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The event-triggered energy-to-peak filtering for polytopic discrete-time linear systems is studied with the consideration of lossy
network and quantization error. Because of the communication imperfections from the packet dropout of lossy link, the event-
triggered condition used to determine the data release instant at the event generator (EG) can not be directly applied to update the
filter input at the zero order holder (ZOH) when performing filter performance analysis and synthesis. In order to balance such
nonuniform time series between the triggered instant of EG and the updated instant of ZOH, two event-triggered conditions are
defined, respectively, whereafter a worst-case bound on the number of consecutive packet losses of the transmitted data from EG
is given, which marginally guarantees the effectiveness of the filter that will be designed based on the event-triggered updating
condition of ZOH.Then, the filter performance analysis conditions are obtained under the assumption that the maximum number
of packet losses is allowable for the worst-case bound. In what follows, a two-stage LMI-based alternative optimization approach
is proposed to separately design the filter, which reduces the conservatism of the traditional linearization method of filter analysis
conditions. Subsequently a codesign algorithm is developed to determine the communication and filter parameters simultaneously.
Finally, an illustrative example is provided to verify the validity of the obtained results.

1. Introduction

Networked control systems (NCSs) use shared communica-
tion networks to exchange information among system com-
ponents such as sensors, controllers, actuators, and filters.
These systems have received a persistent attention over the
last decade owing to the fact that their architectures guarantee
advantages in terms of increased flexibility, reduced wiring
and lower maintenance costs, and are finding ways into a
wide variety of applications ranging from automation and
high-speed signal acquisition systems to process control
and power distribution systems. But the introduction of
network communication unavoidably results in nonideal
quality of service (QoS) because of the imperfections usually
characterized as network-induced delay, packet dropout, and
protocol constraint [1]. Therefore, the control and estimation

problems under such transmission circumstance encounter
new challenges and difficulties. In order to handle the net-
work communication imperfection inNCSs, there are several
results available in the literature, for instance, the jittermargin
approach [2], the frequency-domain approach [3], Lyapunov-
based functional approach [4] toward delay and the average
system approach [5], worst-case bounds constraint on the
number of consecutive dropouts [6], and stochasticmodeling
approach [7] toward packet dropout. On the basis of the
aforementioned techniques to deal with delay and packet
loss in NCSs, the networked filtering with imperfect QoS has
been considered sufficiently for different systems and various
desired performances. Related works can be found in [8–12].

Recently, with the improving attention on resource uti-
lization rates of energy and communication capabilities in
NCSs, the event-triggered mechanism is proposed, which

Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2016, Article ID 2867932, 15 pages
http://dx.doi.org/10.1155/2016/2867932



2 Discrete Dynamics in Nature and Society

determines the next transmission time of the needed data
based on the previously released data information. The
remarkable advantage of this communication strategymainly
lies in the fact that only those signals which are helpful
to ensure the desired system performance are transmitted.
For example, when the system arrives at the neighborhood
of its equilibrium point, this inefficient or redundant sys-
tem information can be ignored, which saves the network
resources to other communication tasks in need on one hand
and increases the benefits of energy efficiency on the other
hand. In view of these merits of this communication pro-
tocol in NCSs, the event-triggered control has been studied
extensively. Several representative works can be found in [13–
20]. In literature, the event-triggered scheme is also referred
using various terminologies, such as event-based, event-
driven, dead-band, send-on-delta, and level-crossing [21].
Parallel to the research line of event-triggered control, the
networked event-triggered filtering is considered gradually in
the past few years. For example, by providing periodic event-
triggered communication scheme, authors in [22] studied a
codesign 𝐻

∞
filtering problem for determined discrete-time

systems. Afterwards, through employing information dis-
patching middleware to establish a framework for networked
systems, authors in [23] were concerned with event-triggered
𝐻
∞
filtering for continuous-time linear systems. In addition,

an extended application of event-triggered filtering was
given in [24] where the fault detection was performed with
communication delay and nonlinear perturbation. Recently,
the event-based approach to distributed filtering has been
proposed with different triggered manners, such as in [25,
26]. As for the applications of event-triggered method to
design filter for the other more general systems, there are
also several reported results, for instance, the T-S fuzzy
systems [20, 27, 28], the polytopic uncertain systems [29],
and the sampled-data systems [30]. However, one can see
that the above-mentioned works on event-triggered filter-
ing do not take the packet loss of potentially incomplete
communication network into consideration, which may lead
to the degradation of system estimation performance when
the designed filter is implemented in practice. Therefore,
how to design the event-triggered condition under the lossy
network communication such that the desired filter can
be derived while maintaining the minimized performance
evaluation of estimation error is a significant and challenging
problem, which is the first motivation of the current study.
On the other hand, it should be noted that the existing
event-triggered filtering mainly reports on𝐻

∞
performance,

and to the best of the authors’ knowledge, the energy-to-
peak filtering problem based on event-triggered mechanism
has not been stressed. The energy-to-peak theory allows
the disturbance signal to be energy bounded and gets the
minimumamplitude of the output signal caused by theworst-
case disturbance [31, 32]. Compared with 𝐻

∞
performance,

the energy-to-peak characteristic does not require the output
of filtering error system to be square integrable, which has
the theoretical and practical significance in some engineer-
ing practice, such as the earthquake protection systems of
buildings [33]. Therefore, this paper attempts to establish
the event-triggered energy-to-peak filter and communication

parameters codesign conditions, which is the secondmotiva-
tion of the current research.

Based on the above discussions, this paper studies the
event-triggered energy-to-peak filter design problem for a
class of discrete-time polytopic uncertain system with the
communication consideration of lossy network and quanti-
zation. The technical route of this paper can be stated in four
steps. Firstly, a time-delay filtering error polytopic system
with additive norm-bounded uncertainties is modeled by
applying the delay system approach [19] to handle the event-
triggered communication and relying on sector bounded
method [34] to deal with the quantization error. Secondly,
inspired from the manipulation of packet loss in designing
event-triggered controller [17], the estimation of maximum
allowable number of consecutive packet losses is calculated,
which is used to balance the nonidentical timescales caused
by lossy network in event-triggered filter analysis. Thirdly,
the energy-to-peak filter analysis and design conditions are
deduced under the assumption that the number of packet
losses is allowable for the worst-case bound. Fourthly, a code-
sign algorithm of communication and filter parameters is
given, depending on the relationship among the estimation of
maximum allowable number of packet losses, the knowledge
of the network being used, and the dynamic information
of the considered discrete-time system. Finally, the main
contributions of this paper are summarized as follows:

(i) The robust energy-to-peak event-triggered filtering
problem for polytopic uncertain discrete-time sys-
tems with simultaneous consideration of network-
induced delay, signal quantization, and packet loss
is studied. Compared with the existing literature
on event-triggered filtering, the analysis becomes
more complicated because the lossy network leads
to the nonuniform triggering time series between
the released signal and the successfully received
signal. In order to balance such case, the maximum
allowable number of consecutive packet dropouts is
estimated according to the triggering parameters and
the knowledge of the network being used, which is
further utilized to enable the general analysis method
of event-triggered filtering.

(ii) A two-stage alternative optimization approach to
designing energy-to-peak filter is proposed. A two-
stage optimization approach is proposed to design
the energy-to-peak filter. A large conservatism in
filter design lies in the information loss during lin-
earization from analysis condition to design condi-
tion, which is also the main reason causing optimal
solved filtering performance level to deviate from
its actual worst-case one largely. Therefore, in order
to compensate such information loss, a two-stage
optimization algorithm is given to separately design
the filter parameters pairs (𝐴

𝐹
, 𝐵

𝐹
) and (𝐶

𝐹
, 𝐷

𝐹
) on

the basis of the linearized design condition with the
structural constraints of matrix variables and the
directly expanded one, respectively.

(iii) A codesign algorithm is developed to simultane-
ously determine the desired filter and the threshold
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Figure 1: Scheme of event-triggered filtering with lossy network and quantization.

parameters via combining the proposed mathemat-
ical relationship of the maximum allowable number
of consecutive dropouts and the two-stage alternative
optimization method.

The notations are standard. R𝑛 and R𝑚×𝑛 denote the
𝑛-dimensional Euclidean space and the set of all 𝑚 × 𝑛

real matrices. The notation 𝑙
2
[0,∞) represents the space of

square-integrable vector functions over [0,∞). And 𝐻𝑒{𝐴}

and diag{⋅ ⋅ ⋅ } denote 𝐴 + 𝐴
𝑇 and a block-diagonal matrix,

respectively. Moreover, 𝐴+ shows the Penrose pseudoinverse
of 𝐴. In addition, | ⋅ | stands for the Euclidean vector norm
or the induced matrix 2-norm as appropriate. ⌈0⌉ means the
largest integer smaller than or equal to 0. Finally, the symbol
∙ represents the symmetric term in a symmetric matrix.

2. Problem Formulation

The scheme of event-triggered energy-to-peak filtering for
discrete-time polytopic uncertain systems subject to lossy
network and quantization error is shown in Figure 1. First, the
system output data 𝑦(𝑘) is directly transmitted to EG, which
is consisted of a buffer and a comparator (event strategy unit).
The buffer stores information on the last released data packet
and the event strategy unit checks whether the current mea-
sured data packet satisfies the triggering condition. Second,
the communication capacity of the network is assumed to be
limited, and thus the output data 𝑦(𝑏

𝑘
) of EG is quantized

before being transmitted into the network medium for the
purpose of reducing the network data transmission rate.
Third, due to the collisions, unreliability, or congestion of the
network link, the communication channel is not ideal, which
is subject to data packet loss. Forth, a logic ZOH is employed
to choose the latest transmitted data packet and discard the
disordering packet. Thus, the filter keeps its input signal
unchanged until the input of the logic ZOH gets updated
to a new value. Finally, the output of the filter is applied to
estimate the concerned output of the plant. In the following,
the specified components are described in detail.

2.1. Plant and Energy-to-Peak Filter. Consider the linear
time-invariant discrete-time polytopic uncertain system:

𝑥 (𝑘 + 1) = 𝐴 (𝜃) 𝑥 (𝑘) + 𝐵 (𝜃) 𝜔 (𝑘) ,

𝑦 (𝑘) = 𝐶 (𝜃) 𝑥 (𝑘) + 𝐷 (𝜃) 𝜔 (𝑘) ,

𝑧 (𝑘) = 𝐿 (𝜃) 𝑥 (𝑘) + 𝐽 (𝜃) 𝜔 (𝑘) ,

𝑥 (0) = 𝑥
0
,

(1)

where 𝑥(𝑘) ∈ R𝑛 is the state variable, 𝜔(𝑘) ∈ 𝑙
2
[0,∞)

in R𝑚 is the noise signal vector (including process and
measurement noises), 𝑧(𝑘) ∈ R𝑞 is the signal to be estimated,
and 𝑦(𝑘) ∈ R𝑓 is the measurement output. In addition, the
matrices 𝐴(𝜃), 𝐵(𝜃), 𝐶(𝜃), 𝐷(𝜃), 𝐿(𝜃), and 𝐽(𝜃) are system
matrices and 𝐶(𝜃) is full row rank. These system parameters
are not precisely known but assumed to reside within the
polyhedron:

Ω = {𝐴 (𝜃) , 𝐵 (𝜃) , 𝐶 (𝜃) , 𝐷 (𝜃) , 𝐿 (𝜃) , 𝐽 (𝜃)}

=

𝑟

∑

𝑖=1

𝜃
𝑖
{𝐴

𝑖
, 𝐵

𝑖
, 𝐶

𝑖
, 𝐷

𝑖
, 𝐿

𝑖
, 𝐽
𝑖
} ,

𝑟

∑

𝑖=1

𝜃
𝑖
= 1, 𝜃

𝑖
≥ 0.

(2)

On the other hand, from Figure 1, the designed parameter-
independent robust energy-to-peak filter is taken in the form
of

𝑥
𝐹
(𝑘 + 1) = 𝐴

𝐹
𝑥
𝐹
(𝑘) + 𝐵

𝐹
𝑦
𝑞
(𝑡
𝑘
) ,

𝑧
𝐹
(𝑘) = 𝐶

𝐹
𝑥
𝐹
(𝑘) + 𝐷

𝐹
𝑦
𝑞
(𝑡
𝑘
) ,

(3)

where 𝑥
𝐹
(𝑘) ∈ R𝑛𝐹 is the state vector of the full-order filter

when 𝑛
𝐹
= 𝑛 or reduced-order filter when 𝑛

𝐹
< 𝑛 and 𝑧

𝐹
(𝑘) ∈

R𝑞 is the filter output. In addition, 𝑦
𝑞
(𝑡
𝑘
) characterizes the

filter input which is no longer equal to the output of plant due
to the communication imperfections and quantization errors.
The matrices 𝐴

𝐹
, 𝐵

𝐹
, 𝐶

𝐹
, and 𝐷

𝐹
are filter parameters to be

determined.
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2.2. Communication

2.2.1. Event-Triggered Strategy. The following assumptions
are needed to facilitate the theoretical development of event-
triggered scheme [17, 19, 20, 22, 25, 35]: (1) the sensor is clock-
driven while the filter is event-driven; (2) the transmitted
signal in network communication is handled by employing
the time-stamping technique and it is broadcasted in a single-
packet manner; (3) the total delay 𝜏

𝑘
including network-

induced delay from the sensor to the filter and the compu-
tational time with waiting delay is bounded; that is, 𝜏

𝑘
∈

[𝜏
𝑚

𝑘
, 𝜏

𝑀

𝑘
], where 𝜏

𝑚

𝑘
and 𝜏

𝑀

𝑘
denote the lower and upper delay

bounds, respectively.
To reduce the event supervision frequency, the discrete-

time event-triggered mechanism is adopted naturally in this
paper. Namely, the EG is running in a periodic manner. Once
an event happens, the EG will release the newest system
output to the communication channel. In this situation, the
following sets are defined:

(1) Let 𝑆
𝑠

= {0, 𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑘
, . . .} denote the triggered

transmission time sequence at the EG.
(2) Let 𝑆

𝑟
= {0, 𝑡

1
, 𝑡
2
, . . . , 𝑡

𝑘
, . . .} represent the successfully

received time instant at the ZOH.

Clearly, there is 𝑆
𝑟

⊆ 𝑆
𝑠

⊆ {0, 1, . . . , 𝑘, . . .}. In addition, if
all the triggered transmitted outputs at the EG are received
successfully at the ZOH, we have 𝑆

𝑠
= 𝑆

𝑟
. In the end, the

event-triggered condition which determines whether or not
the latest sensor measurements will be sent out is given by

(𝑦 (𝑖
𝑘
) − 𝑦 (𝑏

𝑘
))
𝑇

Ψ (𝑦 (𝑖
𝑘
) − 𝑦 (𝑏

𝑘
))

≥ 𝛿
1
𝑦
𝑇

(𝑏
𝑘
) Ψ𝑦 (𝑏

𝑘
) ,

(4)

where Ψ > 0 is a weighting matrix and 𝛿
1
> 0 is a threshold.

The symbol 𝑖
𝑘
= 𝑏

𝑘
+ 𝑖 (𝑖 ∈ {0, 1, . . . , 𝑏

𝑘+1
− 𝑏

𝑘
}) is the current

measured time instant. Once triggering condition (4) is held,
the current measured data packet is immediately released
and transmitted to the ZOH through the communication
network. Otherwise, it is discarded off right away. Clearly, the
next release time instant 𝑏

𝑘+1
of EG is determined by

𝑏
𝑘+1

= 𝑏
𝑘

+ min
𝑖≥1

{𝑖 | 𝑒
𝑇

(𝑖
𝑘
)Ψ𝑒 (𝑖

𝑘
) ≥ 𝛿

1
𝑦
𝑇

(𝑏
𝑘
) Ψ𝑦 (𝑏

𝑘
)} ,

(5)

where 𝑒(𝑖
𝑘
) = 𝑦(𝑖

𝑘
) − 𝑦(𝑏

𝑘
). The parameters Ψ and 𝛿

1
denote

how frequently the measured output should be transmitted.
In general, it is reasonable to set the threshold 𝛿

1
on the

interval (0, 1) from the perspective of relative error because
once the value of 𝛿

1
is larger than one in the event-triggered

condition, the sampled output may be not transmitted after a
certain time instant [30]. In addition, the weighting matrixΨ

is introduced to enhance the feasibility of the event-triggered
filtering problem.

2.2.2. Quantizer. Besides using triggering techniques to
reduce the amount of traffic over network, another way is to
quantize the transmitted data. In this paper, the considered

quantizers are logarithmic, static, and time invariant which
are stated as follows:

V = {±𝜇
ℓ
: 𝜇

ℓ
= 𝜌

ℓ
𝜇
0
, ℓ = ±1, ± 2, . . .} ∪ {±𝜇

0
} ∪ {0} ,

0 < 𝜌
ℓ
< 1, 𝜇

0
> 0,

(6)

where the parameter 𝜌
ℓ
is associated with the quantization

density. Obviously, small 𝜌
ℓ
implies coarse quantization,

whereas a large 𝜌
ℓ
means dense quantization. Each quantiza-

tion level 𝜇
ℓ
corresponds to a segment such that the quantizer

maps the whole segment to this quantization level. Moreover,
these segments form a partition of R. According to the
definition of the logarithmic quantizer in [34] and Figure 1,
we have

𝑦
𝑞
(𝑏
𝑘
) = 𝑓 (𝑦 (𝑏

𝑘
))

=

{{{{

{{{{

{

𝜌
ℓ
𝜇
0

if 1

1 + 𝜕
ℓ

𝜌
ℓ
𝜇
0
< 𝑦 (𝑏

𝑘
) ≤

1

1 − 𝜕
ℓ

𝜌
ℓ
𝜇
0
,

0 if 𝑦 (𝑏
𝑘
) = 0,

−𝑓 (−𝑦 (𝑏
𝑘
)) if 𝑦 (𝑏

𝑘
) < 0,

(7)

with

𝜕
ℓ
=

1 − 𝜌
ℓ

1 + 𝜌
ℓ

. (8)

It is observed that the above quantizer 𝑓(⋅) is symmetric; that
is, 𝑓(−𝑦(𝑏

𝑘
)) = −𝑓(𝑦(𝑏

𝑘
)). Defining the measured output

quantization error via utilizing the sector bounded method
[34], there is

�̃� (𝑏
𝑘
) = 𝑦

𝑞
(𝑏
𝑘
) − 𝑦 (𝑏

𝑘
) = Δ (𝑏

𝑘
) 𝑦 (𝑏

𝑘
) ,

Δ (𝑏
𝑘
)
 ≤ 𝜕𝐼, 𝜕 = diag {𝜕

1
, 𝜕
2
, . . . , 𝜕

𝑓
} ,

(9)

where Δ(𝑏
𝑘
) = diag{Δ

1
(𝑏
𝑘
), Δ

2
(𝑏
𝑘
), . . . , Δ

𝑓
(𝑏
𝑘
)}. Then, the

quantized output can be given by

𝑦
𝑞
(𝑏
𝑘
) = (𝐼 + Δ (𝑏

𝑘
)) 𝑦 (𝑏

𝑘
) . (10)

2.2.3. Lossy Network. When performing filtering over net-
works, packet dropouts can occasionally occur due to data
traffic congestion, data collision, or interference [36]. A large
number of works in the literature have analysed filtering
problem under lossy communication [37, 38]. Generally,
there are mainly two different strategies considered for deal-
ing with lossy links: the zero-input and hold-input [39, 40].
In this paper, the hold-input strategy is naturally adopted by
virtue of the function of ZOH. Then, parallel to the research
ideas in [17], we will handle the influence of lossy network in
event-triggered filter design from the perspective of limiting
the worst-case bound on the number of consecutive packet
dropouts.

2.3. Filtering Error System. Now,we are in a position tomodel
the filtering error system on the basis of the aforementioned
parts. First, similar to manipulations of event-triggered
mechanism in [19, 41] and based on the definitions of delay
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𝜏
𝑘
and sets 𝑆

𝑠
and 𝑆

𝑟
in Section 2.2.1, the holding interval of

ZOH between [𝑡
𝑘
+ 𝜏

𝑘
, 𝑡
𝑘+1

+ 𝜏
𝑘+1

) can be reconstructed as

Ω = [𝑡
𝑘
+ 𝜏

𝑘
, 𝑡
𝑘+1

+ 𝜏
𝑘+1

) =

𝑀𝑘

⋃

𝑗=1

Ω
𝑗
, (11)

where𝑀
𝑘
= 𝑡

𝑘+1
−𝑡

𝑘
,Ω

𝑗
= [i

𝑘
−1+𝜏

𝑗−1

𝑘
, i
𝑘
+𝜏

𝑗

𝑘
), and i

𝑘
= 𝑡

𝑘
+𝑗,

𝑗 = 1, 2, . . . ,𝑀
𝑘
−1. 𝜏𝑗

𝑘
represents the related delay at the time

instant 𝑡
𝑘
+𝑗with 𝜏

0

𝑘
= 𝜏

𝑘
and 𝜏

𝑡𝑘+1−𝑡𝑘

𝑘
= 𝜏

𝑘+1
. Moreover, when

𝑗 = 𝑀
𝑘
= 𝑡

𝑘+1
−𝑡

𝑘
,Ω

𝑀𝑘
= [𝑡

𝑘+1
−1+𝜏

𝑀𝑘−1

𝑘
, 𝑡
𝑘+1

+𝜏
𝑘+1

).Then,
defining 𝑑

𝑘
= 𝑘 − i

𝑘
and 𝑒(i

𝑘
) = 𝑦(i

𝑘
) − 𝑦(𝑡

𝑘
), the filter input

can be given as

𝑦
𝑞
(𝑡
𝑘
) = (𝐼 + Δ (𝑡

𝑘
)) (𝑦 (𝑘 − 𝑑

𝑘
) − 𝑒 (i

𝑘
)) ,

Δ (𝑡
𝑘
)
 < 𝜕𝐼, 𝑘 ∈ Ω

𝑗
.

(12)

In what follows, let �̃�(𝑘) = [𝑥
𝑇

(𝑘) 𝑥
𝑇

𝐹
(𝑘)]

𝑇

, �̃�(𝑘) =

[𝜔
𝑇

(𝑘) 𝜔
𝑇

(𝑘 − 𝑑
𝑘
)]
𝑇

, and 𝑒(𝑘) = 𝑧(𝑘) − 𝑧
𝐹
(𝑘); for 𝑘 ∈ Ω

𝑗

we have the augmented filtering error system

�̃� (𝑘 + 1) = �̃� (𝜃) �̃� (𝑘) + �̃�
𝑑
(𝜃)𝐻�̃� (𝑘 − 𝑑

𝑘
)

+ �̃�
𝜔
(𝜃) �̃� (𝑘) + �̃�

𝑒
(𝜃) 𝑒 (i

𝑘
) ,

𝑒 (𝑘) = �̃� (𝜃) �̃� (𝑘) + �̃�
𝑑
(𝜃)𝐻�̃� (𝑘 − 𝑑

𝑘
)

+ �̃�
𝜔
(𝜃) �̃� (𝑘) + �̃�

𝑒
(𝜃) 𝑒 (i

𝑘
) ,

�̃� (𝜅) = [𝑥
𝑇

0
0]

𝑇

, 𝜅 ∈ [−𝜏
𝑀

𝑑
, 0] ,

(13)

where 𝐻 = [𝐼 0], �̃�
𝑑
(𝜃) = �̂�

𝑑
(𝜃) + 𝐺Δ(𝑡

𝑘
)𝐶(𝜃), �̃�

𝜔
(𝜃) =

�̂�
𝜔
(𝜃) + 𝐺Δ(𝑡

𝑘
)𝑆(𝜃), �̃�

𝑒
= �̂�

𝑒
− 𝐺Δ(𝑡

𝑘
), �̃�

𝑑
(𝜃) = �̂�

𝑑
(𝜃) −

𝐷
𝐹
Δ(𝑡

𝑘
)𝐶(𝜃), �̃�

𝜔
(𝜃) = �̂�

𝜔
(𝜃) − 𝐷

𝐹
Δ(𝑡

𝑘
)𝑆(𝜃), �̃�

𝑒
= �̂�

𝑒
+

𝐷
𝐹
Δ(𝑡

𝑘
), 𝐺 = [0 𝐵

𝑇

𝐹
]
𝑇

, 𝑆(𝜃) = [0 𝐷(𝜃)], �̃�(𝜃) = [
𝐴(𝜃) 0

0 𝐴𝐹

],
�̂�
𝑑
(𝜃) = [

0

𝐵𝐹𝐶(𝜃)
], �̂�

𝜔
(𝜃) = [

𝐵(𝜃) 0

0 𝐵𝐹𝐷(𝜃)
], �̂�

𝑒
= [

0

−𝐵𝐹
], �̃�(𝜃) =

[𝐿(𝜃) −𝐶
𝐹
], �̂�

𝑑
(𝜃) = −𝐷

𝐹
𝐶(𝜃), �̂�

𝜔
(𝜃) = [𝐽(𝜃) −𝐷

𝐹
𝐷(𝜃)],

and �̂�
𝑒
= 𝐷

𝐹
.

Remark 1. Augmented filtering error system (13) is modeled
as a system with an interval time-varying delay. Moreover,
from the definition of 𝑑

𝑘
above (12), one can obtain 𝑑

𝑘
∈

[𝜏
𝑚

𝑑
, 𝜏

𝑀

𝑑
], where 𝜏

𝑚

𝑑
= min{𝜏𝑗−1

𝑘
− 1}, 𝜏

𝑀

𝑑
= max{𝜏𝑗

𝑘
}, 𝑗 =

1, 2, . . . ,𝑀
𝑘
. On the other hand, it should be noted that,

due to the fact of the influence introduced by lossy channel
link, the filtering error system (13) is updated at the data
packet acceptance instant 𝑡

𝑘
+ 𝜏

𝑘
of ZOH instead of at the

original delayed data release instant 𝑏
𝑘
+ 𝜏

𝑘
from EG. Hence,

compared to (4) it is reasonable to provide a new event-
triggered condition from the filter design point of view.
Therefore, assume it in the form of

(𝑦 (i
𝑘
) − 𝑦 (𝑡

𝑘
))
𝑇

Ψ (𝑦 (i
𝑘
) − 𝑦 (𝑡

𝑘
))

≥ 𝛿
2
𝑦 (𝑡

𝑘
)
𝑇

Ψ𝑦 (𝑡
𝑘
) ,

(14)

where 𝛿
1
< 𝛿

2
< 1.

Finally, the objective of this paper can be formulated as
follows: under lossy network link, for prescribed positive
scalars 𝛾, 𝜏

𝑚

𝑑
, 𝜏

𝑀

𝑑
, determine the event parameters 𝛿

𝑖
∈

(0, 1), 𝑖 = 1, 2, andΨ > 0 and the full-order filter parameters
{𝐴

𝐹
, 𝐵

𝐹
, 𝐶

𝐹
, 𝐷

𝐹
} such that the time-delay dependent filtering

error system is asymptotically stable with a given energy-
to-peak performance level 𝛾; that is, (1) the filtering error
system (13) is asymptotically stable when �̃�(𝑘) = 0; (2) the
filtering error system (13) has a prescribed energy-to-peak
disturbance attenuation level 𝛾 when �̃�(𝑘) ̸= 0. Namely,
under the zero initial condition �̃�(0) = 0, ‖𝑒(𝑘)‖

∞
< 𝛾‖�̃�(𝑘)‖

2

holds for nonzero �̃�(𝑘) ∈ 𝑙
2
[0,∞), where ‖𝑒(𝑘)‖

∞
fl

sup
𝑘
{√𝑒𝑇(𝑘)𝑒(𝑘)}, ‖�̃�(𝑘)‖

2
fl {√∑

∞

𝑘=0
�̃�
𝑇

(𝑘)�̃�(𝑘)}.
The following lemmas are useful to establish our main

results.

Lemma 2 (see [22, 42]). For any constant matrices 𝑅 ∈ R𝑛×𝑛

and 𝑈 ∈ R𝑛×𝑛, U = [ 𝑅 𝑈
𝑇

𝑈 𝑅
] ≥ 0, scalars 𝑑

𝑘
∈ [𝜏

𝑚

𝑑
, 𝜏

𝑀

𝑑
], and

vector function ] : [−𝜏
𝑀

𝑑
, −𝜏

𝑚

𝑑
] → R𝑛, such that the following

sum is well defined, then

𝑘−𝜏
𝑚

𝑑
−1

∑

𝑗=𝑘−𝜏
𝑀

𝑑

]𝑇 (𝑗) 𝑅] (𝑗)

(𝜏
𝑀

𝑑
− 𝜏

𝑚

𝑑
)
−1

≥ [

𝑥
2
− 𝑥

3

𝑥
3
− 𝑥

4

]

𝑇

U[

𝑥
2
− 𝑥

3

𝑥
3
− 𝑥

4

] , (15)

where 𝑥
2
= �̃�(𝑘 − 𝜏

𝑚

𝑑
), 𝑥

3
= �̃�(𝑘 − 𝑑

𝑘
), 𝑥

4
= �̃�(𝑘 − 𝜏

𝑀

𝑑
), and

](𝑘) = �̃�(𝑘 + 1) − �̃�(𝑘).

Lemma 3 (see [43]). For any positive definite matrix 𝑀 > 0,
two integers 𝑟

2
and 𝑟

1
with 𝑟

2
> 𝑟

1
, and a vector valued function

𝜔
𝑖
, then

(

𝑟2

∑

𝑖=𝑟1

𝜔
𝑖
)

𝑇

𝑀(

𝑟2

∑

𝑖=𝑟1

𝜔
𝑖
) ≤ (𝑟

2
− 𝑟

1
+ 1)

𝑟2

∑

𝑖=𝑟1

𝜔
𝑇

𝑖
𝑀𝜔

𝑖
. (16)

Lemma 4 (see [44]). Given matrices Λ, Γ and symmetric
matrix Ω, one has that Ω + 𝐻𝑒{Γ𝐹Λ} < 0 for any 𝐹

𝑇

𝐹 < 𝐼

if and only if there exists a constant scalar 𝜀 > 0 such that
Ω + 𝜀

−1

ΓΓ
𝑇

+ 𝜀Λ
𝑇

Λ < 0.

3. Main Results

As stated in Remark 1, the lossy network leads to the fact
that the event-triggered condition (14) used to formulate the
filtering error system is no longer equivalent to the event-
triggered one (4) used to determine the data packet release
instant, which further brings the nonuniform time series
between EG and ZOH. In order to balance such nonidentical
triggering conditions, we first assume that the desired energy-
to-peak filter can be designed on the basis of (14) with
appropriate timing parameters 𝛿

2
andΨ.Then, themainwork

is to find the worst-case bound on the number of consecutive
packet dropouts of triggered instants generated by event-
triggered condition (4), which marginally guarantees the
effectiveness of the filter designed on the basis of (14).

Theorem5. Thegiven energy-to-peak disturbance attenuation
performance of the filtering error system (13) formulated by (14)
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can be guaranteed under the lossy network, if the number of
consecutive dropouts of the released data from the EG with (4),
that is, 𝑟

𝑑𝑝
∈ {0, 1, . . . , 𝑙}, satisfies

𝑟
𝑑𝑝

≤ 𝑙 = ⌈log
(1+√𝛿1)(1+|Ξ|)

1 + √𝛿
2

1 + √𝛿
1

⌉ , (17)

where 𝑙 is the worst-case bound on the number of consecutive
packet dropouts.

Proof. Consider the filtering error system (13), andwe assume
that there are 𝑙 unsuccessfully transmitted packets in the
interval [𝑡

𝑘
, 𝑡
𝑘+1

); that is, 𝑡
𝑘
= 𝑏

𝑝
0 < 𝑏

𝑝
1 < ⋅ ⋅ ⋅ < 𝑏

𝑝
𝑙 < 𝑏

𝑝
𝑙+1 =

𝑡
𝑘+1

. Then, there is |𝑦(𝑏
𝑝
𝑙+1 − 1) − 𝑦(𝑏

𝑝
𝑙)| ≤ √𝛿

1
|𝑦(𝑏

𝑝
𝑙)|, which

further implies |𝑦(𝑏
𝑝
𝑙+1 −1)| ≤ (1+√𝛿

1
)|𝑦(𝑏

𝑝
𝑙)|. On the other

hand, by system output equation, we have |𝑦(𝑏
𝑝
𝑙+1) − 𝑦(𝑏

𝑝
𝑙+1 −

1)| = |𝐶(𝜃)𝑥(𝑏
𝑝
𝑙+1)+𝐷(𝜃)𝜔(𝑏

𝑝
𝑙+1)−𝑦(𝑏

𝑝
𝑙+1 −1)|, which is equal

to |𝐶(𝜃)𝐴(𝜃)𝑥(𝑏
𝑝
𝑙+1 −1)+𝐶(𝜃)𝐵(𝜃)𝜔(𝑏

𝑝
𝑙+1 −1)+𝐷(𝜃)𝜔(𝑏

𝑝
𝑙+1)−

𝑦(𝑏
𝑝
𝑙+1 −1)|. In addition, without loss of generality, we assume

that there exists a parameter 𝛿
3
such that |𝜔(𝑘)| ≤ 𝛿

3
|𝑦(𝑘)|

[17]. Moreover, according to [45], we further assume that the
dynamic disturbance can be modeled as follows:

𝜔 (𝑘 + 1) = 𝑊𝜔 (𝑘) + 𝜛 (𝑘) , (18)

where𝑊 is a weightingmatrix and𝜛(𝑘) is a bounded random
function. Then, we have


𝑦 (𝑏

𝑝
𝑙+1) − 𝑦 (𝑏

𝑝
𝑙+1 − 1)


=


𝐶 (𝜃)F (𝜃) 𝑦 (𝑏

𝑝
𝑙+1 − 1)

+ (𝐶 (𝜃) 𝐵 (𝜃) − 𝐶 (𝜃)F (𝜃)𝐷 (𝜃)) 𝜔 (𝑏
𝑝
𝑙+1 − 1)

+ 𝐷 (𝜃) 𝜔 (𝑏
𝑝
𝑙+1) − 𝑦 (𝑏

𝑝
𝑙+1 − 1)



≤ {|𝐶 (𝜃)F (𝜃) − 𝐼|

+ 𝛿
3
|𝐶 (𝜃) 𝐵 (𝜃) − 𝐶 (𝜃)F (𝜃)𝐷 (𝜃)|

+ 𝛿
3
𝛿
4
|𝐷 (𝜃)|}


𝑦 (𝑏

𝑝
𝑙+1 − 1)


≤ |Ξ|


𝑦 (𝑏

𝑝
𝑙+1 − 1)


,

(19)

where F(𝜃) = 𝐴(𝜃)𝐶
+

(𝜃), |Ξ| = max{|Ξ(𝜃)|}, and 𝛿
4
= |𝑊| +

|𝜛| that satisfies |𝜔(𝑘 + 1)| ≤ 𝛿
4
|𝜔(𝑘)|. Based on the above

analysis, it is straightforward to obtain 𝑦(𝑏
𝑝
𝑙+1) ≤ |Ξ||𝑦(𝑏

𝑝
𝑙+1 −

1)| +√𝛿
1
|𝑦(𝑏

𝑝
𝑙)| + |𝑦(𝑏

𝑝
𝑙)| ≤ (1 +√𝛿

1
)(1 + |Ξ|)|𝑦(𝑏

𝑝
𝑙)|, which

further deduces the following iteration:

𝑦 (𝑏
𝑝
𝑙+1) ≤ (1 + √𝛿

1
) (1 + |Ξ|)


𝑦 (𝑏

𝑝
𝑙)


≤ ((1 + √𝛿
1
) (1 + |Ξ|))

2

𝑦 (𝑏

𝑝
𝑙 − 1)


≤ ⋅ ⋅ ⋅

≤ ((1 + √𝛿
1
) (1 + |Ξ|))

𝑙+1

𝑦 (𝑡
𝑘
)
 .

(20)

Therefore, for 𝑘 ∈ [𝑏
𝑝
𝑙 , 𝑏

𝑝
𝑙+1), there is

𝑦 (𝑘) − 𝑦 (𝑡
𝑘
)
 ≤


𝑦 (𝑘) − 𝑦 (𝑏

𝑝
𝑙)


+



𝑙−1

∑

ℎ=0

(𝑦 (𝑏
𝑝
ℎ+1 − 1) − 𝑦 (𝑏

𝑝
ℎ))



+



𝑙−1

∑

ℎ=0

(𝑦 (𝑏
𝑝
ℎ+1) − 𝑦 (𝑏

𝑝
ℎ+1 − 1))



≤

𝑙

∑

ℎ=0

√𝛿
1


𝑦 (𝑏

𝑝
ℎ)



+

𝑙−1

∑

ℎ=0

(1 + √𝛿
1
) |Ξ|


𝑦 (𝑏

𝑝
ℎ)


.

(21)

Then relying on (20) to deal with the sums of the geometric
progression in (21), we finally obtain

𝑦 (𝑘) − 𝑦 (𝑡
𝑘
)


≤ ((1 + √𝛿
1
)

𝑙+1

(1 + |Ξ|)
𝑙

− 1)𝑦 (𝑡
𝑘
) .

(22)

According to the event-triggered condition (14), we know that
inequality (22) holds if the inequality (1 + √𝛿

1
)
𝑙+1

(1 + |Ξ|)
𝑙

−

1 ≤ √𝛿
2
holds, which further implies that the performance of

the filtering error system formulated by (14) is in accordance
with the filtering error system formulated by (4) under lossy
network with constraint (17). This completes the proof.

Remark 6. Theorem 5 plays two roles in the subsequent
developments of this paper. First, it ensures the effectiveness
of utilizing (14) to make filter analysis and design under the
actual triggering rule (4) when the communication parame-
ters (𝛿

1
, 𝛿

2
, Ψ) are assumed to be known. Second, it provides

the criterion to perform the codesign of communication and
filter parameters when the maximum number of consecutive
packet dropouts is determined based on the knowledge of the
network being used.

Under the constraint of the maximum allowable number
of consecutive packet losses estimated in (17), the desired
energy-to-peak event-triggered filter can be designed based
on (14). In the first place, the performance analysis of event-
triggered filter is given below.

3.1. Filter Analysis

Theorem 7. Consider the filtering error system (13) with the
communication constraints (14) and (17) for given positive
parameters 𝜏

𝑚

𝑑
, 𝜏𝑀

𝑑
, 𝛿

2
, 𝛿

1
, Ψ, and 𝛾. If there exist matrices

𝑃(𝜃) > 0, 𝑄
𝑖

> 0, 𝑅
𝑖

> 0, and Y(𝜃), 𝑈
𝑗
with positive
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scalars 𝜀
1
, 𝜀
2
, 𝜗, 𝜒 satisfy the following matrix inequalities for

𝑖 = 1, 2, 3, 𝑗 = 2, 3, and 𝛽 = 0, 1:

[
[
[
[
[
[

[

ℵ
1
(𝜃) ∙ ∙ ∙

Y (𝜃) Π̂
1
(𝜃) 𝑃 (𝜃) − Y (𝜃) − Y𝑇

(𝜃) ∙ ∙

0 (Y (𝜃) 𝐺)
𝑇

−𝜀
1
𝐼 ∙

𝜀
1
𝜕Φ (𝜃) 0 0 −𝜀

1
𝐼

]
]
]
]
]
]

]

< 0

(23)

[

𝑅
𝑗

∙

𝑈
𝑗

𝑅
𝑗

] > 0, (24)

[
[
[
[
[
[

[

−ℵ
2
(𝜃) ∙ ∙ ∙

Î (𝜃) −𝛾
2

𝐼 ∙ ∙

0 𝐷
𝑇

𝐹
−𝜀

2
𝐼 ∙

𝜀
2
𝜕Φ̂ (𝜃) 0 0 −𝜀

2
𝐼

]
]
]
]
]
]

]

< 0, (25)

where

ℵ
1
(𝜃) = diag{𝐻

𝑇

(

3

∑

𝑖=1

𝑄
𝑖
)𝐻 − 𝑃 (𝜃) , 0, −𝑄

1
,

− 𝑄
2
, −𝑄

3
, −𝐼, −Ψ̃} + 𝛿

2
Π
𝑇

4
(𝜃) Ψ̃Π

4
(𝜃) + 𝛽Π

31

+ (1 − 𝛽)Π
32

+ Θ
𝑇

(𝜃)(

3

∑

𝑖=1

(𝑑
𝑖
− 𝑑

𝑖−1
)
2

𝑅
𝑖
)Θ (𝜃) ,

Π̂
1
(𝜃) = [�̃� (𝜃) �̂�

𝑑
(𝜃) 0 0 0 �̂�

𝜔
(𝜃) �̂�

𝑒
] ,

Θ (𝜃) = [[𝐴 (𝜃) − 𝐼 0] 0 0 0 0 𝐵 (𝜃) 0] ,

Φ (𝜃) = [0 𝐶 (𝜃) 0 0 0 𝑆 (𝜃) −𝐼] ,

ℵ
2
(𝜃) = diag {𝑃 (𝜃) , 𝑄

3
, 𝐼, 𝜗𝐼} ,

Î (𝜃) = [�̃� (𝜃) �̂�
𝑑
(𝜃) �̂�

𝜔
(𝜃) �̂�

𝑒
] ,

Φ̂ (𝜃) = [0 −𝐶 (𝜃) −𝑆 (𝜃) 𝐼] ;

(26)

then the filtering error system (13) is asymptotically stable with
a guaranteed energy-to-peak performance 𝛾 > 0.

Proof. Firstly, a parameter-dependent Lyapunov-Krasovskii
function is constructed for (13):

𝑉 (𝑘)

= �̃�
𝑇

(𝑘) 𝑃 (𝜃) �̃� (𝑘) +

3

∑

𝑖=1

𝑘−1

∑

𝑗=𝑘−𝑑𝑖

�̃�
𝑇

(𝑗)𝐻
𝑇

𝑄
𝑖
𝐻�̃� (𝑗)

+

3

∑

𝑖=1

−𝑑𝑖−1−1

∑

𝑗=−𝑑𝑖

𝑘−1

∑

ℎ=𝑘+𝑗

(𝑑
𝑖
− 𝑑

𝑖−1
) ]𝑇 (ℎ)𝐻

𝑇

𝑅
𝑖
𝐻] (ℎ) ,

(27)

where 𝑑
0

= 0, 𝑑
1

= 𝜏
𝑚

𝑑
, 𝑑

3
= 𝜏

𝑀

𝑑
, 𝑑

2
= ⌈(𝑑

1
+ 𝑑

3
)/2⌉, and

](ℎ) = �̃�(ℎ + 1) − �̃�(ℎ). Then, assume any positive integer
𝑁, nonzero external disturbance, zero initial state condition,
and event-triggered manner (14); there is a performance
evaluation function for some sufficiently small parameter𝜒 >

0:

R (𝑁) = 𝑉 (𝑁) −

𝑁−1

∑

𝜂=0

�̃�
𝑇

(𝜂) �̃� (𝜂) ≤

𝑁−1

∑

𝜂=0

(Δ𝑉 (𝜂)

− �̃�
𝑇

(𝜂) �̃� (𝜂)

+ 𝜒 (𝛿
2
𝑦
𝑇

(𝑡
𝑘
) Ψ𝑦 (𝑡

𝑘
) − 𝑒

𝑇

(i
𝑘
)Ψ𝑒 (i

𝑘
))) .

(28)

Without loss of generality, for any 𝑘 ∈ [0,𝑁−1] defineB(𝑘) =

Δ𝑉(𝑘) − �̃�
𝑇

(𝑘)�̃�(𝑘)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

B1(𝑘)

+𝜒(𝛿
2
𝑦
𝑇

(𝑡
𝑘
)Ψ𝑦(𝑡

𝑘
) − 𝑒

𝑇

(i
𝑘
)Ψ𝑒(i

𝑘
)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

B2(𝑘)

).Then

through direct calculation, we have

B
1
(𝑘) = �̃�

𝑇

(𝑘 + 1) 𝑃 (𝜃) �̃� (𝑘 + 1) − �̃�
𝑇

(𝑘) 𝑃 (𝜃) �̃� (𝑘) − �̃�
𝑇

(𝑘) �̃� (𝑘)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

B11(𝑘)

+

3

∑

𝑖=1

(�̃�
𝑇

(𝑘)𝐻
𝑇

𝑄
𝑖
𝐻�̃� (𝑘) − �̃�

𝑇

(𝑘 − 𝑑
𝑖
)𝐻

𝑇

𝑄
𝑖
𝐻�̃� (𝑘 − 𝑑

𝑖
) + (𝑑

𝑖
− 𝑑

𝑖−1
)
2 ]𝑇 (𝑘)𝐻

𝑇

𝑅
𝑖
𝐻] (𝑘))

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

B12(𝑘)

−

3

∑

𝑖=1

𝑘−𝑑𝑖−1−1

∑

𝑗=𝑘−𝑑𝑖

(𝑑
𝑖
− 𝑑

𝑖−1
) ]𝑇 (𝑗)𝐻

𝑇

𝑅
𝑖
𝐻] (𝑗)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

B13(𝑘)

,

(29)

B
2
(𝑘) = 𝛿

2
(Π

4
(𝜃) 𝜁 (𝑘))

𝑇

Ψ (Π
4
(𝜃) 𝜁 (𝑘)) − 𝑒

𝑇

(i
𝑘
) Ψ𝑒 (i

𝑘
) , (30)

where 𝜁𝑇(𝑘) = [�̃�
𝑇

(𝑘) �̃�
𝑇

(𝑘−𝑑
𝑘
)𝐻

𝑇

�̃�
𝑇

(𝑘−𝑑
1
)𝐻

𝑇

�̃�
𝑇

(𝑘−

𝑑
2
)𝐻

𝑇

�̃�
𝑇

(𝑘 − 𝑑
3
)𝐻

𝑇

�̃�
𝑇

(𝑘) 𝑒
𝑇

(i
𝑘
)], and Π

4
(𝜃) =

[0 𝐶(𝜃) 0 0 0 [0 𝐷(𝜃)] −𝐼]. Moreover,

B
11

(𝑘) = 𝜁
𝑇

(𝑘) (Π
𝑇

1
(𝜃) 𝑃 (𝜃)Π

1
(𝜃)

− diag {𝑃 (𝜃) , 0, 0, 0, 0, 𝐼, 0}) 𝜁 (𝑘) ,
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B
12

(𝑘) = 𝜁
𝑇

(𝑘)

⋅ (Π
𝑇

2
(𝜃)𝐻

𝑇

(

3

∑

𝑖=1

(𝑑
𝑖
− 𝑑

𝑖−1
)
2

𝑅
𝑖
)𝐻Π

2
(𝜃)

+ diag{𝐻
𝑇

(

3

∑

𝑖=1

𝑄
𝑖
)𝐻, 0, −𝑄

1
, −𝑄

2
, −𝑄

3
, 0, 0})

⋅ 𝜁 (𝑘) ,

(31)

where [
Π1(𝜃)

Π2(𝜃)
] = [

̃
𝐴(𝜃)

̃
𝐴𝑑(𝜃) 0 0 0 �̃�𝜔(𝜃) �̃�𝑒

̃
𝐴(𝜃)−𝐼

̃
𝐴𝑑(𝜃) 0 0 0 �̃�𝜔(𝜃) �̃�𝑒

]. On the other
hand, there is

B
13

(𝑘) = −𝑑
1

𝑘−1

∑

𝑖=𝑘−𝑑1

]𝑇 (𝑖)𝐻
𝑇

𝑅
1
𝐻] (𝑖)

− (𝑑
2
− 𝑑

1
)

𝑘−𝑑1−1

∑

𝑖=𝑘−𝑑2

]𝑇 (𝑖)𝐻
𝑇

𝑅
2
𝐻] (𝑖)

− (𝑑
3
− 𝑑

2
)

𝑘−𝑑2−1

∑

𝑖=𝑘−𝑑3

]𝑇 (𝑖)𝐻
𝑇

𝑅
3
𝐻] (𝑖) .

(32)

Utilizing the discrete Jensen inequality (Lemma 3) and
Lemma 2 to deal with (32), we have

− 𝑑
1

𝑘−1

∑

𝑖=𝑘−𝑑1

]𝑇 (𝑖)𝐻
𝑇

𝑅
1
𝐻] (𝑖) ≤ − (�̃� (𝑘) − �̃� (𝑘 − 𝑑

1
))
𝑇

⋅ 𝐻
𝑇

𝑅
1
𝐻(�̃� (𝑘) − �̃� (𝑘 − 𝑑

1
)) ,

(33)

and if 𝑑
𝑘
∈ [𝑑

1
, 𝑑

2
], there is

− (𝑑
2
− 𝑑

1
)

𝑘−𝑑1−1

∑

𝑖=𝑘−𝑑2

]𝑇 (𝑖)𝐻
𝑇

𝑅
2
𝐻] (𝑖)

≤ − [

𝐻�̃� (𝑘 − 𝑑
1
) − 𝐻�̃� (𝑘 − 𝑑

𝑘
)

𝐻�̃� (𝑘 − 𝑑
𝑘
) − 𝐻�̃� (𝑘 − 𝑑

2
)
]

𝑇

⋅ [
𝑅
2

𝑈
𝑇

2

𝑈
2

𝑅
2

][

𝐻�̃� (𝑘 − 𝑑
1
) − 𝐻�̃� (𝑘 − 𝑑

𝑘
)

𝐻�̃� (𝑘 − 𝑑
𝑘
) − 𝐻�̃� (𝑘 − 𝑑

2
)
] ,

− (𝑑
3
− 𝑑

2
)

𝑘−𝑑2−1

∑

𝑖=𝑘−𝑑3

]𝑇 (𝑖)𝐻
𝑇

𝑅
3
𝐻] (𝑖)

≤ − (𝐻�̃� (𝑘 − 𝑑
2
) − 𝐻�̃� (𝑘 − 𝑑

3
))
𝑇

⋅ 𝑅
3
(𝐻�̃� (𝑘 − 𝑑

2
) − 𝐻�̃� (𝑘 − 𝑑

3
)) ,

(34)

or if 𝑑
𝑘
∈ [𝑑

2
, 𝑑

3
], there is

− (𝑑
2
− 𝑑

1
)

𝑘−𝑑1−1

∑

𝑖=𝑘−𝑑2

]𝑇 (𝑖)𝐻
𝑇

𝑅
2
𝐻] (𝑖)

≤ − (𝐻�̃� (𝑘 − 𝑑
1
) − 𝐻�̃� (𝑘 − 𝑑

2
))
𝑇

⋅ 𝑅
2
(𝐻�̃� (𝑘 − 𝑑

1
) − 𝐻�̃� (𝑘 − 𝑑

2
)) ,

− (𝑑
3
− 𝑑

2
)

𝑘−𝑑2−1

∑

𝑖=𝑘−𝑑3

]𝑇 (𝑖)𝐻
𝑇

𝑅
3
𝐻] (𝑖)

≤ −[

𝐻�̃� (𝑘 − 𝑑
2
) − 𝐻�̃� (𝑘 − 𝑑

𝑘
)

𝐻�̃� (𝑘 − 𝑑
𝑘
) − 𝐻�̃� (𝑘 − 𝑑

3
)

]

𝑇

⋅ [

[

𝑅
3

𝑈
𝑇

3

𝑈
3

𝑅
3

]

]

[

𝐻�̃� (𝑘 − 𝑑
2
) − 𝐻�̃� (𝑘 − 𝑑

𝑘
)

𝐻�̃� (𝑘 − 𝑑
𝑘
) − 𝐻�̃� (𝑘 − 𝑑

3
)

] .

(35)

Then, from (33)–(35), we get

B
13

(𝑘) ≤ 𝜁
𝑇

(𝑘)Π
31
𝜁 (𝑘) , if 𝑑

𝑘
∈ [𝑑

1
, 𝑑

2
] ,

B
13

(𝑘) ≤ 𝜁
𝑇

(𝑘)Π
32
𝜁 (𝑘) , if 𝑑

𝑘
∈ [𝑑

2
, 𝑑

3
] ,

(36)

where

Π
31

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−𝐻
𝑇

𝑅
1
𝐻 ∙ ∙ ∙ ∙ ∙ ∙

0 −𝐻𝑒 {𝑅
2
− 𝑈

2
} ∙ ∙ ∙ ∙ ∙

𝑅
1
𝐻 𝑅

2
− 𝑈

𝑇

2
−𝑅

1
− 𝑅

2
∙ ∙ ∙ ∙

0 𝑅
2
− 𝑈

2
𝑈
2

−𝑅
2
− 𝑅

3
∙ ∙ ∙

0 0 0 𝑅
3

−𝑅
3

∙ ∙

0 0 0 0 0 0 ∙

0 0 0 0 0 0 0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,
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Π
32

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−𝐻
𝑇

𝑅
1
𝐻 ∙ ∙ ∙ ∙ ∙ ∙

0 −𝐻𝑒 {𝑅
3
− 𝑈

3
} ∙ ∙ ∙ ∙ ∙

𝑅
1
𝐻 0 −𝑅

1
− 𝑅

2
∙ ∙ ∙ ∙

0 𝑅
3
− 𝑈

𝑇

3
𝑅
2

−𝑅
2
− 𝑅

3
∙ ∙ ∙

0 𝑅
3
− 𝑈

3
0 𝑈

3
−𝑅

3
∙ ∙

0 0 0 0 0 0 ∙

0 0 0 0 0 0 0

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(37)

At this point, based on (30), (31), and (36), we can conclude
thatB(𝑘) < 0 if the inequality diag{𝐻𝑇

(∑
3

𝑖=1
𝑄
𝑖
)𝐻 − 𝑃(𝜃), 0,

−𝑄
1
, −𝑄

2
, −𝑄

3
, −𝐼, −Ψ̃}+𝛿

2
Π
𝑇

4
(𝜃)Ψ̃Π

4
(𝜃)+𝛽Π

31
+(1−𝛽)Π

32
+

Π
𝑇

2
(𝜃)𝐻

𝑇

(∑
3

𝑖=1
(𝑑

𝑖
− 𝑑

𝑖−1
)
2

𝑅
𝑖
)𝐻Π

2
(𝜃) + Π

𝑇

1
(𝜃)𝑃(𝜃)Π

1
(𝜃) < 0

holds, which is equivalent to the following expression:

[

ℵ
1
(𝜃) ∙

Π
1
(𝜃) −𝑃

−1

(𝜃)

] < 0, (38)

where Ψ̃ = 𝜒Ψ, 𝛽 = 0, 1, and ℵ
1
(𝜃) is defined below

(25).Then, performing congruence transformation to (38) by
diag{𝐼,Y(𝜃)} and applying the elimination lemma (Lemma4)
to deal with the quantization error, (23) can be directly
obtained.

Finally, the energy-to-peak filtering performance is estab-
lished. First, based on B(𝑘) < 0 obtained from (38), there
is R(𝑁) < 0 in (28), which further implies 𝑉(𝑘) <

∑
𝑘−1

𝑖=0
�̃�
𝑇

(𝑖)�̃�(𝑖) for any 𝑘 because of the property of variable
irrelevance. In addition, there always exists a sufficiently
small parameter 𝜗 > 0 satisfying 𝑉(𝑘) + 𝜗𝑒

𝑇

(i
𝑘
)𝑒(i

𝑘
) ≤

∑
𝑘−1

𝑖=0
�̃�
𝑇

(𝑖)�̃�(𝑖) due to the properties of the continuity of
inequality and S-procedure [46]. On the other hand, inequal-
ity (25) implies 𝑒

𝑇

(𝑘)𝑒(𝑘) < 𝛾
2

(�̃�
𝑇

(𝑘)𝑃(𝜃)�̃�(𝑘) + �̃�
𝑇

(𝑘 −

𝑑
𝑘
)𝐻

𝑇

𝑄
3
𝐻�̃�(𝑘−𝑑

𝑘
)+�̃�

𝑇

(𝑘)�̃�(𝑘)+𝜗𝑒
𝑇

(i
𝑘
)𝑒(i

𝑘
)), which further

guarantees 𝑒
𝑇

(𝑘)𝑒(𝑘) < 𝛾
2

(𝑉(𝑘) + �̃�
𝑇

(𝑘)�̃�(𝑘) + 𝜗𝑒
𝑇

(i
𝑘
)𝑒(i

𝑘
)).

Therefore, taking the aforementioned information into con-
sideration, we can conclude 𝑒

𝑇

(𝑘)𝑒(𝑘) < 𝛾
2

(�̃�
𝑇

(𝑘)�̃�(𝑘) +

∑
𝑘−1

𝑖=0
�̃�
𝑇

(𝑖)�̃�(𝑖)) = 𝛾
2

(∑
𝑘

𝑖=0
�̃�
𝑇

(𝑖)�̃�(𝑖)). Finally, taking the
supremum of 𝑒𝑇(𝑘)𝑒(𝑘) over 𝑘 and the limit of∑𝑘

𝑖=0
�̃�
𝑇

(𝑖)�̃�(𝑖)

with 𝑘 → ∞, we have ‖𝑒(𝑘)‖
∞

< 𝛾‖�̃�(𝑘)‖
2
, which completes

the proof.

Remark 8. In traditional energy-to-peak performance anal-
ysis of filter, it is always assuming zero initial condition,
because nonzero initial conditionwill not lead to the standard
“energy ratio” type index. If one makes a point of using
nonzero initial condition in filter performance analysis, a
corresponding definition of the disturbance attenuation level
needs to be modified, such as the similar handling ‖𝑒(𝑘)‖

∞
<

𝛾‖�̃�(𝑘)‖
2
+ 𝑉(0) in [47]. Clearly, by doing so, the analysis

procedure of Theorem 7 is still available when �̃�(0) ̸= 0.

Due to the fact that the robustness of the desired event-
triggered filter can be enhanced by minimizing 𝛾. Namely,
the smaller the value of 𝛾 is, the less the effect from
external disturbances on event-triggered filtering error will
be. Therefore, we will give the filter design conditions from
the perspective of minimizing 𝛾 in the following part.

3.2. Filter Design. The energy-to-peak filter design condi-
tions can be obtained by linearizing the analysis conditions
in Theorem 7. But the traditional linearization methods
performed by special structural definition of matrix variable
generally lead to the solution information loss of analysis
conditions, which finally results in the deviations between
the optimized performance of solved event-triggered filter
and its actual worst-case level. Therefore, in order to regulate
this disequilibrium, we propose the following alternative
optimization algorithm in Theorem 9, which makes full use
of the combination of the directly expanded matrix variable
inequalities of analysis conditions and their traditionally
linearized one.

Theorem9. Let 𝜏𝑚
𝑑
, 𝜏𝑀
𝑑
, 𝛿

2
, 𝛿

1
, and Ψ̃ be given, and assume the

symmetric matrices 𝑃
ℎ

> 0, 𝑄
𝑖
> 0, and 𝑅

𝑖
> 0, matrices 𝑈

𝑗
,

𝐴
𝐹
, 𝐵

𝐹
,A

𝐹
,B

𝐹
,𝐶

𝐹
,𝐷

𝐹
,Y

1ℎ
,Y

2ℎ
,Y

3ℎ
, andY

4ℎ
, nonsingular

matrix Y
2
, and scalar parameters 𝜀

1
, 𝜀

2
, 𝜗, 𝛼

1
, and 𝛼

2
be the

solutions to the following optimization problems for (ℎ, 𝑠) =

1, 2, . . . , 𝑟, 𝑖 = 1, 2, 3, 𝑗 = 2, 3, and 𝛽 = 0, 1:
(S1)

(1) Solve the following LMI problem:
𝛾
∗

1
= min 𝛾

s.t. (41) , (42) , (43)

(39)

with definitions Y
2ℎ

= 𝛼
1
Y
2
,Y

4ℎ
= 𝛼

2
Y
2
,A

𝐹
=

Y
2
𝐴
𝐹
,B

𝐹
= Y

2
𝐵
𝐹
.

(2) Compute 𝐴
𝐹
= Y−1

2
A
𝐹
, 𝐵

𝐹
= Y−1

2
B

𝐹
.

(S2)

(1) Use the calculated 𝐴
𝐹
and 𝐵

𝐹
in (S1) to solve the

following LMI problem:
𝛾
∗

2
= min 𝛾

s.t. (41) , (42) , (43) .

(40)

(2) Compute 𝐶
𝐹
and 𝐷

𝐹
,
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where

Œ
ℎ𝑠

+ Œ
𝑠ℎ

< 0, 1 ≤ ℎ ≤ 𝑠 ≤ 𝑟, (41)

[

𝑅
𝑗

∙

𝑈
𝑗

𝑅
𝑗

] > 0, (42)

[
[
[
[
[
[

[

−ℵ
2ℎ

∙ ∙ ∙

Î
ℎ

−𝛾
2

𝐼 ∙ ∙

0 𝐷
𝑇

𝐹
−𝜀

2
𝐼 ∙

𝜀
2
𝜕Φ̂

ℎ
0 0 −𝜀

2
𝐼

]
]
]
]
]
]

]

< 0, (43)

Œ
ℎ𝑠

= diag{[

ℵ̃
1ℎ

∙

M
ℎ𝑠

𝑃
ℎ
− Y

ℎ
− Y𝑇

ℎ

] , (diag {− (𝑑
1
− 𝑑

0
)
−2

𝑅
1
, − (𝑑

2
− 𝑑

1
)
−2

𝑅
2
, − (𝑑

3
− 𝑑

2
)
−2

𝑅
3
, −Ψ̃, −𝜀

1
𝐼, −𝜀

1
𝐼})}

+ [

0 ∙

℘
𝑠

0
] < 0,

ℵ̃
1ℎ

= (diag{𝐻
𝑇

(

3

∑

𝑖=1

𝑄
𝑖
)𝐻 − 𝑃

ℎ
, 0, −𝑄

1
, −𝑄

2
, −𝑄

3
, −𝐼, −Ψ̃}) + (𝛽Π

31
+ (1 − 𝛽)Π

32
) ,

Π̂
1ℎ

= [�̃�
ℎ

�̂�
𝑑ℎ

0 0 0 �̂�
𝜔ℎ

�̂�
𝑒ℎ
] ,

M
ℎ𝑠

= Y
ℎ
Π̂
1𝑠

= [

Y
1ℎ
𝐴
𝑠
Y
2ℎ
𝐴
𝐹

Y
2ℎ
𝐵
𝐹
𝐶
𝑠

0 0 0 Y
1ℎ
𝐵
𝑠
Y
2ℎ
𝐵
𝐹
𝐷
𝑠

−Y
2ℎ
𝐵
𝐹

Y
3ℎ
𝐴
𝑠
Y
4ℎ
𝐴
𝐹

Y
4ℎ
𝐵
𝐹
𝐶
𝑠

0 0 0 Y
3ℎ
𝐵
𝑠
Y
4ℎ
𝐵
𝐹
𝐷
𝑠

−Y
4ℎ
𝐵
𝐹

] ,

℘
𝑇

𝑠
=

[
[
[

[

Θ
𝑇

𝑠
𝑅
𝑇

1
Θ
𝑇

𝑠
𝑅
𝑇

2
Θ
𝑇

𝑠
𝑅
𝑇

3

√𝛿
2
Ψ̃Π

𝑇

4𝑠
0 𝜀

1
𝜕Φ

𝑇

𝑠

0 0 0 0 [

Y
2ℎ
𝐵
𝐹

Y
4ℎ
𝐵
𝐹

] 0

]
]
]

]

,

Θ
𝑠
= [[𝐴

𝑠
− 𝐼 0] 0 0 0 0 𝐵

𝑠
0] ,

Π
4𝑠

= [0 𝐶
𝑠

0 0 0 [0 𝐷
𝑠
] −𝐼] ,

Φ
𝑠
= [0 𝐶

𝑠
0 0 0 𝑆

𝑠
−𝐼] ,

ℵ
2ℎ

= diag {𝑃
ℎ
, 𝑄

3
, 𝐼, 𝜗𝐼} ,

Î
ℎ
= [�̃�

ℎ
�̂�
𝑑ℎ

�̂�
𝜔ℎ

�̂�
𝑒
] ,

Φ̂
ℎ
= [0 −𝐶

ℎ
−𝑆

ℎ
𝐼] .

(44)

Finally, the event-triggered filter with energy-to-peak perfor-
mance 𝛾

∗

2
can be obtained by the combination constituted of

(𝐴
𝐹
, 𝐵

𝐹
) in (S1) and (𝐶

𝐹
, 𝐷

𝐹
) in (S2).

Proof. First, using Schur’s complement to deal with ℵ
1
(𝜃) in

(23), we have

diag{[

ℵ̃
1
(𝜃) ∙

M (𝜃) 𝑃
ℎ
− Y (𝜃) − Y𝑇

(𝜃)

] , (diag {− (𝑑
1
− 𝑑

0
)
−2

𝑅
1
, − (𝑑

2
− 𝑑

1
)
−2

𝑅
2
, − (𝑑

3
− 𝑑

2
)
−2

𝑅
3
, −Ψ̃, −𝜀

1
𝐼, −𝜀

1
𝐼})}

+ [

0 ∙

℘ (𝜃) 0
] < 0.

(45)
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Then, define the structures of matrix variables as

𝑃 (𝜃) =

𝑟

∑

ℎ=1

𝜃
ℎ
[
𝑃
1ℎ

𝑃
𝑇

2ℎ

𝑃
2ℎ

𝑃
3ℎ

] ,

Y (𝜃) =

𝑟

∑

ℎ=1

𝜃
ℎ
[

Y
1ℎ

Y
2ℎ

Y
3ℎ

Y
4ℎ

] ,

(46)

and apply them to develop thematrix inequality (45) with the
bridging relation; we have

𝑟

∑

ℎ=1

𝑟

∑

𝑠=1

𝜃
ℎ
𝜃
𝑠
Œ

ℎ𝑠
=

𝑟

∑

ℎ=1

𝜃
2

ℎ
Œ

ℎℎ

+

𝑟−1

∑

ℎ=1

𝑟

∑

𝑠=ℎ+1

𝜃
ℎ
𝜃
𝑠
(Œ

ℎ𝑠
+ Œ

𝑠ℎ
) < 0,

(47)

which guarantees the validity of (41). In addition, inequality
(43) can be obtained directly from (25) by similar operation.

In the following, we give the two-stage optimization
algorithm, respectively. Note that the obstruction preventing
us from linearizing inequality (23) is the nonconvex term
Y
𝑠
Π̂
1ℎ
. As illustrated before, the traditional linearization will

lead to a large conservatism. Hence the work focuses on
weakening such drawback. First, define Y

ℎ
= [

Y1ℎ 𝛼1Y2
Y3ℎ 𝛼2Y2

],
Y
2
𝐴
𝐹

= A
𝐹
, and Y

2
𝐵
𝐹

= B
𝐹
; then inequalities (41)–(43)

will be LMIs, which further formulate algorithm (S1). Second,
preset the obtained value of 𝐴

𝐹
and 𝐵

𝐹
in (S1); inequalities

(41)–(43) will be again LMIs when the auxiliary variable Y
ℎ

has the unconstrained structure; that is, Y
ℎ

= [
Y1ℎ Y2ℎ
Y3ℎ Y4ℎ

],
which verifies algorithm (S2). Third, the two steps (S1) and
(S2) can be combined to perform alternative optimization in
order to obtain the minimum energy-to-peak performance
level. This completes the proof.

Remark 10. The proposed algorithm in Theorem 9 makes an
improvement on energy-to-peak filtering performance level.
Actually, the first step (S1) is one traditional linearization
strategy, which can be also extended to represent the other
structural definitionmethods ofmatrix variable. But this kind
of approach results in information loss of analysis conditions.
In order to compensate such defect, algorithm (S2) is given on
the basis of the calculated filter dynamic matrices 𝐴

𝐹
and 𝐵

𝐹

in (S1).The intention of enabling (S2) lies in the fact that it can
provide the extra solution space relying on the unconstraint
matrix variableY

ℎ
. On the other hand, as stated in the above

proof, the design conditions in (S1) and (S2) are all LMI-
based, which are easy to be solved with SeDuMi [48] and
YALMIP [49].

Remark 11. It should be mentioned that according to the
requiredmatrix structure ofY

ℎ
in (S1), two scalar parameters

𝛼
1
and𝛼

2
are added to provide extra freedomof degree. In the

literature, there are several ways to find the optimal values of
them [50–52]. For simplification, we utilize the tuning scalars
algorithm in [52] to solve the optimal event-triggered energy-
to-peak filtering problem.

3.3. Codesign of Communication and Filter Parameters. In
Theorem 9, the event-triggered energy-to-peak filter (𝐴

𝐹
, 𝐵

𝐹
,

𝐶
𝐹
, 𝐷

𝐹
) is designed under the assumption that the event

parameters (𝛿
1
, 𝛿

2
, Ψ) are known. But in the real-world

applications these triggering parameters should be deter-
mined together with the filter parameters. Hence, a codesign
algorithm is indispensable. In addition, the event-triggered
filter designed in Theorem 9 is given by way of pursu-
ing the minimum energy-to-peak performance level, which
intensifies the objective of this paper. Actually, once given
performance value 𝛾, the desired filter can be designed by (S1)
ofTheorem 9 in the framework of codesign algorithm. In the
following, a codesign algorithm is provided.

Algorithm 12. Find the communication and filter parameters.

(1) Determine |Ξ| = |Ξ|max, 𝑙, and 𝛿
3
, 𝛿

4
based on

relationship (19), the knowledge of the network being
used, and the dynamic information of the considered
system, respectively.

(2) Set initial values �̃�
2
= 0,𝜒 = 1𝑒−4, step increment𝐻𝑗,

traverse length 𝐻𝑐, and two related storage variables
𝐻𝑘,𝐻𝑜.

(3) Let �̃�
2
= �̃�

2
+ 𝐻𝑗, and calculate �̃�

1
= ((1 + √�̃�

2
)/(1 +

|Ξ|)
𝑙

)
1/(𝑙+1)

− 1)
2.

(4) If �̃�
1

< �̃�
2

< 1, then 𝛿
2

= �̃�
2
and utilize (S1) of

Theorem 9 to calculate 𝛾
∗

1
and Ψ; else if �̃�

2
< 1, then

go to step (3); else go to step (6).
(5) Store 𝛾

∗

1
in 𝐻𝑘 and (𝛿

2
, Ψ) in 𝐻𝑜 in a homologous

way. And go to step (3) again.
(6) Based on the position of desired 𝛾

∗

1
in 𝐻𝑘, find the

corresponding (𝛿
2
, Ψ) in𝐻𝑜 and compute the related

𝛿
1
from 𝛿

2
. Then apply Theorem 9 to calculate the

optimized 𝐴
𝐹
, 𝐵

𝐹
, 𝐶

𝐹
, 𝐷

𝐹
with performance 𝛾

∗

2
.

(7) Output 𝛿
1
, 𝛿

2
, Ψ, 𝐴

𝐹
, 𝐵

𝐹
, 𝐶

𝐹
, 𝐷

𝐹
, 𝛾

∗

2
and exit.

Remark 13. Several details should be emphasized. First, the
parameter 𝜒 is used to ensure the negativeness of R(𝑁) in
(28) when certain additional terms are introduced. Hence it
is reasonable tomake it sufficiently small. Second the formula
of �̃�

1
in step (3) is given based on (17) of Theorem 5, which

is always satisfying 1 > �̃�
2
> �̃�

1
> 0. Third, there is no need

to apply the two stages ofTheorem 9 to calculate 𝛾
∗

1
andΨ in

step (3) because this step only focuses on finding the suitable
𝛿
2
. Fourth, in step (6), the parameter 𝛿

2
is finally determined

from the perspective of minimizing the performance 𝛾. But
one may more prefer to reduce the communication resource
occupancy in some practical situation. Therefore, a trade-
off analysis between the communication resource occupancy
and the weighted energy-to-peak performance level will be
made according to the obtained parameters in 𝐻𝑘 and 𝐻𝑜.

4. An Illustrative Example

TheLMI problems are solvedwith SeDuMi [48] andYALMIP
[49]. Now, consider a spring-mass system referred from [8,
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Figure 2: The relationships among 𝛿
1
, 𝛿

2
, 𝑟dp, and 𝛾.

22, 30]. Assume that the system suffers an uncertain sampling
time around 𝑇 = 0.2 s, which can be described by an
uncertain discrete-time model with some parameters inside
a polytope [53]. For simplification, we here suppose that the
dynamic process of such uncertain model is

𝑥 (𝑘 + 1)

=

[
[
[
[
[

[

0.9617 +  0.0191 0.1878 0.0012

0.0370 0.9629 0.0025 0.1798

−0.3732 0.1853 0.8678 0.0179

0.3528 −0.3553 0.0357 0.7840

]
]
]
]
]

]

𝑥 (𝑘)

+

[
[
[
[
[

[

0.0193

0.0187

0.1890

0.1813

]
]
]
]
]

]

𝜔 (𝑘) ,

(48)

where || ≤ 0.2. Without loss of generality, further let the
measurement 𝑦(𝑘) and the signal to be estimated 𝑧(𝑘) have
the matrix coefficients: 𝐶 = [1 1 0 0], 𝐷 = 0.1, 𝐿 =

[1 1 0 0], and 𝐽 = 0.1. In this example, set the quantization
density to be 0.25, lower bound of time-varying delay to be
𝜏
𝑚

𝑑
= 1, and upper bound of time-varying delay to be 𝜏

𝑀

𝑑
= 3,

and 𝛿
3
= 0.28, 𝛿

4
= 0.4, and 𝐻𝑗 = 0.01, respectively.

Firstly, we utilize the proposed algorithm in Section 3.3
to show the relationships among event-triggering thresholds
(𝛿
1
, 𝛿

2
), the worst-case bound on the number of consecutive

packet dropouts 𝑟dp, and energy-to-peak performance level
𝛾, as illustrated in Figure 2. Clearly, in order to weaken the
influences of the delay, quantization error, and lossy network,
the triggering parameter 𝛿

1
stays small. On the other hand,

with fixed 𝛿
1
and 𝛿

2
, the maximum allowable number of

packet losses is 2 which is calculated by (17). In addition,
the different determination of 𝛿

1
associated with 𝛿

2
has a

slender effect on energy-to-peak performance level 𝛾, which
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Figure 3: The release instants and intervals of event generator.

implies the probability of reducing communication resources
occupancy rates while ensuring the desired disturbance
attenuation level simultaneously.

Secondly, we verify the less conservatism of Theorem 9.
Choose a random triggering threshold 𝛿

1
= 0.0173; then we

can obtain the corresponding parameters 𝛿
2

= 0.6 and Ψ =

0.5 from𝐻𝑜 in codesign algorithm. Next, applyTheorem 9 to
calculate the filter parameters; there are

𝐴
𝐹
=

[
[
[
[
[

[

1.3954 −0.5083 0.2348 −0.2296

0.2287 0.7609 0.1259 −0.0216

−0.4672 0.5000 0.7762 0.2193

0.2737 −0.5610 0.0214 0.7886

]
]
]
]
]

]

,

𝐵
𝐹
=

[
[
[
[
[

[

0.0575

0.0248

−0.0535

0.0434

]
]
]
]
]

]

,

𝐶
𝐹
= [0.2836 0.2687 0.1999 −0.2609] ,

𝐷
𝐹
= −6.6127𝑒 − 15

(49)

with scalar parameters 𝛼
1
= −0.2 and 𝛼

2
= 0.1 andminimum

energy-to-peak performance levels 𝛾
∗

1
= 4.4671 and 𝛾

∗

2
=

4.4566. From the two optimized performance values, we can
verify that (S2) further reduces the conservatism of (S1) in
Theorem 9.

Thirdly, we show the effectiveness of the designed event-
triggered energy-to-peak filter. Assume the system initial
states 𝑥(0) = [−0.01 −0.02 0 −0.01]

𝑇 and the external
disturbance 𝜔(𝑘) = 0.02𝑒

−0.92𝑘; then the case of the event-
triggered energy-to-peak filtering for the considered poly-
topic uncertain system with quantization measurement via
lossy network is simulated. And the release instants and
intervals are depicted in Figure 3, which indicates that event-
triggered scheme reduces the transmitted data number. To
illustrate such phenomenon explicitly, the system output
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Figure 4: The system output signal and actually transmitted signal.

𝑦(𝑘) and the actually triggered output 𝑦(𝑏
𝑘
) are provided

in Figure 4. And by simple calculation, we obtain that the
packet transmission rate under the above event-triggering
mechanism is 62%. Hence, the communication resources are
saved by 38%. In addition, the random network-induced
delay and data packet loss are described in Figure 5. Finally,
the estimation error of the preceding solved energy-to-peak
filter is shown in Figure 6. Further there are ‖𝑒(𝑘)‖

∞
= 0.0587

fromFigure 6 and ‖�̃�(𝑘)‖
2
= 0.0235 by calculation.Therefore,

based on the objective given below (14) and the statement in
Remark 8, we have the relation ‖𝑒(𝑘)‖

∞
/(‖�̃�(𝑘)‖

2
+ 𝑉(0)) <

‖𝑒(𝑘)‖
∞

/‖�̃�(𝑘)‖
2
= 2.4979 < 𝛾

∗

1
= 4.4671, which shows the

effectiveness of the proposed event-triggered energy-to-peak
filter design method.

5. Conclusion

This paper studies the robust event-triggered energy-to-peak
filter design problem for a class of discrete-time polytopic
uncertain system with lossy network and quantization error.
The packet dropout of lossy network leads to the fact that
the transmitted data from the EG may not be received
successfully at the ZOH, which further results in the failure
of traditional filtering performance analysis method based
on event-triggered condition of EG. In order to handle
such problem, a boundary condition of consecutive packet
dropout from EG is calculated, which ensures that the
effectiveness of the filter designed based on received packet
at the ZOH can be still held when the event-triggered
communication mechanism of EG is applied in practice. By
this strategy, the energy-to-peak filter synthesis conditions
are then given via a codesign algorithm associatedwith a two-
stage alternative optimization approach. Finally, the validity
of the designed filter is verified by an illustrative example.

The calculation method of the worst-case bound con-
straint on the number of consecutive dropouts is adopted
to deal with the lossy network in this paper. Actually, the
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Figure 5: The network-induced delay and data packet loss.
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proposed results will be more general if the statistical prop-
erty of the packet loss is involved. Therefore, how to rely on
stochasticmodeling approach to handle the above issue needs
to be further studied in the future work.
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Systems, Birkhäauser, Boston, Mass, USA, 2003.

[44] I. R. Petersen, “A stabilization algorithm for a class of uncertain
linear systems,” Systems & Control Letters, vol. 8, no. 4, pp. 351–
357, 1987.

[45] F. Farokhi, C. Langbort, and K. H. Johansson, “Decentralized
disturbance accommodationwith limited plantmodel informa-
tion,” SIAM Journal on Control and Optimization, vol. 51, no. 2,
pp. 1543–1573, 2013.

[46] H. Liu, D.W. C. Ho, and F. Sun, “Design of𝐻
∞
filter forMarkov

jumping linear systemswith non-accessiblemode information,”
Automatica, vol. 44, no. 10, pp. 2655–2660, 2008.

[47] Y. K. Foo, “𝐻
∞

fault detection with randomly occurring non-
linearities and channel fadings,” IEEE Transactions on Circuit
System-II Express Briefs, vol. 53, no. 11, pp. 1220–1224, 2006.

[48] J. F. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for
optimization over symmetric cones,”OptimizationMethods and
Software, vol. 11-12, no. 1–4, pp. 625–653, 1999.
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