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Radio Tomographic Imaging (RTI) is an attractive technique for imaging the nonmetallic targets within wireless sensor network.
RTI has been used in many challenging environments and situations. Due to the accuracy of Radio Tomographic Imaging system
model and the interference between the wireless signals of sensors, the image obtained from the RTI system is a degraded target
image, which cannot offer sufficient details to distinguish different targets. In this paper, we treat the RTI system as an image
degraded process, and we propose an estimation model based on mixture Gaussian distribution to derive the degradation function
from the shadowing-based RTI model. Then we use this degradation function to recover an original image by a method called
constrained least squares filtering. So far, many imaging models have been proposed for localization; however, they do not have
a satisfied imaging accuracy. Simulated and experimental results show that the imaging accuracy of our proposed method is
improved, and the proposed method can be used in the real-time circumstances.

1. Introduction

Radio Tomographic Imaging (RTI) is an emerging technol-
ogy for imaging the attenuation of nonmetallic targets within
wireless sensor network area.The presence of targets between
the transmitters and receivers leads to changes in the received
signal strength (RSS)measurements at the receivers. RTI uses
these changes to reconstruct an image of the propagation
field.The images can provide the location of targets and their
movements [1].Therefore, RTI has been gaining great interest
from a variety of applications, for example, road surveillance
[2], health care [3], through-wall tracking [4], and floor plan
mapping [5, 6].

Shadowing-based RTI (SRTI) was proposed by Wilson
and Patwari [7] which was the original imaging approach
by using RSS variation obtained from a wireless network.
SRTI assumed that the obstructed wireless links suffer from
large shadowing loss, and the RSS of the links which were
not obstructed by the targets keep stable. The assumption
is valid for an open environment, so SRTI is not suit-
able for the indoor environments where RSS varies easily
due to the multipath effect. Wilson and Patwari proposed

Variance-Based RTI (VRTI) which introduced the variance
of RSS to improve the tracking performance in indoor
environments [4]. A fade level-based spatial model for RTI
was proposed, which divided the links into two different
types: deep fade links and antifade links [8]. Zhao et al.
[9] have proposed kernel distance-based RTI (KRTI) which
used the kernel distance between short-term and long-term
RSS histograms to estimate the image of human presence.
Wei et al. [10] have proposed directional RTI (dRTI) which
employed electronically switched directional (ESD) antennas
to mitigate the multipath effect. However, using directional
antennas will increase the sensor size and the cost of radio
sensors. Wang et al. [11] proposed enhanced SRTI (ESRTI)
which employed the interference link canceling technique to
enhance indoor RTI image quality and tracking accuracy.

In this paper, we address the target imaging issue in
RTI; that is, we focus on getting the “original” undistorted
target image rather than improving the locating or tracking
performance of targets [12]. Previous researches have paid full
attention to locating and tracking targets [13, 14], and these
RTI methods have resulted in a dilative imaging area of the
targets. The imaging result does not offer sufficient details
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Figure 1: System overview of the proposed method.

to recognize the desired targets. The dilation effect is caused
by the limited wireless communication links. When the links
increase, the more wireless sensor nodes and the longer time
of scanning all communication links will be needed. Mean-
while, the interference between the sensor nodes is enhanced
which leads to a worse imaging result. Therefore, we propose
the image restoration technique to solve the poor imaging
problem in RTI. Image restoration is a technology that
attempts to recover an “original” image from the “degraded”
image by using a priori knowledge of the degradation process
[15]. After a priori knowledge of the degradation process is
obtained or estimated, the “original” image can be recovered
by applying the inverse process. Therefore, we propose a
novel technique for getting the undistorted images of targets.
Our approach involves applying matrix theory and Gaussian
mixture model to estimate the degradation function of RTI
system, which describes the degradation phenomenon in RTI
system and is outlined in Section 3. Further, we take the
simulated objects and active human as the standard targets
to analyze the performance of our proposed approach.

Our proposed method operates as illustrated in Figure 1.
In short, the system is divided into two phases. In the offline
phase, we calculate the weight matrix W of the wireless
network; then we use Gaussian mixture model to estimate
the elements of the degradation function ℎ(𝑥, 𝑦). In the
online phase, we first acquire RSS measurement changes r
from 𝑆 radio frequency sensors of the wireless network. The
RSS changes and weight matrix are inputted to the SRTI
calculating unit to form a discretized propagation image x̂
of the monitored area. Then 2-dimensional image 𝑔(𝑥, 𝑦)
is obtained after the procedure named vector into matrix.
Finally, an image restoration algorithm is used to estimate the
original image, and 𝑓(𝑥, 𝑦) is the final output image.

The rest of this paper is organized as follows. In Section 2,
we introduce some preliminaries about RTI system and
image restoration process. Section 3 presents the method of
estimating the degradation function of RTI system. Section 4
presents the simulated and experimental results of the pro-
posed image restoration method in RTI system. Section 5
discusses the conclusions.

2. Radio Tomographic Imaging and
Image Restoration

In this section, we introduce the RTI model which relates
radio power attenuation in spatial voxels to the difference of
RSSmeasured on the links of awireless network. And amodel
of image degradation/restoration process is also introduced.

2.1. Radio Tomographic Imaging. When a wireless sensor
network communicates through transmission of wireless
signal, the RSS measurements on the receiving node of a
link are affected by the targets between the sensors. Figure 2
illustrates a simple wireless network and the reconstructed
image by using RSS measurements. When there are 𝑆 radio
frequency sensors at the perimeter of the monitored region,
the total number of unidirectional links is 𝐿 = 𝑆(𝑆−1)/2. The
variation of RSS in dBm on link 𝑙 can be written asΔ𝑟𝑙,𝑡 = 𝑟𝑙,0 − 𝑟𝑙,𝑡, 𝑙 = 1, 2, . . . , 𝐿, (1)

where 𝑟𝑙,0 is the static RSS of link 𝑙 when there is no target in
themonitored region and 𝑟𝑙,𝑡 is the RSS of link 𝑙 at time instant𝑡 when the targets appear in the monitored region.

Assume that the change in RSS is a spatial integral of
the attenuation field in the monitored region. When the
attenuation field is divided into voxels, the change in RSS of
each link can be treated as a linear combination of the change
caused by each voxel [16]:

Δ𝑟𝑙,𝑡 = 𝑁∑
𝑗=1

𝑊𝑙𝑗Δ𝑥𝑗,𝑡 + 𝑛𝑙,𝑡, (2)

where Δ𝑥𝑗,𝑡 is the RSS attenuation occuring in voxel 𝑗 at the
time instant 𝑡, 𝑁 is the number of voxels in the image, 𝑛𝑙,𝑡 is
the measurement noise of link 𝑙 at time instant 𝑡, and 𝑊𝑙𝑗 is
the weight of voxel 𝑗 for link 𝑙. We use the normalized ellipse
model to obtain𝑊𝑙𝑗 [17]:

𝑊𝑙𝑗 = 1√𝑑𝑙 {{{
1 if 𝑑𝑙𝑗 (1) + 𝑑𝑙𝑗 (2) < 𝑑𝑙 + 𝜆0 otherwise, (3)
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(a) (b)

Figure 2: An illustration of RTI network. (a) shows a target in the propagation field of RF sensors. (b) shows the RTI reconstructed image of
scene.

where 𝑑𝑙 is the distance between two sensors (the transmitter
and the receiver) and 𝑑𝑙𝑗(1) and 𝑑𝑙𝑗(2) are the distances
between voxel 𝑗 and the two sensors of link 𝑙, respectively. 𝜆
is the parameter describing the width of the ellipse. If all links
in the network are considered, (2) can be rewritten as

r = Wx + n, (4)

where r and n represent the RSS changes and noises of 𝐿
wireless links, respectively, and they are column vectors of
size 𝐿 × 1. x is an 𝑁 × 1 column vector representing the
attenuation image. [W]𝑙𝑗 = 𝑊𝑙𝑗 is an𝐿×𝑁matrix representing
the weight matrix. This equation describes the relationship
between the image of target presence and the RSS changes
of wireless sensor network, which is called shadowing-based
RTI.

Estimating the image x from the links measurements r
is an ill-posed inverse problem, so regularization is required
[18]. We use the Tikhonov regularization method to handle
this ill-posedness. We can define the linear transformation
matrixΠ:

Π = (W𝑇W + 𝛼 (D𝑇𝑋D𝑋 +D𝑇𝑌D𝑌))−1W𝑇, (5)

where 𝛼 is the regularization parameter and matrix D𝑋 and
matrix D𝑌 are the difference operator for the horizontal and
vertical direction, respectively. Then the solution of (4) is
given by

x̂ = Πr. (6)

In view of the accuracy of measurement and calculation,
the reconstructed image has a peripheral dilation effect
within the target area (as shown in Figure 2), and it could
not show the small edge information of the target. Therefore
the dilation effect should be eliminated by using the image
restoration method.

2.2. Image Restoration. In image restoration, we consider the
degradation and restoration process as a linear model, as
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Figure 3: A model of the image degradation/restoration process.

shown in Figure 3. The degradation function and an additive
noise term are operated on an input image to produce a
degraded image [19]. Now we assume𝐻 is a linear, position-
invariant blurring process; then the degraded image can be
given as 𝑔 (𝑥, 𝑦) = ℎ (𝑥, 𝑦) ∗ 𝑓 (𝑥, 𝑦) + 𝜂 (𝑥, 𝑦) , (7)

where ℎ(𝑥, 𝑦) is the degradation function in spatial domain
and the symbol “∗” indicates a convolution operator.

As is known, convolution in the spatial domain is anal-
ogous to multiplication in the frequency domain, so we can
express (7) in the frequency domain:𝐺 (𝑢, V) = 𝐻 (𝑢, V) 𝐹 (𝑢, V) + 𝑁 (𝑢, V) , (8)

where the terms in capital letters are the Fourier transforms
of the corresponding terms in (7).

Since the problem of estimating the input image 𝑓(𝑥, 𝑦)
is typically ill-posed [20], in order to get the original input
image 𝑓(𝑥, 𝑦), we introduce the method called constrained
least squares that minimizes the criterion to smooth the
image. The objective function is defined as

𝐶𝛾 (𝑓, ℎ) = ∑
𝑥,𝑦

{[𝑔 (𝑥, 𝑦) − ℎ (𝑥, 𝑦) ∗ 𝑓 (𝑥, 𝑦)]2
+ 𝛾 [𝑙 (𝑥, 𝑦) ∗ 𝑓 (𝑥, 𝑦)]2} ; (9)



4 Wireless Communications and Mobile Computing

the second term 𝑙(𝑥, 𝑦) ∗ 𝑓(𝑥, 𝑦) is a regularization func-
tion embodying the prior information about 𝑓(𝑥, 𝑦) [21].
We consider the optimality of restoration as a measure of
smoothness, and we expect a high level of local correlation in
the image. Therefore we choose a high pass filter (Laplacian
filter) tominimize the high-frequency content in the solution.𝛾 is a tunable parameter.

The frequency domain solution to this optimization
problem is the following expression [15]:

𝐹 (𝑢, V) = 𝐻∗ (𝑢, V)|𝐻 (𝑢, V)|2 + 𝛾 |𝐿 (𝑢, V)|2𝐺 (𝑢, V) , (10)

where 𝐿(𝑢, V) is the Fourier transform of 𝑙(𝑥, 𝑦) and𝐻∗(𝑢, V)
is the complex conjugate of 𝐻(𝑢, V). Then we can obtain
the estimated original image by applying inverse Fourier
transform on (10):

𝑓 (𝑥, 𝑦) = IDFT (𝐹 (𝑢, V)) . (11)

3. Estimating the Degradation Function of
RTI System

From the previous discussion, the degraded image 𝑔(𝑥, 𝑦) of
SRTI system can be obtained from (6), but the degradation
function is unknown. In this section, we study the relation-
ship between degradation function and linear solution of
SRTI system. Then we propose a Gaussian mixture model to
estimate the degradation function of SRTI system.

3.1. Relationship between Degradation Function and Linear
Solution. By using the definition of convolution, we can
express the image degradation process (7) in vector-matrix
form [15, 22]:

g = Hf + 𝜂, (12)

where f is an 𝑋𝑌 × 1 vector representing an input image𝑓(𝑥, 𝑦), and we can form the vector by using each column of
image𝑓(𝑥, 𝑦).𝑋 and𝑌 are the width and height of the image,
respectively.Then vectors g and 𝜂 are formed in the sameway.
As a result,H is an𝑋𝑌×𝑋𝑌matrix, and its elements are given
by the definition of circular convolution in two dimensions:

𝑓 (𝑥, 𝑦) ∗ ℎ (𝑥, 𝑦) = 𝑋−1∑
𝑚=0

𝑌−1∑
𝑛=0

𝑓 (𝑚, 𝑛) ℎ (𝑥 − 𝑚, 𝑦 − 𝑛) . (13)

Suppose the degradation function ℎ(𝑥, 𝑦) has dimensions(2𝐾+1)×(2𝐾+1), and its elements are shown in the following
matrix:

(((((((
(

ℎ−𝐾,−𝐾 ℎ−𝐾,−𝐾+1 ⋅ ⋅ ⋅ ℎ−𝐾,0 ⋅ ⋅ ⋅ ℎ−𝐾,𝐾ℎ−𝐾+1,−𝐾 ℎ−𝐾+1,−𝐾+1 ⋅ ⋅ ⋅ ℎ−𝐾+1,0 ⋅ ⋅ ⋅ ℎ−𝐾+1,𝐾... ... d
... d

...ℎ0,−𝐾 ℎ0,−𝐾+1 ⋅ ⋅ ⋅ ℎ0,0 ⋅ ⋅ ⋅ ℎ0,𝐾... ... d
... d

...ℎ𝐾,−𝐾 ℎ𝐾,−𝐾+1 ⋅ ⋅ ⋅ ℎ𝐾,0 ⋅ ⋅ ⋅ ℎ𝐾,𝐾

)))))))
)

. (14)

Then we plug (14) into (13) resulting in

H

=
(((((((((((((
(

H0 H−1 ⋅ ⋅ ⋅ H−𝐾 0 ⋅ ⋅ ⋅ 0 0
H1 H0 ⋅ ⋅ ⋅ H−𝐾+1 H−𝐾 ⋅ ⋅ ⋅ 0 0... ... d

... d
... ...

H𝐾 H𝐾−1 ⋅ ⋅ ⋅ H0 H−1 ⋅ ⋅ ⋅ 0 0
0 H𝐾 ⋅ ⋅ ⋅ H1 H0 ⋅ ⋅ ⋅ 0 0... ... d

... d
... ...

0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ H0 H−1
0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ H1 H0

)))))))))))))
)

, (15)

where H𝑖 is a block matrix, and it is constructed by the
elements of degradation function:

H𝑖

=
(((((((((((((
(

ℎ0,𝑖 ℎ−1,𝑖 ⋅ ⋅ ⋅ ℎ−𝐾,𝑖 0 ⋅ ⋅ ⋅ 0 0ℎ1,𝑖 ℎ0,𝑖 ⋅ ⋅ ⋅ ℎ−𝐾+1,𝑖 ℎ−𝐾,𝑖 ⋅ ⋅ ⋅ 0 0... ... d
... ... d

... ...ℎ𝐾,𝑖 ℎ𝐾−1,𝑖 ⋅ ⋅ ⋅ ℎ0,𝑖 ℎ−1,𝑖 ⋅ ⋅ ⋅ 0 00 ℎ𝐾,𝑖 ⋅ ⋅ ⋅ ℎ1,𝑖 ℎ0,𝑖 ⋅ ⋅ ⋅ 0 0... ... d
... ... d

... ...0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ℎ0,𝑖 ℎ−1,𝑖0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ ℎ1,𝑖 ℎ0,𝑖

)))))))))))))
)

. (16)

As discussed before, the Tikhonov solution of SRTI
system is expressed in (6); then we plug (4) into (6) which
results in

x̂ = Πr = ΠWx + nt. (17)

Comparing two equations (12) and (17), we find that the
left sides of two equations describe the same distorted image.
Suppose the noise is the same; we can get the following
equation:

Hf = ΠWx. (18)

Because f and x are the same original image vectors, we
can deduce that

H = ΠW. (19)

Therefore, we obtain the convolution transformmatrix of
SRTI system from the linear transformation matrix and the
weight matrix, and the elements of degradation function are
located in certain positions of convolution transformmatrix.

3.2. Mixture Model of Element Estimation. In the previous
subsection, we find that the elements of matrix H derive
from the particular elements of degradation function. In
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Figure 4: Fitting results in different probability distributions. (a) GMM with 2 Gaussian distributions in ℎ(5, 6). (b) GMM with 3 Gaussian
distributions in ℎ(13, 9).
order to obtain the degradation function of RTI system, we
consider the values of a particular element in the matrixH as
a sampling process on the particular element in degradation
function ℎ(𝑥, 𝑦). When we analyze the distribution of the
element values in the degradation function ℎ(𝑥, 𝑦), we find
that a single probability distribution cannot fit every elements
in ℎ(𝑥, 𝑦), as illustrated in Figure 4.

The fitting results show that normal distribution fitting
and extreme value fitting could not fit the histogram of the
element values, especially the extreme value fitting result in
Figure 4(b). Gaussian mixture model could fit the histogram
of the element values very well (green lines in Figure 4).
The reason is that Gaussian mixture model could elect the
appropriate value about the parameters of Gaussian distribu-
tions and the corresponding weighting factors to fit the
histogram of the element values. Therefore we model each
element in degradation function as a mixture of 𝑄 Gaussian
distributions:

𝑃 (ℎ𝑖,𝑗) = 𝑄∑
𝑞=1

𝜔𝑞 ⋅ 𝑔 (ℎ𝑖,𝑗, 𝜇𝑞, 𝜎𝑞) , (20)

where ℎ𝑖,𝑗 is the element value in degradation functionℎ(𝑥, 𝑦) at position (𝑖, 𝑗), 𝑃(ℎ𝑖,𝑗) is the probability density
function of ℎ𝑖,𝑗, 𝑄 is the number of Gaussian distributions,𝜔𝑞 is the weight of the 𝑞th Gaussian distribution, and all
is 1. 𝑔(ℎ𝑖,𝑗, 𝜇𝑞, 𝜎𝑞) stands for the Gaussian possibility density
function; 𝜇𝑞 and 𝜎𝑞 represent its mean and standard variance,
respectively.

Because the samples of each element in degradation
function are located in many different positions in H, we
introduce a learning algorithm [23] to update the model
parameters in time.

The first thing is assigning the elements inH to the corre-
sponding group ℎ𝑖,𝑗,𝑚 (1 ≤ 𝑚 ≤ 𝑀) by using the mapping

relationship shown in (15) and (16). Then we check each
element value in the first data group. If the element value does
notmatch the current𝑄Gaussian distributions, we use a new
Gaussian distribution to replace the least probable distribu-
tion.Themean of this new distribution is the current element
value, the initial variance is a high value, and the prior weight
is a low value.

When the element value matches one of the 𝑄 distribu-
tions, the prior weights of the 𝑄 distributions for the 𝑛th
element are adjusted as follows:

𝜔𝑞,𝑚 = (1 − 𝛽) 𝜔𝑞,𝑚−1 + 𝛽 (𝑀𝑞,𝑚) , (21)

where 𝛽 is the learning rate which defines the speed of
convergence of distribution’s parameters. 𝑀𝑞,𝑚 is 1 for the
model which is matched and 0 for the remaining models.

The parameters 𝜇 and 𝜎 for unmatched distributions keep
unaltered, and the parameters of matched distribution are
updated as follows:𝜇𝑚 = (1 − 𝜌) 𝜇𝑚−1 + 𝜌ℎ𝑖,𝑗,𝑚,

𝜎2𝑚 = (1 − 𝜌) 𝜎2𝑚−1 + 𝜌 (ℎ𝑖,𝑗,𝑚 − 𝜇𝑚)2 , (22)

where 𝜌 = 𝛽𝑔(ℎ𝑖,𝑗,𝑚 | 𝜇𝑞, 𝜎𝑞) is another learning rate indi-
cating that only the element value matching the model is
included in the estimation. After all the element values in one
group are processed, we calculate the corresponding degrad-
ation function element ℎ𝑖,𝑗 by

ℎ̂𝑖,𝑗 = 𝑄∑
𝑞=1

𝜔𝑞 ⋅ 𝜇𝑞. (23)

As each element in ℎ(𝑥, 𝑦) is processed, the degradation
function is obtained. Then we can use (10) to estimate the
original RTI image.
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Figure 5: Simulated images with different shape. (a) shows three targets with different shape. (b) shows the images reconstructed by SRTI.
(c) shows the images restored by our proposed method.

4. Results and Discussion

This section presents images that are restored using the recon-
struction and restoration techniques described in Section 2.
The images contain both simulated and experimental results,
and the imaging accuracy of targets is also presented.

4.1. SimulatedResults. This simulation part is used to evaluate
the estimation method and the restoration method at ideal
conditions with no noise.The simulated RTI system contains
20 wireless sensor nodes, and each node is placed 1.6m apart
along the perimeter of 8 × 8m2. The simulated targets are
three types: rectangle, L-shape, and hollow block, as shown
in Figure 5(a). The data of the simulations is obtained by the
model described in (4), but without any noise. Then we use
the SRTI reconstruction and image restoration techniques to
obtain images, and Table 1 lists the SRTI model and image
restoration parameters used in simulation phase.

Figure 5 shows the images of SRTI reconstructed result
and restored result in different target types. We can find

that the restored edge of targets is more distinguishable
than SRTI reconstruction, and the image area of targets also
converges to the middle line of targets. The corners of the
L-type and hollow block are restored more accurately than
SRTI reconstruction. We introduce Edge Preservation Index
(EPI) [24] and Structural SIMilarity (SSIM) [25] to assess the
improvement of our proposed method. The EPI and SSIM
values of three targets are listed in Table 2.

EPI = ∑ [Δ 𝑥𝐼𝑐 (𝑥, 𝑦) + Δ 𝑦𝐼𝑐 (𝑥, 𝑦)]∑ [Δ 𝑥𝐼𝑜 (𝑥, 𝑦) + Δ 𝑦𝐼𝑜 (𝑥, 𝑦)] , (24)

SSIM = 1𝑅∑
𝑅

(2𝜇𝑐𝜇𝑜 + 𝐶1) (2𝜎𝑐𝑜 + 𝐶2)(𝜇2𝑐 + 𝜇2𝑜 + 𝐶1) (𝜎2𝑐 + 𝜎2𝑜 + 𝐶2) , (25)

where Δ 𝑥𝐼(𝑥, 𝑦) = 𝐼(𝑥, 𝑦) − 𝐼(𝑥 + 1, 𝑦) and Δ 𝑦𝐼(𝑥, 𝑦) =𝐼(𝑥, y) − 𝐼(𝑥, 𝑦 + 1) describe the differences of the image𝐼(𝑥, 𝑦) on horizontal and vertical directions, respectively.𝐼𝑐(𝑥, 𝑦) is the compared image, and 𝐼𝑜(𝑥, 𝑦) is the simulated
original image. In (25), 𝜇𝑐, 𝜇𝑜 and 𝜎𝑐, 𝜎𝑜 are the means and
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Table 1: Parameters setting.

Para. Value (simulation) Value (experiment) Description𝛼 50 100 Regularization parameter𝜆 0.05 0.05 Width of weighting ellipse (m)𝛽 0.01 0.01 Learning rate𝛾 0.05 0.08 Smooth parameter𝐾 15 17 Degradation function length

Table 2: EPI and SSIM comparison.

EPI SSIM
Target type SRTI Proposed Improved SRTI Proposed Improved
Rectangle 0.5859 0.6970 19.96% 0.3679 0.4503 22.40%
Hollow block 0.5420 0.6614 22.3% 0.1347 0.2085 54.79%
L-shape 0.6739 0.7345 8.99% 0.4526 0.5433 20.04%

standard deviations of the images being compared and 𝜎𝑐𝑜
is the covariance between two images. These quantities are
calculated in a local window which is centered on each pixel,
and 𝑅 is the number of local windows in the image. 𝐶1 and𝐶2 are constants.

From Table 2, we note that the EPI and SSIM values from
our proposed method of different target types are both larger
than SRTI due to the decreased dilation effect in restored
images. For “hollow block,” the EPI and SSIM values from
SRTI reconstructed image have the minimal values, and our
proposed method has 22.3% and 54.79% increase compared
to SRTI, respectively.The SSIM values of “hollow block” from
bothmethods aremuch lower than the other two target types.
This is due to the fact that the RSS values from limitedwireless
links cannot reconstruct the fine structure of the target.
Overall, our proposed method restores more convergent and
accurate edges of the targets than SRTI.

4.2. Experimental Results. The experimental RTI system
contains 20 TI CC2530 wireless sensor nodes, and each node
is placed 1.9m apart along the perimeter of 9.5 × 9.5m2,
as shown in Figure 6. The nodes operate at 2.4GHz ISM
frequency band, and we use the token ring protocol to obtain
RSS of the links in the real time [11]. Human target is set
in the surveillance area. Then we use the reconstruction and
restoration techniques to obtain images, and Table 1 lists the
SRTI model and image restoration parameters used in the
experimental phase.

Figure 7 shows the images when there are human targets
within the surveillance area. Figures 7(a) and 7(b) show the
SRTI reconstructed image and the corresponding restored
image when there is one person within the surveillance area.
Figures 7(c) and 7(d) show the SRTI reconstructed image and
the corresponding restored imagewhen there are two persons
within the surveillance area. Figure 7(c) illustrates the streaks
of two individual targets interweaved with each other, and
it is difficult to separate. Our proposed restoration method
could isolate the targets easily, as shown in Figure 7(d).
Comparing the images, we can conclude that our proposed
RTI restoration method improves the quality of imaging in

these aspects: the target area is more convergent, the target
area is isolated from the streaks, and the edge shape is more
distinguishable.

We introduce image entropy to provide a quantitative
assessment of the imaging performance [26]. This entropy is
higher when the image has a poorer resolution.

𝐸 = − 𝑁∑
𝑛=1

𝑠𝑠 (𝑥𝑛, 𝑦𝑛) ln [𝑠𝑠 (𝑥𝑛, 𝑦𝑛)] ,
𝑠𝑠 (𝑥𝑛, 𝑦𝑛) = 𝐼 (𝑥𝑛, 𝑦𝑛)2∑𝑁𝑛=1 𝐼 (𝑥𝑛, 𝑦𝑛)2 ,

(26)

where 𝐼(𝑥𝑛, 𝑦𝑛) represents the pixel value at position (𝑥𝑛, 𝑦𝑛)
and 𝑁 is the total number of pixels in the image. The
image entropy comparisons of different frames are shown in
Figure 8. The image entropy from our proposed method has
a lower value in each frame than SRTI, so we could get the
same conclusions with the previous visual comparisons.

In order to assess the accuracy of SRTI and restored
images, the “true” attenuation field should be known or esti-
mated. Since the attenuation of the human body is difficult to
model, we employ the simply uniformly attenuating cylinder
to model a human body plane [7]. Now we can define the
“true” image x𝑜 of a human located at the point 𝑐ℎ:

𝑥𝑜𝑛 = {{{
1 if 𝑥𝑛 − 𝑐ℎ < 𝑅ℎ0 otherwise, (27)

where 𝑥𝑛 is the position of the 𝑛th voxel in x𝑜 and 𝑥𝑜𝑛 is its
value.

Then we obtain the normalized image f̂𝑁 by scaling the
estimated image (11), and we can define the mean-squared
error (MSE) [27] of the normalized image as

MSE = x𝑜 − f̂𝑁
2𝑁 , (28)

where𝑁 is the number of voxels in the image.
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Figure 6: The experimental environment. (a) The network geometry. (b) Photograph of the deployed network.
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Figure 7: Visual comparison. (a) and (b) are the reconstructed and restored images when one person is within network area. (c) and (d) are
the corresponding images when two persons are within network area.
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Figure 8: The image entropy comparisons of different frames. (a) is the image entropy comparison when only one person is within network
area. (b) is the image entropy comparison when two persons are within network area.
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Figure 9:The imageMSE comparison of shadowing-based RTI and
proposed method.

In this experiment, we select nine different positions
within the surveillance area, and a person stands for a few
minutes on each position. Then we calculate MSE of the
images after the SRTI reconstruction procedure and image
restoration procedure, respectively. The cumulative distri-
bution functions (CDFs) of image MSE for the RTI recon-
struction and the proposed image restoration method are
shown in Figure 9. When the radius of humanmodel is set to
0.4m, themean of imageMSEs in different positions is 0.0135
with the SRTI reconstruction method and 0.0101 with the
proposed image restorationmethod.Therefore, the proposed
restoration method exhibits a preferable imaging accuracy.

5. Conclusions

In this paper, we introduce an image restoration technique
to RTI system, and we present a novel model to estimate
the degradation function of RTI system. The improvements
concern three aspects: modeling the RTI reconstruction as
the image degradation procedure, proposing an estimation
method of degradation function of RTI system, and taking
into consideration the inherent relationship of the linear
transformation matrix.

The performance of the proposed method is validated
in simulations and experiments. The results demonstrate
that the proposed image restoration method outperforms
the original shadowing-based RTI system. Moreover, the
improvements both visually and numerically are positive,
and the proposed method provides a novel solution for
the accurate imaging of RTI system. The experiment results
indicate the proposedmethod is capable of achieving a higher
imaging accuracy.

Future research will investigate the other RTI reconstruc-
tion model that can reconstruct the fine geometrical shape of
the target, and we will take the multipath components and
noise interference into consideration.
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Québec, Canada, September 2007.

[2] C. R. Anderson, R. K. Martin, T. O. Walker, and R. W.Thomas,
“Radio tomography for roadside surveillance,” IEEE Journal on
Selected Topics in Signal Processing, vol. 8, no. 1, pp. 66–79, 2014.

[3] B. Mager, N. Patwari, and M. Bocca, “Fall detection using RF
sensor networks,” in Proceedings of the IEEE 24th Annual Inter-
national Symposium on Personal, Indoor, and Mobile Radio
Communications, (PIMRC ’13), pp. 3472–3477, London, UK,
September 2013.

[4] J. Wilson and N. Patwari, “See-through walls: motion tracking
using variance-based radio tomography networks,” IEEE Trans-
actions on Mobile Computing, vol. 10, no. 5, pp. 612–621, 2011.

[5] Y. Mostofi, “Cooperative wireless-based obstacle/object map-
ping and see-through capabilities in robotic networks,” IEEE
Transactions on Mobile Computing, vol. 12, no. 5, pp. 817–829,
2013.

[6] B. Beck, R. Baxley, and X. Ma, “Regularization techniques
for floor plan estimation in radio tomographic imaging,” in
Proceedings of the 1st IEEE Global Conference on Signal and
Information Processing, (GlobalSIP ’13), pp. 177–180, Austin, TX,
USA, December 2013.

[7] J. Wilson and N. Patwari, “Radio tomographic imaging with
wireless networks,” IEEE Transactions on Mobile Computing,
vol. 9, no. 5, pp. 621–632, 2010.

[8] O. Kaltiokallio, M. Bocca, and N. Patwari, “A fade level-based
spatial model for radio tomographic imaging,” IEEE Trans-
actions on Mobile Computing, vol. 13, no. 6, pp. 1159–1172, 2014.

[9] Y. Zhao, N. Patwari, J. M. Phillips, and S. Venkatasubramanian,
“Radio tomographic imaging and tracking of stationary and
moving people via kernel distance,” in Proceedings of the 12th
International Conference on Information Processing in Sensor
Networks (IPSN ’13), pp. 229–240, ACM, Philadelphia, PA,USA,
April 2013.

[10] B.Wei, A. Varshney, N. Patwari,W.Hu, T. Voigt, andC. T. Chou,
“DRTI: Directional radio tomographic imaging,” in Proceedings
of the 14th International Symposium on Information Processing
in Sensor Networks, (IPSN ’15), pp. 166–177, Seattle, Wash, USA,
April 2015.

[11] Z. Wang, H. Liu, X. Ma, J. An, and S. Xu, “Enhancing indoor
radio tomographic imaging based on interference link elimi-
nation,” Digital Signal Processing: A Review Journal, vol. 44, no.
1, pp. 26–36, 2015.

[12] H. N. Manh, C. C. Huang, and L. Hsiao-Yi, “Landmark-based
device calibration and region-based modeling for RSS-based
localization,”Wireless Communications and Mobile Computing,
vol. 16, no. 13, pp. 1726–1745, 2016.

[13] J. Wang, R. V. Prasad, X. An, and I. G. M. M. Niemegeers, “A
study on wireless sensor network based indoor positioning sys-
tems for context-aware applications,”Wireless Communications
and Mobile Computing, vol. 12, no. 1, pp. 53–70, 2012.

[14] F. Vanheel, J. Verhaevert, E. Laermans, I. Moerman, and P.
Demeester, “Pseudo-3D RSSI-based WSN localization algo-
rithm using linear regression,” Wireless Communications and
Mobile Computing, vol. 15, no. 9, pp. 1342–1354, 2015.

[15] R. C. Gonzalez and R. E.Woods,Digital Image Processing, Pren-
tice Hall: Upper Saddle River, NJ, USA, 3rd edition, 2008.

[16] C. Sun, F. Gao, and H. Liu, “Super-resolution reconstruction
of radio tomographic image,” in Proceedings of the 83rd IEEE
Vehicular Technology Conference, VTC Spring 2016, IEEE, Nan-
jing, China, May 2016.

[17] H. Liu, Z. Wang, X. Bu, and J. An, “Image reconstruction algo-
rithms for radio tomographic imaging,” in Proceedings of the
IEEE International Conference on Cyber Technology in Automa-
tion, Control, and Intelligent Systems, (CYBER ’12), pp. 48–53,
Bangkok, Thailand, May 2012.

[18] J. Wilson, N. Patwari, and F. G. Vasquez, “Regularization meth-
ods for radio tomographic imaging,” in Virginia Tech Sympo-
sium on Wireless Personal Communications, 2009.

[19] J. Jiang, X.Ma, C. Chen, T. Lu, Z.Wang, and J.Ma, “Single Image
Super-Resolution via Locally Regularized Anchored Neighbor-
hood Regression and Nonlocal Means,” IEEE Transactions on
Multimedia, vol. 19, no. 1, pp. 15–26, 2017.

[20] H. Takeda, S. Farsiu, and P. Milanfar, “Deblurring using regu-
larized locally adaptive kernel regression,” IEEE Transactions on
Image Processing, vol. 17, no. 4, pp. 550–563, 2008.

[21] M. S. C. Almeida and M. A. T. Figueiredo, “Parameter estima-
tion for blind and non-blind deblurring using residual white-
ness measures,” IEEE Transactions on Image Processing, vol. 22,
no. 7, pp. 2751–2763, 2013.

[22] A. Rehman, M. Rostami, Z. Wang, D. Brunet, and E. R. Vrscay,
“SSIM-inspired image restoration using sparse representation,”
Eurasip Journal on Advances in Signal Processing, vol. 2012, no.
1, article no. 16, 2012.

[23] A. Men, J. Xue, J. Liu, T. Xu, and Y. Zheng, “Applying back-
ground learning algorithms to radio tomographic imaging,” in
Proceedings of the 16th International Symposium on Wireless
Personal Multimedia Communications, (WPMC ’13), pp. 1–5,
Atlantic City, NJ, USA, June 2013.

[24] C. Han, H. Guo, C. Wang, and D. Fan, “An enhanced sar image
speckle filter,” Journal of Remote Sensing-Beijing, vol. 8, no. 2, pp.
127–135, 2004.

[25] Z.Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,”
IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600–
612, 2004.

[26] G. Gennarelli and F. Soldovieri, “Performance analysis of
incoherent RF tomography using wireless sensor networks,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 54,
no. 5, pp. 2722–2732, 2016.

[27] H. Seddik, “A new family of Gaussian filters with adaptive lobe
location and smoothing strength for efficient image restora-
tion,”Eurasip Journal onAdvances in Signal Processing, vol. 2014,
no. 25, 2014.



Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal of

Volume 201

Submit your manuscripts at
https://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


