
Research Article
Adaptive Data Placement for Improving Performance of Online
Social Network Services in a Multicloud Environment

Seunghee Han, Bosung Kim, Jaemin Han, Kyehee Kim, and JooSeok Song

Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea

Correspondence should be addressed to Seunghee Han; alphahacker@yonsei.ac.kr

Received 28 March 2017; Revised 9 June 2017; Accepted 20 June 2017; Published 1 August 2017

Academic Editor: Iria Estevez-Ayres

Copyright © 2017 Seunghee Han et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The existing online social network (OSN) services in a multiple-cloud (Multicloud) environment use replications to store user data
for improving the service performance. However, it not only generates tremendous traffic for synchronization between data but
also stores considerable redundant data, thus causing large storage costs. In addition, it does not provide dynamic load balancing
considering the resource status of each cloud. As a result, it cannot cope with the degradation of performance caused by the resource
contention. We introduce an adaptive data placement algorithm without the replications for improving the performance of the
OSN services in the Multicloud environment. Our approach is designed to avoid server overhead using data balancing technique,
which locates data from a cloud to another according to the amount of traffic. To provide acceptable latency delay, it also considers
the relationship between users and the distance between user and cloud when transferring data. To validate our approach, we
experimented with actual users’ locations and times of use collected from OSN services. Our findings indicate that this approach
can reduce the resource contention by an average ofmore than 59%, reduce storage volume to at least 50%, andmaintain the latency
delay under 50ms.

1. Introduction

Recently, online social network (OSN) services such as
Twitter, Facebook, and Instagram have dramatically spread
over the world. Many OSN service providers prefer to deploy
their applications on a cloud environment to reduce costs
associated with installing and running applications and to
gain scalability via using the cloud. These days, OSN services
generate tremendous data and traffic, which differ by time
and location. Generally, users of these services are located
across the globe.

The main actors throughout this paper are Cloud Service
Providers (CSPs), Service Providers (SPs), and users. We
consider the following definitions for these actors: CSPs offer
computing, storage, and network resources required for host-
ing online services on an Infrastructure as a Service (IaaS)
basis. SPs offer online services such as Twitter, Facebook,
and Instagram using hardware resources provisioned by
CSPs. And SPs utilize multiple clouds without relying on any
interoperability functionalities implemented by the CSPs [1].

The online services are accessed by users. Users access and
use the online services.

In this situation, a traditional single cloud computing
system has a limitation regarding performance of the OSN
service in terms of latency delay and execution delay. Because
latency delay is the time lost in network transfer between a
user and a cloud, if the user’s location is far from the single
cloud, the latency delay can increase. Execution delay consists
of processing delays and queueing delays. Processing delay
refers to the time required for any processing of a packet
in the cloud server system. Queueing delay accounts for the
time a packet waits in memory, before it is processed. Thus,
queueing delay can increase, due to resource contention,
according to server overhead. Consequently, execution delay
can increase as queueing delay increases. Hence, if all users
have access to a single cloud, execution delays can increase.

To mitigate such problems, many researchers have envi-
sioned the use of multiple clouds (Multicloud). By building
a Multicloud around the user, resource contention in each
cloud can be reduced, and communication distance between

Hindawi
Scientific Programming
Volume 2017, Article ID 2824782, 17 pages
https://doi.org/10.1155/2017/2824782

https://doi.org/10.1155/2017/2824782


2 Scientific Programming

Updated data

Cloud-B

Cloud-C

Cloud-A

Intercloud tra�c for synchronization

data
User-2

data
User-n

data
User-1

· · ·

· · ·

· · ·

data
User-ndata

User-2

data
User-1

data
User-ndata

User-2

data
User-1

Figure 1: The existing method for storing user data using the replication technique.

the user and each cloud can be reduced.Therefore, execution
delay and latency delay also can be reduced.

There have been many studies to make online services,
deployed in a Multicloud, more efficient in terms of per-
formance. Some studies have addressed this issue by con-
tinuously monitoring the service’s performance and provi-
sioning resources additionally as needed. Other studies have
addressed this issue by applying a more efficient replication
technique [1–6].

However, there are still following limitations. First, in
most Multicloud studies and projects, user data are redun-
dantly stored in several clouds using the master-slave replica-
tions technique [3]. In particular, where there are more than
20 clouds, such as the United States [7–9], the users benefit in
terms of latency delay by accessing the closest cloud to use the
OSN service [1, 2]. However, in this case, unnecessary storage
wastemay occur by storing user data into the cloud, which are
located in a place that users rarely access. Moreover, as shown
in Figure 1, tremendous intercloud traffic can be generated
for synchronization between data. The intercloud traffic is
due to communication between the clouds in the Multicloud
environment. Second, in the location where there are many
users who want to use the OSN service, the possibility of
server overhead can be still high because all user requests
go to the same, closest cloud. As a result, it may increase
execution delay and cause degradation of OSN service’s
performance.

To resolve these problems, as shown in Figure 2, user data
should be stored in several clouds in a nonduplicatedway and
transferred to other clouds according to the amount of traffic,
guaranteeing acceptable latency delay.

In this paper, we introduced an approach that avoids
server overhead through adaptive data placement using the
data balancing technique, which moves data from a cloud to
another, according to the amount of traffic in real-time and,

simultaneously, provides acceptable latency delay using social
relationship between users in the OSN service.

We assume that CSPs and clouds to deploy the OSN
service have been selected in advance, considering cost,
performance, reliability, user distribution, and so on. It is also
assumed that SPs do not use additional clouds or change to
another cloud for the purpose of improving performance of
the OSN service.

Furthermore, as with the existing method, our approach
also assumes that the availability of the cloud servers is
not compromised due to data loss in a certain cloud server
because there is backup data.

We demonstrated our approach by modeling a novel
architecture ofMulticloud system and implementing an algo-
rithm of each component. We collected data from Twitter,
which is a representative OSN service, to capture the charac-
teristics of traffic patterns by time and location. Furthermore,
we validated that our approach is applicable in the real-world
by generating a workload with the collected data.

The key contributions of this paper are twofold. First, we
provided traffic pattern information based on time, location,
and relationships between users via data collected froma real-
world OSN service. Such information is meaningful since
it is difficult to be obtained without help from the OSN
SP. Second, we provided a novel approach of an adaptive
data placement algorithm considering real-time traffic and
the social relationships between users. Consequently, our
approach prevents performance degradation of the OSN
service by distributing traffic requested by users and reducing
unnecessary intercloud traffic, while considering latency
delay.

The rest of this paper is organized as follows. In Section 2,
we describe related works and compare them to ours. In
Section 3, we provide an analysis of traffic pattern by time
and location with the collected data. Section 4 outlines



Scientific Programming 3

Cloud-C

Cloud-B

Cloud-A

Intercloud tra�c by changing data location

data
User-n

data
User-1

data
User-2

Figure 2: Our approach for storing user data in a nonduplicated way and changing data location.

our proposed architecture and introduces each architectural
component. Section 5 details our algorithm for adaptive
data placement considering social relationships. Section 6
discusses the settings and results of our evaluation, and
Section 7 concludes this paper and highlights future work.

2. Related Works

Considerable efforts have been made to efficiently use
resources to increase performance of online services in
the Multicloud system. In this section, we focus on what
efforts have been made to maintain and improve the service’s
performance using existing clouds without finding new CSP
or cloud. The related works can be categorized into three
types.

2.1. Resource Provisioning. Several projects facilitate resource
provisioning in the Multicloud environment [4–6]. They
provide components dedicated to continuously monitoring
online service’s status and provisioning resources additionally
as needed in order to improve and maintain the service’s
performance.

However, such previous studies did not deal with
dynamic load distribution among clouds according to
resource status and cannot consider the geographical data
location constraints of the clouds and users. Thus, it is
hard to cope with the bottleneck at the data layer, and it is
hard to improve the service’s performance in terms of the
latency delay which is affected by user and data location. In
contrast, our approach finds the optimal cloud for storing
each user’s data, considering the user and cloud location, and
social relationship on the OSN services, without provisioning
additional resources. Additionally, our approach facilitates
load distribution according to data location.

2.2. Load Distribution. Grozev and Buyya proposed an adap-
tive dynamic provisioning and autonomous workload redi-
rection algorithm [1]. When user comes to the cloud system
for the first time, the user is mapped onto an appropriate
cloud based on the users’ location, identity, and information
about each cloud.This cloud selection process can be likened
to a load balancer because it redirects users to serving clouds.
However, after the cloud selection, the user is served within
the selected cloud and has no further interaction for new
mapping between users and clouds. Hence, there is still a risk
of a bottleneck that may occur in the data layer because it
cannot adequately to cope with the different traffic occurring
in each cloud. Amazon Route 53 is a domain name system
(DNS) web service that distributes user’s request into several
cloudswith the lowest latency using the latency-based routing
(LBR) system [10]. However, it does not consider traffic
overhead at each cloud.

These works allow the OSN SP to replicate data in several
or all of the clouds. If each cloud has a copy of the data, when
some data are updated, the other data also have to be updated.
It obviously generates tremendous load, and the replication
is a waste of storage volume itself. Moreover, because these
do not consider application-specific data deployment, there is
limitation of optimizing the system to improve performance
of OSN services. In contrast, our approach does not replicate
user data when storing them onto the clouds. Thus, we
can reduce waste of storage and traffic overhead due to the
update of replicated data. Furthermore, the OSN service’s
performance can be improved by placing data onto the proper
cloud in terms of latency delay.

2.3. Data Placement. Jiao et al. provided a data placement
technique to place the data of user and their friends as close as
possible [3]. This is because if the user accesses their friends’
data without relaying the user’s request to another cloud,



4 Scientific Programming

Kansas
Texas
Minnesota
Iowa
Missouri
Louisiana
Wisconsin
Illinois
Mississippi
Michigan
Tennessee
Ohio
Georgia
Newyork
Pennsylvania
Virginia
Northcarolina
Florida
Newjersy
Newhampshire
Vermont
Massachusetts
Connecticut
Rhode

269 418 316 281 240 105 22 22 7 5 33 120 111 287 276 285 277 276 296 309 250 179 312 300
6166 6761 7135 6891 5058 3254 2090 1381 1262 1218 1381 1934 3051 3810 4871 5616 5574 5350 5404 5477 4668 4780 4755 5309
127 144 152 108 127 120 77 54 48 51 56 85 90 107 137 152 145 112 76 62 86 66 81 115
35 22 36 26 18 11 5 4 13 18 109 90 61 58 41 37 56 44 33 22 48 58 57 43

468 600 545 419 276 196 158 103 112 152 184 209 311 450 491 573 563 549 483 487 495 389 411 410
354 411 382 244 192 209 132 100 85 78 77 128 183 274 318 334 277 241 228 310 244 227 236 261

4311 4532 4178 3094 1968 1169 862 637 687 729 1025 1748 2252 3234 3655 3860 3740 3754 3594 3771 3994 3430 3300 3508
281 372 333 227 158 89 96 84 68 74 120 268 310 428 438 452 392 425 370 398 359 336 247 255
19 15 18 7 2 0 2 1 0 2 2 3 16 55 50 83 57 47 75 41 30 29 22 26
7 6 1 0 10 5 7 23 15 30 34 39 78 101 89 69 60 68 57 65 34 39 7 9

488 451 399 256 99 52 37 30 71 69 197 260 311 395 470 426 443 336 347 394 391 415 424 424
542 481 586 562 509 413 320 486 398 449 615 640 663 746 763 881 632 589 585 594 480 403 417 449

7616 7458 7444 6553 4735 2910 1835 1613 1565 1601 1949 2929 4678 5838 6848 6708 6690 6522 6134 5975 5922 5206 5439 6337
4773 4842 4329 3515 3098 2445 2018 1781 1715 1780 2258 2888 4192 4977 5699 5851 6094 6211 6454 6192 5569 4853 4752 4805
772 758 811 642 488 263 233 176 107 152 287 514 659 788 807 786 768 788 823 865 667 761 629 722

1368 1433 1287 870 781 640 644 571 581 653 1019 1231 1660 1945 1900 1818 1559 1689 1579 1650 1474 1365 1364 1352
3308 3328 3208 2842 2344 1759 1363 1539 1376 1723 1906 2677 3188 3522 3869 4230 4135 4306 4407 4296 4178 3941 3301 3224
1975 2130 2131 1651 1014 665 368 311 389 540 755 1113 1273 1508 1558 1759 1750 1749 1870 1972 1946 1803 1715 1826
842 669 675 530 391 346 274 242 321 443 500 800 835 1107 1023 1090 1054 849 808 989 996 804 847 786

9 22 26 11 2 5 3 6 4 2 14 19 21 30 32 17 21 13 16 9 10 5 12 14
21 9 8 12 6 10 7 7 6 8 7 38 48 69 55 44 32 37 52 33 24 29 48 100

5033 4842 4728 3524 2519 1844 1724 1511 1746 1873 2472 3182 3776 4661 5237 5220 5441 5688 5795 5833 5192 5033 4701 4650
763 818 756 568 440 251 149 109 122 143 179 363 548 719 781 821 746 728 679 673 670 757 828 842

2434 2730 2721 2347 1848 1225 898 836 843 966 1109 1622 2076 2281 2643 2953 3101 2846 2683 2736 2726 2451 2176 2402

Tra�c highTra�c low

User place/time 1 a.m. 2 a.m. 3 a.m. 4 a.m. 5 a.m. 6 a.m. 7 a.m. 8 a.m. 9 a.m. 10 a.m. 11 a.m.12 p.m. 1 p.m. 2 p.m. 3 p.m. 4 p.m. 5 p.m. 6 p.m. 7 p.m. 8 p.m. 9 p.m. 10 p.m. 11 p.m. 0 a.m.

Figure 3: Amount of traffic generated by locations and times in the US.

the additional latency delay is avoided. Additionally, traffic
associated with further operations that find data stored in the
other cloud is reduced. Liu et al. proposed that a cloud can
only replicate its frequently requested data from other clouds
to reduce intercloud communication due to the update of the
replications [2].

These two studies mentioned above consider application-
specific factors, particularly the social relationship between
users. However, there is still the problem of storage wastage
due to replication. Moreover, there is an assumption that
clouds can provide infinite resources on demand. In actuality,
such resources are not infinite and there are complex issues
that limit full exploitation of the resources [11].

In contrast, our approach provides an algorithm for sev-
eral clouds considering traffic in real-time and the resource
status to avoid increasing execution delay. Moreover, it con-
siders geographical locations of users and clouds to maintain
acceptable latency delay, even when compared to existing
approaches in which the user’s request accesses the closest
cloud.

Furthermore, the abovementioned approaches relay a
user’s request to another cloud if there are no data in which
the user wants to access the closest cloud. This makes the
user’s request access to the closest cloud at least once without
considering the existence of the data, causing unnecessary
traffic to that cloud. In contrast, in our approach, we intro-
duce the redirection layer, which enables the user to be
directly routed to the cloud that has the data the user wants
to access. Therefore, resource contention can be reduced and
server overhead can be avoided within each cloud.

In summary, the existing research works generally con-
sider latency delay or management of resource provisioning
with the redundant data and the exception of considering
the resource contention in the data layer of the three-tier

architecture. However, the network bottleneck that confers
performance degradation occurs in the data layer. Therefore,
user data should be distributed and placed in a nonduplicated
way and balanced according to the resource status of each
cloud to avoid increasing execution delay upon the bottle-
neck at the data layer, guaranteeing acceptable latency delay
according to the distance between the user and the cloud. To
the best of our knowledge, there is no adaptive dynamic data
placement approach that simultaneously considers execution
delay and latency delay.

3. Traffic Pattern Analysis

To capture the characteristics of an OSN service, we collected
the data of Twitter users via Tweepy API [12]. From June
to October 2016, 1,297,163 tweets were collected via depth-
first search (DFS). Each tweet has information regarding
the user ID of who wrote the tweet, user location, time for
which each tweet was written, and the user who received the
tweet. As a result of analyzing using the collected data, some
characteristics were found as shown in Figure 3.

Figure 3 depicts the amount of traffic by time and
location. As shown in the figure, the amount of traffic is
generated differently by location at the same time, aswell as by
time at the same location.These features also appear in other
OSN services such as Facebook and Instagram [2, 13–15].

This feature shows that the performance of the OSN
service on the cloud can be affected by the state of the resource
if the traffic load is not dynamically managed according to
the time and location. In other words, the load should be
distributed into several different clouds to make the OSN
service users feel that the cloud’s resources are unlimited. If
user data are redundantly stored in several clouds, it will cause
unnecessary intercloud traffic due to data updates and waste



Scientific Programming 5

Presentation layer

Redirection layer

Entry point layer

Domain layer

Data layer

Broker layer

· · ·

Figure 4: A six-layer architecture with three layers added to the existing three-tier architecture.The cloud shape indicates one cloud. A cloud
consists of several entry point servers, OSN service servers, and database servers.

of storage. Therefore, data balancing is required to divide the
database horizontally and store it in multiple clouds without
replications.

Furthermore, most OSN services such as Twitter, Face-
book, and Instagram are designed to allow users to access
more of their friends’ data than their own data or a non-
friends’ data [16]. Therefore, when choosing the cloud in
which the user’s data will be stored, it is important to consider
not only the location of the user herself/himself but also
where the user’s friends are located. It is necessary to store the
data in an optimal cloud in terms of latency delay according
to distance.

4. Proposed Multicloud Architecture

4.1. Components. The three-tier architecture, which is used
by most online applications, comprises three major parts: a
presentation layer corresponding to a user terminal, a domain
layer with the server logic of an application, and a data layer
to serve as a data store. In our approach, to enable adaptive
dynamic data placement and to effectively and dynamically
distribute user requests via that data placement, a six-layer
architecture shown in Figure 4, which is an extension of the
traditional three-tier architecture, is needed.

The basic elements of the three-tier architecture remain
unchanged, but the existing architecture is modified by

adding the following novel elements: redirection layer, broker
layer, and entry point layer. Since the CSPs provide the cloud
service on an IaaS basis, the elements are built by each SP.

The role of each element is as follows.

(i) Presentation Layer. It represents the user’s terminal and is
the starting point of the user’s request and the end point of
response for the user’s activity (read/write operation).

(ii) Redirection Layer. It consists of several redirector servers.
The redirector server informs the user where the data he/she
wants to access is located. This server can be built and
operated on a proxy server. If the redirector server is in
multiple locations near the users, the performance bottleneck
and latency delay can be reduced. In order to minimize costs,
the redirector server can be built on each cloud. Since the
user simply obtains information on the cache of the redirector
server, the time complexity is O (1). In addition, to minimize
the load on the redirector server, the redirection is performed
only for the user’s first request to get the location of each
user’s data that the user wants to access after the broker
performs the matching algorithm, which determines user
data placement. After this, the user who sent the request
message has the location of the data and can directly access
the cloud that has the data without accessing the redirector
server.



6 Scientific Programming

Broker server Data serverOSN service serverRedirector server EP server

Response
data location

Request
data location

Request operation Redirect to Access data

Respond to Respond toRespond to

Redirect to

Send
the monitoring data

Send the match result Request extraction of
user’s data

Extract user’s dataSend the user’s data

Data balancing
Update data location

Response result

User access �ow

Data balancing �ow

Figure 5: Communication flow between components.

(iii) Broker Layer. It can be clustered to handle large amounts
of data and can be deployed in the clouds for better scalability.
In the broker server, an algorithm searching for an optimal
match between the user and the cloud is performed to
store user data into multiple clouds, considering the distance
between the user and the cloud, the relationship between
users, and real-time traffic.

(iv) Entry Point Layer. It consists of several entry point (EP)
servers. The EP server monitors a user’s activities, including
his/her identity during a unit of time, and performs the data
balancing between the clouds. In addition, the standard load
balancer, in round-robin way, can be built on this layer. The
unit of time can vary depending on the needs of the SP.

(v) Domain Layer. This layer consists of several OSN service
servers. In each server, the request that the user sends is
processed, which means the service logic that the OSN SP
created is processed in the servers for the user’s activity.

(vi) Data Layer. This is where user data are stored. There are
data servers in the data layer.

4.2. Component Interactions. Figure 5 depicts the process
sequence of our suggested system. The sequence can be
divided into the following: (i) user access flow shows the
process that a user takes when using OSN service and (ii)
data balancing flow shows a process for determining the data
placement of users.

A detailed description of each flow is as follows.

(i) User Access Flow.Theuser finds out through the redirector
server where the target data to access are located among
multiple clouds. It then sends the user’s request to the EP
server of the cloud where the OSN service server is located.
The EP server records the user’s identity, where the request
came from (identifying the region via IP), and how much

data were sent or requested and redirects those data to the
OSN service server. When the OSN service server writes or
reads the data corresponding to the request in the database
and sends a response to the OSN service server, the response
finally reaches the user terminal through the EP server.

(ii) Data Balancing Flow.The EP server sends the monitoring
results collected in the user access flow process (total traffic at
each cloud, traffic generated by each user, and the location of
the userwho sent the request) to the broker server.The broker
server calculates where each user’s data have to be stored (that
is, it finds a best match to store user data. See Section 5 for
more details), taking into account the distance between the
user and each cloud, the distance between the user’s friend
and each cloud, and the total amount of traffic generated
during a unit of time in each cloud. Such information can be
inferred from the monitoring results. Then, when the match
result is sent to the EP server, the EP server extracts the data
requiring the balancing and sends them to the EP server of
the destination cloud.When the data balancing is completed,
information on the placement of the user’s data is updated in
the redirector server.

5. Matching Algorithm in Broker Server

Determining in which cloud each user’s data are stored
without replications is equivalent to matching between users
and clouds, as shown in Figure 6. When the users and clouds
are arrayed as vertex sets (user set and cloud set), a bipartite
graph can be developed by connecting every vertex that can
be matched. Each edge has a weight, whose value can be
expressed according to the location of the user, the locations
of the user’s friends, and the degree of familiarity between
the user and each friend. The matching algorithm finds an
optimal match between the user and cloud using the weight
value. In Figure 6, the red lines indicate the optimal match.



Scientific Programming 7

Cloud-1 Cloud-2 Cloud-3 Cloud-n

User-kUser-(k − 1)User set

Cloud set
· · ·

· · ·User-1 User-2 User-3

Figure 6: Matches between users and the clouds.

Thus, User-1’s data are stored in Cloud-1, User-2’s data are
stored in Cloud-1, and User-𝑘’s data are stored in Cloud-3.

The matching algorithm for finding a match consists of
an L-match and a T-match. For each user, a match is made
to improve performance by selecting the edge that has the
minimum weight value from the viewpoint of latency delay.
We refer to this as the L-match.

If the data are stored by the L-match, it is checkedwhether
the amount of traffic expected to occur at each cloud is within
an acceptable range considering the capacity of each cloud
based on the amount of traffic generated by each user in a
previous unit of time. The capacity indicates the volume of
traffic that each cloud can stably processwithout the queueing
delay which is caused by the resource contention.

If the capacity of a cloud is less than the traffic expected
to occur at the cloud in the following unit of time, the L-
matchmust be changed so that the user’s data can be stored in
another cloud with sufficient capacity. We refer to this as the
T-match. After the T-match process, the matching algorithm
ends. Then, according to the match between the users and
clouds, user data are stored in each cloud and then relocated
from the cloud where user data were originally stored to
the other cloud. We refer to this process as data balancing.
Thus, user data placement is determined as a result of data
balancing. In Sections 5.1 and 5.2, L-match and T-match
are described in detail. Notations to describe the matching
algorithm are summarized in Notations.

5.1. L-Match Algorithm for Minimum Latency. From the
viewpoint of latency delay, when each user accesses the user’s
own data, the best cloud that stores each user’s data can be
found by measuring the distance between the user’s location
and each cloud’s location.

In Section 5.1.1, we measure the distance between each
user and the clouds. In a similar way, when each user’s friends
access the user’s data, the best cloud that stores each user’s
data can be found by measuring the distance between the
user’s friends and each cloud. In Section 5.1.2, each user’s
data are stored in an optimal cloud, taking into account the

distance between the user’s friends and the clouds and the
degree of familiarity between users in the OSN service.

Normalization is performed to apply the weight values
obtained in those processes together to a linear programming
algorithm [17, 18] which can find the L-match result. As a
result of the normalization, all distance values are set from
0 to 1. The normalization formula [19] is as follows:

𝑑𝑖 fl
𝑑𝑖 − min {𝑑}

max {𝑑} − min {𝑑}
. (1)

5.1.1. Calculating Distance Weight. A distance value indicates
the distance between a user and a cloud. The distance weight
is a normalized value used to apply the distance value as a
weight to the linear programming algorithm.We assume that
the user’s location can be grasped using IP address.

For example, assuming that there are three clouds, as
shown in Figure 7, if the distance between the user and each of
the three clouds is 10 km, 50 km, and 100 km, the normalized
distance weight value of each cloud is 𝑑0 = 0, 𝑑1 = 4/9, and
𝑑2 = 1, respectively.

5.1.2. Calculating Social Weight. In OSN services, since the
user usually accesses the friend’s data more than their own
data, it is difficult to obtain an optimal match considering
only the location of the user.

Therefore, we measure the distance between the user’s
friends and each cloud in a similar way to the method of
calculating the distance weight. Additionally, we make the
friends with a lot of interaction to have more influence in
finding the optimal cloud for storing the user’s data.

For example, as shown in Figure 8, we can measure the
distances between User-1’s friends and Cloud-1. Then, to
reflect intimacy, we multiply each distance by the social level
value, which is the number of communications betweenUser-
1 and each of User-1’s friends until just before the algorithm
is executed.Therefore, the social weight value between User-1
and Cloud-1 before normalization is 9 ∗ 10 km + 6 ∗ 20 km +
5 ∗ 30 km + 3 ∗ 40 km + ⋅ ⋅ ⋅ + 1 ∗ 50 km.



8 Scientific Programming

Cloud-1 Cloud-2 Cloud-3

User

Distance weight: 0 Distance weight: 4/9 Distance weight: 1
Distance: 10 ＥＧ Distance: 50 ＥＧ Distance: 100 ＥＧ

Figure 7: Examples of distances and distance weights between a user and multiple clouds.

Cloud-1

User-1 Friends of User-1

Social level = 9

User-a

Social level = 6

User-b

Social level = 5

User-c

Social level = 3

User-d

Social level = 1

User-k

Distance:
50 ＥＧ

Distance:
40 ＥＧ

Distance:
30 ＥＧ

Distance:
20 ＥＧDistance:

10 ＥＧ

· · ·

Figure 8: Social level and distance examples that can emerge between a user’s friends and the cloud.

The social weight values for other clouds based on User-1
can also be obtained. By normalizing all social weight values,
a normalized social weight value which is applicable to the
linear programming can be obtained.

Therefore, the social weight value between a user and a
cloud can be expressed as formula (2)

∑
𝑓𝑘∈Fr(𝑢𝑖)

SL (𝑓𝑘, 𝑢𝑖) ⋅ Dist (𝑓𝑘, 𝑐𝑗) . (2)

5.1.3. Calculating the Completed Bipartite Graph. The weight
values for the edges between a user and a cloud can be
obtained based on the distance weight value and the social
weight value. The edge weight 𝑤(𝑢𝑖, 𝑐𝑗) between the user 𝑢𝑖
and the cloud 𝑐𝑗 can be expressed as formula (3), where
NormDist(𝑢𝑖, 𝑐𝑗) and NormSocialLvl(𝑢𝑖, 𝑐𝑗) are the normal-
ized values of the distance weight value and the social weight
value, respectively,

𝑤 (𝑢𝑖, 𝑐𝑗) = 𝛼 ⋅ NormDist (𝑢𝑖, 𝑐𝑗) + 𝛽

⋅ NormSocialLvl (𝑢𝑖, 𝑐𝑗) .
(3)

𝛼 and 𝛽 values may vary depending on whether the OSN
service is more heavily handling the user’s own data access or
his/her friend’s data access. If most of the user’s activity in the
OSN service is communication with a friend, it is better to
increase the 𝛽 value, and if the user accesses a lot of his/her
own data, it is better to increase the 𝛼 value. In terms of
latency delay, formula (4) is a linear programming that is used
to find the L-match. 𝑈 and 𝐶 indicate all users and the cloud

min ∑
𝑢𝑖∈𝑈

∑
𝑐𝑗∈𝐶

𝑤 (𝑢𝑖, 𝑐𝑗) ⋅ 𝑒 (𝑢𝑖, 𝑐𝑗)

s.t. (a) ∑
𝑐𝑗∈𝐶

𝑒 (𝑢𝑖, 𝑐𝑗) ≤ 1

(b) ∑
𝑢𝑖∈𝑈

𝑒 (𝑢𝑖, 𝑐𝑗) ≤ 𝑈

(c) ∀𝑒 (𝑢𝑖, 𝑐𝑗) ∈ {0, 1} .

(4)

Constraints (a) and (b) mean that one user can be
matched to only one cloud and (c) means all the edges can
have a value of 0 or 1. If the value of each edge is 1, the
vertices connected to the edge arematched. Among the edges



Scientific Programming 9

connected to each user, a certain edge having a value of 1
indicates that the edge has a smaller weight value than the
others. Otherwise, if the value of each edge is 0, the vertices
are not matched.

These constraints do not include any regulations about
the location of user data, because most of the users do
not have any data locality constraints and let the service
to autonomously decide where to locate their data [20].
However, if it is necessary to regulate or limit the data location
of a particular user, constraints for each user can be added to
the constraints of formula (4).

In conclusion, the L-match process makes a match that
consists of edges having a minimum weight value between
each user and cloud.

After the L-match process, each user can bematched with
a cloud that guarantees a minimum latency delay when data
of all users are stored in multiple clouds in a nonduplicated
manner.

5.2. T-Match Algorithm. The amount of traffic that occurs
over time varies by location, and each cloud has a capacity
limitation.

In this situation, in order to prevent the queueing delay
due to the resource contention at the data layer, it is necessary
to balance data into several clouds according to the capacity
of each cloud and the amount of traffic. Because the traffic is
generated by users accessing data, the traffic can be controlled
by balancing the data.

We assume that SPs know the maximum response time
that should be guaranteed to provide their service without
problems in terms of performance. It is also assumed that the
SPs empirically know themaximumamount of traffic allowed
per unit time in order to ensure such performance with the
specifications of cloud servers already in use. Therefore, the
SPs can set the capacity of each cloud server using the traffic
information.

Thus, the existing match result, that is, L-match result,
should be properly changed considering the capacity of each
cloud and the amount of traffic which occurred at each cloud.
We refer to this process as the T-match.The T-match process
can be divided into three stages: (1) classification of traffic
type, (2) extraction of users, and (3) cloud selection.

In Section 5.2.1, the algorithm determines whether data
balancing is necessary or not. In Section 5.2.2, when the
amount of traffic generated at a cloud exceeds the capacity of
the cloud, the algorithm decides which user’s data should be
extracted to balance the data. In Section 5.2.3, the algorithm
determines a cloud to move the extracted user data.

After data balancing according to the T-match result, if
the traffic that occurred in the following unit of time does not
exceed Ca(𝑐𝑗) for all clouds, the match is kept. Otherwise, if
the traffic of 𝑐𝑗 has exceeded Ca(𝑐𝑗), the T-match is processed
again considering GAP(𝑐𝑗).

5.2.1. Classification of Traffic Type. The algorithm is per-
formed differently according to traffic type, which is
divided into two cases: MINIMAL TRAFFIC CASE and
OVERHEAD CASE.

(i) MINIMAL TRAFFIC CASE.MINIMAL TRAFFIC CASE
does not require the T-match process. This is because TT
is less than Min-Ca. In other words, this means that each
cloud has enough capacity to accept the expected traffic
without any overhead, no matter what the L-match result is.
Therefore, the system maintains the L-match result which is
made considering the latency delay.

(ii) OVERHEAD CASE. When TT exceeds Min-Ca, it
enters the overhead case process. This is because there
are chances that 𝑇(𝑐𝑗) exceeds Ca(𝑐𝑗). The overhead case
is divided into two types: (1) first overhead type and (2)
continuous overhead type. The first overhead type is the case
where the algorithm encounters the overhead case for the first
time. The continuous overhead type is where the algorithm
encounters overhead casemore than once.

For the first overhead type, T-match is performed accord-
ing to ET(𝑐𝑗) and Ca(𝑐𝑗) based on the result of the L-match.
For continuous overhead type, the T-match result created
in the previous unit of time is used without the L-match
result. Hence, for the continuous overhead type, the T-match
is processed again considering GAP(𝑐𝑗) only if 𝑇(𝑐𝑗) exceeds
Ca(𝑐𝑗). As shown in Figures 3 and 13, the amount of traffic
does not change abruptly in general and naturally increases
or decreases.Thus, it is possible to minimize the operation by
performing T-match again using the existing T-match result,
which is created in the previous unit of time, rather than using
the L-match result each time.

5.2.2. Extraction of Users. Figure 9 shows the process of
extracting users to make the T-match result when ET(𝑐𝑗)
exceeds Ca(𝑐𝑗) in the first overhead type (or when 𝑇(𝑐𝑗)
exceeds Ca(𝑐𝑗) in the continuous overhead type).

The extraction process operates as follows:

(1) If 𝑇(𝑐𝑗) exceeded Ca(𝑐𝑗), then GAP(𝑐𝑗) should be
calculated. It can be derived by subtracting Ca(𝑐𝑗)
from 𝑇(𝑐𝑗). If it is the first overhead type, ET(𝑐𝑗)
should be applied instead of 𝑇(𝑐𝑗).

(2) As shown in Figure 9, 𝑡(𝑢𝑖, 𝑐𝑗) is summed in order of
the amount of traffic by each user until the summed
value reaches GAP(𝑐𝑗).

By transferring data of the users (ExtUsr), who are the
target of the summation to the other cloud, the amount of
traffic at 𝑐𝑗 will be reduced in the following unit of time. At
this time, the user who generated the maximum traffic at the
previous unit of time is first chosen to balance the user’s data
to the other cloud. This is because users who use the OSN
service the most at a certain unit of time are more likely to
use the service at other times. Furthermore, in the situation
shown in Figure 9, if GAP(𝑐𝑗) is 20 and the users who used
the service the most are extracted first, only User-A will be
extracted. We refer to this as the most-first way. Otherwise,
if the users who used the service the least are extracted first,
only User-F, User-E, and User-D will be extracted. We refer
to this as the least-first way. Whether it is the user group
extracted by the most-first or the user group extracted by the
least-first, the degree of influence on the service at the unit of



10 Scientific Programming

20

15

13

10

5

5

User-B

User-C

User-D

User-E

User-F

User-A

ui t(ui, cj)

ExtUsr = {User-A, User-B, User-C, User-D}

＇！０(Cj) ≤ 20 + 15 + 13 + 10

Figure 9: Extraction of users from the clouds with server overhead
according to the amount of traffic by each user.

time is equal (20), considering the traffic generated by each
group. In this situation, if the least number of user data can
be moved, intercloud traffic can be reduced.Thus, we need to
extract the users in the most-first way and transfer their data
to the other cloud.

Such extraction can be implemented as shown in Fig-
ure 10. If there are clouds with server overhead (overhead-
Clouds) caused by the traffic generated in the previous unit
of time, it picks a cloud from overheadClouds and gets a
list of users who accessed the cloud server in the previous
unit of time (userList). If there is no user in userList, then it
picks another cloud from overheadClouds and gets userList.
Otherwise, if there is user(s), it picks 𝑢𝑖 from userList and gets
𝑡(𝑢𝑖, 𝑐𝑗). After then, the user is added to the extracted users
list (ExtUsr), and 𝑡(𝑢𝑖, 𝑐𝑗) is added to trafficSum that is sum of
𝑡(𝑢𝑖, 𝑐𝑗) of extracted users. If trafficSum is less thanGAP(𝑐𝑗), it
extracts another user. Otherwise, it picks another cloud from
overheadClouds and repeats this process again. And, if there
are no more clouds in overheadClouds, the algorithm ends.

After all users whose data should be balanced to the other
cloud are extracted, the process explained in Section 5.2.3
should be used to determine which cloud each user’s data will
be stored in.

5.2.3. Cloud Selection. The cloud selection steps needed at
the T-match process involve a “which cloud” to select in a
situation where the user must be matched to another cloud
other than the previously matched cloud.

Figure 11 describes the cloud selection algorithm for
selecting a second-best (or third-best) cloud in terms of
latency delay in the T-match process.The factors for selecting
a cloud can be divided into the following four categories:
(1) social weight + distance weight, (2) social weight, (3)
distance weight, and (4) traffic applied in this order. If the
cloud selection is not completed despite all four factors were
applied, a cloud will be selected randomly.

Start

No

End

Is there overheadClouds?

Pick a cloud from overheadClouds

Get userList of the cloud

Length of userList > 0? 

tra�cSum += userTra�c

Add the user to ExtUsr

Yes

Yes

No

No

Yes

tra�cSum >=
GAP(cj)?

Pick ui from userList

Get t(ui, cj)

Figure 10: Algorithm flowchart for extracting users from the clouds
with server overhead.

First, the algorithm determines whether the situa-
tion corresponds to OVERHEAD CASE or MINIMAL
TRAFFIC CASE, based on TT.

If it isOVERHEAD CASE, it gets a user list (userList) from
ExtUsr. If there are no users in userList, the algorithm ends.
Otherwise, it picks a user from userList. After that, it checks



Scientific Programming 11

Start

No

End

ProcessType ==
OVERHEAD_CASE?

Get userList from ExtUsr

Length of userList > 0? 

Pick a user from userList

user.cloud = the cloud

Update redirection table

Yes

No

No Length of remaining
cloud list > 0?

Pick clouds with minimum
weight using factor

Yes

�e number of
minimum cloud

weight values <= 1?
No

Yes

Factor = next factor

Yes

Figure 11: Algorithmflowchart for selecting a second-best (or third-
best) cloud in terms of latency delay.

whether there are the remaining clouds that still have space
to store user data according to Ca(𝑐𝑗) and 𝑡(𝑢𝑖, 𝑐𝑗). If there
is a remaining cloud, the cloud selection process starts to
select the cloud to store the picked user’s data. The algorithm
repeats the cloud selection process for all users extracted in
Section 5.2.2.

The cloud selection process operates as follows for each
factor:

(1) Find the cloud having the minimum weight factor
value among the remaining clouds except for the
cloud that was matched.

(2) Match the cloud with the user if there is only one with
the minimum weight factor value.

(3) If there is more than one cloud with the minimum
weight factor value, repeat steps (1) and (2) using the
next factor in order.

The reason for applying the factors in that order is the
same as that for considering the social weight and the distance
weight together in Section 5.1. As mentioned in this section,
in OSN service, the optimal cloud for storing user data can be
found in consideration of both the user’s location and his/her
friend’s location. The ratio of accessing the data of the friend
is larger than that of accessing the data of the user in an OSN
service. This is why (2) social weight has higher priority than
(3) distanceweight. If the cloud selection is notmade through
the “social and distance,” “social only,” and “distance only”
factors, the cloud with least traffic occurrence at the unit of
time is selected to store the user’s data. It may be the safest
option to avoid server overhead, given Ca(𝑐𝑗). In addition,
as mentioned in Section 5.1.3, it is assumed that there is no
regulation or constraints of user data location.

Consequently, we can minimize resource contention by
considering 𝑇(𝑐𝑗) and Ca(𝑐𝑗), while balancing the data with
efficiency in terms of latency delay.

6. Evaluation

In this section, we demonstrate that our approach achieves
better results compared to the baseline approach, which
is used in both industry and academia. At first glance,
Section 6.1 introduces how many clouds are set, how the
interaction workloads are generated, what those components
comprise, and what the parameters are. Then, Section 6.2
demonstrates that our approach can reduce the resource
contention of the data layer at each cloud and provide an
acceptable latency delay given the workloads and settings.

6.1. Experiment Setting. To validate our approach, we built a
Multicloud infrastructure environment using 15 commodity
computers (Intel i5-6600 3.3 GHz, 8GRAM, and 1 TB hard
drive), interconnected via a Cisco SF220-24 smart plus
switch. Broker, EP, redirector, and service server software that
we implemented was built on the abovementioned hardware
environment.

6.1.1. System Configuration. Figure 12 depicts the system
configuration used to evaluate our approach. We created
three clouds to construct the Multicloud environment using
eight computers. A cloud consists of two computers: the EP
server and service server.

The service server has OSN service logic to deal with
read/write operations. The database, as the data server at
the data layer, was installed in each service server. We also
made a broker server running the matching algorithm and a
redirector server redirecting the user’s request to a cloud. We
used six computers to generate workloads on the basis of real-
world data collected from Twitter, as described in Section 3,
and stored them in the collected data server.



12 Scientific Programming

Collected
data server

Workload generator

Broker
server

Redirector
server

Service
server

EP
server

Internet

Switch

Service
server

EP
server

Service
server

EP
server

Figure 12: System composition for evaluation.

Table 1: Capacity of each cloud (Ca(𝑐𝑗)) by traffic case.

Traffic case Eastern US South Central US Western US
MINIMAL TRAFFIC CASE

Our approach-min 10000MB/h 10000MB/h 10000MB/h
OVERHEAD CASE

Baseline approach-90, our approach-90 117MB/h 130MB/h 130MB/h
Baseline approach-70, our approach-70 90MB/h 130MB/h 130MB/h
Baseline approach-50, our approach-50 65MB/h 130MB/h 130MB/h

0

50

100

150

200

250

300

G
en

er
at

ed
 w

or
kl

oa
d 

(M
B)

Generated tra�c
1 million tweets case
0.4 million tweets case

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 n
um

be
r o

f t
w

ee
ts

1610 17 2015147 8 13 1811 21 2396 19 2212421 530

Time (hour)

Figure 13: Amount of generated workload and pattern at each time
point. The bar graph indicates the amount of generated workload at
each time.The line graph indicates the normalized 1 million and 0.4
million tweets.

6.1.2. Interaction Workload. In our experimental setup, we
generated interaction workloads using about 410,000 tweets,
which are the writing operations of 2,500 users of the Twitter
service. As shown in Figure 13, the number of generated
tweets and the patterns according to time in 410,000 tweets
are similar to those of 1,000,000 tweets as well as to all tweets
on Twitter [21].

We used the ratio “𝑅/𝑊” to decide the total number
of reading operations over that of writing operations. In
our experiment, we evaluated the case of “𝑅/𝑊 = 100” to

reflect the fact that OSN services have much more reading
operations than writing operations [22]. We set the size of
each read and write operation to 1 KB, which is the average
request size of OSN services [2]. As a result, the workloads
were generated by time, as shown in Figure 13.

6.1.3. Cloud Settings. We set the three clouds virtually located
in the Eastern, South Central, and Western US with its
latitude and longitude values. These are actual locations of
Microsoft Azure [7]. In order to make the distance between a
user and a cloud seem to be geographically distant, we used
formula (5), which creates a latency delay according to the
distance between the user and the cloud [23]

RTT (ms) = 0.02 × Distance (km) + 5. (5)

The EP server sends the monitoring data to the broker
server every hour. This means the matching algorithm and
data balancing are also operated once an hour. We also
assumed that the redirector server is close to the users and
has enough resources to redirect users to the cloud with no
delay.

Table 1 depicts Ca(𝑐𝑗) for each cloud, which is set in our
experiments. We assume that if the amount of traffic which
occurred at each clouddoes not exceedCa(𝑐𝑗), queueing delay
of execution delay by resource contention will not occur. In
order to evaluateMINIMAL TRAFFIC CASE, we set enough
capacity to all clouds in order for all clouds to be able to
accept the workloads without the queueing delay, whatever
the results generated by the matching algorithm.



Scientific Programming 13

In order to evaluate OVERHEAD CASE, we divided
capacity into three types based on the maximum amount
of traffic that occurred in the Eastern US. The maximum
amount of traffic was about 130MB/h. The numbers (90,
70, and 50) in the traffic case indicate the percentage of the
maximum amount of traffic.

The reason for dividing OVERHEAD CASE based on
the Eastern US is that it generates the maximum traffic in
Eastern US compared to the South Central and Western US
in our experiments. Also, we could see how our approach
works depending on the capacity and amount of traffic while
gradually decreasing the capacity.

For example, in baseline approach-90 and our approach-
90 of theOVERHEAD CASE, we set the capacity of the cloud
in the Eastern US to 90% of the maximum amount of traffic.
On the other hand, the capacity of the others was set to the
value of themaximumamount of traffic in the EasternUS.We
assumed that the federation capacity of all clouds had enough
resources to accept the total traffic generated by all users.
Therefore, if some clouds did not have enough resources to
accept 𝑇(𝑐𝑗), the others should be able to deal with GAP(𝑐𝑗).
Additionally, we assumed that if𝑇(𝑐𝑗) exceeded Ca(𝑐𝑗), it may
cause performance degradation in terms of execution delay
because queueing delay increase.

6.1.4. Baseline Approach. We compared our approach to
a baseline approach, which stores all data into all clouds
via master-slave replications. In our experiment, the master
replication was stored in a local cloud with respect to each
user and the two slave replications were stored in the other
clouds. All the user’s requests were processed at a local cloud.
In addition, all the write operations of users resulted in
intercloud traffic for updating slave replications.

6.2. Results

6.2.1. Comparison of the Intercloud Traffic. Figures 14 and 15
depict how much intercloud traffic is generated during each
time duration. Figure 15 provides a more detailed view of
the features from 11 h to 20 h in Figure 14. In the baseline
approach, the intercloud traffic is generated by updating slave
replications according to the write operations on the master
replication in each cloud to the other clouds.Thus, intercloud
traffic of the baseline approach during each unit of time can
be calculated by

∑
𝑐𝑗∈Cs

WO (𝑐𝑗) ⋅ 𝑁sl ⋅ 𝑆msg, (6)

where Cs and 𝑐𝑗 denote all clouds and each cloud that
is included in the clouds, respectively, WO(⋅) denotes the
number of write operations at a certain cloud,𝑁sl denotes the
number of slaves, and 𝑆msg denotes the size of each message.

In our approach, intercloud traffic occurs by moving
all data created by the user, that is, data balancing. Thus,
intercloud traffic in our approach during each unit of time
can be calculated by

∑
𝑢𝑖∈𝑈db

TC (𝑢𝑖) ⋅ 𝑆msg, (7)

Baseline approach
Our approach-90

0

Our approach-70
Our approach-50

10
20
30
40
50
60
70

tr
a�

c (
M

B)
A

m
ou

nt
 o

f i
nt

er
clo

ud

0–3 4–7 8–11 12–15 16–19 20–23
Time (hour)

Figure 14: Amount of intercloud traffic by time during the day based
on baseline approach and our approach.

11 12 13 14 15 16 17 18 19 20
Time (hour)

Our approach-90
Our approach-70
Our approach-50

0
10
20
30
40
50
60
70
80
90

tr
a�

c (
M

B)
A

m
ou

nt
 o

f i
nt

er
clo

ud

Figure 15: Amount of intercloud traffic by time during the day
within our approach according to the size of cloud capacity.

where 𝑢𝑖 denotes each user, 𝑈db denotes users whose data
should be balanced to the other cloud, and TC(⋅) denotes the
total number of contents of each user. In our experiment, as
mentioned above, 𝑁sl is set to 2 and 𝑆msg is set to 1 KB.

As shown in Figure 14, in the baseline approach, the
intercloud traffic occurs in proportion to the total amount
of traffic occurring at the time because the write operation
occurs every hour. Therefore, the intercloud traffic also
increases at the time when the total amount of traffic is
increased as well as when the peak is reached. It increases
the resource contention of the data layer. Consequently, it will
make server overhead.

Additionally, in our experiment, the number of slave
replications in the baseline approach was set to “2,” but
the intercloud traffic will increase if the number of slave
replications increases. In contrast, our approach generated
intercloud traffic only when the data of users were balanced.
Data balancing occurs only when the capacity of a cloud is
not enough to accept traffic stably. This is why the intercloud
traffic did not occur in theMINIMAL TRAFFIC CASE.

In the OVERHEAD CASE, as shown in Figure 15, we
saw that the smaller the capacity of Eastern US, the more
data balancing occurred from earlier. The reason for this is
that the traffic mainly increased during the day from 10 h
to 19 h as shown in Figure 13, and the smaller the capacity
is, which is set for each cloud, the faster the amount of
traffic arriving reached its capacity. In addition, after data



14 Scientific Programming

0–3 4–7 8–11 12–15 16–19 20–23
Time (hour)

Baseline approach
Our approach-min
Our approach-90

Our approach-70
Our approach-50

0
20
40
60
80

100
120
140
160

A
m

ou
nt

 o
f t

ra
�

c (
M

B)

Figure 16: Amount of traffic generated by time during the day in
Eastern US.

balancing is performed for each capacity, the reason the
data balancing continues (our approach-50: 12 h–16 h, our
approach-70: 13–16 h, and our approach-90: 15-16 h) is that
the total amount of traffic increasedmore than the amount of
traffic in the previous unit of time.The fact that the amount of
traffic of the cloud has increased after data balancing means
that each user whose data are still stored in the cloud was not
the target of data balancing in the previous unit of time (that
is, the user did not use the OSN service at the previous unit of
time) or the user has generated more traffic than that in the
previous unit of time. Because our approach’s data balancing
is to optimize the system according to the capacity of the
cloud and the amount of traffic that occurs in a certain unit
time, if the amount of traffic in the following unit of time
is greater than in the previous unit of time, then it can be
a little over the capacity of that cloud. In order to mitigate
this problem when applying it to commercial services, the
capacity, which is set in the matching algorithm, should be
set slightly lower than the actual capacity of each cloud.

Data balancing does not occur after the total amount of
traffic is at its maximum at 20 h, because the data balancing
was performed in order for each cloud to handle traffic at
peak time. After peak time, the amount of traffic at each cloud
is reduced. Therefore, the amount of traffic that occurs at
each cloud does not exceed the capacity of the corresponding
cloud. However, in our approach, the disadvantage is that the
larger the total amount of data of each user whose data should
be balanced to the other cloud, the greater the amount of
intercloud traffic that will be generated.

6.2.2. Comparison of the Amount of Traffic by Users. Figures
16, 17, and 18 show the amount of traffic in our approach and
the baseline approach by the capacity case. In our approach,
the amount of traffic rarely exceeded the capacity of each
cloud, which is defined in our experiment. On the other hand,
the baseline approach almost exceeded the capacity because
the baseline approach does not dynamically balance load or
data among the clouds according to the amount of traffic.

Figures 17 and 18 show that the amount of traffic between
our approach and the baseline approach was significantly
different. This is because in the baseline approach, each user
always sends the request to the closest cloud. That is, the

0–3 4–7 8–11 12–15 16–19 20–23
Time (hour)

Baseline approach
Our approach-min
Our approach-90

0
20
40
60
80

100
120
140

(M
B)

A
m

ou
nt

 o
f t

ra
�

c

Our approach-70
Our approach-50

Figure 17: Amount of traffic generated by time during the day in
Western US.

0–3 4–7 8–11 12–15 16–19 20–23
Time (hour)

Baseline approach
Our approach-min
Our approach-90

0
20
40
60
80

100
120
140
160

A
m

ou
nt

 o
f t

ra
�

c (
M

B)

Our approach-70
Our approach-50

Figure 18: Amount of traffic generated by time during the day in
South Central US.

baseline approach considers each user’s own location only,
whereas, in our approach, each user sends the request to the
cloud with simultaneous consideration of the location of the
user and the location of the user’s friends. In other words,
this result shows that, on the OSN service, not all of the user’s
friends are close to the user.

As shown in Figure 18, the amount of traffic in our
approach was larger than that in the baseline approach.
Nevertheless, the amount of traffic in the South Central US
rarely exceeded the capacity of the cloud. The reason that
the amount of traffic exceeded the capacity like the case of
our approach-50 at 12–15 h is that our approach does not
precisely control the traffic load itself, like a load balancer.
Our approach predicts the load based on the usage of users
in the previous unit of time and for changing the location
of user data. Therefore, the amount of traffic can sometimes
exceed our algorithm’s expectations if certain users generate
more traffic than the amount generated in the previous unit
of time. Nevertheless, as shown by the amount of traffic at
16–23 h in our approach-50 in the South Central US, it can
be seen that the amount of traffic was adjusted to the capacity
via data balancing of our algorithm.

6.2.3. Comparison of the Response Delay. Figure 19 depicts
execution delay according to the amount of traffic shown in
Figures 16, 17, and 18. Execution delay consists of processing
delay and queueing delay. Processing delay refers to the time



Scientific Programming 15

Baseline approach-90
Baseline approach-70

Our approach-90

Baseline approach-50
Our approach-70
Our approach-50

0
100
200
300
400
500
600

Ex
ec

ut
io

n 
de

la
y 

(m
s)

Time (hour)

23222120191817161514131211109876543210

Figure 19: Execution delay by time during the day.

required for any processing of a packet. Queueing delay refers
to the time a packet waits in memory before it is processed
because another packet is currently being processed.

Processing delaywas not considered because it is constant
regardless of resource contention. Hence, we assume that
processing delay is zero in our experiment. Therefore, the
execution delay indicates the queueing delay by the resource
contention. Execution delay was calculated by using Lit-
tle’s theorem [24]. The formula of Little’s theorem can be
expressed as follows:

N = 𝜆T, (8)

where T denotes execution delay, N denotes the number of
packets that was not processed immediately due to resource
contention, and 𝜆 denotes the amount of traffic that occurred
at each cloud in the unit of time.

Regardless of the baseline approach and our approach, we
can see that execution delay increased as the server capacity
decreased. For example, the execution delay of the baseline
approach-50 was much higher than that of the baseline
approach-90.

In the case of the baseline approach, execution delay was
the lowest at around 9 h, when the amount of traffic was low
during the day. This is because the traffic that occurred at
each cloud did not exceed the capacity of that cloud. In our
approach, execution delay occurred from 10 h to 20 h, which
is the time of traffic increase (see Figure 13), but the increase
was much smaller than the baseline approach. In addition,
execution delay did not occur after 20 h, when the amount of
traffic peaked. This is because, as mentioned in Section 6.2.1,
the amount of traffic occurred at each cloudwas reduced after
20 h.Thus, the amount of trafficwhich occurred at each cloud
did not exceed the capacity of the cloud.

As a result, execution delay of our approach-90 was
reduced by an average of more than 59%, compared to that
of baseline approach-90. Execution delay of our approach-
70 was reduced by an average of more than 67% over that
of baseline approach-70. Execution delay of our approach-50
was reduced by an average of more than 82%, compared to
that of baseline approach-50.

Figure 20 depicts a comparison of latency delay between
users and clouds. “Distance Only” is a way of storing a user’s
data in a cloud close to the user in a nonduplicated manner.

Distance Only
Our approach-min
Our approach-90

Our approach-70
Our approach-50
Baseline approach

Time (hour)

76543210232221201918171615141312111098

20
25
30
35
40
45
50
55
60

La
te

nc
y 

de
lay

 (m
s)

Figure 20: Latency delay by time during the day.

Through the results of “our approach” and “Distance Only,”
we can see the difference in latency delay between them,
considering or not considering the social factor, when storing
the user’s data in the clouds. When our approach was used,
the latency delay was lower than that when only the distance
factor was used.

In our approach, the latency delay between 8 and 11 h
was almost similar even when the capacity of each cloud
changed, because the start time of our experiments was set
to 8 h. The reason for setting the start time of the experiment
at 8 h was that this was the timewhen trafficwas the least, and
traffic increased onward, peaking at 20 h. In this situation, we
observed how the latency delay changes according to data
balancing. The latency delay of the baseline approach was
somewhat lower than that of our approach. Because, in the
baseline approach, all user requests unconditionally access
the closest cloud.

Users experience response delays through the summation
of latency delay and execution delay. As shown in Figures 19
and 20 in our approach, the latency delay is higher than that
of the baseline approach, but execution delay can be much
lower than that of the baseline approach, resulting in lower
overall response delay and better performance. In addition,
the latency delay of our approach is still acceptable for both
MINIMAL TRAFFIC CASE and OVERHEAD CASE [25].
Therefore, OSN service’s performance does not decrease even
when execution delay does not occur.

In particular, in the MINIMAL TRAFFIC CASE where
all clouds have enough resources to deal with the generated
traffic at the unit of time, we observed that the latency delay
was the lowest in the unit of time among our approach’s
results.

In the OVERHEAD CASE (our approach-50, our
approach-70, and our approach-90), the latency increased
somewhat. This is because the T-match process selected
the second-best (or third-best) cloud for the user in terms
of latency delay. In the our approach-50, latency delay
started to increase at 12 h because data balancing started
to occur at 11 h. Likewise, in the case of our approach-70
and our approach-90, latency delay increased thereafter. In
case of our approach-90, data balancing rarely occurred.



16 Scientific Programming

Thus, latency delay was almost the same as that in the
MINIMAL TRAFFIC CASE.

In summary, our approach improved OSN service’s per-
formance compared to the baseline approaches by reducing
resource contention of cloud servers and by guaranteeing the
acceptable latency delay using social factors, simultaneously.
In addition, since the amount of total data to store is less than
the baseline approach, it can benefit more from the storage
cost for storing the data. If the number of clouds used to store
duplicated data is 1, then the storage cost can be reduced to
1/2. If the number of clouds is 2, then the cost can be reduced
to 1/3. In other words, if the number of clouds is 𝑁, then the
cost can be reduced to 1/(𝑁 + 1).

7. Conclusion

Nowadays, there are numerous OSN services in a cloud
environment, and users of these services are geographically
disbursed across the world. By analyzing user traffic, we
figured out key features generated by time, location, and
social relationship levels between users.

In this paper, we introduced a novel approach of data
placement for improving OSN service performance in a
Multicloud environment.The redirector server, broker server,
and EP server ensure minimal execution delay considering
the amount of traffic in real-time and acceptable latency delay
via discerning the distance between the users and clouds.

To validate our approach, we performed simulations with
actual user data. We compared our approach to the other
approaches that are using the replications in the Multicloud
environment. Results indicated that our approach can reduce
execution delay. In addition, we compared our approach to
ones that are not using the relationship between the users.
Results indicated that our approach can maintain acceptable
latency delay.

In the future, we plan to improve our algorithm to
more accurately adjust traffic volume via applying the char-
acteristics of the OSN services to the machine learning
technique. Furthermore, we will extend it to the dynamic VM
management system that considers each cloud’s condition.

Notations

𝑑𝑖: Each distance value
max{𝑑}: Maximum distance value of all

distance values
min{𝑑}: Minimum distance value of all

distance values
𝑑𝑖: Normalized distance value of each

distance value.
𝑢𝑖: Each user of the total of 𝐼 users on

the OSN service, 𝑖 = 1, . . . , 𝐼
Fr(𝑢𝑖): Friend set of 𝑢𝑖
𝑓𝑘: Each friend in the Fr(𝑢𝑖) of user 𝑢𝑖.

𝑘 = 1, . . . , 𝐾
SL(𝑓𝑘, 𝑢𝑖): Social level value between 𝑓𝑘 and

𝑢𝑖

𝑐𝑗: Cloud among 𝐽multiple clouds, 𝑗 =
1, . . . , 𝐽

Dist(𝑓𝑘, 𝑐𝑗): Geographical distance between 𝑓𝑘
and 𝑐𝑗

𝑤(𝑢𝑖, 𝑐𝑗): Weight value according to geo-
graphical distance between 𝑢𝑖 and
𝑐𝑗

NormDist(𝑢𝑖, 𝑐𝑗): Normalized values of the distance
weight value between 𝑢𝑖 and 𝑐𝑗

NormSocialLvl(𝑢𝑖, 𝑐𝑗): Normalized values of the social
weight value between 𝑢𝑖 and 𝑐𝑗

𝑒(𝑢𝑖, 𝑐𝑗): Edge between 𝑢𝑖 and 𝑐𝑗
𝑡(𝑢𝑖, 𝑐𝑗): The amount of traffic generated by

each user in the previous unit of
time

ET(𝑐𝑗): The expected amount of traffic at 𝑐𝑗
in the following unit of time via the
existing match result and 𝑡(𝑢𝑖, 𝑐𝑗)

Ca(𝑐𝑗): Capacity of 𝑐𝑗 for the unit of time
TT: The total amount of traffic for all

clouds occurred at a unit of time
Min-Ca: Smallest capacity among the capac-

ities of all clouds
𝑇(𝑐𝑗): The amount of traffic that occurred

at 𝑐𝑗 in a unit of time
GAP(𝑐𝑗): The volume of traffic that exceeded

Ca(𝑐𝑗).

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This research was supported by Basic Science Research
Program through the National Research Foundation of
Korea (NRF) funded by the Ministry of Education (NRF-
2015R1D1A1A01058928).

References

[1] N. Grozev and R. Buyya, “Multi-cloud provisioning and load
distribution for three-tier applications,” ACM Transactions on
Autonomous and Adaptive Systems, vol. 9, no. 3, article 13, 2014.

[2] G. Liu, H. Shen, and H. Chandler, “Selective data replication
for online social networks with distributed datacenters,” in
Proceedings of the 2013 21st IEEE International Conference on
Network Protocols, ICNP, Goettingen, Germany, October 2013.

[3] L. Jiao, J. Lit, W. Du, and X. Fu, “Multi-objective data placement
for multi-cloud socially aware services,” in Proceedings of the
33rd IEEE Conference on Computer Communications, IEEE
INFOCOM 2014, pp. 28–36, Toronto, Canada, May 2014.

[4] A. J. Ferrer, F. Hernández, J. Tordsson et al., “OPTIMIS: a holis-
tic approach to cloud service provisioning,” Future Generation
Computer Systems, vol. 28, no. 1, pp. 66–77, 2012.

[5] D. Petcu, B. Di Martino, S. Venticinque et al., “Experiences in
building amOSAIC of clouds,” Journal of Cloud Computing, vol.
2, no. 1, 2013.



Scientific Programming 17

[6] P. Pawluk, B. Simmons, M. Smit, M. Litoiu, and S. Mankovski,
“Introducing STRATOS: a cloud broker service,” in Proceedings
of the IEEE 5th International Conference on Cloud Computing
(CLOUD ’12), pp. 891–898, IEEE, Honolulu, Hawaii, USA, June
2012.

[7] Region of Azure, https://azure.microsoft.com/ko-kr/regions/.
[8] Google., Google Data Centers - Data center locations” https://

www.google.com/about/datacenters/inside/locations/index
.html.

[9] AWSGlobal Infrastructure” https://aws.amazon.com/ko/about-
aws/global-infrastructure/.

[10] Amazon Route 53” http://aws.amazon.com/route53/.
[11] A. Amato and S. Venticinque, “Multiobjective optimization for

brokering of multicloud service composition,” ACM Transac-
tions on Internet Technology, vol. 16, no. 2, article 13, 2016.

[12] Tweepy: Python library for accessing the Twitter API” https://
dev.twitter.com/.

[13] Kissmetrics Blog:A blog about analytics, marketing and testing”
https://blog.kissmetrics.com/science-of-social-timing-1/.

[14] ”HubSpot: Where marketers go to grow” https://blog.hubspot
.com/marketing/best-times-post-pin-tweet-social-media-info-
graphic#sm.0000ddcgqm1w5de2w831dgm9tlqbd.

[15] “Optimizely : Grow your optimization and A/B testing skills”
https://blog.optimizely.com/2015/07/08/how-to-find-the-best-
time-to-post-on-facebook/.

[16] “PewResearchCenter: Numbers, facts and trends shaping your
world” http://www.pewresearch.org/fact-tank/2014/02/03/6-
new-facts-about-facebook/.

[17] Luenberger D. G., Introduction to Linear And Nonlinear Pro-
gramming, vol. 28, Addison-Wesley, Reading, Mass, USA, 1973.

[18] Introduction to lp solve, http://lpsolve.sourceforge.net/5.5/.
[19] “Wikipedia: The free encyclopedia” https://en.wikipedia.org/

wiki/Normalization (statistics).
[20] C. Esposito, M. Ficco, F. Palmieri, and A. Castiglione, “Smart

cloud storage service selection based on fuzzy logic, theory of
evidence and game theory,” Institute of Electrical and Electronics
Engineers. Transactions on Computers, vol. 65, no. 8, pp. 2348–
2362, 2016.

[21] Buffer Social” https://blog.bufferapp.com/best-time-to-tweet-
research.

[22] N. Bronson, Zach A., George C. et al., “Tao: Facebooks dis-
tributed data store for the social graph,” in Proceedings of the as
part of the 2013 USENIX Annual Technical Conference (USENIX
ATC 13), 2013.

[23] Y. Wu, C. Wu, B. Li, L. Zhang, Z. Li, and F. C. M. Lau,
“Scaling social media applications into geo-distributed clouds,”
IEEE/ACM Transactions on Networking, vol. 23, no. 3, pp. 689–
702, 2015.

[24] D. P. Bertsekas, G. Robert, and H. Pierre,Data Networks, vol. 2,
Prentice-Hall International, Upper Saddle River, NJ, USA, 1992.

[25] Y. Li, G. Zhou, and B. Nie, “Improving Web Performance in
Home BroadbandAccess Networks,”Wireless Personal Commu-
nications, vol. 92, no. 3, pp. 925–940, 2016.

https://azure.microsoft.com/ko-kr/regions/
https://www.google.com/about/datacenters/inside/locations/index.html
https://www.google.com/about/datacenters/inside/locations/index.html
https://www.google.com/about/datacenters/inside/locations/index.html
https://aws.amazon.com/ko/about-aws/global-infrastructure/
https://aws.amazon.com/ko/about-aws/global-infrastructure/
http://aws.amazon.com/route53/
https://dev.twitter.com/
https://dev.twitter.com/
https://blog.kissmetrics.com/science-of-social-timing-1/
https://blog.hubspot.com/marketing/best-times-post-pin-tweet-social-media-infographic#sm.0000ddcgqm1w5de2w831dgm9tlqbd
https://blog.hubspot.com/marketing/best-times-post-pin-tweet-social-media-infographic#sm.0000ddcgqm1w5de2w831dgm9tlqbd
https://blog.hubspot.com/marketing/best-times-post-pin-tweet-social-media-infographic#sm.0000ddcgqm1w5de2w831dgm9tlqbd
https://blog.optimizely.com/2015/07/08/how-to-find-the-best-time-to-post-on-facebook/
https://blog.optimizely.com/2015/07/08/how-to-find-the-best-time-to-post-on-facebook/
http://www.pewresearch.org/fact-tank/2014/02/03/6-new-facts-about-facebook/
http://www.pewresearch.org/fact-tank/2014/02/03/6-new-facts-about-facebook/
http://lpsolve.sourceforge.net/5.5/
https://en.wikipedia.org/wiki/Normalization
https://en.wikipedia.org/wiki/Normalization
https://blog.bufferapp.com/best-time-to-tweet-research
https://blog.bufferapp.com/best-time-to-tweet-research


Submit your manuscripts at
https://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


