
Research Article
Asymptotic Vision-Based Tracking Control of
the Quadrotor Aerial Vehicle

Hamed Jabbari Asl1 and Ton Duc Do2

1Young Researchers and Elite Club, Islamic Azad University, Ilkhchi Branch, Ilkhchi 5358186937, Iran
2Department of Robotics and Mechatronics, Nazarbayev University, Astana 010000, Kazakhstan

Correspondence should be addressed to Ton Duc Do; doduc.ton@nu.edu.kz

Received 29 June 2015; Accepted 6 September 2015

Academic Editor: Haranath Kar

Copyright © 2015 H. Jabbari Asl and T. D. Do. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This paper proposes an image-based visual servo (IBVS) controller for the 3D translational motion of the quadrotor unmanned
aerial vehicles (UAV). The main purpose of this paper is to provide asymptotic stability for vision-based tracking control of the
quadrotor in the presence of uncertainty in the dynamic model of the system. The aim of the paper also includes the use of flow
of image features as the velocity information to compensate for the unreliable linear velocity data measured by accelerometers.
For this purpose, the mathematical model of the quadrotor is presented based on the optic flow of image features which provides
the possibility of designing a velocity-free IBVS controller with considering the dynamics of the robot. The image features are
defined from a suitable combination of perspective image moments without using the model of the object. This property allows
the application of the proposed controller in unknown places. The controller is robust with respect to the uncertainties in the
translational dynamics of the system associated with the target motion, image depth, and external disturbances. Simulation results
and a comparison study are presented which demonstrate the effectiveness of the proposed approach.

1. Introduction

Potential applications of robotic systems have motivated
the researchers to design new models and develop robust
controllers in order to improve their reliabilities. Among
the robotic systems, unmanned aerial vehicles (UAV) have
received great attention in the last decade. The researches
generally involve designing reliable controllers, developing
efficient actuators, and using the precise sensors. The sen-
sory system for these vehicles generally includes the global
positioning systems (GPSs) and the inertial measurement
units (IMUs).This sensory unit provides attitude and angular
velocity information reliable for a control process. However,
it is difficult to obtain linear velocity information suitable
for a tracking task. In addition, the GPSs provide only
course position information and are not reliable in indoor
environments.

In the last decade, vision sensor is utilized as a comple-
mentary sensor to obtain local position of the robots and also
to estimate the linear velocity information. It has received

a great attention among the researchers in the area of UAV
and different applications are developed, including estima-
tion of pose and motion of the vehicle [1, 2], simultaneous
localization and mapping [3], automatic positioning and
tracking [4], and obstacle avoidance [5]. In some applications,
visual data are directly used as the feedback information to
control the vehicle.

Controlling the UAV using visual data started from the
late 1990s. Two classic approaches are available for vision-
based control of robots which include position-based visual
servoing (PBVS) and image-based visual servoing (IBVS).
In the first approach, visual information is used to provide
the robot with a 3D understanding of its workspace. The
application of this method on the aerial robots has been
reported in several works including [1, 6, 7]. Extracting
pose and ego-motion information of a robot using a vision
sensor is very difficult and therefore estimation approaches
are utilized. Most of the developed estimation algorithms
need a priori geometric model of the observed target. These
approaches generally have high computational load and
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need noiseless image data. Furthermore, most of the pose
estimation algorithms are sensitive to initial conditions [8].
In the second approach, a controller is designed based on
dynamics of image features in the image plane.This approach
does not require 3D information of the image and hence
computationally is simpler and more robust with respect to
PBVS. However, in IBVS, more effort is required in the phase
of designing the controller in order to compensate for the
nonlinear dynamics of the image features.

For the robots with high-speed maneuvers like aerial
robots, the dynamics of the robot should be considered
in the design of the vision-based controller. Designing an
IBVS controller for underactuated aerial vehicles is more
complicated in this case. A solution is given in [4, 9, 10]
where passivity of spherical image moments is utilized to
preserve the triangular structure of the system dynamics.
However, the spherical features do not provide a satisfactory
trajectory for the vehicle in the vertical axis. This issue is
discussed and alleviated by rescaled spherical features in [11].
The authors have presented a dynamic IBVS approach in [12]
using perspective image features. This approach completely
recovers the conditioning problem associated with spherical
moments.

Another problem in designing an IBVS controller for
the aerial vehicles is the lack of precise information of the
linear velocity. This information is specially important in
tracking applications. To overcome this problem, [13] uses
flow of image features in the image plane. This approach still
suffers from the unsatisfactory trajectory of the vehicle. The
optic flows of the image include linear velocity information
which are useful to compensate for the low quality of velocity
measurements obtained from accelerometers. Reference [14]
presents an IBVS controller using two nonlinear observers
to estimate translational optic flow and attitude of the robot.
The approach uses backstepping method which increases the
complexity of the design procedure and is only developed for
the positioning task.Themoving target problem is addressed
in [15] where the controller only produces uniformly ulti-
mately bounded (UUB) tracking; that is, the controller has
final tracking error. An asymptotic IBVS tracking controller is
presented in [16]. However, the approach assumes an especial
condition for the motion of the target.

In this paper, the authors present an asymptotic tracking
dynamic IBVS controller for the 3D translational motion
of a quadrotor helicopter. Perspective image moments are
considered as image features which are reconstructed on a
virtual image plane to provide the possibility of designing
a dynamic IBVS controller. These features do not require
any information from the model of the target and they can
have arbitrary bounded motion. The mathematical model of
the system is presented in terms of the optic flow of image
features. Therefore, it possible to design a velocity-free IBVS
controller. The robust integration of the sign of the error
(RISE) method [17] is utilized in order to achieve a smooth
input and avoid the use of switching controller.The controller
is robust with respect to the parametric and nonparametric
uncertainties in the dynamics of the system associated with
target motion and depth information. Another advantage
with respect to previous approaches is that the controller
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Figure 1: Quadrotor helicopter.

does not need the yaw angle of the robot. Stability analysis
guarantees the global asymptotic tracking property of the
controller. Simulations results illustrate the effectiveness of
the controller. This work extends the authors’ previous work
[18] on optic flow-based IBVS control, in which only UUB
stability is guaranteed.

The paper is organized as follows. Mathematical equa-
tions of the quadrotor aerial vehicle are presented in
Section 2. Utilized image features and their dynamics on
the virtual image plane are given in Section 3. In Section 4,
the proposed IBVS controller is presented. The validation of
the controller by simulations is given in Section 5. Finally,
Section 6 provides the conclusion.

2. Dynamic Equations of the Quadrotor

In this section, first the aerial vehicle of the study is described
and then its mathematical model is presented.

2.1. System Description. Figure 1 illustrates the model of a
quadrotor helicopter. It consists of four rotors mounted on
a rigid cross frame. While the front and rear motors rotate
clockwise, the right and the left ones rotate counterclockwise.
With this rotation arrangement, the reactive torques, which
are generated by the rotors, are cancelled out. In addition, the
yaw motion is also compensated. It should be noted that, in
conventional helicopters, this function is done by a tail rotor
[19]. On the other hand, by varying the angular velocity of
the rotors, one can control the vertical motion. Also, the yaw
motion in the direction of the induced reactive torque can
be produced by increasing the thrust of one pair of rotors
and decreasing the others such that the total thrust is kept
constant. The difference in thrusts of the two pairs of rotors
generates the roll (or pitch) motion.

2.2. Dynamic Equations. The equations of motion of the
quadrotor (with a camera attached to its center) are
described by two coordinate frames: the inertial frame I =

{𝑂
𝑖
, 𝑋
𝑖
, 𝑌
𝑖
, 𝑍
𝑖
} and the body-fixed frameB = {𝑂

𝑏
, 𝑋
𝑏
, 𝑌
𝑏
, 𝑍
𝑏
}

which is attached to the center of mass of the robot (see
Figure 1). The position of the center of the frame B with
respect to the inertial frame is denoted by 𝜁 = [𝑥 𝑦 𝑧]

𝑇
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and the rotation matrix R : B → I defines its attitude
which depends on the three Euler angles𝜙, 𝜃, and𝜓 denoting,
respectively, the roll, pitch, and yaw.

The kinematics of the quadrotor can be expressed by

̇𝜁 = RV,

̇R = Rsk (Ω) ,
(1)

where V ∈ R3 and Ω = [Ω1 Ω2 Ω3]
𝑇
∈ R3 are, respec-

tively, the linear and angular velocities of the quadrotor in
the body-fixed frame. Also, notation sk(⋅) denotes the skew-
symmetric matrix. The angular velocity Ω is related to the
Euler angles through the following relation:

[

[

[

[

̇
𝜙

̇
𝜃

�̇�

]

]

]

]

=

[

[

[

[

[

1 sin𝜙 tan 𝜃 cos𝜙 tan 𝜃
0 cos𝜙 − sin𝜙

0

sin𝜙
cos 𝜃

cos𝜙
cos 𝜃

]

]

]

]

]

[

[

[

Ω
1

Ω
2

Ω
3

]

]

]

. (2)

On the other hand, the dynamics of a 6DOF rigid body in
the body-fixed frame are given as follows [19]:

̇V = −Ω × V + F, (3)

J ̇Ω = −Ω × JΩ + 𝜏, (4)

where 𝑚 is the mass of the robot, J ∈ R3×3 is the symmetric
inertia matrix around the center of mass, and F ∈ R3 and
𝜏 ∈ R3 are, respectively, the force and torque vectors with
respect to the frame B. In case 𝑂

𝑏
coincides with the body

principal axis of inertia, the inertial matrix is diagonal. The
actuators of the robot produce a single trust input, 𝑈

1
, and

the full torque actuation 𝜏 = [𝑈2 𝑈3 𝑈4]
𝑇. This actuation

system shows the underactuated structure of the quadrotor.
The force input F in (3) is as follows:

F = − 1
𝑚

𝑈
1
E
3
+ 𝑔R𝑇e

3
, (5)

where E
3
= e
3
= [0 0 1]

𝑇 are the unit vectors in the frames
B and I, respectively. From (2) and (5), it is clear that the
translational dynamics, (4), are independent of the yaw angle
and hence the yaw dynamic can be controlled independently.

There are two schemes to design a visual servo controller
for the quadrotor. In [9, 12], single-loop controllers are
synthesized based on the full dynamics of the system. The
most dominant advantage of this approach is that only a
single controller is required. However, the complexity of
the controller is high and consequently it is not easy to
tune the control gains. Another approach is the cascade
control. It means the control scheme is divided into inner-
loop and outer loop control. In this approach, the dynamics
of each loop are much simpler and therefore it is easier
to design the controller and tune the control gains. This
scheme is considered in this paper where the inner loop
tracks the desired orientation using high-rate data, measured
by gyroscopes. This desired orientation is the output of the
outer loop via an IBVS scheme. The stability of the whole

system can be guaranteed by time-scale separation and high-
gain arguments [20]. This paper only focuses on controlling
the translational dynamics with the assumption that a proper
high-gain controller tracks the desired attitude.

3. Image Dynamics

Spherical and perspective projections are usually used for
vision-based control of aerial vehicles. The authors have
proposed amethod in [12] to apply the perspective features in
designing a dynamic IBVS controller forUAV. In thismethod,
the image moments are projected on a virtual image plane
which is oriented using only the pitch and roll angles of the
vehicle (through the rotation matrix R

𝜙𝜃
which specifies a

rotation, respectively, about 𝑋
𝑖
and 𝑌

𝑖
axes and depends on

𝜙 and 𝜃 angles). This method provides satisfactory trajectory
for the robot in Cartesian space. In this paper, the same
imaging approach is followed and the image features are
selected from a planar target as [21]

𝑞
𝑥
= 𝑞
𝑧

V
𝑢

𝑔

𝜆

,

𝑞
𝑦
= 𝑞
𝑧

V
𝑛

𝑔

𝜆

,

𝑞
𝑧
=
√

𝑎

∗

𝑎

,

(6)

where V
𝑢

𝑔
and V

𝑛

𝑔
are the coordinates of the center of

gravity of the target in the oriented image plane, 𝜆 is the focal
length of the camera, and 𝑎∗ is the desired value of 𝑎which is
defined as follows:

𝑎 =

V
𝜇

20
+

V
𝜇

02
, (7)

where V
𝜇

𝑖𝑗
are the centered moments of the target in the

virtual image plane. Knowing that 𝑧√𝑎 = 𝑧∗√𝑎∗, in which
𝑧

∗ is the vertical distance of the camera from the target in
the desired position, the image dynamics can be written as
follows [21]:

q̇ = −sk ( ̇𝜓) q − 1

𝑧

∗
k +

1

𝑧

∗
Δ (8)

in which ̇𝜓 = [0 0 �̇�]
𝑇, q = [𝑞𝑥 𝑞𝑦 𝑞𝑧]

𝑇 is the vector of
the image features, k(𝑡) = R

𝜙𝜃
V is the linear velocity of the

robot expressed in the virtual frame (a frame attached to B
and rotated by R

𝜙𝜃
), and Δ(𝑡) is the velocity of the moving

target in the virtual frame.

4. IBVS Using Velocity of Image Features

In this section, a dynamic tracking IBVS controller is pre-
sented for the 3D translational motion of the quadrotor
helicopter. Using a smooth input, the controller provides an
asymptotic stability property and it is robust against the image
depth 𝑧∗ and themotion of themoving target.The objective is
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to move the camera attached quadrotor to match the current
image with the desired image obtained from a target.The yaw
angle of the quadrotor can be controlled to guarantee a stable
velocity, through visual information as done in [12] or using
IMU data.

In the design procedure, it is assumed that the camera
frame (attached to the center of projection of the camera)
is coincident with the quadrotor body-fixed frame, B. This
assumption can be easily released by using the transformation
between the frames. As the first step, an error vector in
the image space should be defined. To simplify the design
procedure, the desired features are considered to be as
follows:

q𝑑 = [𝑞𝑑
𝑥
𝑞

𝑑

𝑦
𝑞

𝑑

𝑧
]

𝑇

= [0 0 𝑞

𝑑

𝑧
]

𝑇

. (9)

Selecting these desired features is equivalent to have the
barycenter of the target at the center of image which is
common in vision-based control of UAV. However, a similar
transformation as in [12] can be done to modify any desired
features to (9). Now the image space error is defined as
follows:

𝛿
1
= q − q𝑑. (10)

Using (8), the time derivative of the error can be written as

̇𝛿
1
= −sk ( ̇𝜓) 𝛿

1
−

1

𝑧

∗
k +

1

𝑧

∗
Δ. (11)

To consider the translational dynamics of the robot in
designing the IBVS controller, these dynamics should also be
written in the virtual frame. Then one has

k̇ = −sk ( ̇𝜓) k − f (12)

in which f is defined as in the following:

f = −R
𝜙𝜃
F. (13)

To regulate the dynamics of the system defined by (11)
and (12), it is necessary to use the linear velocity information
k. As already mentioned, available low-weight and low-cost
accelerometers do not provide the velocity measurements
suitable for a tracking mission. Therefore, in this paper, the
dynamics of the system will be written based on the available
optic flow information (q̇ and hence ̇𝛿) of the features.
Many reliable and robust methods have been reported in the
literature for measurement of optic flow [22, 23].

Now, by computing the time derivative of (11) and
substituting (12) in it, the system dynamics can be written
based on the dynamics of the image flow as follows:

𝑧

∗
̈𝛿
1
+ 2𝑧

∗M
1
̇𝛿
1
+ 𝑧

∗M
2
𝛿
1
+M
1
Δ + ̇Δ = f , (14)

where

M
1
= sk ( ̇𝜓) ,

M
2
= sk ( ̈𝜓) + sk ( ̇𝜓) sk ( ̇𝜓) .

(15)

These dynamics include some uncertainties which have to
be compensated by the controller. There is one parametric
uncertainty associated with the depth information 𝑧∗. The
other uncertainties are unstructured which are related to the
velocity of the moving target (Δ and ̇Δ). In addition, the
acceleration of yaw, which is difficult to precisely measure in
practice, is assumed to be unknown, having a bounded value.
Therefore, the following assumptions for the dynamics are
considered in the subsequent development.

Assumption 1. The image depth 𝑧∗, the target velocity Δ, and
its first, second, and third time derivatives are assumed to be
bounded.

Assumption 2. The independent controller for the yaw angle
ensures that M

1
and M

2
, and their first time derivative are

bounded. This can be satisfied through a simple controller
assuming small values for the roll and pitch angles of the
robot.

Since the closed-loop system is analyzed through a
differential inclusion framework, the following definition is
presented.

Definition 3 (Filippov solution [24]). A vector function x(⋅)
is called a solution of ẋ = g(x) on [𝑡

0
, 𝑡
1
] (with discontinuity

on the right-hand side such that g is Lebesgue measurable
and essentially locally bounded function) if x(⋅) is absolutely
continuous on [𝑡

0
, 𝑡
1
] and for almost all 𝑡 ∈ [𝑡

0
, 𝑡
1
]

ẋ ∈ K [g] (x) , (16)

where

K [g] (x) ≜ ⋂
𝜖>0

⋂

𝜇𝑁=0

cog (B (x, 𝜖) − 𝑁, 𝑡) (17)

and ⋂
𝜇𝑁=0

denotes the intersection over all sets 𝑁 of
Lebesgue measure zero, co denotes convex closure, and
B(x, 𝜖) is open ball of radius 𝜖 centered at x.

To facilitate the subsequent analysis, filtered tracking
errors denoted by 𝛿

2
and r are also defined as follows:

𝛿
2
=
̇𝛿
1
+ 𝛼
1
𝛿
1

(18)

r = ̇𝛿
2
+ 𝛼
2
𝛿
2
, (19)

where 𝛼
1
and 𝛼

2
are positive constants. It has to be noted that

the filtered tracking error r is notmeasurable since it depends
on ̈𝛿
1
.

Now, the open-loop tracking error system can be devel-
oped by premultiplying (19) by 𝑧∗ and using (14) and (18) to
obtain the following:

𝑧

∗r = (2𝛼
1
𝑧

∗M
1
− 𝑧

∗M
2
− 𝛼

2

1
𝑧

∗
) 𝛿
1

+ (𝛼
2
𝑧

∗
− 2𝑧

∗M
1
+ 𝛼
1
𝑧

∗
) 𝛿
2
−D + f ,

(20)

whereD = M
1
Δ + ̇Δ.
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For open-loop dynamics (20), the following controller is
designed:

f (𝑡) = − (𝑘𝑠 + 1) 𝛿2 (𝑡) + (𝑘𝑠 + 1) 𝛿2 (0) + ^, (21)

where ^ ∈ R3 is the Filippov solution to the following dif-
ferential equation:

̇^ ≜ − (𝑘
𝑠
+ 1) 𝛼

2
𝛿
2
−  sgn (𝛿

2
) , ^ (0) = 0, (22)

𝑘
𝑠
and  are positive constants, and sgn(⋅) denotes the stan-

dard signum function such that ∀x = [𝑥1 𝑥2 𝑥3]
𝑇
, sgn(x) =

[sgn(𝑥1) sgn(𝑥
2
) sgn(𝑥

3
)]

𝑇. It should be noted that the
second term in (21) is used to ensure that f(0) = 0. Using
(19) and (22), the time derivative of (21) can be written as

̇f = − (𝑘
𝑠
+ 1) r −  sgn (𝛿

2
) . (23)

Now, using (23), the time derivative of (20) can be written as
follows:

𝑧

∗
̇r = − (𝑘

𝑠
+ 1) r −  sgn (𝛿

2
) +
̃N − ̇D, (24)

where the auxiliary term ̃N ∈ R3 is defined as

̃N = 𝛼3
1
𝑧

∗
𝛿
1
− (2𝛼

2

1
M
1
− 𝛼
1
M
2
− 2𝛼
1
̇M
1
+
̇M
2
) 𝑧

∗
𝛿
1

+ (2𝛼
1
M
1
+ 2𝛼
2
M
1
−M
2
− 2

̇M
1
) 𝑧

∗
𝛿
2

− 2𝑧

∗M
1
r − (𝛼2

1
+ 𝛼
1
𝛼
2
+ 𝛼

2

2
) 𝑧

∗
𝛿
2

+ (𝛼
1
+ 𝛼
2
) 𝑧

∗r.

(25)

The following upper bound can be obtained for ̃N:






̃N



≤ 𝛼

3

1
𝑧

∗ 




𝛿
1






+ 2𝛼

2

1
𝑧

∗ 




M
1











𝛿
1






+ 𝛼
1
𝑧

∗ 




M
2











𝛿
1






+ 2𝛼
1
𝑧

∗ 




̇M
1












𝛿
1






+ 𝑧

∗ 




̇M
2












𝛿
1






+ (𝛼

2

1
+ 𝛼
1
𝛼
2
+ 𝛼

2

2
) 𝑧

∗ 




𝛿
2






+ 𝑧

∗ 




M
2











𝛿
2






+ 2𝑧

∗ 




̇M
1












𝛿
2






+ 2 (𝛼
1
+ 𝛼
2
) 𝑧

∗ 




M
1











𝛿
2






+ (𝛼
1
+ 𝛼
2
) 𝑧

∗
‖r‖

+ 2𝑧

∗ 




M
1






‖r‖ ,

(26)

where ‖ ⋅ ‖ denotes the Euclidean norm. Equation (26) can be
written as







̃N



≤ 𝜌 ‖h‖ , (27)

where h(𝑡) ∈ R9 is defined as follows:

h ≜ [𝛿𝑇
1
𝛿
𝑇

2
r𝑇]
𝑇 (28)

and 𝜌 is given by

𝜌 = (𝛼

3

1
+ 𝛼

2

1
+ 𝛼
1
𝛼
2
+ 𝛼

2

2
+ 𝛼
1
+ 𝛼
2
) 𝑧

∗

+ 2 (𝛼

2

1
+ 𝛼
1
+ 𝛼
2
+ 1) 𝑧

∗ 




M
1






+ (𝛼
1
+ 1) 𝑧

∗ 




M
2






+ 2 (𝛼
1
+ 1) 𝑧

∗ 




̇M
1







+ 𝑧

∗ 




̇M
2







.

(29)

According to Assumptions 1 and 2, the following inequalities
can be considered:







̇D



≤ 𝜁
1
,







̈D



≤ 𝜁
2
,

(30)

where 𝜁
1
and 𝜁
2
are known positive constants.

Before presenting the main result of this paper, the
following lemma is presented with the proof given in [17].

Lemma 4. Let the auxiliary functionL(𝑡) ∈ R be defined as
follows:

L ≜ −r𝑇 ( ̇D +  sgn (𝛿
2
)) . (31)

If the control gain  is selected to satisfy the following sufficient
condition

 > 𝜁
1
+

1

𝛼
2

𝜁
2
, (32)

then

∫

𝑡

0

L (𝜎) d𝜎 ≤  


𝛿
2𝑖 (
0)






+ 𝛿
2 (
0)

𝑇
̇D (0) , (33)

where the subscript 𝑖 = 1, 2, 3 denotes the 𝑖th element of the
vector.

Now, the following theorem for the stability result of the
propose controller is stated.

Theorem 5. Consider the system dynamics defined by (14)
with its input as f . The controller given by (21) ensures that
the system signals are bounded and the tracking errors are
regulated in the sense that

𝛿
1 (
𝑡) , 𝛿2 (𝑡) , r (𝑡) → 0 𝑎𝑠 𝑡 → 0, (34)

provided that the control gain  satisfies (32), 𝛼
1
> 1/2, 𝛼

2
> 1,

and 𝑘
𝑠
is adjusted according to the following condition:

𝑘
𝑠
>

𝜌

2

4𝛾

, (35)

where 𝛾 = min{𝛼
1
− 1/2, 𝛼

2
− 1, 1/2}.

Proof. Let the auxiliary function 𝑃(𝛿
2
, 𝑡) ∈ R be defined as a

Filippov solution to the following differential equation:

̇
𝑃 ≜ −L,

𝑃 (𝛿
2
(𝑡
0
) , 𝑡
0
) = 

3

∑

𝑖=1






𝛿
2𝑖 (
0)






+ 𝛿
2 (
0)

𝑇
̇D (0) ,

(36)

whereL is defined in Lemma 4. It can be easily verified from
Lemma 4 that if the condition for  in (32) is satisfied, 𝑃(𝑡) ≥
0.

Now, the following Lyapunov function is considered to
prove the theorem:

𝐿 =

1

2

𝛿
𝑇

1
𝛿
1
+

1

2

𝛿
𝑇

2
𝛿
2
+

1

2

𝑧

∗r𝑇r + 𝑃. (37)
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This Lyapunov function satisfies the following inequalities:

𝛾
1






y


2
≤ 𝐿 ≤ 𝛾

2






y


2
, (38)

where 𝛾
1
= min{1/2, 𝑧∗/2}, 𝛾

2
= max{1, 𝑧∗/2}, and y is

defined as

y ≜ [h𝑇 √𝑃]
𝑇

. (39)

The time derivative of (37) along the Filippov trajectories
exists almost everywhere (a.e.); that is, for almost all 𝑡 ∈
[𝑡
0
, 𝑡
𝑓
], one has

̇
𝐿

a.e.
∈

̇
̃
𝐿 = ⋂

L𝑔∈𝜕𝐿(y,𝑡)
L𝑇
𝑔
K [ ̇𝛿𝑇
1

̇𝛿
𝑇

2
𝑧

∗
̇r𝑇 1
2

𝑃

−1/2
̇
𝑃 1]

𝑇

, (40)

where 𝜕𝐿 is the generalized gradient of 𝐿. Since 𝐿 is continu-
ously differentiable, then one has

̇
̃
𝐿 ⊂ ∇𝐿

𝑇K [ ̇𝛿𝑇
1

̇𝛿
𝑇

2
𝑧

∗
̇r𝑇 1
2

𝑃

−1/2
̇
𝑃]

𝑇

, (41)

where

∇𝐿 ≜ [𝛿
𝑇

1
𝛿
𝑇

2
r𝑇 2𝑃1/2]

𝑇

. (42)

Substituting (18), (19), and (24) in (41) and using the calculus
for K[⋅] from [24] yield

̇
̃
𝐿 ⊂ −𝛿

𝑇

1
(𝛼
1
𝛿
1
− 𝛿
2
) − 𝛿
𝑇

2
(𝛼
2
𝛿
2
− r)

− r𝑇 [(𝑘
𝑠
+ 1) r − ̃N + ̇D] − r𝑇K [sgn (𝛿

2
)]

+ r𝑇 ( ̇D + K [sgn (𝛿
2
)]) ,

(43)

in which K[sgn(𝛿
2
)] = SGN(𝛿

2
) such that ∀x =

[𝑥1
𝑥
2
𝑥
3]
𝑇, the set-valued map SGN(𝑥

𝑖
) = 1 if 𝑥

𝑖
> 0,

[−1, 1] if 𝑥
𝑖
= 0, and −1 if 𝑥

𝑖
< 0 ∀𝑖 = 1, 2, 3. Now the

following upper bound can be obtained for ̇
𝐿, using the fact

that the set in (43) reduces to a scalar equality since the right-
hand side is continuous a.e.:

̇
𝐿

a.e.
≤ −𝛼
1






𝛿
1






2
− 𝛼
2






𝛿
2






2
+






𝛿
1











𝛿
2






+






𝛿
2






‖r‖

− (𝑘
𝑠
+ 1) ‖r‖2 + ‖r‖ 




̃N



.

(44)

It should be noted that the right-hand side of (43) is
continuous except for the Lebesgue negligible set of times
when r𝑇K[sgn(𝛿

2
)]− r𝑇K[sgn(𝛿

2
)] ̸= 0 [25]. Using the fact

that






x
1











x
2






≤

1

2






x
1






2
+

1

2






x
2






2
, ∀x

1
, x
2
∈ R
𝑛
, (45)

the expression in (44) can be upper bounded as

̇
𝐿

a.e.
≤ −(𝛼

1
−

1

2

)






𝛿
1






2
− (𝛼
2
− 1)






𝛿
2






2
−

1

2

‖r‖2

− 𝑘
𝑠 ‖
r‖2 + ‖r‖ 




̃N



.

(46)

Considering (27) and (28) and since 𝛼
1
> 1/2 and 𝛼

2
> 1,

(46) can be written as follows:

̇
𝐿

a.e.
≤ −𝛾 ‖h‖2 − 𝑘𝑠 ‖r‖

2
+ 𝜌 ‖r‖ ‖h‖ . (47)

Now, by completing the squares for the second and third
terms in the right-hand side of (47) and provided that 𝑘

𝑠

satisfies (35), one can conclude that

̇
𝐿

a.e.
≤ −𝑈 (y) , (48)

where 𝑈(y) ≜ (𝛾 − 𝜌

2
/4𝑘
𝑠
)‖h‖2 is a continuous, positive

semidefinite function.
The inequalities in (38) and (48) can be used to conclude

that 𝛿
1
, 𝛿
2
, r, and 𝑃 are bounded. The closed-loop error

system can be used to show that the remaining signals are
also bounded, and h(⋅) is uniformly continuous. Then, from
(48), Corollary 1 of [26] can be invoked to show that 𝛿

1
, 𝛿
2
,

and r go to zero asymptotically, and this ends the proof.

Remark 6. The controller (21) is also robust and provides
asymptotic convergence when the translational dynamics of
the quadrotor (3) include unstructured uncertainties. These
uncertainties, which may be associated with neglected terms
in the course of modelling and/or external disturbances, can
be modelled as an additive bounded term similar to D [27].
Therefore, the controller is able to compensate for its effect.
This is because of the interesting property of the RISEmethod
that learns the unstructured uncertainty of the system.

The controller input f provides the translational force for
the quadrotor which cannot directly compensate it because
of the underactuated structure of the robot. However, having
the desired value for f , one can derive the trust magnitude,
𝑈
1
, and the desired roll and pitch angles [28]. Therefore,

a proper inner-loop controller, which tracks the desired
attitude, satisfies the control objective.

5. Simulation Study

This section provides MATLAB simulations to validate the
effectiveness of the developed vision-based controller. In
the simulations, the sampling rates for the visual data and
for the rest of the system are selected as 20ms and 10ms,
respectively. The quadrotor is initially considered to be at a
hover position having the target in the field of view.The target
is assumed to be rectangular and its vertexes are considered as
the available visual information tomeasure image features (6)
and their optic flow. The initial positions of the vertexes are
located at (0.25, 0.2, 0)m, (0.25, −0.2, 0)m, (−0.25, 0.2, 0)m,
and (−0.25, −0.2, 0)m with respect to the inertial frame.
These points are projected through the perspective projection
on a digital image plane with focal length divided by pixel size
equal to 213 and the principal point located at (80,60).

The parameters of the dynamic model of the quadrotor
are selected as 𝐽 = diag(0.0081, 0.0081, 0.0142) kgm2/rad2,
𝑚 = 2 kg, and 𝑔 = 9.81m/s2. The maximum value of 𝑧∗
is assumed to be 10m. In order to provide more realistic
conditions in the simulations, unstructured forces are also
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Figure 2: Simulation 1: trajectories of the target points in the virtual
image plane.

applied to the system which are modelled by sinusoidal
signals with different phases for each direction and the
amplitude equal to 0.1 N.

The inverse dynamics of the quadrotor [29] are used
to compute the desired roll and pitch angles of the robot
which have to be tracked in order to achieve the force
inputs designed in (21). High-gain proportional-derivative
controllers are used to control these angles. Since the pre-
sented approach requires the velocity of the image features,
numerical derivation is used to compute it which can provide
an appropriate estimation in case the visual data are available
with high frequency.

5.1. Tracking Results. In the first simulation, the quadrotor’s
initial position is assumed to be at (−0.4, −0.1, −8)m with
respect to the inertial frame, and the desired features are
measured at (0, 0, −5)m. The target moves on a circle of
radius 1m with the velocity of 𝜋/15 rad s−1. The control gains
are set as 𝛼

1
= 1, 𝛼

2
= 1.2, 𝑘

𝑠
= 26, and  = 1. The vision-

based method, presented in [30], is exploited to control the
yaw angle of the quadrotor.

Trajectories of the target points in the virtual image plane
are shown in Figure 2. The norm of the error signals is
illustrated in Figure 3. 1D and 3D illustrations of the time
evolution of the translational motion of the quadrotor are,
respectively, shown in Figures 4 and 5. As expected, results of
the simulation show the satisfactory tracking of the target and
the system errors converge to zero in the tracking mission.

5.2. Comparative Study. To show the superiority of the
proposed vision-based controller with respect to previous
methods, in this section the results are compared with the
results of the method proposed in [31]. This work assumes
that the linear velocity information is available via accelerom-
eters. The presence of bias in the output of accelerometers
is one of the main errors in these sensors [32]. The effect of
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Figure 3: Simulation 1: time evolution of the norm of the error
signals.
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Figure 4: Simulation 1: time evolution of the robot position.

this error is studied in [18] which shows that a small amount
of bias error degrades the performance of this approach.
However, here it is assumed that the true value of velocity
information is available and only the final tracking error
of two approaches is compared. The target trajectory and
the initial position of the quadrotor are assumed to be the
same as the first simulation. The trajectories of the moving
target and the quadrotor in 𝑋

𝑖
𝑌
𝑖
plane for two approaches

are illustrated in Figure 6. In addition, the norm of the input
vectors is shown in Figure 7. Results demonstrate that, in spite
of having smooth and similar control efforts, the proposed
controller in this paper improves the performance of the
system by decreasing the final tracking error.

6. Conclusion

This paper has proposed an IBVS controller for the transla-
tional motion of the quadrotor helicopter, flying on a moving
target. The main purpose of this paper is to decrease the final
tracking error of the system in the presence of uncertainty
in the model of the system. The controller utilizes the RISE
method to achieve a smooth control effort. In order to
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compensate for the unreliable quality of accelerometers for
a tracking task, in this paper the dynamics of the system are
derived based on the flow of image features. The optic flow
can be obtained using the flow of the target points in the
image sequence or simply can be computed by numerical
derivation in case the visual data are available with high rate.
The proposed controller is robust against the parametric and
nonparametric uncertainties in the dynamic model of the
system.These uncertainties are associated with the motion of
the target, unknown depth information of the image, and also
unmodelled terms in the translational dynamics. Stability
analysis proves that the controller produces an asymptotic
tracking performance. Simulation results demonstrate the
satisfactory response of the proposed vision-based approach
and its advantage over the classic methods.

The future work of this research is devoted to improving
the robustness of the system in the presence of uncertainty in
the optic flow measurements.
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[31] Z. Ceren and E. Altuğ, “Image based and hybrid visual servo
control of an unmanned aerial vehicle,” Journal of Intelligent &
Robotic Systems, vol. 65, pp. 325–344, 2012.

[32] M. Bryson and S. Sukkarieh, “Vehicle model aided inertial
navigation for a u av using low-cost sensors,” in Proceedings of
the AustralasianConference onRobotics andAutomation (ACRA
’14), vol. 1, pp. 72–77, Sydney, Australia, 2004.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


