∗ℎ𝑓 (𝐼∗V ) = (𝜇ℎ + 𝛾 + 𝛿) 𝐼∗ℎ , (61)Λ V = (𝜇V + 𝑔 (𝐼∗ℎ )) 𝑆∗V , (62)𝑔 (𝐼∗ℎ ) 𝑆∗V = 𝜇V𝐼∗V , (63)

V∗ (𝑎) = 𝜃𝑆∗ℎ𝜉 (𝑎) . (64)

Let 𝛼 (𝑎) = ∫∞
𝑎
𝜖 (𝑠) V∗ (𝑠) 𝑑𝑠. (65)

Then, 𝑑𝛼 (𝑎)𝑑𝑎 = −𝜖 (𝑎) V∗ (𝑎) . (66)



8 International Journal of Differential Equations

Let 𝑉𝑆ℎ (𝑡) = 𝜙(𝑆ℎ (𝑡)𝑆∗ℎ ) ,𝑉𝐼ℎ (𝑡) = 𝜙(𝐼ℎ (𝑡)𝐼∗ℎ ) ,𝑉𝑆V (𝑡) = 𝜙(𝑆V (𝑡)𝑆∗V ) ,𝑉𝐼V (𝑡) = 𝜙(𝐼V (𝑡)𝐼∗V ) ,𝑉V (𝑡) = ∫∞
0
𝛼 (𝑎) 𝜙 (V (𝑡, 𝑎)

V∗ (𝑎) ) .

(67)

Define 𝑉 (𝑡) = 𝑆∗V𝑔 (𝐼∗ℎ ) (𝑆∗ℎ𝑉𝑆ℎ (𝑡) + 𝐼∗ℎ𝑉𝐼ℎ (𝑡))+ 𝑆∗ℎ𝑓 (𝐼∗V ) (𝑆∗V𝑉𝑆V (𝑡) + 𝐼∗V 𝑉𝐼V (𝑡))+ 𝑆∗V𝑔 (𝐼∗ℎ ) 𝑉V (𝑡) . (68)

We study the behavior of the Lyapunov functional𝑉(𝑡) given
by (68). 𝑉(𝑡) is bounded and 𝑉(𝑡) ≥ 0 with equality if and
only if 𝑆ℎ(𝑡)/𝑆∗ℎ = 𝐼ℎ(𝑡)/𝐼∗ℎ = 𝑆V(𝑡)/𝑆∗V = 𝐼V(𝑡)/𝐼∗V = V(𝑡, 𝑎)/
V∗(𝑎) = 1.

For clarity, the derivatives of 𝑉𝑆ℎ(𝑡), 𝑉𝐼ℎ(𝑡), 𝑉𝑆V(𝑡), 𝑉𝐼V(𝑡),𝑉V(𝑡) will be calculated separately and then combined to
obtain 𝑑𝑉(𝑡)/𝑑𝑡. We first have𝑑𝑉𝑆ℎ (𝑡)𝑑𝑡 = 1𝑆∗ℎ (1 − 𝑆∗ℎ𝑆ℎ (𝑡)) 𝑑𝑆ℎ (𝑡)𝑑𝑡 = 1𝑆∗ℎ (1− 𝑆∗ℎ𝑆ℎ (𝑡)) (Λ ℎ − 𝜇ℎ𝑆ℎ (𝑡) − 𝑆ℎ (𝑡) 𝑓 (𝐼V (𝑡))− 𝜃𝑆ℎ (𝑡) + ∫∞

0
𝜖 (𝑎) V (𝑡, 𝑎) 𝑑𝑎) .

(69)

Using (60) to replace Λ ℎ in (69) gives𝑑𝑉𝑆ℎ (𝑡)𝑑𝑡 = 1𝑆∗ℎ (1 − 𝑆∗ℎ𝑆ℎ (𝑡)) ((𝜇ℎ + 𝜃) 𝑆∗ℎ + 𝑆∗ℎ𝑓 (𝐼∗V )− ∫∞
0
𝜖 (𝑎) V∗ (𝑎) 𝑑𝑎 − (𝜇ℎ + 𝜃) 𝑆ℎ (𝑡) − 𝑆ℎ (𝑡)

⋅ 𝑓 (𝐼V (𝑡)) + ∫∞
0
𝜖 (𝑎) V (𝑡, 𝑎) 𝑑𝑎) = − (𝜇ℎ + 𝜃)

⋅ (𝑆ℎ (𝑡) − 𝑆∗ℎ)2𝑆ℎ (𝑡) 𝑆∗ℎ + 𝑓 (𝐼∗V ) (1 − 𝑆ℎ (𝑡) 𝑓 (𝐼V (𝑡))𝑆∗ℎ𝑓 (𝐼∗V )− 𝑆∗ℎ𝑆ℎ (𝑡) + 𝑓 (𝐼V (𝑡))𝑓 (𝐼∗V ) ) + ∫∞0 𝜖 (𝑎) V∗ (𝑎)𝑆∗ℎ (V (𝑡, 𝑎)
V∗ (𝑎)

− 𝑆∗ℎV (𝑡, 𝑎)𝑆ℎ (𝑡) V∗ (𝑎) − 1 + 𝑆∗ℎ𝑆ℎ (𝑡)) 𝑑𝑎.

(70)

Next, we calculate 𝑑𝑉𝐼ℎ(𝑡)/𝑑𝑡.𝑑𝑉𝐼ℎ (𝑡)𝑑𝑡 = 1𝐼∗ℎ (1 − 𝐼∗ℎ𝐼ℎ (𝑡)) 𝑑𝐼ℎ𝑑𝑡 = 1𝐼∗ℎ (1 − 𝐼∗ℎ𝐼ℎ (𝑡))⋅ (𝑆ℎ (𝑡) 𝑓 (𝐼V (𝑡)) − (𝜇ℎ + 𝛾 + 𝛿) 𝐼ℎ (𝑡))= 1𝐼∗ℎ (1 − 𝐼∗ℎ𝐼ℎ (𝑡))⋅ (𝑆ℎ (𝑡) 𝑓 (𝐼V (𝑡)) − (𝜇ℎ + 𝛾 + 𝛿) 𝐼∗ℎ 𝐼ℎ (𝑡)𝐼∗ℎ ) .
(71)

Using (61) to replace (𝜇ℎ + 𝛾 + 𝛿)𝐼∗ℎ in (71) gives𝑑𝑉𝐼ℎ (𝑡)𝑑𝑡 = 1𝐼∗ℎ (1 − 𝐼∗ℎ𝐼ℎ (𝑡))(𝑆ℎ (𝑡) 𝑓 (𝐼V (𝑡))− 𝑆∗ℎ𝑓 (𝐼∗V ) 𝐼ℎ (𝑡)𝐼∗ℎ ) = 𝑆∗ℎ𝑓 (𝐼∗V )𝐼∗ℎ (1+ 𝑆ℎ (𝑡) 𝑓 (𝐼V (𝑡))𝑆∗ℎ𝑓 (𝐼∗V ) − 𝑆ℎ (𝑡) 𝑓 (𝐼V (𝑡)) 𝐼∗ℎ𝑆∗ℎ𝑓 (𝐼∗V ) 𝐼ℎ (𝑡) − 𝐼ℎ (𝑡)𝐼∗ℎ ) .
(72)

We now calculate the derivative of 𝑉𝑆V(𝑡).𝑑𝑉𝑆V (𝑡)𝑑𝑡 = 1𝑆∗V (1 − 𝑆∗V𝑆V (𝑡)) 𝑑𝑆V𝑑𝑡= 1𝑆∗V (1 − 𝑆∗V𝑆V (𝑡)) (Λ V − 𝜇V𝑆V (𝑡) − 𝑆V (𝑡) 𝑔 (𝐼ℎ (𝑡))) . (73)
Using (62) to replace Λ V in (73) gives𝑑𝑉𝑆V (𝑡)𝑑𝑡 = 1𝑆∗V (1 − 𝑆∗V𝑆V (𝑡)) 𝑑𝑆V𝑑𝑡 = 1𝑆∗V (1 − 𝑆∗V𝑆V (𝑡))⋅ (𝜇𝑆∗V + 𝑆∗V𝑔 (𝐼∗ℎ ) − 𝜇V𝑆V (𝑡) − 𝑆V (𝑡) 𝑔 (𝐼ℎ (𝑡)))= −𝜇V (𝑆V (𝑡) − 𝑆∗V )2𝑆V (𝑡) 𝑆∗V + 𝑔 (𝐼∗ℎ )⋅ (1 − 𝑆V (𝑡) 𝑔 (𝐼ℎ (𝑡))𝑆∗V𝑔 (𝐼∗ℎ ) − 𝑆∗V𝑆V (𝑡) + 𝑔 (𝐼ℎ (𝑡))𝑔 (𝐼∗ℎ ) ) .

(74)

Differentiating 𝑉𝐼V(𝑡) with respect to 𝑡 yields𝑑𝑉𝐼V (𝑡)𝑑𝑡 = 1𝐼∗V (1 − 𝐼∗V𝐼V (𝑡)) 𝑑𝐼V𝑑𝑡= 1𝐼∗V (1 − 𝐼∗V𝐼V (𝑡)) (𝑆V (𝑡) 𝑔 (𝐼ℎ (𝑡)) − 𝜇V𝐼V (𝑡))= 1𝐼∗V (1 − 𝐼∗V𝐼V (𝑡))(𝑆V (𝑡) 𝑔 (𝐼ℎ (𝑡)) − 𝜇V𝐼∗V 𝐼V (𝑡)𝐼∗V ) .
(75)
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Using (63) to replace 𝜇V𝐼∗V in (75) gives𝑑𝑉𝐼V (𝑡)𝑑𝑡 = 1𝐼∗V (1 − 𝐼∗V𝐼V (𝑡))(𝑆V (𝑡) 𝑔 (𝐼ℎ (𝑡))− 𝑆∗V𝑔 (𝐼∗ℎ ) 𝐼V (𝑡)𝐼∗V ) = 𝑆∗V𝑔 (𝐼∗ℎ )𝐼∗V (1
+ 𝑆V (𝑡) 𝑔 (𝐼ℎ (𝑡))𝑆∗V𝑔 (𝐼∗ℎ ) − 𝑆V (𝑡) 𝑔 (𝐼ℎ (𝑡)) 𝐼∗V𝑆∗V𝑔 (𝐼∗ℎ ) 𝐼V (𝑡) − 𝐼V (𝑡)𝐼∗V ) .

(76)

The derivative of 𝑉V(𝑡) is𝑑𝑉V (𝑡)𝑑𝑡 = ∫∞0 𝛼 (𝑎) 𝜕𝜙 (V (𝑡, 𝑎) /V∗ (𝑎))𝜕𝑡 𝑑𝑎 = ∫∞
0
𝛼 (𝑎)

⋅ (1 − V∗ (𝑎)
V (𝑡, 𝑎)) 1V∗ (𝑎) 𝜕V (𝑡, 𝑎)𝜕𝑡 𝑑𝑎 = −∫∞0 𝛼 (𝑎)⋅ (1 − V∗ (𝑎)
V (𝑡, 𝑎)) V (𝑡, 𝑎)V∗ (𝑎) (V𝑎 (𝑡, 𝑎)V (𝑡, 𝑎) + 𝜇ℎ + 𝜖 (𝑎)) 𝑑𝑎= −∫∞
0
𝛼 (𝑎) (V (𝑡, 𝑎)

V∗ (𝑎) − 1)⋅ (V𝑎 (𝑡, 𝑎)
V (𝑡, 𝑎) + 𝜇ℎ + 𝜖 (𝑎)) 𝑑𝑎,

(77)

where V𝑎(𝑡, 𝑎) = 𝜕V(𝑡, 𝑎)/𝜕𝑎.
Using (𝜕/𝜕𝑎)𝜙(V(𝑡, 𝑎)/V∗(𝑎)) = (V(𝑡, 𝑎)/V∗(𝑎) − 1)(V𝑎(𝑡,𝑎)/V(𝑡, 𝑎)+𝜇ℎ+𝜖(𝑎)), 𝑑𝛼(𝑎)/𝑑𝑎 = −𝜖(𝑎)V∗(𝑎) and integration

by parts, we get𝑑𝑉V (𝑡)𝑑𝑡 = −∫∞0 𝛼 (𝑎) 𝜕𝜕𝑎𝜙(V (𝑡, 𝑎)V∗ (𝑎) ) 𝑑𝑎= −𝛼 (𝑎) 𝜙 (V (𝑡, 𝑎)
V∗ (𝑎) )󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑎=∞𝑎=0+ ∫∞

0
𝜙(V (𝑡, 𝑎)

V∗ (𝑎) ) 𝑑𝛼 (𝑎)𝑑𝑎 𝑑𝑎= −𝛼 (𝑎) 𝜙 (V (𝑡, 𝑎)
V∗ (𝑎) )󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑎=∞+ 𝛼 (0) 𝜙 (V (𝑡, 0)
V∗ (0) )− ∫∞

0
𝜖 (𝑎) V∗ (𝑎) 𝜙 (V (𝑡, 𝑎)

V∗ (𝑎) ) 𝑑𝑎.

(78)

From 𝛼(0) = ∫∞0 𝜖(𝑎)V∗(𝑎)𝑑𝑎, we get𝑑𝑉V (𝑡)𝑑𝑡 = − 𝛼 (𝑎) 𝜙 (V (𝑡, 𝑎)V∗ (𝑎) )󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑎=∞+ ∫∞
0
𝜖 (𝑎) V∗ (𝑎) 𝜙 (V (𝑡, 0)

V∗ (0) ) 𝑑𝑎− ∫∞
0
𝜖 (𝑎) V∗ (𝑎) 𝜙 (V (𝑡, 𝑎)

V∗ (𝑎) ) 𝑑𝑎.
(79)

Combining (70), (72), (74), (76), and (79) and multiplying
appropriately by coefficients determined by (68), we obtain𝑑𝑉 (𝑡)𝑑𝑡 = − (𝜇ℎ + 𝜃) 𝑆∗V 𝑔 (𝐼∗ℎ ) (𝑆ℎ − 𝑆∗ℎ)2𝑆ℎ (𝑡)− 𝜇V𝑆∗ℎ𝑓 (𝐼∗V ) (𝑆V − 𝑆∗V )2𝑆V (𝑡) + 𝑆∗ℎ𝑆∗V𝑓 (𝐼∗V ) 𝑔 (𝐼∗ℎ ) (4− 𝑆ℎ (𝑡) 𝑓 (𝐼V (𝑡)) 𝐼∗ℎ𝑆∗ℎ𝑓 (𝐼∗V ) 𝐼ℎ (𝑡) − 𝑆∗ℎ𝑆ℎ (𝑡) + 𝑓 (𝐼V (𝑡))𝑓 (𝐼∗V ) − 𝐼ℎ (𝑡)𝐼∗ℎ− 𝐼V (𝑡)𝐼∗V − 𝑆V (𝑡) 𝑔 (𝐼ℎ (𝑡)) 𝐼∗V𝑆∗V𝑔 (𝐼∗ℎ ) 𝐼V (𝑡) − 𝑆∗V𝑆V (𝑡)+ 𝑔 (𝐼ℎ (𝑡))𝑔 (𝐼∗ℎ ) ) − 𝛼 (𝑎) 𝑆∗V𝑔 (𝐼∗ℎ ) 𝜙 (V (𝑡, 𝑎)V∗ (𝑎) )󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑎=∞+ 𝑆∗V𝑔 (𝐼∗ℎ ) ∫∞

0
𝜖 (𝑎) V∗ (𝑎) (𝜙(V (𝑡, 0)

V∗ (0) )− 𝜙(V (𝑡, 𝑎)
V∗ (𝑎) ) + V (𝑡, 𝑎)V∗ (𝑎) − 𝑆∗ℎV (𝑡, 𝑎)𝑆ℎ (𝑡) V∗ (𝑎) − 1+ 𝑆∗ℎ𝑆ℎ (𝑡)) 𝑑𝑎.

(80)

By ∫∞0 𝜖(𝑎)V∗(𝑎)𝑑𝑎 = 𝜃𝑆∗ℎ𝐾, V(𝑡, 0) = 𝜃𝑆ℎ(𝑡), and V∗(0) =𝜃𝑆∗ℎ , it follows that𝑑𝑉 (𝑡)𝑑𝑡 = − (𝜇ℎ + 𝜃 (1 − 𝐾)) 𝑆∗V𝑔 (𝐼∗ℎ ) (𝑆ℎ − 𝑆∗ℎ)2𝑆ℎ (𝑡)− 𝜇V𝑆∗ℎ𝑓 (𝐼∗V ) (𝑆V − 𝑆∗V )2𝑆V (𝑡) + 𝑆∗ℎ𝑆∗V𝑓 (𝐼∗V ) 𝑔 (𝐼∗ℎ )⋅ (𝜙(𝑓 (𝐼V (𝑡))𝑓 (𝐼∗V ) ) − 𝜙(𝐼V (𝑡)𝐼∗V ) + 𝜙(𝑔 (𝐼ℎ (𝑡))𝑔 (𝐼∗ℎ ) )− 𝜙(𝐼ℎ (𝑡)𝐼∗ℎ ) − 𝜙( 𝑆∗V𝑆V (𝑡))− 𝜙(𝑆V (𝑡) 𝑔 (𝐼ℎ (𝑡)) 𝐼∗V𝑆∗V 𝑔 (𝐼∗ℎ ) 𝐼V (𝑡) ))− 𝛼 (𝑎) 𝑆∗V𝑔 (𝐼∗ℎ ) 𝜙 (V (𝑡, 𝑎)V∗ (𝑎) )󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑎=∞ − 𝑆∗V𝑔 (𝐼∗ℎ )⋅ ∫∞
0
𝜖 (𝑎) V∗ (𝑎) 𝜙 ( 𝑆∗ℎV (𝑡, 𝑎)𝑆ℎ (𝑡) V∗ (𝑎)) .

(81)

Thus, from Lemma 7, we deduce that𝑑𝑉 (𝑡)𝑑𝑡 ≤ 0; (82)

that is,𝑉 is nonincreasing. Denote byM the largest invariant
subset of {𝑑𝑉(𝑡)/𝑑𝑡 = 0}.
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Since 𝑉 is bounded on 𝑋(⋅), the 𝜔-limit set of 𝑋(⋅) must
be contained inM.𝑑𝑉(𝑡)/𝑑𝑡 = 0 yields 𝑆ℎ(𝑡) = 𝑆∗ℎ , 𝑆V(𝑡) = 𝑆∗V , and V(𝑡, 𝑎) =
V∗(𝑎).

Thus, 𝑑𝑆ℎ(𝑡)/𝑑𝑡 = 𝑑𝑆V(𝑡)/𝑑𝑡 = 0 inM. This implies thatΛ ℎ − (𝜇ℎ + 𝜃) 𝑆∗ℎ − 𝑆∗ℎ𝑓 (𝐼V (𝑡)) + ∫∞
0
𝜖 (𝑎) V∗ (𝑎) 𝑑𝑎= 0,Λ V − 𝜇V𝑆∗V − 𝑆∗V 𝑔 (𝐼ℎ (𝑡)) = 0, (83)

for 𝑡 ∈ R, which gives 𝑓(𝐼V(𝑡)) = 𝑓(𝐼∗V ) and 𝑔(𝐼ℎ(𝑡)) = 𝑔(𝐼∗ℎ )∀𝑡 ∈ R.Themonotonicity of𝑓 and 𝑔 stated in (H1) and (H2)
implies that 𝐼V(𝑡) = 𝐼∗V and 𝐼ℎ(𝑡) = 𝐼∗ℎ , ∀𝑡 ∈ R. Therefore,
M = {E∗}.

Then, the 𝜔-limit set of 𝑋(⋅) is the endemic equilibrium
E∗ and hence 𝑉(𝑋(𝑡)) ≥ 𝑉(E∗), ∀𝑡 ∈ R. Thus, B = {E∗}.
4. Conclusion

We have analysed a vector-borne disease model with nonlin-
ear incidences, in which we have incorporated the waning of
vaccine-induced immunity. These nonlinear incidences rates
include mass action and saturating incidence as special cases.
The basic reproduction number denoted byR(𝜃) is derived.
The model exhibits two equilibria, namely, the disease-free
equilibrium E0 and the endemic equilibrium E∗. We have
shown that if R(𝜃) is less than 1, then the disease-free
equilibrium E0 is globally asymptotically stable; that is, the
disease dies out and ifR(𝜃) is larger than 1, then the endemic
equilibrium E∗ is globally asymptotically stable; that is, the
disease persists in the population.

From these results, a critical vaccine coverage rate is
obtained by solving the equationR(𝜃) = 1, which yields𝜃0= 11 −A (Λ ℎΛ V𝑓󸀠 (0) 𝑔󸀠 (0) − 𝜇ℎ𝜇2V (𝜇ℎ + 𝛾 + 𝛿)𝜇2V (𝜇ℎ + 𝛾 + 𝛿) ) . (84)
Then, if the vaccine coverage rate 𝜃 is greater than 𝜃0, then
R(𝜃) < 1 and the disease will die out. The critical vaccine
coverage rate 𝜃0 is increasing in the waning of vaccine. Then,
neglecting the waning of vaccine (i.e.,A = 0) when applying
a vaccination for vector-borne disease will surely not be
sufficient to make the disease die out in the population.
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