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We present a new family of solutions for the Jackiw-Teitelboim model of two-dimensional gravity with a negative cosmological
constant. Here, a metric of constant Ricci scalar curvature is constructed, and explicit linearly independent solutions of the
corresponding dilaton field equations are determined. The metric is transformed to a black hole metric, and the dilaton solutions
are expressed in terms of Jacobi elliptic functions. Using these solutions, we compute, for example, Killing vectors for the metric.

1. Introduction

It is well known that the Einstein gravitational field equations
for a vacuum (with a zero matter tensor) are automatically
solved by any metric 𝑔 on a two-dimensional space-time𝑀.
A proof of this fact is given in Section 2 of [1], for example. A
nontrivial theory of gravity for such an𝑀 was worked out in
1984 by Jackiw and Teitelboim (J-T).This involves in addition
to 𝑔 a scalar fieldΦ on𝑀 called a dilaton field; see [2, 3]. The
pair (𝑔, Φ) is subject to the equations of motion

𝑅 (𝑔) = 2𝑙2 ,
∇𝑖∇𝑗Φ = 𝑔𝑖𝑗Φ𝑙2

(1)

derived from the action integral

𝑆 (𝑔,Φ) = constant ⋅ ∫
𝑀
𝑑2𝑥√󵄨󵄨󵄨󵄨det𝑔󵄨󵄨󵄨󵄨Φ (𝑅 (𝑔) − 2𝑙2 ) , (2)

where 𝑅(𝑔) is the constant Ricci scalar curvature of 𝑔 and
the (negative) cosmological constant is Λ = −1/𝑙2. In local
coordinates (𝑥1, 𝑥2) on𝑀, the Hessian in (1) is given by

∇𝑖∇𝑗Φ = 𝜕2Φ𝜕𝑥𝑖𝜕𝑥𝑗 −
2∑
𝑘=1

Γ𝑘𝑖𝑗 𝜕Φ𝜕𝑥𝑘 , 1 ≤ 𝑖, 𝑗 ≤ 2, (3)

where Γ𝑘𝑖𝑗 are the Christoffel symbols (of the second kind) of𝑔 [1]. The J-T theory has, for example, the (Lorentzian) black
hole solution

𝑔 : 𝑑𝑠2 = − (𝑚2𝑟2 −𝑀)𝑑𝑇2 + 𝑑𝑟2𝑚2𝑟2 −𝑀, (4)

with coordinates (𝑥1, 𝑥2) = (𝑇, 𝑟), whereΛ = −𝑚2,𝑅 (𝑔) = 2𝑚2,
Φ (𝑇, 𝑟) def .= 𝑚𝑟,

(5)

with𝑀 being a black holemass parameter.Here and through-
out, we note that our sign convention for scalar curvature
is the negative of that used in [2, 3] and by others in the
literature.

The purpose of this paper is the following. For real
numbers 𝑎, 𝑏 ̸= 0 and for a soliton velocity parameter V,
we consider the following metric in the variables (𝑥1, 𝑥2) =(𝜏, 𝜌):

𝑑𝑠2 def .= 𝑎2𝑏2dn2 (𝜌, 𝜅) [(𝑎2𝜅4sn2 (𝜌, 𝜅) cn2 (𝜌, 𝜅)
dn2 (𝜌, 𝜅)

− V24 )𝑑𝜏2
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− 𝜅4sn2 (𝜌, 𝜅) cn2 (𝜌, 𝜅)
dn2 (𝜌, 𝜅) (𝑎2𝜅4sn2 (𝜌, 𝜅) cn2 (𝜌, 𝜅)

dn2 (𝜌, 𝜅)
− V24 )−1 𝑑𝜌2] ,

(6)

where sn(𝑥, 𝜅), cn(𝑥, 𝜅), and dn(𝑥, 𝜅) are the standard Jacobi
elliptic functions with modulus 𝜅; 0 ≤ 𝜅 ≤ 1 [4]. We will
generally assume that󵄨󵄨󵄨󵄨󵄨󵄨󵄨 V2𝑎𝜅2 󵄨󵄨󵄨󵄨󵄨󵄨󵄨 > 1, 𝜅 ̸= 0. (7)

As will be seen later, this metric is the diagonalization of
a metric constructed from solutions 𝑟(𝑥, 𝑡), 𝑠(𝑥, 𝑡) of the
reaction diffusion system

𝑟𝑡 − 𝑟𝑥𝑥 + 2𝑏2 𝑟2𝑠 = 0,
𝑠𝑡 + 𝑠𝑥𝑥 − 2𝑏2 𝑟𝑠2 = 0. (8)

We will explicate the solutions 𝑟(𝑥, 𝑡), 𝑠(𝑥, 𝑡) in terms of the
elliptic function dn(𝑥, 𝜅). Remarkably, the metric in (6) has
constant scalar curvature 𝑅(𝑔) = 8/𝑏2 so that the first
equation in (1) holds. The main work of the paper then
is to solve the corresponding system of partial differential
equations (the dilaton field equations) in (1), which for 𝑔 in
(6) are

∇𝑖∇𝑗Φ = 𝑅 (𝑔)2 𝑔𝑖𝑗Φ = 4𝑏2𝑔𝑖𝑗Φ, 1 ≤ 𝑖, 𝑗 ≤ 2. (9)

Here the cosmological constant is Λ = −4/𝑏2.
Given the complicated nature of our 𝑔, system (9) is

necessarily quite difficult to solve directly. Our method is to
construct a series of transformations of variables so that 𝑔 in
(6) is transformed to 𝑔 in (4). Then we can use the simple
solution Φ(𝑇, 𝑟) = 𝑚𝑟 in (5) and other known solutions to
work backwards through these transformations of variables
to construct Φ(𝜏, 𝜌) that satisfies (9). The various details
involved, with further remarks that lead to (6), will be the
business of Sections 2, 3, and 4.

In the end, we obtain the followingmain result: themetric
in (6) solves the first J-T equation of motion (1). Namely,𝑅(𝑔) = 8/𝑏2, as we have remarked. Also three linearly
independent solutions of the field equations in (1), namely,
of the system of equations (9), are given by

Φ(1) (𝜏, 𝜌) = 2𝑎2dn2 (𝜌, 𝜅) + V24 − 𝑎2 (2 − 𝜅2) ,
Φ(2) (𝜏, 𝜌) = dn (𝜌, 𝜅) sinh (√𝐴𝜏)

⋅ √ V24 − 𝑎2𝜅4sn2 (𝜌, 𝜅) cn2 (𝜌, 𝜅)
dn2 (𝜌, 𝜅) ,

Φ(3) (𝜏, 𝜌) = dn (𝜌, 𝜅) cosh (√𝐴𝜏)
⋅ √ V24 − 𝑎2𝜅4sn2 (𝜌, 𝜅) cn2 (𝜌, 𝜅)

dn2 (𝜌, 𝜅)
(10)

for

𝐴 def .= V416 − V2𝑎22 (2 − 𝜅2) + 𝑎4𝜅4, (11)

which we assume is nonzero. Given (7), we shall see in
Section 4 that 𝐴 = 0 only for 𝑎 = ±(1 − √1 − 𝜅2)V/2𝜅2 and
moreover that the second expression under the radical (i.e.,
V2/4 − ⋅ ⋅ ⋅ ) in (10) is positive. For 𝜅 = 1, 𝐴 = (V2/4 − 𝑎2)2 > 0,
but we can have 𝐴 < 0 for some 𝜅 < 1. Also for 𝜅 = 1 the
solutions in (10) reduce to those given in (60), with (6) given
by (61).

2. Reaction Diffusion Systems and Derivation
of the Metric in (6)

Since metric (6) is one of the main objects of interest, we
indicate in this section its derivation. For a constant 𝐵,
consider the system of partial differential equations

𝑟𝑡 − 𝑟𝑥𝑥 + 𝐵𝑟2𝑠 = 0,
𝑠𝑡 + 𝑠𝑥𝑥 − 𝐵𝑟𝑠2 = 0 (12)

in the variables (𝑥, 𝑡).This system is a special case of themore
general reaction diffusion system (RDS),

𝑟𝑡 = 𝑑𝑟𝑟𝑥𝑥 + 𝐹 (𝑟, 𝑠) ,
𝑠𝑡 = 𝑑𝑠𝑠𝑥𝑥 + 𝐺 (𝑟, 𝑠) , (13)

which occurs in chemistry, physics, or biology, for example,
where 𝑑𝑟 and 𝑑𝑠 are diffusion constants and 𝐹 and 𝐺 are
growth and interaction functions.The key point for us is that
from solutions 𝑟(𝑥, 𝑡) and 𝑠(𝑥, 𝑡) of (12) one can construct a
metric 𝑔 of constant Ricci scalar curvature 𝑅(𝑔) = 4𝐵 by the
following prescription [5–7]:

𝑑𝑠2 def .= 𝑔11𝑑𝑡2 + 2𝑔12𝑑𝑡𝑑𝑥 + 𝑔22𝑑𝑥2,
𝑔11 def .= −𝑟𝑥𝑠𝑥, 𝑔12 def .= 12 (𝑠𝑟𝑥 − 𝑟𝑠𝑥) , 𝑔22 def .= 𝑟𝑠. (14)

One could also simply start with the definitions in (14),
apart from the preceding references that employ Cartan’s
zweibein formalism [8], and use a Maple program (tensor),
for example, to check directly that indeed 𝑅(𝑔) = 4𝐵. Our



Advances in Mathematical Physics 3

interest is in the choice 𝐵 = 2/𝑏2, where, for real 𝑎, 𝑏, and V,
with 𝑎, 𝑏 ̸= 0 as in Section 1, 𝑟(𝑥, 𝑡), 𝑠(𝑥, 𝑡) given by

𝑟 (𝑥, 𝑡) def .= 𝑎𝑏 dn (𝑎 (𝑥 − V𝑡) , 𝜅)
⋅ exp([V24 + 𝑎2 (2 − 𝜅2)] 𝑡 − V𝑥2 ) ,

𝑠 (𝑥, 𝑡) def .= −𝑎𝑏 dn (𝑎 (𝑥 − V𝑡) , 𝜅)
⋅ exp(−[V24 + 𝑎2 (2 − 𝜅2)] 𝑡 + V𝑥2 )

(15)

are solutions of system (12), which also could be checked
directly by Maple. For 𝐵 = 2/𝑏2, (12) is system (8) with
solutions (15) promised in Section 1, and 𝑔 in (14) has the
scalar curvature 4𝐵 = 8/𝑏2 discussed in Section 1. From [4],
various formulas like

sn2 (𝑥, 𝜅) + cn2 (𝑥, 𝜅) = 1,
dn2 (𝑥, 𝜅) + 𝜅2sn2 (𝑥, 𝜅) = 1,𝑑𝑑𝑥 sn (𝑥, 𝜅) = cn (𝑥, 𝜅) dn (𝑥, 𝜅) ,

𝑑𝑑𝑥cn (𝑥, 𝜅) = −sn (𝑥, 𝜅) dn (𝑥, 𝜅) ,
𝑑𝑑𝑥dn (𝑥, 𝜅) = −𝜅2sn (𝑥, 𝜅) cn (𝑥, 𝜅)

(16)

are available. Using prescription (14), one computes that

𝑔11 = 𝑎2𝑏2 [𝑎2𝜅4sn2 (𝑎 (𝑥 − V𝑡) , 𝜅) cn2 (𝑎 (𝑥 − V𝑡) , 𝜅)
− V24 dn2 (𝑎 (𝑥 − V𝑡) , 𝜅)] ,

𝑔12 = 𝑎2𝑏2V2 dn2 (𝑎 (𝑥 − V𝑡) , 𝜅) ,
𝑔22 = −𝑎2𝑏2dn2 (𝑎 (𝑥 − V𝑡) , 𝜅) .

(17)

For 𝜌 def .= 𝑎(𝑥 − V𝑡), so that 𝑑𝜌 = 𝑎(𝑑𝑥 − V𝑑𝑡), 𝑔 can be
expressed more conveniently as

𝑑𝑠2 = 𝑎2𝑏2dn2 (𝜌, 𝜅)
⋅ [(𝑎2𝜅4sn2 (𝜌, 𝜅) cn2 (𝜌, 𝜅)

dn2 (𝜌, 𝜅) − V24 )𝑑𝑡2 − V𝑎𝑑𝑡𝑑𝜌
− 𝑑𝜌2𝑎2 ] .

(18)

The goal now is to set up a change of variables (𝑡, 𝜌) →(𝜏, 𝜌) so that 𝑔 in (18) is transformed to (6), where the cross
term𝑑𝜏𝑑𝜌doesnot appear, in comparisonwith the term𝑑𝑡𝑑𝜌

appearing in (18). For this purpose note first, in general, that
for

ℎ = 𝐴 (𝜌) 𝑑𝑡2 + 𝐶1 (𝜌) 𝑑𝜌𝑑𝑡 + 𝐶2 (𝜌) 𝑑𝜌2 (19)

the change of variables 𝜏 = 𝑡 + 𝜙(𝜌) gives 𝑑𝑡 = 𝑑𝜏 − 𝜙󸀠(𝜌)𝑑𝜌
and 𝑑𝑡2 = 𝑑𝜏2 − 2𝜙󸀠(𝜌)𝑑𝜏𝑑𝜌 + 𝜙󸀠(𝜌)2𝑑𝜌2 and

ℎ = 𝐴 (𝜌) 𝑑𝜏2 + [−2𝜙󸀠 (𝜌)𝐴 (𝜌) + 𝐶1 (𝜌)] 𝑑𝜏𝑑𝜌
+ [𝐴 (𝜌) 𝜙󸀠 (𝜌)2 − 𝐶1 (𝜌) 𝜙󸀠 (𝜌) + 𝐶2 (𝜌)] 𝑑𝜌2. (20)

The condition that the cross term 𝑑𝜏𝑑𝜌 does not appear is
therefore that 𝜙(𝜌) satisfies

𝜙󸀠 (𝜌) = 𝐶1 (𝜌)2𝐴 (𝜌) . (21)

Apply this to (18):

𝜙󸀠 (𝜌) = −V2𝑎 ⋅ (𝑎2𝜅4sn2 (𝜌, 𝜅) cn2 (𝜌, 𝜅)
dn2 (𝜌, 𝜅) − V24 )−1 . (22)

Now, by (16), dn2(𝑥, 𝜅) = 1 − 𝜅2sn2(𝑥, 𝜅) = sn2(𝑥, 𝜅) +
cn2(𝑥, 𝜅) − 𝜅2sn2(𝑥, 𝜅) = cn2(𝑥, 𝜅) + (1 − 𝜅2)sn2(𝑥, 𝜅) ≥
cn2(𝑥, 𝜅) and sn2(𝑥, 𝜅) ≤ sn2(𝑥, 𝜅) + cn2(𝑥, 𝜅) = 1 ⇒
sn2(𝑥, 𝜅)cn2(𝑥, 𝜅)/dn2(𝑥, 𝜅) ≤ 1. If the term in parenthesis
in (22) was zero, this would therefore force the inequality
V2/4𝑎2𝜅4 ≤ 1.That is, if |V/2𝑎𝜅2| > 1, which is the assumption
in (7), then V2/4𝑎2𝜅4 > 1 and therefore the denominator term
in parenthesis in (22) is nonzero, which means that 𝜙󸀠(𝜌) is a
continuous function and (22) therefore indeed has a solution𝜙(𝜌), with assumption (7) imposed. Also, the coefficient of𝑑𝜌2 in (20) is

𝑎2𝑏2dn2𝑄 V24𝑎2𝑄2 − 𝑎𝑏2V dn2 V2𝑎𝑄 − 𝑏2dn2
= −𝑏2V2dn24𝑄 − 𝑏2dn2, (23)

where for convenience we write sn, cn, and dn for sn(𝜌, 𝜅),
cn(𝜌, 𝜅), dn(𝜌, 𝜅) and 𝑄 for

𝑄 (𝜌, 𝜅) def .= 𝑎2𝜅4sn2 (𝜌, 𝜅) cn2 (𝜌, 𝜅)
dn2 (𝜌, 𝜅) − V24 . (24)

Then

𝑄 + V24 = 𝑎2𝜅4sn2cn2
dn2

󳨐⇒
1 + V24𝑄 = 𝑎2𝜅4sn2cn2

dn2𝑄 󳨐⇒
−𝑏2dn2 − 𝑏2V2dn24𝑄 = −𝑎2𝑏2𝜅4sn2cn2𝑄 ,

(25)
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which is the coefficient of 𝑑𝜌2 in (20) by (23). Then, by (21),
(20) reads

ℎ = 𝑎2𝑏2dn2𝑄𝑑𝜏2 − 𝑎2𝑏2𝜅4sn2cn2𝑄 𝑑𝜌2, (26)

which is (6). That is, we have verified that the change of
variables 𝜏 = 𝑡 + 𝜙(𝜌) with 𝜙(𝜌) subject to condition (22)
(which in fact makes 𝜙󸀠(𝜌) a continuous function, again
assuming (7)) transforms the reaction diffusionmetric in (18)
to the diagonal metric in (6).

In the special case when the elliptic modulus 𝜅 = 1,
sn (𝑥, 1) = tanh (𝑥) ,
cn (𝑥, 1) = dn (𝑥, 1) = sech (𝑥) (27)

and (18) and (6) simplify:

𝑑𝑠2 = 𝑎2𝑏2sech2𝜌 [(𝑎2tanh2𝜌 − V24 )𝑑𝑡2 − V𝑎𝑑𝑡𝑑𝜌
− 𝑑𝜌2𝑎2 ] ,

𝑑𝑠2 = 𝑎2𝑏2sech2𝜌[(𝑎2tanh2𝜌 − V24 )𝑑𝑡2
− tanh2𝜌(𝑎2tanh2𝜌 − V24 )−1 𝑑𝜌2] ,

(28)

which are the line elements (3.12) and (3.14), respectively,
in [6]; 𝑎 here corresponds to the notation 𝑘 there. Also the
cosmological constant Λ 0 in [6] corresponds to our 2Λ =−8/𝑏2 : 𝑏2 = 8/(−Λ 0). Similarly, 𝑟 and 𝑠 in (15) reduce to
the dissipative soliton solutions 𝑞+ and 𝑞−, respectively, in
(2.32) of [6], apart from the factor 𝑏. One can also explicitly
determine 𝜙(𝜌) in (22).

3. Transformation of the Metric in (6) to a J-T
Black Hole Metric

Now that the existence of themetric in (6) has been described
in the context of a reaction diffusion system (namely, (8)),
the strategy of this section is to set up a series of changes of
variables, as indicated in the introduction, which transforms
it to the simpler J-T form (4). Other applications, of indepen-
dent interest, can flow from this, apart from our main focus
to solve system (9). A general method to go from (6) to (4)
has been developed by the first named author. Alternatively,
one can generalize part of the argument in [6] which leads at
least to a Schwarzschild form, as we do here, and then argue
a bit more to obtain the J-T form, with the final result being
expressed by (39)–(41) below.

Start with the change of variables 𝑟 = |𝑎|dn(𝜌, 𝜅) so that𝑑𝑟 = −𝜅2|𝑎|sn(𝜌, 𝜅) ⋅ cn(𝜌, 𝜅)𝑑𝜌 by (16)⇒
𝑑𝑟2𝑟2 = 𝜅4sn2 (𝜌, 𝜅) cn2 (𝜌, 𝜅) 𝑑𝜌2

dn2 (𝜌, 𝜅) . (29)

Also by (16),

𝑎2𝜅4sn2 (𝜌, 𝜅) cn2 (𝜌, 𝜅)
dn2 (𝜌, 𝜅)

= 𝑎2𝜅2 (1 − dn2 (𝜌, 𝜅)) (1 − sn2 (𝜌, 𝜅))
dn2 (𝜌, 𝜅)

= (𝑎2 − 𝑎2dn2 (𝜌, 𝜅)) (𝜅2 − 𝜅2sn2 (𝜌, 𝜅))
dn2 (𝜌, 𝜅)

= (𝑎2 − 𝑟2) (𝜅2 + dn2 (𝜌, 𝜅) − 1)𝑟2/𝑎2
= (𝑎2 − 𝑟2) (𝜅2 − 1 + 𝑟2/𝑎2)𝑟2/𝑎2
= (𝑎2 − 𝑟2)𝑟2 [𝑎2 (𝜅2 − 1) + 𝑟2] 󳨐⇒

𝑎2𝜅4sn2 (𝜌, 𝜅) cn2 (𝜌, 𝜅)
dn2 (𝜌, 𝜅) − V24

= (𝑎2 − 𝑟2)𝑟2 [𝑎2 (𝜅2 − 1) + 𝑟2] − V24
= 𝑎4 (𝜅2 − 1)𝑟2 + 2𝑎2 − 𝑎2𝜅2 − 𝑟2 − V24
= 𝑎4 (𝜅2 − 1)𝑟2 + 2𝑎2 − 𝑎2𝜅2 − 𝑟2 − 𝑟20 − 𝑎2𝜅4

(30)

for

𝑟20 def .= V24 − 𝑎2𝜅4 > 0. (31)

Again by (7), V2/4𝑎2𝜅4 > 1 ⇒ V2/4 > 𝑎2𝜅4 ⇒ indeed 𝑟20 > 0.
By (29) and (30), we see that we can write (6) as

𝑔 = 𝑏2 [[−𝑟2(𝑟2 + 𝑟20 + 𝑎2 (𝜅4 + 𝜅2 − 2)
+ 𝑎4 (1 − 𝜅2)𝑟2 )𝑑𝜏2 + (𝑟2 + 𝑟20
+ 𝑎2 (𝜅4 + 𝜅2 − 2) + 𝑎4 (1 − 𝜅2)𝑟2 )−1 𝑑𝑟2]] .

(32)

Next let 𝑥 def .= (2𝑟2 + 𝑟20)/𝑟40 , as in (3.18) of [6], but where
our 𝑟20 in (31) generalizes their 𝑟20 , and for convenience let

𝛼 def .= 𝑎2 (𝜅4 + 𝜅2 − 2) ,
𝛽 def .= 𝑎4 (1 − 𝜅2) (33)
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in (32). Then 𝑔 in (32) assumes the form

𝑔 = 𝑏2 [(−𝑟404 (𝑟40𝑥2 − 1) − 𝛼𝑟202 (𝑟20𝑥 − 1) − 𝛽)𝑑𝜏2
+ 116
⋅ 𝑟80 (𝑟404 (𝑟40𝑥2 − 1) + 𝛼2 𝑟20 (𝑟20𝑥 − 1) + 𝛽)−1 𝑑𝑥2]
= 𝑏2𝑟404 [−(𝑟40𝑥2 − 1 + 2𝛼𝑟20 (𝑟20𝑥 − 1) + 4𝛽𝑟40 )𝑑𝜏2
+ (𝑟40𝑥2 − 1 + 2𝛼𝑟20 (𝑟20𝑥 − 1) + 4𝛽𝑟40 )

−1 𝑑𝑥2]

(34)

which generalizes the Schwarzschild form (3.19) of [6], since
for 𝜅 = 1 we have that 𝛼 = 𝛽 = 0 in (33).

For the change of variables 𝑡 = 𝐴0𝜏 and 𝑟− = 𝐴0𝑥 with𝐴0 def .= |𝑏|𝑟20/2, the Schwarzschild 𝑔 in (34) goes to

𝑔 = −[ 4𝑏2 𝑟2− − 1 + 2𝛼𝑟20 ( 2|𝑏| 𝑟− − 1) + 4𝛽𝑟40 ]𝑑𝑡2
+ [ 4𝑏2 𝑟2− − 1 + 2𝛼𝑟20 ( 2|𝑏| 𝑟− − 1) + 4𝛽𝑟40 ]

−1 𝑑𝑟2−,
(35)

which in turn goes to

𝑔 = −[ 4𝑏2 𝑟21 − 𝑏2 + 2𝛼𝑟20 (2𝑏|𝑏| 𝑟1 − 𝑏2) + 4𝛽𝑏2𝑟40 ]𝑑𝑇2
+ [4𝑟21𝑏2 − 𝑏2 + 2𝛼𝑟20 (2𝑏|𝑏| 𝑟1 − 𝑏2) + 4𝛽𝑏2𝑟40 ]−1 𝑑𝑟21

(36)

by way of the change of variables 𝑡 = 𝑏𝑇 and 𝑟− = 𝑟1/𝑏. We
need one final observation: in general a metric of the form𝑔1 = − [𝐴1𝑥2 + 𝐵1𝑥 + 𝐶1] 𝑑𝑇2

+ [𝐴1𝑥2 + 𝐵1𝑥 + 𝐶1]−1 𝑑𝑥2, (37)

say 𝐴1 ̸= 0, can be transformed to the J-T form (4); namely,

𝑔1 = −[𝐴1𝑟2 + 𝐶1 − 𝐵214𝐴1]𝑑𝑇2
+ [𝐴1𝑟2 + 𝐶1 − 𝐵214𝐴1]

−1 𝑑𝑟2, (38)

by way of the change of variables 𝑟 = 𝑥 + 𝐵1/2𝐴1. Apply this
to (36) with 𝑥 playing the role of 𝑟1 there:

𝑔 = −[𝐴1𝑟2 + 𝐶1 − 𝐵214𝐴1]𝑑𝑇2
+ [𝐴1𝑟2 + 𝐶1 − 𝐵214𝐴1]

−1 𝑑𝑟2 (39)

for

𝐴1 def .= 4𝑏2 ,
𝐵1 def .= 4𝛼𝑏𝑟20 |𝑏| ,
𝐶1 def .= −𝑏2 − 2𝛼𝑏2𝑟20 + 4𝛽𝑏2𝑟40 .

(40)

Using definition (33) for 𝛼, 𝛽 and 𝑟20 = V2/4 − 𝑎2𝜅4, which is
definition (31), one computes that

𝐶1 − 𝐵214𝐴1 = −𝑏2𝑟40 [ V416 − 𝑎2V22 (2 − 𝜅2) + 𝑎4𝜅4] (41)

in (39).

4. Derivation of Solutions (10) of
the Field Equations (9)

Themain result is derived in this section. Namely, we indicate
how the series of changes of variables in Section 3 (according
to remarks in Introduction) lead to the linearly independent
solutions Φ(𝑗)(𝜏, 𝜌), 𝑗 = 1, 2, 3, in (10) of the dilaton field
equations in (9). There the metric elements 𝑔𝑖𝑗 are given by
(6). For 𝑄(𝜌, 𝜅) in (24),

𝑔11 def .= 𝑎2𝑏2dn2 (𝜌, 𝜅)𝑄 (𝜌, 𝜅) ,𝑔12 = 𝑔21 = 0,
𝑔22 = 𝑎2𝑏2dn2 (𝜌, 𝜅) (−𝜅4sn2 (𝜌, 𝜅) cn2 (𝜌, 𝜅)

dn2 (𝜌, 𝜅) )
⋅ 𝑄 (𝜌, 𝜅)−1 ,

(42)

and ∇𝑖∇𝑗Φ are given by (3) for (𝑥1, 𝑥2) = (𝜏, 𝜌). The
Christoffel symbols Γ𝑘𝑖𝑗 in (3) (which could be computed,
e.g., by Maple) will not be needed for the derivation of
(10), although they could be used to verify these solutions.
Obviously any dilaton solution could be replaced by any
nonzero multiple of itself. In the following then, we can
disregard such multiples if we wish to.

In addition to the dilaton solutionΦ(1)(𝑇, 𝑟) def .= 𝑚𝑟 in (5)
for metric (4) in the variables (𝑇, 𝑟), there are solutions

Φ(2) (𝑇, 𝑟) def .= √𝑚2𝑟2 −𝑀 sinh (𝑚√𝑀𝑇) ,
Φ(3) (𝑇, 𝑟) def .= √𝑚2𝑟2 −𝑀 cosh (𝑚√𝑀𝑇) . (43)

We work backwards the changes of variables in Section 3 forΦ(1)(𝑇, 𝑟) and Φ(2)(𝑇, 𝑟), for example, to see how one arrives
at the first two solutionsΦ(1)(𝜏, 𝜌) andΦ(2)(𝜏, 𝜌) in (10) in the
variables (𝜏, 𝜌).
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Starting with the (39) version of (4), we have 𝑚2 = 𝐴1 =4/𝑏2 by (40), with 𝑀 = −(𝐶1 − 𝐵21/4𝐴1) given by (41). Here𝑚√𝑀 = √𝐵21 − 4𝐴1𝐶1/2 (for𝑚 = 2/|𝑏|)⇒
Φ(1) (𝑇, 𝑟) = 2|𝑏| 𝑟,
Φ(2) (𝑇, 𝑟)

= √𝐴1𝑟2 + 𝐶1 − 𝐵214𝐴1 sinh(√𝐵21 − 4𝐴1𝐶12 𝑇) .
(44)

By the final change of variables 𝑟 = 𝑟1 + 𝐵1/2𝐴1 in Section 3,
we see that 𝐴1𝑟2 = 𝐴1𝑟21 + 𝐵1𝑟1 + 𝐵21/4𝐴1 ⇒
Φ(1) (𝑇, 𝑟1) = 2|𝑏| (𝑟1 + 𝐵12𝐴1) ,
Φ(2) (𝑇, 𝑟1)

= √𝐴1𝑟21 + 𝐵1𝑟1 + 𝐶1 sinh(√𝐵21 − 4𝐴1𝐶12 𝑇) .
(45)

The change of variables 𝑡 = 𝑏𝑇 and 𝑟− = 𝑟1/𝑏 preceded the
change 𝑟 = 𝑟1 + 𝐵1/2𝐴1, so that

Φ(1) (𝑡, 𝑟−) = 2𝑏|𝑏| 𝑟− + 𝐵1|𝑏| 𝐴1 ,Φ(2) (𝑡, 𝑟−)
= √4𝑟2− + 𝐵1𝑏𝑟− + 𝐶1 sinh(√𝐵21 − 4𝐴1𝐶12𝑏 𝑡) ,

(46)

since 𝐴1𝑏2 def .= 4. We had 𝑡 = 𝐴0𝜏 and 𝑟− = 𝐴0𝑥 for 𝐴0 def .=|𝑏|𝑟20/2, which gives

Φ(1) (𝜏, 𝑥) = 𝑏𝑟20𝑥 + 𝐵1|𝑏| 𝐴1 ,|𝑏|𝑏 Φ(1) (𝜏, 𝑥) = |𝑏| 𝑟20𝑥 + 𝐵1𝑏𝐴1 ,
Φ(2) (𝜏, 𝑥) = √𝑏2𝑟40𝑥2 + 𝐵1𝑏 |𝑏|2 𝑟20𝑥 + 𝐶1

⋅ sinh(√𝐵21 − 4𝐴1𝐶14 ⋅ |𝑏| 𝑟20𝑏 𝜏) ,

(47)

for the Schwarzschild version of our metric in (34). Next let𝑥 = (2𝑟2 + 𝑟20)/𝑟40 to get
Φ(1) (𝜏, 𝑟) = |𝑏| (2𝑟2 + 𝑟20)𝑟20 + 𝐵1𝑏𝐴1 ,Φ(2) (𝜏, 𝑟)

= √ 𝑏2 (2𝑟2 + 𝑟20)2𝑟40 + 𝐵1𝑏 |𝑏|2 (2𝑟2 + 𝑟20)𝑟20 + 𝐶1
⋅ sinh(√𝐵21 − 4𝐴1𝐶14 𝑟20𝜏) ,

(48)

where we have disregarded the multiple |𝑏|/𝑏 = ±1 in (47)
and have used sinh(|𝑏|𝑥/𝑏) = (|𝑏|/𝑏)sinh(𝑥). Finally, the first
change of variables 𝑟 = |𝑎|dn(𝜌, 𝜅) in Section 3 gives

Φ(1) (𝜏, 𝜌) = |𝑏|𝑟20 (2𝑎2dn2 (𝜌, 𝜅) + 𝑟20) + 𝛼 |𝑏|𝑟20 , (49)

by definition (40). If we disregard the multiple |𝑏|/𝑟20 in (49)
and use 𝑟20 + 𝛼 def .= V2/4 + 𝑎2(𝜅2 − 2) by definitions (31) and
(33), we obtain from (49) the first solution

Φ(1) (𝜏, 𝜌) = 2𝑎2dn2 (𝜌, 𝜅) + V24 + 𝑎2 (𝜅2 − 2) (50)

in (10). More work is required of course to obtain the second
solution there.

First, we note that, by (40) and (41),

𝐵21 − 4𝐴1𝐶1 = −4𝐴1 (𝐶1 − 𝐵214𝐴1)
= 16𝑟40 [ V

416 − 𝑎2V22 (2 − 𝜅2) + 𝑎4𝜅4] 󳨐⇒
√𝐵21 − 4𝐴1𝐶14 𝑟20𝜏 = √ V416 − 𝑎2V22 (2 − 𝜅2) + 𝑎4𝜅4 ⋅ 𝜏,

(51)

which is √𝐴𝜏 in (10). Also, for 𝑟 = |𝑎|dn, dn = dn(𝜌, 𝜅), the
quantity under the other radical in (48) is

𝑏2𝑟40 (2𝑎2dn2 + 𝑟20)2 + 𝐵1𝑏 |𝑏|2𝑟20 (2𝑎2dn2 + 𝑟20) + 𝐶1
= 4𝑎4𝑏2𝑟40 dn4 + (4𝑎2𝑏2𝑟20 + 𝐵1𝑏 |𝑏| 𝑎2𝑟20 ) dn2 + 𝑏2

+ 𝐵1𝑏 |𝑏|2 + 𝐶1,
(52)
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where, by definition (40),

𝐵1𝑏 |𝑏| 𝑎2𝑟20 = 4𝑎2𝑏2𝛼𝑟40 ,
𝑏2 + 𝐵1𝑏 |𝑏|2 + 𝐶1
= 𝑏2 + 2𝑏2𝛼𝑟20 − 𝑏2 − 2𝛼𝑏2𝑟20 + 4𝛽𝑏2𝑟40 = 4𝛽𝑏2𝑟40 󳨐⇒
4𝑎2𝑏2𝑟20 + 𝐵1𝑏 |𝑏| 𝑎2𝑟20 = 4𝑟20𝑎2𝑏2 + 4𝑎2𝑏2𝛼𝑟40

= 4𝑎2𝑏2𝑟40 (𝑟20 + 𝛼) = 4𝑎2𝑏2𝑟40 [V24 + 𝑎2 (𝜅2 − 2)]

(53)

again by definitions (31) and (33).That is, since 𝛽 = 𝑎4(1−𝜅2)
by definition (33), the quantity in (52) (which is under the
radical in (48) for 𝑟 = |𝑎|dn) is

4𝑎4𝑏2𝑟40 dn4 + 4𝑎2𝑏2𝑟40 [V24 + 𝑎2 (𝜅2 − 2)] dn2
+ 4𝑎4𝑏2 (1 − 𝜅2)𝑟40 = 4𝑎2𝑏2𝑟40 [𝑎2dn4
+ (V24 + 𝑎2 (𝜅2 − 2)) dn2 + 𝑎2 (1 − 𝜅2)] .

(54)

We let 𝐵(𝜌) denote the latter bracket here. By (48), (51), and
(54), we see that (for now) Φ(2)(𝜏, 𝜌) = √𝐵(𝜌)sinh(√𝐴𝜏), if
we disregard the multiple√4𝑎2𝑏2/𝑟40 = 2|𝑎||𝑏|/𝑟20 .

We find an alternate expression for 𝐵(𝜌), which is simpler
and shows that𝐵(𝜌) > 0, given (7). Again we write sn, cn, and
dn for sn(𝜌, 𝜅), cn(𝜌, 𝜅), dn(𝜌, 𝜅), and we make use of (16).

𝐵 (𝜌) def .= dn2 [𝑎2dn2 + V24 − 2𝑎2 + 𝑎2𝜅2
+ 𝑎2 (1 − 𝜅2)

dn2
] = dn2 [𝑎2 (1 − 𝜅2sn2) + V24 − 2𝑎2

+ 𝑎2𝜅2 + 𝑎2 (1 − 𝜅2)
dn2

] = dn2 [−𝑎2𝜅2sn2 + V24
− 𝑎2 (1 − 𝜅2) + 𝑎2 (1 − 𝜅2)

dn2
] = dn2 [V24

− 𝑎2𝜅2sn2 + 𝑎2 (1 − 𝜅2)
dn2

(1 − dn2)] = dn2 [V24

− 𝑎2𝜅2sn2 + 𝑎2 (1 − 𝜅2)
dn2

𝜅2sn2] = dn2 [V24
− 𝑎2𝜅2sn2 (dn2 − 1 + 𝜅2)

dn2
] = dn2 [V24

− 𝑎2𝜅2sn2
dn2

(−𝜅2sn2 + 𝜅2)] = dn2 [V24
− 𝑎2𝜅4sn2

dn2
(1 − sn2)] = dn2 [V24 − 𝑎2𝜅4sn2cn2

dn2
] ,
(55)

where we noted in Section 2 that sn2cn2/dn2 ≤ 1. Hence
V24 − 𝑎2𝜅4 sn2cn2

dn2
≥ V24 − 𝑎2𝜅4 > 0 (56)

by (7), again as in (31), and we see that 𝐵(𝜌) > 0, since
dn(𝜌, 𝜅) ̸= 0 for 𝜌 being a real number. Moreover, we
have established the desired expression for Φ(2)(𝜏, 𝜌) in (10).
Clearly one can replace the hyperbolic sine in the preceding
discussion by the hyperbolic cosine in (43) to obtain the third
solution Φ(3)(𝜏, 𝜌) in (10). To finish other claims made in
Section 1, we check that in (11) 𝐴 = 0 only for 𝑎 = ±(1 −√1 − 𝜅2)V/2𝜅2. We continue to assume (7) of course.

The quartic equation 𝐴 = 0 has roots 𝑎 = ±(1 +√1 − 𝜅2)V/2𝜅2 and ±(1 − √1 − 𝜅2)V/2𝜅2 with 𝑎2 = (2 − 𝜅2 +2√1 − 𝜅2)V2/4𝜅4 and (2 − 𝜅2 − 2√1 − 𝜅2)V2/4𝜅4, respectively.
(7) requires that 𝑎2 < V2/4𝜅4, which forces the inequalities

2 − 𝜅2 + 2√1 − 𝜅2 < 1,
2 − 𝜅2 − 2√1 − 𝜅2 < 1, (57)

of which the first one reads 1−𝜅2+2√1 − 𝜅2 < 0, with the left-
hand side here being ≥ 0, a contradiction. That is, we cannot
have 𝑎 = ±(1 + √1 − 𝜅2)V/2𝜅2 which means that 𝑎 = ±(1 −√1 − 𝜅2)V/2𝜅2. Also we check that the solutions are linearly
independent: assume for constants 𝑐1, 𝑐2, 𝑐3 that

𝑐1Φ(1) (𝜏, 𝜌) + 𝑐2Φ(2) (𝜏, 𝜌) + 𝑐3Φ(3) (𝜏, 𝜌) = 0. (58)

Differentiate this equation with respect to 𝜏 and evaluate the
result at (𝜏, 0):

𝑐2√𝐴 cosh (√𝐴𝜏) |V|2 + 𝑐3√𝐴 sinh (√𝐴𝜏) |V|2 = 0, (59)

since dn(0, 𝜅) = 1 and sn(0, 𝜅) = 0. The choice 𝜏 = 0 then
gives 𝑐2 = 0, since𝐴, V ̸= 0, and differentiation of the equation𝑐3√𝐴 sinh(√𝐴𝜏)|V|/2 = 0 and at 𝜏 = 0 gives 𝑐3 = 0. Using
again dn(0, 𝜅) = 1 we see by (10) that Φ(1)(𝜏, 0) def .= V2/4 +𝑎2𝜅2 > 0 and hence also 𝑐1 = 0.

Note that if V = 𝑎 = 2 and 𝜅 = 1/2, for example, then even
though V/2𝑎𝜅2 = 2 > 1 (so that (7) is satisfied), we have that𝐴 = −12 < 0.
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Again in the special case when the elliptic modulus𝜅 = 1, we have in (11) that 𝐴 = (V2/4 − 𝑎2)2 > 0
and √𝐴 = V2/4 − 𝑎2 > 0 (by (7) or (31)), and 𝐵(𝜌) =
sech2𝜌[V2/4 − 𝑎2tanh2𝜌] = sech2𝜌[V2 − 4𝑎2tanh2𝜌]/4; by
(27), (55) ⇒ √𝐵(𝜌) = (1/2)sech 𝜌√V2 − 4𝑎2tanh2𝜌. Here
(directly) tanh2𝜌 ≤ 1 ⇒ V2 − 4𝑎2tanh2𝜌 > 0, again as
V2 > 4𝑎2. Thus, by (10) and (28),

Φ(1) (𝜏, 𝜌) = 2𝑎2sech2𝜌 + V24 − 𝑎2,
Φ(2) (𝜏, 𝜌)

= (sinh(V24 − 𝑎2)𝜏) (sech 𝜌)√V2 − 4𝑎2tanh2𝜌,
Φ(3) (𝜏, 𝜌)

= (cosh(V24 − 𝑎2)𝜏) (sech 𝜌)√V2 − 4𝑎2tanh2𝜌

(60)

(where we have disregarded the multiple 1/2 in √𝐵(𝜌)) are
dilaton field solutions for the metric

𝑑𝑠2 = 𝑎2𝑏2sech2𝜌[(𝑎2tanh2𝜌 − V24 )𝑑𝜏2
− (tanh2𝜌)(𝑎2tanh2𝜌 − V24 )−1 𝑑𝜌2] .

(61)

The solutions in (60) are also new.

5. Killing Vector Fields for
Solutions (6) and (10)

Recall that a smooth vector field 𝑌 on an 𝑛-dimensional
Riemannianmanifold (𝑀, 𝑔) is called aKilling vector field (or
an infinitesimal motion of𝑀) if, for arbitrary smooth vector
fields𝑋,𝑍 on𝑀,

𝑌𝑔 (𝑋, 𝑍) = 𝑔 ([𝑌,𝑋] , 𝑍) + 𝑔 (𝑋, [𝑌, 𝑍]) = 0. (62)

If 𝑌 = ∑𝑛𝑖=1 𝑌𝑖(𝜕/𝜕𝑥𝑖) is an expression of 𝑌 in terms of local
coordinates (𝑥1, . . . , 𝑥𝑛) on 𝑀, then (62) is equivalent to the
system of equations

𝑛∑
𝑖=1

𝑔𝑘𝑖 𝜕𝑌𝑖𝜕𝑥𝑗 + 𝑔𝑗𝑖 𝜕𝑌𝑖𝜕𝑥𝑘 + 𝜕𝑔𝑗𝑘𝜕𝑥𝑖 𝑌𝑖 = 0 (63)

for 1 ≤ 𝑗, 𝑘 ≤ 𝑛 [8, 9]. In the special (diagonal) case with𝑔𝑖𝑗 = 0 for 𝑖 ̸= 𝑗 and with 𝑛 = 2, the Killing equations (63)
simplify to the following three equations:

2𝑔11 𝜕𝑌1𝜕𝑥1 + 𝜕𝑔11𝜕𝑥1 𝑌1 + 𝜕𝑔11𝜕𝑥2 𝑌2 = 0,
𝑔11 𝜕𝑌1𝜕𝑥2 + 𝑔22 𝜕𝑌2𝜕𝑥1 = 0,

𝜕𝑔22𝜕𝑥1 𝑌1 + 2𝑔22 𝜕𝑌2𝜕𝑥2 + 𝜕𝑔22𝜕𝑥2 𝑌2 = 0.
(64)

As was have shown in [10], every solution (𝑔, Φ) of the
field equations in (1) gives rise to a corresponding Killing
vector field 𝑌 = 𝑌(𝑔,Φ) by way of the local prescription

𝑌𝑖 = 𝑙𝜖𝑖𝑗√󵄨󵄨󵄨󵄨det𝑔󵄨󵄨󵄨󵄨
𝜕Φ𝜕𝑥𝑗 (65)

with 𝜖𝑖𝑗 being a permutation symbol. 𝑌 preserves both 𝑔 andΦ. For 𝑔 in (4) and for the fields Φ in (5) and (43), the
corresponding Killing vector fields are given in (16), (17), and
(18) of [11], for example. Our interest of course is in the case
of the three solutions (𝑔, Φ(𝑗)) in (10) with 𝑔 given by (6). By
(42), √| det𝑔| = 𝑎2𝑏2𝜅2|sn cn|dn. Since 𝑌𝑖 could be replaced
by a scalar multiple of itself (e.g., −𝑌𝑖), we shall disregard the
absolute value of sn cn here, and given (9), we shall take 𝑙 =𝑏/2 (instead of |𝑏|/2). For 𝜖11 = 𝜖22 = 0 and 𝜖12 = −1 = −𝜖21,
(65) then assumes the generic form

𝑌1 = [2𝑎2𝑏𝜅2sn (𝜌, 𝜅) cn (𝜌, 𝜅) dn (𝜌, 𝜅)]−1 (−𝜕Φ𝜕𝜌 ) ,
𝑌2 = [2𝑎2𝑏𝜅2sn (𝜌, 𝜅) cn (𝜌, 𝜅) dn (𝜌, 𝜅)]−1 𝜕Φ𝜕𝜏 ;
𝑌 = 𝑌1 𝜕𝜕𝜏 + 𝑌2 𝜕𝜕𝜌 ,

(66)

where we take (𝑥1, 𝑥2) = (𝜏, 𝜌) in (64).
For the first solution

Φ(1) (𝜏, 𝜌) = 2𝑎2dn (𝜌, 𝜅) + V44 − 𝑎2 (2 − 𝜅2) (67)

in (10), the computation of the corresponding Killing vector
field 𝑌 is trivial: by (16) and (66), 𝑌1 = 2/𝑏, and of course𝑌2 = 0. Since 𝜕𝑔11/𝜕𝜏 = 𝜕𝑔22/𝜕𝜏 = 0 by (42), the Killing
equations in (64) are satisfied and we see that

𝑌 = 2𝑏 𝜕𝜕𝜏 (68)

for (𝑔, Φ(1)). Computations for the other two solutions Φ(2)
andΦ(3) in (10) are more involved.The result is the following,
where again

𝐴 = 116 (V4 − 16V2𝑎2 + 8V2𝑎2𝜅2 + 16𝑎4𝜅4) (69)

in definition (11).
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ForΦ(2)(𝜏, 𝜌),
𝑌1 = (1/4) (sinh (√𝐴𝜏)) [V2 + (−V2𝜅2 − 4𝑎2𝜅4 − 8𝑎2𝜅2) sn2 (𝜌, 𝜅) + 8𝑎2𝜅4sn4 (𝜌, 𝜅) + 4𝑎2𝜅2]

𝑎2𝑏 dn2 (𝜌, 𝜅)√V2 + (−V2𝜅2 − 4𝑎2𝜅4) sn2 (𝜌, 𝜅) + 4𝑎2𝜅4sn4 (𝜌, 𝜅) ,
𝑌2 = (√𝐴/4) (cosh (√𝐴𝜏))√V2 + (−V2𝜅2 − 4𝑎2𝜅4) sn2 (𝜌, 𝜅) + 4𝑎2𝜅4sn4 (𝜌, 𝜅)𝑎2𝑏𝜅2sn (𝜌, 𝜅) cn (𝜌, 𝜅) dn (𝜌, 𝜅) .

(70)

For Φ(3)(𝜏, 𝜌) one has quite similar formulas for 𝑌1 and 𝑌2
except that (as expected) the roles of the hyperbolic sine
and hyperbolic cosine in (70) are interchanged: the factor
sinh(√𝐴𝜏) for 𝑌1 in (70) is replaced by cosh(√𝐴𝜏), and,
similarly, cosh(√𝐴𝜏) for 𝑌2 in (70) is replaced by sinh(√𝐴𝜏).

One can also find the following alternative expressions for
the Killing vector field components for Φ(2)(𝜏, 𝜌):
𝑌1 = (V2 + 4𝑎2𝜅2cn2 (𝜌, 𝜅) − 4𝑎2𝜅2sn2 (𝜌, 𝜅)) sinh (√𝐴𝜏)

4𝑎2𝑏 dn (𝜌, 𝜅)√V2 − 4𝑎2𝜅4cn2 (𝜌, 𝜅) sn2 (𝜌, 𝜅) dn−2 (𝜌, 𝜅) ,
𝑌2
= 4√𝐴 cosh (√𝐴𝜏)√V2 − 4𝑎2𝜅4cn2 (𝜌, 𝜅) sn2 (𝜌, 𝜅) dn−2 (𝜌, 𝜅)16𝑎2𝑏𝜅2cn (𝜌, 𝜅) sn (𝜌, 𝜅)

(71)

for 𝐴 in (11). Corresponding alternative expressions forΦ(3)(𝜏, 𝜌) are similar to (71) except that the roles of the
hyperbolic sine and hyperbolic cosine are interchanged. By
a direct check one sees that the dilaton fields computed in
(10) are indeed invariant along the corresponding Killing
directions. That is, they satisfy

𝜕Φ(𝑖)𝜕𝜏 𝑌1 + 𝜕Φ(𝑖)𝜕𝜌 𝑌2 = 0 (72)

for each of 𝑖 = 1, 2, 3 as we indicated in the sentence following
(65) about 𝑌 preserving Φ.

6. Some Closing Remarks

For the metric 𝑔 in (6), whose derivation was discussed
in Section 2, we have obtained as a main result explicit
linearly independent solutions Φ(𝑗), 𝑗 = 1, 2, 3, in (10) of
the corresponding system of dilaton field equations in (9).
We have also computed the associated Killing vector fields𝑌(𝑔,Φ(𝑗)) that leave both 𝑔 andΦ(𝑗) invariant; see (68), (70),
and (71) and the remarks that follow (70) and (71).The dilaton
fields simplify to the expressions given in (60) in the special
case when the elliptic modulus 𝜅 is 1, and 𝑔 simplifies to the
expression given in (61).

For 𝑄(𝜌, 𝜅) defined in (24), it was shown in the short
argument following (22) that if 𝑄(𝜌, 𝜅) = 0 for some 𝜌, then
necessarily V2/4𝑎2𝜅4 ≤ 1:

|V| ≤ 2 |𝑎| 𝜅2 (73)

in contrast to the standing assumption (7). To better under-
stand the meaning of this inequality note first by (42) that𝑄(𝜌, 𝜅) = 0 ⇒ 𝑔11 = 0 so 𝑔 exhibits a horizon singularity at

𝑎2𝜅4sn2 (𝜌, 𝜅) cn2 (𝜌, 𝜅)
dn2 (𝜌, 𝜅) = V24 :
sn (𝜌, 𝜅) cn (𝜌, 𝜅)

dn (𝜌, 𝜅) = ± V2𝑎𝜅2
(74)

again by (24). Keep in mind that V is a velocity parameter of
a dissipative soliton (also called a dissipaton) as in (15), for
example, especially for 𝜅 = 1, as we have remarked at the end
of Section 2. Inequality (73) is the statement therefore that for
an arbitrary elliptic modulus 𝜅, with 0 < 𝜅 ≤ 1, the velocity
of a black hole dissipaton cannot exceed the limiting value|Vmax| def .= 2|𝑎|𝜅2. This statement was deduced in [6, 7], for
example, in the special (but important) case of 𝜅 = 1.

In Section 3, by a series of explicit transformations of
variables,𝑔moreoverwas transformed to a Jackiw-Teitelboim
black hole metric 𝑔J-T of the simple form (4), namely, to 𝑔J-T
given by (39), with accompanying data given by (40) and (41).
Here again assumption (7) was imposed. An advantage of
parameterization (39) is that, for example, simple formulas
exist [10, 12] for thermodynamic quantities such as the
Hawking temperature 𝑇H and black hole entropy 𝑆.

We point out, for the record, that the general solutions
of all 2D dilaton gravity models are known. For example, see
Section 3 of the paper [13] of Klösch and Strobl. However
(again), we have constructed very explicit elliptic solutions
that do not follow directly from the results of [13].

Reviewing [14, 15], we have added some final remarks that
provide a brief review of a connection of the J-T model to
cold plasma physics. This connection is facilitated by way of
a resonant nonlinear Schrödinger (RNLS) equation.

The authors in [14] consider a system of nonlinear
equations that describe the dynamics of two-component cold
collisionless plasma in the presence of an external magnetic
field B. For uniaxial plasma propagation, this system is
reduced to a system that describes the propagation of nonlin-
ear magnetoacoustic waves in cold plasma with a transverse
magnetic field. By way of a shallow water approximation of
the latter system, a reduction of it to a RNLS equation of the
form

𝑖 𝜕𝜓𝜕𝑡󸀠 + 𝜕2𝜓𝜕𝑥󸀠2 − 12 󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨2 𝜓 = (1 + 𝛽2) 1󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨 𝜕
2𝜓𝜕𝑥󸀠2𝜓 (75)
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is achieved. Here 𝑥󸀠 = 𝛽𝑥 and 𝑡󸀠 = 𝛽𝑡 are rescaled space and
time variables, and B has an expression in terms of a suitable
power series expansion in the parameter 𝛽2. 𝜓 has the form𝜓 = √𝜌𝑒−𝑖𝑆, where 𝑆(𝑥󸀠, 𝑡󸀠) is a velocity potential and 𝜌 is the
mass density of the plasma. Also note the remarks in [15]. A
key point of interest for us is that, for

𝑟 def .= √𝜌𝑒𝑆/𝛽 > 0,
𝑠 def .= −√𝜌𝑒𝑆/𝛽 < 0,
𝐵 def .= 12𝛽2 = 2𝑏2 ,
𝑏 def .= 2𝛽,

(76)

in the variables (𝑥󸀠, 𝜏 def .= 𝛽𝑡󸀠), the reaction diffusion (RD)
system (12) is satisfied; 𝑟 and 𝑠 are denoted by 𝑒(+) and 𝑒(−)
in [14]. On page 186 of [1], it is shown that, conversely, given
solutions 𝑟 > 0 and 𝑠 < 0 of the RD system (12), one can
naturally construct a RNLS solution. By (15), with 𝑏 = 2𝛽 by
(76), we can take𝑟 (𝑥󸀠, 𝜏) = 2𝛼𝛽 dn (𝑎 (𝑥󸀠 − V𝜏) , 𝜅)

⋅ exp([V24 + 𝑎2 (2 − 𝜅2)] 𝜏 − V𝑥󸀠2 ) ,
𝑠 (𝑥󸀠, 𝜏) = −2𝛼𝛽 dn (𝑎 (𝑥󸀠 − V𝜏) , 𝜅)

⋅ exp(−[V24 + 𝑎2 (2 − 𝜅2)] 𝜏 + V𝑥󸀠2 ) .
(77)

All of this means that we can apply prescription (14) to
construct a metric 𝑔plasma of constant Ricci scalar curvature𝑅 = 4𝐵 def .= 8/𝑏2 def .= 2/𝛽2, as we did in (18), where
the notation 𝑡, 𝜌 there is now taken to mean 𝜏, 𝑎(𝑥󸀠 − V𝜏).
Moreover, our results show that 𝑔plasma can be transformed to
a J-T black holemetric of the form in (4).Thuswe can account
for a J-T black hole connection in cold plasma physics. Our
results also provide elliptic solutions of the corresponding
dilaton field equations.
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