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This paper deals with the synchronization of a class of fractional order chaotic systems with unknown parameters and external
disturbance. Based on the Lyapunov stability theory, a fractional order sliding mode is constructed and a controller is proposed to
realize chaos synchronization. The presented method not only realizes the synchronization of the considered chaotic systems but
also enhances the robustness of sliding mode synchronization. Finally, some simulation results demonstrate the effectiveness and
robustness of the proposed method.

1. Introduction

Fractional calculus is as old as conventional calculus andwith
more than 300 years’ history, but its application to physics
and engineering is in recent years. It has been found that
many systems can be described by fractional order differential
equations, for example, in interdisciplinary fields, such as
viscoelastic [1], diffusion [2], dynamo theory [3], dengue
fever [4], and chemical processing [5], and in nonlinear
physical fields such as fractional order Chen system [6],
fractional order Lorenz system [7], fractional order unified
system [8], fractional Chua circuit [9], fractional order Van
der Pol-like oscillator [10], and fractional Newton-Leipnik
system [11–14].

Since the pioneering work of Pecora and Carroll [15],
chaos synchronization has become a hot topic to the
researchers in different fields [16, 17]. Recently, due to the
wide application, many different control methods have been
applied to synchronize the fractional order chaotic systems,
such as active control [18], adaptive control [19], observer-
based control [20], and impulsive control [21]. As the uncer-
tainties are not avoided in the real world, they may lead a
given system to an unanticipated state and even destroy the

synchronization. Therefore, it is very necessary to investigate
robust synchronization to counteract the influence of the
uncertainties. Sliding mode control (SMC) is an efficient
method to deal with the robust control scheme as it has
desired performance such as stability, disturbance rejection
capability, and tracking ability. In recent years, sliding mode
control method has been applied in the synchronization
of fractional order chaotic systems. For example, Tavazoei
and Haeri [22] proposed an active SMC to synchronize
fractional order chaotic systems. Yin et al. [23] design a
SMC to control a class of fractional order chaotic systems.
Based on the fractional order line systems’ stability theory,
Wang et al. [24] proposed an active sliding mode surface
and design a controller to realize the modified projective
synchronization for two different fractional order systems. In
our previouswork [25], a novel robust fractional order sliding
mode approach for the synchronization of two fractional
order chaotic systems in the presence of system parameter
uncertain and external disturbance is proposed, but the
unknown parameters were not considered. Although Zhang
and Yang [26] considered the uncertain master system with
unknown parameters and external disturbance, the slave
system’s external disturbance was not discussed.
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Motivated by the aforementioned analysis, in this paper,
we construct a robust synchronization of a class of uncertain
fractional chaotic systems via adaptive sliding model control.
Based on the designed fractional order integral type sliding
surface, an adaptation algorithm is proposed to realize the
synchronization of fractional order chaotic systems with
unknown parameters, even the fractional order master and
slave chaotic systemwith external disturbance.Thenumerical
simulations show the effectiveness of the proposed method.
This paper is organized as follows. In Section 2, the prelim-
inary and system description are presented. Based on the
designed fractional sliding mode surface, a robust adaptive
controller is proposed to synchronize the class of fractional
order chaotic systems in Section 3. A numerical simulation
is given in Section 4 to illustrate the effectiveness of the
proposed controller. Conclusions are drawn in Section 5.

2. Preliminary and System Description

Although fractional calculus is very important inmodern sci-
ence, it has no uniform definition up till now.There are many
fractional calculus definitions and among them Riemann-
Liouville and Caputo definitions are more important than
others. As the constant’s fractional derivative is zero and
its Laplace translation has the traditional initial value, the
Caputo definition is used in this paper:
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(𝑚−𝛼)
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where 𝑚 = [𝛼]; that is, 𝑚 is the biggest integer which is not
less than𝛼,𝑥(𝑚) is the𝑚th-order derivative in the usual sense,
and 𝐽
𝛽

(𝛽 > 0) is the 𝛽-order fractional order operator with
expression
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where Γ(⋅) stands for Euler Gamma function. 𝐷
𝛼 is the

shorthand for
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in this paper.

Consider a class of fractional order chaotic systems with
unknown parameters [23], which is described by
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𝑖 = 1, 2, 3, is the system’s external disturbance.

Remark 1. Note that many fractional order chaotic systems
belong to the class characterized by (3) in [23]; examples

include the fractional order financial system, the fractional
order unified chaotic system (including the fractional order
Lorenz system, the fractional order Chen system, and the
fractional order Lü system), and the fractional Liu system.

3. Main Results

Let system (3) be the drive system, and the response system
with a controller is given by
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where 𝑦
1
, 𝑦
2
, 𝑦
3
are the slave system’s states, 𝑎, 𝑏, 𝑐 are

unknown parameters, 𝑑
𝑠

𝑖
, 𝑖 = 1, 2, 3, is unknown distur-

bance, and 𝑢
𝑖
(𝑡), 𝑖 = 1, 2, 3, is designed controller.

The aim in this paper is that, for different initial con-
ditions of systems (3) and (4), the two systems can be
synchronized by designing an appropriate control 𝑢(𝑡) such
that
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Assumption 2. It is assumed that the external disturbances are
norm-bounded; that is,
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and 𝛽
𝑚

𝑖
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≤ 𝛽
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, 𝑖 = 1, 2, 3, is satisfied.

The error between the driver system (3) and the slave
system (4) can be defined as e(𝑡) = x(𝑡) − y(𝑡). Then the error
dynamics is obtained as follows:
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The first step is to select an appropriate sliding mode
surface with the desired behavior:
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, 𝑖 = 1, 2, 3.
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To ensure the existence of the sliding motion, a discon-
tinuous control law is proposed as
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where 𝛼̂, 𝛽̂, 𝛾̂, 𝑎̂, 𝑏̂, 𝑐̂, and 𝛾̂
𝑖
are estimations for 𝛼, 𝛽, 𝛾, 𝑎, 𝑏, 𝑐,
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, 𝑖 = 1, 2, 3, respectively.

The fractional order error system is changed into the
following formation:
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The following update laws are defined to tackle the uncer-
tainties, external disturbances, and unknown parameters:
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Theorem 3. If the controller is selected as (9) and the update
laws of the unknown parameters are selected as (11), then
systems (3) and (4) can be synchronized.

Proof. Selecting a positive definite function as a Lyapunov
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1
𝑘
1

󵄨󵄨󵄨󵄨𝑠1
󵄨󵄨󵄨󵄨 − 𝜆
2
𝑘
2

󵄨󵄨󵄨󵄨𝑠2
󵄨󵄨󵄨󵄨 − 𝜆
3
𝑘
3

󵄨󵄨󵄨󵄨𝑠3
󵄨󵄨󵄨󵄨 < 0.

(16)

Using Lyapunov stability theory, it can be concluded that
the drive system (3) and the slave system (4) realize the
synchronization.
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Figure 1: 2.89-order fractional Chen system.

4. Simulation

In this section, two numerical simulations are presented to
show the efficiency of the proposed method.

Example 4. Consider the fractional order Chen system [6]
which is written as

𝐷
𝑞
1𝑥
1
= 𝑎
1
(𝑥
2
− 𝑥
1
) ,

𝐷
𝑞
2𝑥
2
= 𝑑
1
𝑥
1
− 𝑥
1
𝑥
3
+ 𝑐
1
𝑥
2
,

𝐷
𝑞
3𝑥
3
= 𝑥
1
𝑥
2
− 𝑏
1
𝑥
3
,

(17)

where (𝑎
1
, 𝑏
1
, 𝑐
1
, 𝑑
1
) = (35, −3, 28, −7). The system is chaotic

with 𝑞
1

= 0.98, 𝑞
2

= 0.96, 𝑞
3

= 0.95 and initial value
(10, 0, 10) and its chaotic attractor is shown in Figure 1.

Regarding (3) and (4), the drive and slave systems are
given as follows:

𝐷
𝑞
1𝑥
1
= 𝑥
2
𝛼 − 𝛼𝑥

1
+ 0.5 cos 𝑡,

𝐷
𝑞
2𝑥
2
= 𝑑𝑥
1
− 𝛽𝑥
2
+ 0.5 sin 2𝑡,

𝐷
𝑞
3𝑥
3
= 𝑥
2
𝑥
1
− 𝛾𝑥
3
+ 0.5 cos 3𝑡,

(18)

𝐷
𝑞
1𝑦
1
= 𝑦
2
𝑎 − 𝑎𝑦

1
+ 0.5 sin 𝑡 + 𝑢

1
(𝑡) ,

𝐷
𝑞
2𝑦
2
= 𝑑𝑦
1
− 𝑦
1
𝑦
3
− 𝑏𝑦
2
+ 0.5 cos 2𝑡 + 𝑢

2
(𝑡) ,

𝐷
𝑞
3𝑥
3
= 𝑦
2
𝑦
1
− 𝑐𝑦
3
+ 0.5 sin 3𝑡 + 𝑢

3
(𝑡) .

(19)

The discontinuous control law corresponding to (9) is

𝑢
1 (𝑡) = 𝑥

2
𝛼 − 𝛼̂𝑥

1
+ 𝛽̂ sgn (𝑠

1
) − 𝑦
2
𝑎 + 𝑎̂𝑦

1

+ 𝑘
1
sgn (𝑠

1
) ,

𝑢
2
(𝑡) = 𝑑𝑥

1
− 𝑥
1
𝑥
3
− 𝛽̂
2
𝑥
2
+ 𝛽̂
2
sgn (𝑠

2
) − 𝑑𝑦

1

+ 𝑦
1
𝑦
3
+ 𝑏̂𝑦
2
+ 𝑘
2
sgn (𝑠

2
) ,

𝑢
3
(𝑡) = 𝑥

2
𝑥
1
− 𝛾̂𝑥
3
+ 𝛽̂
3
sgn (𝑠

3
) − 𝑦
2
𝑦
1
+ 𝑐̂𝑦
3

+ 𝑘
3
sgn (𝑠

3
)

(20)

with the slidingmode surface (8) and update laws (11); 𝑑 = −7

and the systems are started with initial values (𝑥
1
, 𝑥
2
, 𝑥
3
) =
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Figure 2: Synchronization errors of the drive and slave of fractional
Chen systems.
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Figure 3: Time response of the update parameters 𝑎, 𝑏, 𝑐 of frac-
tional Chen system.

(9, 10, 1), (𝑦
1
, 𝑦
2
, 𝑦
3
) = (10, 0, 10); then the simulation results

are shown in Figures 2, 3, 4, and 5. Figure 2 illustrates the
synchronization errors of the drive and slave systems decrease
to 0, where the control inputs are turned on at 𝑡 = 5 s. It
can been seen that the chaos synchronization between the
drive system and slave system is realized. The time responses
of the update vector parameters are depicted in Figures 3–5,
respectively.

Example 5. Consider the fractional order Lorenz system [7],
which is expressed as

𝐷
𝑞
1𝑥
1
= 𝑎
1
(𝑥
2
− 𝑥
1
) ,

𝐷
𝑞
2𝑥
2
= 𝑥
1
(𝑏
1
− 𝑥
3
) − 𝑥
2
,
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Figure 4: Time response of the update parameters 𝛼, 𝛽, 𝛾 of
fractional Chen system.

𝐷
𝑞
3𝑥
3
= 𝑥
1
𝑥
2
− 𝑐
1
𝑥
3
,

(21)

where (𝑎
1
, 𝑏
1
, 𝑐
1
) = (10, 28, 8/3).The system exhibits a chaotic

behavior as shown in Figure 6 with 𝑞
1
= 𝑞
2
= 𝑞
3
= 0.99 and

initial value (10, 0, 10). Regarding (3) and (4), the drive and
slave systems are given as follows:

𝐷
𝑞
1𝑥
1
= 𝛼 (𝑥

2
− 𝑥
1
) + 0.5 cos 𝑡,

𝐷
𝑞
2𝑥
2
= 𝑥
1
(𝛽 − 𝑥

3
) − 𝑥
2
+ 0.5 sin 2𝑡,

𝐷
𝑞
3𝑥
3
= 𝑥
1
𝑥
2
− 𝛾𝑥
3
+ 0.5 cos 3𝑡,

(22)

𝐷
𝑞
1𝑥
1
= 𝑎 (𝑥

2
− 𝑥
1
) + 0.5 sin 𝑡 + 𝑢

1
(𝑡) ,

𝐷
𝑞
2𝑥
2
= 𝑥
1
(𝑏 − 𝑥

3
) − 𝑥
2
+ 0.5 cos 2𝑡 + 𝑢

2 (𝑡) ,

𝐷
𝑞
3𝑥
3
= 𝑥
1
𝑥
2
− 𝑐𝑥
3
+ 0.5 sin 3𝑡 + 𝑢

3 (𝑡) .

(23)

The discontinuous control law corresponding to (9) is

𝑢
1
(𝑡) = 𝑥

2
𝛼 − 𝛼̂𝑥

1
+ 𝛽̂
1
sgn (𝑠

1
) − 𝑦
2
𝑎 + 𝑎̂𝑦

1

+ 𝑘
1
sgn (𝑠

1
) ,

𝑢
2 (𝑡) = 𝑥

1
(𝛽 − 𝑥

3
) − 𝛽̂𝑥

2
+ 𝛽̂
2
sgn (𝑠

2
) − 𝑦
1
(𝑏 − 𝑦

3
)

+ 𝑏𝑦
2
+ 𝑘
2
sgn (𝑠

2
) ,

𝑢
3
(𝑡) = 𝑥

1
𝑥
2
− 𝛾̂𝑥
3
+ 𝛽̂
3
sgn (𝑠

3
) − 𝑦
2
𝑦
1
+ 𝑐̂𝑦
3

+ 𝑘
3
sgn (𝑠

3
)

(24)

with the sliding mode surface (8), update laws (11), and initial
values (𝑥

1
, 𝑥
2
, 𝑥
3
) = (8, −2, 10), (𝑦

1
, 𝑦
2
, 𝑦
3
) = (−7, 10, −5);

then the simulation results are shown in Figures 7–10.
Figure 7 illustrates the synchronization errors of the drive
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Figure 5: Time response of the update parameter 𝛽
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fractional Chen system.
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Figure 6: 2.97-order fractional Lorenz system.
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Figure 9: Time response of the update parameters 𝛼, 𝛽, 𝛾 of
fractional Lorenz system.

and slave systems decrease to 0, where the control inputs
are turned on at 𝑡 = 5 s. It can been seen that the chaos
synchronization between the drive system and slave system
is also realized. The time responses of the update vector
parameters are depicted in Figures 8–10, respectively.

5. Conclusions

In this paper, a robust adaptive sliding mode controller has
been designed to synchronize a class of uncertain fractional
chaotic systems with unknown parameters. Based on the
Lyapunov stability theory, the designed closed-loop system is
stable and the proposed robust adaptive controller can realize
chaotic systems’ synchronization. Finally, two numerical
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Figure 10: Time response of the update parameter 𝛽
𝑖
, 𝑖 = 1, 2, 3, of

fractional Lorenz system.

examples have been shown to demonstrate the effectiveness
of the proposed scheme.
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