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We study a rational planar system consisting of one linear-affine and one linear-fractional difference equation. If all of the system’s
parameters are positive (so that the positive quadrant is invariant and the system is continuous), then we show that the unique fixed
point of the system in the positive quadrant cannot be repelling and the system does not have a snap-back repeller. By folding the
system into a second-order equation, we find special cases of the system with some negative parameter values that do exhibit chaos
in the sense of Li and Yorke within the positive quadrant of the plane.

1. Introduction

In this paper we examine the possible occurrence of coexist-
ing cycles and Li-Yorke type chaos (see [1–5]) for the discrete
planar system:

𝑥
𝑛+1

= 𝑎𝑥
𝑛
+ 𝑏𝑦
𝑛
+ 𝑐, (1a)

𝑦
𝑛+1

=

𝑎


𝑥
𝑛
+ 𝑏


𝑦
𝑛
+ 𝑐


𝑎

𝑥
𝑛
+ 𝑏

𝑦
𝑛
+ 𝑐

, (1b)

where all 9 parameters are real numbers.
Rational equations and systems appear with increasing

frequency in applications; see [6–10] for some instances
of rational systems and equations in biological modeling.
Specifically, a system of types (1a) and (1b) models certain
stage-structured populations in biology; see [11–14]. If𝐴

𝑛
and

𝐽
𝑛
denote the populations of adults and juveniles in period 𝑛,

respectively, then the following special case of (1a) and (1b):

𝐴
𝑛+1

= 𝑠
1
𝐽
𝑛
+ 𝑠
2
𝐴
𝑛
,

𝐽
𝑛+1

=

𝑏𝐴
𝑛

1 + 𝑐
1
𝐽
𝑛
+ 𝑐
2
𝐴
𝑛

,

(2)

is known as a stage-structured, Beverton-Holt type popula-
tion model with survival rates 𝑠

1
, 𝑠
2
∈ (0, 1) and fertility and

competition coefficients 𝑏, 𝑐
1
> 0, 𝑐
2
≥ 0. Many more discrete

planar and higher dimensionalmodels in biology, economics,

and other areas involve other types of rational and nonlinear
difference equations; see [15–17].

The occurrence of chaotic orbits for (1a) and (1b) is
far from obvious. It is well known that a system of linear
difference equations with constant coefficients does not have
chaotic orbits. On the other hand, if one of the equations of
the system is a polynomial of degree greater than 1, then the
systemmay possess chaotic orbits within a bounded invariant
set, as in the case of the familiar logistic map on the real line
or the Hénon map in the plane; see, for example, [15, 18].

We study the occurrence of complex behavior in (1a) and
(1b). Prior studies of linear-fractional equations and systems
(see [19] and references therein) have not been focused on
demonstrating the occurrence of chaos or coexisting cycles
and recent works [20, 21] that investigate homogeneous
rational systems did not consider chaotic behavior. Studies of
chaos in rational or planar systems generally do exist in the
literature as indicated in the references below; see, for exam-
ple, [22–26]. In particular, in [26] the occurrence of chaos
in homogeneous rational systems in the plane is established.

Since (1b) is discontinuous on the plane (unlike poly-
nomial equations), the existence of solutions is guaranteed
for (1a) and (1b) only if division by zero is avoided at every
step of the iteration. In typical studies of rational systems, it
is generally assumed that all nine parameters and the initial
values are nonnegative (we refer to this as the positive case) to
avoid possible occurrence of singularities in the positive
quadrant (0,∞)

2

= (0,∞) × (0,∞) of the plane. This

Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2015, Article ID 519598, 8 pages
http://dx.doi.org/10.1155/2015/519598

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/205392279?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Discrete Dynamics in Nature and Society

quadrant is also the part of the plane that is naturally of
greatest interest in modeling applications such as the afore-
mentioned adult-juvenile model. But the type of nonlinearity
exhibited by linear-fractional equations is of a particular kind
that tends to be mild in nature away from singularities. This
may be one reason for the relatively well-behaved orbits in
the positive case rather than complex orbits that tend to be
associated with rapid rates of change.

To be more precise, we show that in the positive case any
fixed point (𝑥, 𝑦) of (1a) and (1b) in the positive quadrant
(𝑥, 𝑦 > 0) must be nonrepelling; that is, it is not true that
both of the eigenvalues of the system’s linearization at (𝑥, 𝑦)
have modulus greater than 1. This implies that (𝑥, 𝑦) is not a
snap-back repeller in the positive case.

We consider cases where some of the 9 system parameters
are negative and allow singularities to occur in the positive
quadrant (0,∞)

2. For instance, if 𝑎𝑏 < 0, then the straight
line 𝑎𝑥 + 𝑏



𝑦 + 𝑐


= 0, which is part of the singularity or
forbidden set of the system in this case, crosses the positive
quadrant so if any point (𝑥

𝑛
, 𝑦
𝑛
) of an orbit of (1a) and (1b)

falls on this line, then division by zero occurs. With negative
parameters, it is necessary to either determine the forbidden
sets or find a way of avoiding them. Determination of
forbidden sets has been done for some higher order equa-
tions; see, for example, [27–29]. But this is a difficult task for
systems like (1a) and (1b). To identify special cases of (1a) and
(1b) where orbits avoid such singularities we fold the system,
that is, transform it into a second-order quadratic-fractional
equation and then find special cases in which the occurrence
of Li-Yorke type chaos can be established in the positive quad-
rant. As a bonus, we find special cases of (1a) and (1b) that
have periodic solutions of all possible periods in the positive
quadrant. Obtaining these results would be quite difficult
without folding.

Folding is applicable generically to systems, whether
continuous or discrete, and used, though not by this name,
in diverse areas from control theory to the study of chaos in
differential systems; see [26] for an introduction in the planar
case.

2. Folding and Fixed Points

In this section, we discuss the folding of (1a) and (1b) and its
fixed points in the positive quadrant (0,∞)

2. To avoid reduc-
tions to linear or to triangular systems, we assume throughout
this paper that the parameters of (1a) and (1b) satisfy

𝑏 ̸= 0,
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+
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+






𝑏






,






𝑎






+






𝑏






+






𝑐






> 0.

(3)

2.1. Folding the System. To fold (1a) and (1b), we solve (1a) for
𝑦
𝑛
to obtain

𝑦
𝑛
=

1

𝑏

(𝑥
𝑛+1

− 𝑎𝑥
𝑛
− 𝑐) . (4)

Now
𝑥
𝑛+2

= 𝑎𝑥
𝑛+1

+ 𝑏𝑦
𝑛+1

+ 𝑐

= 𝑐 + 𝑎𝑥
𝑛+1

+

𝑏𝑎


𝑥
𝑛
+ 𝑏𝑏


𝑦
𝑛
+ 𝑏𝑐


𝑎

𝑥
𝑛
+ 𝑏

𝑦
𝑛
+ 𝑐


.

(5)

Using (1b) and (4) to eliminate 𝑦
𝑛
yields

𝑥
𝑛+2

= 𝑐 + 𝑎𝑥
𝑛+1

+

𝑏𝑎


𝑥
𝑛
+ 𝑏


(𝑥
𝑛+1

− 𝑎𝑥
𝑛
− 𝑐) + 𝑏𝑐



𝑎

𝑥
𝑛
+ (𝑏

/𝑏) (𝑥

𝑛+1
− 𝑎𝑥
𝑛
− 𝑐) + 𝑐



.

(6)

Through combining terms and simplifying, we obtain the
rational, second-order equation:

𝑥
𝑛+2

= 𝑎𝑥
𝑛+1

+

𝜎
1
𝑥
𝑛+1

+ 𝜎
2
𝑥
𝑛
+ 𝜎
3

𝑏

𝑥
𝑛+1

+ 𝐷


𝑎𝑏
𝑥
𝑛
+ 𝐷


𝑐𝑏

, (7)

where

𝐷


𝑎𝑏
= 𝑎


𝑏 − 𝑎𝑏


, 𝐷


𝑎𝑏
= 𝑎


𝑏 − 𝑎𝑏


,

𝐷


𝑐𝑏
= 𝑏𝑐


− 𝑏


𝑐, 𝐷


𝑐𝑏
= 𝑏𝑐


− 𝑏


𝑐,

𝜎
1
= 𝑏𝑏


+ 𝑐𝑏


, 𝜎
2
= 𝑏𝐷


𝑎𝑏
+ 𝑐𝐷


𝑎𝑏
,

𝜎
3
= 𝑏𝐷


𝑐𝑏
+ 𝑐𝐷


𝑐𝑏
.

(8)

We refer to the pair of (4) and (7) as a folding of (1a) and
(1b). Note that (4) is a passive equation in the sense that it
yields 𝑦

𝑛
without further iterations once a solution {𝑥

𝑛
} of (7)

is known. In this sense, we may think of (7) as a reduction of
(1a) and (1b) to a scalar difference equation.

Equation (7) is a quadratic-fractional equation.This class
of difference equations extend the linear-fractional equation
and have been subjects of increasing study; see, for example,
[27, 29–31].

Remark 1. A routine calculation shows that the orbits of (1a)
and (1b) correspond to the solutions of (7) in the sense that
if {𝑥
𝑛
} is a solution of (7) with given initial values 𝑥

0
and 𝑥

1

and {𝑦
𝑛
} is given by (4) for 𝑛 ≥ 0, then {(𝑥

𝑛
, 𝑦
𝑛
)} is an orbit of

(1a) and (1b). Conversely, if {(𝑥
𝑛
, 𝑦
𝑛
)} is an orbit of (1a) and

(1b) from an initial point (𝑥
0
, 𝑦
0
) and 𝑥

1
= 𝑎𝑥
0
+𝑏𝑦
0
+𝑐, then

{𝑥
𝑛
} is a solution of (7).

2.2. Fixed Points in the Positive Quadrant. The fixed points
of (1a) and (1b) satisfy the following equations:

𝑥 = 𝑎𝑥 + 𝑏𝑦 + 𝑐, (9a)

𝑦 =

𝑎


𝑥 + 𝑏


𝑦 + 𝑐


𝑎

𝑥 + 𝑏

𝑦 + 𝑐

. (9b)

From (9a),

𝑦 =

(1 − 𝑎) 𝑥 − 𝑐

𝑏

. (10)

Before calculating the values of the 𝑥- and𝑦-components,
we note the following facts about the solutions of the system
(1a) and (1b).
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Lemma 2. Assume that all system parameters are nonnegative
and satisfy (3); that is,

𝑏 > 0, 𝑎


+ 𝑎


, 𝑎


+ 𝑏


, 𝑎


+ 𝑏


+ 𝑐


> 0. (11)

(a) If there is a fixed point (𝑥, 𝑦) of the system in the positive
quadrant (i.e., 𝑥, 𝑦 > 0), then 0 ≤ 𝑎 < 1 and 𝑥 >

𝑐/(1 − 𝑎).
(b) If 𝑎 > 1, then every orbit of (1a) and (1b) in the positive

quadrant is unbounded.

Proof. (a) Let (𝑥, 𝑦) be a fixed point of the system in the
positive quadrant. Then, by (9a)

(1 − 𝑎) 𝑥 = 𝑏𝑦 + 𝑐 > 𝑐 ≥ 0 (12)

since 𝑏, 𝑦 > 0 by hypothesis and (11). Since 𝑥 > 0, it follows
that 1 − 𝑎 > 0 or 𝑎 < 1.

(b) From (1a), it follows that for all 𝑛

𝑥
𝑛+1

= 𝑎𝑥
𝑛
+ 𝑏𝑦
𝑛
+ 𝑐 ≥ 𝑎𝑥

𝑛
. (13)

By induction, 𝑥
𝑛
≥ 𝑎
𝑛

𝑥
0
for all 𝑛 and it follows that the

orbit is unbounded if 𝑥
0
> 0.

Now, to calculate the fixed points, from (10) and (9b), we
obtain

(1 − 𝑎) 𝑥 − 𝑐

𝑏

=

𝑎


𝑥 + 𝑏


[(1 − 𝑎) 𝑥 − 𝑐] /𝑏 + 𝑐


𝑎

𝑥 + 𝑏

[(1 − 𝑎) 𝑥 − 𝑐] /𝑏 + 𝑐



=

𝑎


𝑏𝑥 + 𝑏


(1 − 𝑎) 𝑥 − 𝑏


𝑐 + 𝑏𝑐


𝑎

𝑏𝑥 + 𝑏


(1 − 𝑎) 𝑥 − 𝑏


𝑐 + 𝑏𝑐



=

(𝐷


𝑎𝑏
+ 𝑏


) 𝑥 + 𝐷


𝑐𝑏

(𝐷


𝑎𝑏
+ 𝑏

) 𝑥 + 𝐷



𝑐𝑏

.

(14)

Multiplying and rearranging the terms yield a quadratic
equation in 𝑥 given by

𝑑
1
𝑥
2

− 𝑑
2
𝑥 − 𝑑
3
= 0, (15)

where

𝑑
1
= (1 − 𝑎) (𝑏



+ 𝐷


𝑎𝑏
) ,

𝑑
2
= 𝑏 (𝐷



𝑎𝑏
+ 𝑏


) + 𝑐 (𝐷


𝑎𝑏
+ 𝑏


) − (1 − 𝑎)𝐷


𝑐𝑏

= 𝜎
1
+ 𝜎
2
− (1 − 𝑎)𝐷



𝑐𝑏
,

𝑑
3
= 𝑏𝐷


𝑐𝑏
+ 𝑐𝐷


𝑐𝑏
= 𝜎
3
.

(16)

Depending on whether some of the last 3 parameters are
zeros or not, a number of possibilities for fixed points occur.
Since we are only interested in the fixed points in the positive
quadrant, it is relevant to point out that

𝑏


+ 𝐷


𝑎𝑏
= 𝑏


+ 𝑎


𝑏 − 𝑎𝑏


= 𝑎


𝑏 + (1 − 𝑎) 𝑏


> 0 by (11)

(17)

so by Lemma 2 𝑑
1
> 0. Assuming that

𝑑
2

2
+ 4𝑑
1
𝑑
3
≥ 0 (18)

to ensure the existence of real solutions for (15), we calculate
the roots:

𝑥 =

𝑑
2
± √𝑑
2

2
+ 4𝑑
1
𝑑
3

2𝑑
1

=

𝑏 (𝐷


𝑎𝑏
+ 𝑏


) + 𝑐 (𝐷


𝑎𝑏
+ 𝑏


) − (1 − 𝑎)𝐷


𝑐𝑏

2 (1 − 𝑎) (𝐷


𝑎𝑏
+ 𝑏

)

±

√[𝑏 (𝐷


𝑎𝑏
+ 𝑏

) + 𝑐 (𝐷



𝑎𝑏
+ 𝑏

) − (1 − 𝑎)𝐷



𝑐𝑏
]
2

+ 4 (1 − 𝑎) (𝐷


𝑎𝑏
+ 𝑏

) (𝑐𝐷


𝑐𝑏
+ 𝑏𝐷


𝑐𝑏
)

2 (1 − 𝑎) (𝐷


𝑎𝑏
+ 𝑏

)

.

(19)

These roots can be expressed more succinctly using the
parameters of the folding. We use the notation 𝑥 for the root
with the positive sign:

𝑥 =

𝜎
1
+ 𝜎
2
− (1 − 𝑎)𝐷



𝑐𝑏
+ √[𝜎

1
+ 𝜎
2
− (1 − 𝑎)𝐷



𝑐𝑏
]
2

+ 4 (1 − 𝑎) (𝑏

+ 𝐷


𝑎𝑏
) 𝜎
3

2 (1 − 𝑎) (𝑏

+ 𝐷


𝑎𝑏
)

(20)



4 Discrete Dynamics in Nature and Society

with 𝑦 given by (10) and use 𝑥 to denote the root with the
negative sign:

𝑥 =

𝜎
1
+ 𝜎
2
− (1 − 𝑎)𝐷



𝑐𝑏
− √[𝜎

1
+ 𝜎
2
− (1 − 𝑎)𝐷



𝑐𝑏
]
2

+ 4 (1 − 𝑎) (𝑏

+ 𝐷


𝑎𝑏
) 𝜎
3

2 (1 − 𝑎) (𝑏

+ 𝐷


𝑎𝑏
)

(21)

with 𝑦 again given by (10). It is an interesting fact that of the
two fixed points above only one of them can be in the positive
quadrant.

Lemma 3. Let all system parameters in (1a) and (1b) be
nonnegative and satisfy (11). If (1a) and (1b) have a fixed point
in (0,∞)

2, then that fixed point is (𝑥, 𝑦) and it is unique with
𝑥 given by (20) and 𝑦 given by (10).

Proof. Lemma 2 and the above discussion indicate that a
necessary condition for the existence of fixed points in the
positive quadrant is that 0 ≤ 𝑎 < 1 holds. We found two
possible fixed points given by (20) and (21) plus (10). Both of
these are well defined if and only if (18) holds. Now, again by
Lemma 2, the fixed point (𝑥, 𝑦) is in the positive quadrant if
𝑥 > 𝑐/(1 − 𝑎); that is,

𝑑
2
+ √𝑑
2

2
+ 4𝑑
1
𝑑
3
>

2𝑐𝑑
1

1 − 𝑎

,

√𝑑
2

2
+ 4 (1 − 𝑎) (𝑏


+ 𝐷


𝑎𝑏
) 𝜎
3
> 2𝑐 (𝑏



+ 𝐷


𝑎𝑏
) − 𝑑
2
,

(1 − 𝑎) 𝜎
3
> 𝑐
2

(𝑏


+ 𝐷


𝑎𝑏
) − 𝑐𝑑

2
.

(22)

Similarly for 𝑥, it is required that

𝑑
2
− √𝑑
2

2
+ 4𝑑
1
𝑑
3
>

2𝑐𝑑
1

1 − 𝑎

,

√𝑑
2

2
+ 4 (1 − 𝑎) (𝑏


+ 𝐷


𝑎𝑏
) 𝜎
3
< 𝑑
2
− 2𝑐 (𝑏



+ 𝐷


𝑎𝑏
) ,

(1 − 𝑎) 𝜎
3
< 𝑐
2

(𝑏


+ 𝐷


𝑎𝑏
) − 𝑐𝑑

2
.

(23)

The preceding covers all possible fixed points in the first
quadrant under the hypotheses of the lemma. We now show
that (23) cannot hold, thus leaving (𝑥, 𝑦) as the only possible
fixed point in the first quadrant. Note that

𝑐𝑑
2
− 𝑐
2

(𝑏


+ 𝐷


𝑎𝑏
)

= 𝑐 [𝜎
1
+ 𝜎
2
− (1 − 𝑎)𝐷



𝑐𝑏
] − 𝑐
2

𝑏


− 𝑐
2

𝐷


𝑎𝑏

= 𝑐 [𝑏𝑏


+ 𝑏


𝑐 + 𝑏 (𝑎


𝑏 − 𝑎𝑏


) + 𝑐𝐷


𝑎𝑏
− (1 − 𝑎)𝐷



𝑐𝑏
]

− 𝑐
2

𝑏


− 𝑐
2

𝐷


𝑎𝑏

= (1 − 𝑎) 𝑏𝑏


𝑐 + 𝑎


𝑏
2

𝑐 − 𝑐 (1 − 𝑎)𝐷


𝑐𝑏
.

(24)

Therefore,

(1 − 𝑎) 𝜎
3
+ 𝑐𝑑
2
− 𝑐
2

(𝑏


+ 𝐷


𝑎𝑏
)

= (1 − 𝑎) 𝑏𝐷


𝑐𝑏
+ (1 − 𝑎) 𝑏𝑏



𝑐 + 𝑎


𝑏
2

𝑐

= (1 − 𝑎) 𝑏 (𝑐


𝑏 − 𝑏


𝑐) + (1 − 𝑎) 𝑏𝑏


𝑐 + 𝑎


𝑏
2

𝑐

= (1 − 𝑎) 𝑏
2

𝑐


+ 𝑎


𝑏
2

𝑐.

(25)

Since the last quantity is nonnegative under the hypothe-
ses, it follows that (23) does not hold and the proof is
complete.

3. Nonexistence of Repellers

We see in the proof of Lemma 3 that (𝑥, 𝑦) exists in the posi-
tive quadrant if (18) and (22) both hold. Of particular interest
to us is whether (𝑥, 𝑦) can be repelling under the hypotheses
of Lemma 3. We recall that a fixed point is repelling if all
eigenvalues of the linearization of the system at that point
have modulus greater than 1.

Theorem 4. Let all system parameters in (1a) and (1b) be
nonnegative and satisfy (11). If (1a) and (1b) have a fixed point
in (0,∞)

2, then it is uniquely (𝑥, 𝑦) and this is not a repelling
fixed point.

Proof. The first assertion follows from Lemma 3. To show
that (𝑥, 𝑦) is not repelling, we examine the eigenvalues of the
linearization of (1a) and (1b) at (𝑥, 𝑦). The Jacobian matrix of
(1a) and (1b) evaluated at the fixed point (𝑥, 𝑦) is

𝐽 (𝑥, 𝑦) = (

𝑎 𝑏

𝑝 𝑞
) , (26)

where

𝑝 =

𝑎


(𝑎


𝑥 + 𝑏


𝑦 + 𝑐


) − 𝑎


(𝑎


𝑥 + 𝑏


𝑦 + 𝑐


)

(𝑎

𝑥 + 𝑏

𝑦 + 𝑐

)
2

,

𝑞 =

𝑏


(𝑎


𝑥 + 𝑏


𝑦 + 𝑐


) − 𝑏


(𝑎


𝑥 + 𝑏


𝑦 + 𝑐


)

(𝑎

𝑥 + 𝑏

𝑦 + 𝑐

)
2

.

(27)

Since by (9b)

𝑎


𝑥 + 𝑏


𝑦 + 𝑐


= 𝑦 (𝑎


𝑥 + 𝑏


𝑦 + 𝑐


) , (28)

the above expressions for 𝑝 and 𝑞 reduce to

𝑝 =

𝑎


− 𝑎


𝑦

𝑎

𝑥 + 𝑏

𝑦 + 𝑐

, 𝑞 =

𝑏


− 𝑏


𝑦

𝑎

𝑥 + 𝑏

𝑦 + 𝑐

. (29)
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The characteristic equation of the above Jacobian is

𝜆
2

− (𝑎 + 𝑞) 𝜆 − (𝑏𝑝 − 𝑎𝑞) = 0, (30)

where

𝑎 + 𝑞 = 𝑎 +

𝑏


− 𝑏


𝑦

𝑎

𝑥 + 𝑏

𝑦 + 𝑐


=

𝑎𝑎


𝑥 − (1 − 𝑎) 𝑏


𝑦 + 𝑎𝑐


+ 𝑏


𝑎

𝑥 + 𝑏

𝑦 + 𝑐


,

𝑏𝑝 − 𝑎𝑞 =

𝑎


𝑏 − 𝑎


𝑏𝑦 − 𝑎𝑏


+ 𝑎𝑏


𝑦

𝑎

𝑥 + 𝑏

𝑦 + 𝑐


=

𝐷


𝑎𝑏
− 𝐷


𝑎𝑏
𝑦

𝑎

𝑥 + 𝑏

𝑦 + 𝑐

.

(31)

Let

𝛼 = 𝑎 + 𝑞, 𝛽 = 𝑏𝑝 − 𝑎𝑞 (32)

and write (30) as

𝜆
2

− 𝛼𝜆 − 𝛽 = 0. (33)

The roots of (33) are the eigenvalues; that is,

𝜆
1
=

𝛼 − √𝛼
2
+ 4𝛽

2

, 𝜆
2
=

𝛼 + √𝛼
2
+ 4𝛽

2

.
(34)

When 𝛼
2

+ 4𝛽 < 0 (or 𝛽 < −𝛼
2

/4), the eigenvalues
𝜆
1
, 𝜆
2
are complex and their commonmodulus is−𝛽. So both

eigenvalues have modulus greater than 1 if and only if

𝛽 < −1. (35)

If 𝛼2 + 4𝛽 ≥ 0, then both eigenvalues are real with 𝜆
1
≤

𝛼/2 ≤ 𝜆
2
. By considering the 3 possible cases,

𝜆
1
, 𝜆
2
< −1, 𝜆

1
, 𝜆
2
> 1 or

𝜆
1
< −1, 𝜆

2
> 1

(36)

routine calculations show that both eigenvalues have modu-
lus greater than 1 if and only if

2 < |𝛼| < 1 − 𝛽 or 𝛽 > 1 + |𝛼| . (37)

With regard to (35), note that by (10) 𝑥 − 𝑏𝑦 = 𝑎𝑥 + 𝑐 so

𝛽 + 1

=

𝐷


𝑎𝑏
− 𝐷


𝑎𝑏
𝑦 + 𝑎


𝑥 + 𝑏


𝑦 + 𝑐


𝑎

𝑥 + 𝑏

𝑦 + 𝑐


=

𝑎


𝑏 − 𝑎𝑏


+ 𝑎


(𝑥 − 𝑏𝑦) + 𝑎𝑏


𝑦 + 𝑏


𝑦 + 𝑐


𝑎

𝑥 + 𝑏

𝑦 + 𝑐


=

𝑎


𝑏 − 𝑎𝑏


+ 𝑎


𝑐 + 𝑎 (𝑎


𝑥 + 𝑏


𝑦) + 𝑏


𝑦 + 𝑐


𝑎

𝑥 + 𝑏

𝑦 + 𝑐


.

(38)

By (28),

𝑎


𝑥 + 𝑏


𝑦 =

𝑎


𝑥 + 𝑏


𝑦 + 𝑐


𝑦

− 𝑐


=

𝑎


𝑥 + 𝑐


𝑦

+ 𝑏


− 𝑐


(39)

so
𝛽 + 1

=

𝑎


𝑏 + 𝑎


𝑐 + 𝑎 (𝑎


𝑥 + 𝑐


) /𝑦 + (1 − 𝑎) 𝑐


+ 𝑏


𝑦

𝑎

𝑥 + 𝑏

𝑦 + 𝑐


≥ 0.

(40)

It follows that (35) does not hold and further 1 − 𝛽 ≤ 2 so
that the first of the inequalities in (37) also does not hold. To
check the remaining inequality 𝛽 > 1 + |𝛼|, it is more con-
venient if we rewrite the expressions for 𝛼, 𝛽 in terms of the
folding parameters, using (10) to eliminate 𝑦

𝛼 =

[(2𝑎 − 1) 𝑏


+ 𝑎𝐷


𝑎𝑏
] 𝑥 + 𝜎

1
+ 𝑎𝐷


𝑐𝑏

(𝑏

+ 𝐷


𝑎𝑏
) 𝑥 + 𝐷



𝑐𝑏

,

𝛽 =

𝜎
2
− (1 − 𝑎)𝐷



𝑎𝑏
𝑥

(𝑏

+ 𝐷


𝑎𝑏
) 𝑥 + 𝐷



𝑐𝑏

.

(41)

Note that

(𝑏


+ 𝐷


𝑎𝑏
) 𝑥 + 𝐷



𝑐𝑏

>

𝑐 [𝑎


𝑏 + (1 − 𝑎) 𝑏


]

1 − 𝑎

+ 𝑏𝑐


− 𝑏


𝑐

=

𝑎


𝑏𝑐 + (1 − 𝑎) 𝑏


𝑐 + (1 − 𝑎) (𝑏𝑐


− 𝑏


𝑐)

1 − 𝑎

=

𝑎


𝑏𝑐 + (1 − 𝑎) 𝑏𝑐


1 − 𝑎

≥ 0

(42)

so 𝛽 > 1 − 𝛼 if and only if

[(2𝑎 − 1) 𝑏


+ 𝑎𝐷


𝑎𝑏
] 𝑥 + 𝜎

1
+ 𝑎𝐷


𝑐𝑏

> 𝐷


𝑐𝑏
+ (𝑏


+ 𝐷


𝑎𝑏
) 𝑥 − 𝜎

2
+ (1 − 𝑎)𝐷



𝑎𝑏
𝑥

(43)

which reduces to

2 (1 − 𝑎) (𝑏


+ 𝐷


𝑎𝑏
) 𝑥 < 𝜎

1
+ 𝜎
2
− (1 − 𝑎)𝐷



𝑐𝑏
. (44)

However, (20) implies that

2 (1 − 𝑎) (𝑏


+ 𝐷


𝑎𝑏
) 𝑥 ≥ 𝜎

1
+ 𝜎
2
− (1 − 𝑎)𝐷



𝑐𝑏
. (45)

So (44) is false, and thus 𝛼 ≤ 1 − 𝛽 or equivalently 𝛽 ≤

1 − 𝛼 ≤ 1 + |𝛼|. Hence, (𝑥, 𝑦) is not repelling in the positive
quadrant.

The above theorem shows that any fixed point of the
system in the positive quadrant is nonrepelling if all system
parameters are nonnegative; in particular, there are no snap-
back repellers in the positive case (though unstable saddle
fixed points exist for some parameter values).
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4. Cycles and Chaos in the Positive Quadrant

If 𝑎 = 0, then (7) reduces to the linear-fractional equation:

𝑥
𝑛+2

=

𝜎
1
𝑥
𝑛+1

+ 𝜎
2
𝑥
𝑛
+ 𝜎
3

𝑏

𝑥
𝑛+1

+ 𝐷


𝑎𝑏
𝑥
𝑛
+ 𝐷


𝑐𝑏

. (46)

This type of linear-fractional equation has been studied
extensively under the assumption of nonnegative parameters;
see, for example, [19]. Althoughmany questions remain to be
answered about (46), chaotic solutions for it have not been
found. To assure the occurrence of limit cycles and chaos and
to avoid reductions to linear systems or to triangular systems
where one of the equations is single variable, we assume that

𝑎, 𝑏, 𝑎


, 𝑏


̸= 0. (47)

If someof the parameters in (7) are negative, then even the
existence and boundedness of solutions are nontrivial issues.
Our aim here is to show that special cases of (7) with some
negative coefficients exhibit Li-Yorke chaos in the positive
quadrant. We note that (7) reduces to a first-order difference
equation if

𝐷


𝑎𝑏
= 𝐷


𝑎𝑏
= 0. (48)

In this case, we define 𝑟
𝑛
= 𝑥
𝑛+1

and 𝑟
0
= 𝑥
1
= 𝑎𝑥
0
+𝑏𝑦
0
+𝑐

to obtain

𝑟
𝑛+1

= 𝑎𝑟
𝑛
+

𝜎
1
𝑟
𝑛
+ 𝜎
3

𝑏

𝑟
𝑛
+ 𝐷


𝑐𝑏

. (49)

The theory of one-dimensional maps may be applied to
(49). To simplify calculations, we assume in addition to (48)
that

𝐷


𝑐𝑏
= 0, 𝐷



𝑐𝑏
̸= 0 (50)

which reduce (49) to

𝑟
𝑛+1

= 𝑎𝑟
𝑛
+ 𝑞 +

𝑠

𝑟
𝑛

, (51)

where 𝑞 = 𝑐 + 𝑏𝑏


/𝑏
 and 𝑠 = 𝑏𝐷



𝑐𝑏
/𝑏
.

Note that if𝐷
𝑐𝑏
= 0, then (51) is affine and as such it does

not have chaotic solutions.
A comprehensive study of (51) appears in [30].The follow-

ing is a consequence of the results in [30]. We point out that
if 𝑝 is the minimal period of a solution {𝑟

𝑛
} of (51) with 𝑟

0
>

0, then the sequence {𝑥
𝑛
} also has minimal period 𝑝 and by

(4) {𝑦
𝑛
} has period 𝑝. It follows that the orbit {(𝑥

𝑛
, 𝑦
𝑛
)} has

minimal period 𝑝.

Theorem 5. Assume that conditions (47), (48), and (50) hold
with the (normalized) values 𝑎 = 1 and 𝑏



= 𝑏𝐷


𝑐𝑏
and define

𝑞 = 𝑐 + 𝑏𝑏


/𝑏
.

(a) If −2 < 𝑞 < 0, then all orbits of (1a) and (1b) with
𝑥
0
+ 𝑏𝑦
0
+ 𝑐 > 0 are well defined and bounded. If also

𝑏


/𝑏


> 0, then these orbits are contained in (0,∞)
2.

(b) If −√2 < 𝑞 < 0, then all orbits of (1a) and (1b) with
𝑥
0
+ 𝑏𝑦
0
+ 𝑐 > 0 converge to the unique fixed point

(𝑥, 𝑦) = (−1/𝑞, −𝑐/𝑏) of (1a) and (1b).

(c) If −√5/2 < 𝑞 < −√2, then (1a) and (1b) have an
asymptotically stable 2-cycle {(𝑥

1
, 𝑦
1
), (𝑥
2
, 𝑦
2
)} where

𝑦
𝑖
is given by (4) and

𝑥
1
=

−𝑞 − √𝑞
2
− 2

2

, 𝑥
2
=

−𝑞 + √𝑞
2
− 2

2

.
(52)

(d) If 𝑞 = −√3 and 𝑥
0
+𝑏𝑦
0
+ 𝑐 = 2(1+ cos𝜋/9)/√3, then

the points (𝑥
𝑖
, 𝑦
𝑖
), 𝑖 = 1, 2, 3, constitute a stable orbit of

period 3 for (1a) and (1b) where 𝑦
𝑖
is given by (4) and

𝑥
1
=

2

√3

(1 + cos 𝜋
9

) , 𝑥
2
= 𝑥
1
− √3 +

1

𝑥
1

,

𝑥
3
= 𝑥
2
− √3 +

1

𝑥
2

.

(53)

(e) If −2 < 𝑞 ≤ −√3, then orbits of (1a) and (1b) with
𝑥
0
+ 𝑏𝑦
0
+ 𝑐 > 0 include cycles of all possible periods.

(f) For −2 < 𝑞 < −√3, orbits of (1a) and (1b) with 𝑥
0
+

𝑏𝑦
0
+ 𝑐 > 0 are bounded and exhibit chaotic behavior.

Proof. Statements (a)–(f) follow largely from Theorems 4–6
in [30]. It only remains to show that orbits whose initial points
satisfy 𝑥

0
+ 𝑏𝑦
0
+ 𝑐 > 0 are contained in (0,∞)

2 and to
determine the unique fixed point. Since 𝑥

𝑛
= 𝑟
𝑛−1

> 0 for
all 𝑛 ≥ 1, (4) and (51) imply under the assumptions in (a) that

𝑦
𝑛
=

1

𝑏

(𝑟
𝑛
− 𝑎𝑟
𝑛−1

− 𝑐)

= −

𝑐

𝑏

+

1

𝑏

(𝑞 +

1

𝑟
𝑛−1

)

= −

𝑐

𝑏

+

𝑐

𝑏

+

𝑏


𝑏

+

1

𝑏𝑟
𝑛−1

=

𝑏


𝑏

(1 +

1

𝑟
𝑛−1

) .

(54)

If 𝑏/𝑏 > 0, then it follows that 𝑦
𝑛
> 0 for all 𝑛 ≥ 1 and

the proof of (a) is complete. Finally, in (b) we see that the fixed
point of (1a) and (1b) when 𝑎 = 1 is determined from (9a) and
(9b), (48), and (50) as

(

−𝑏


𝑏𝑏

+ 𝑏

𝑐

, −

𝑐

𝑏

) = (−

1

𝑞

, −

𝑐

𝑏

) (55)

which is in the positive quadrant if 𝑞, 𝑐/𝑏 < 0.

Example 6. To illustrate Theorem 5, consider the following
special case of (1a) and (1b):

𝑥
𝑛+1

= 𝑥
𝑛
+ 2𝑦
𝑛
− 2,

𝑦
𝑛+1

=

0.75𝑥
𝑛
+ 1.5𝑦

𝑛

3𝑥
𝑛
+ 6𝑦
𝑛
− 6

(56)

which satisfies Part (c) of Theorem 5 (𝑞 = −1.5) and there
exists an asymptotically stable 2-cycle {(1, 0.75), (0.5, 1.25)}
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(a limit cycle) for this system. Different parameter values
yield the following system which satisfies Parts (e) and (f) of
Theorem 5 with 𝑞 ≈ −1.83:

𝑥
𝑛+1

= 𝑥
𝑛
+ 2𝑦
𝑛
− 2,

𝑦
𝑛+1

=

0.25𝑥
𝑛
+ 0.5𝑦

𝑛
+ 1

3𝑥
𝑛
+ 6𝑦
𝑛
− 6

.

(57)

This special case of (1a) and (1b) has periodic orbits of
all periods (depending on initial points) and exhibits Li-
Yorke type chaos. This fact is far from obvious and even the
existence of cycles in the first quadrant for these equations is
quite difficult to prove without folding.

We also mention that 𝑏/𝑏 > 0 in both of the above
systems so every orbit whose initial point (𝑥

0
, 𝑦
0
) satisfies

𝑥
0
+𝑏𝑦
0
+𝑐 > 0 is contained in the positive quadrant (0,∞)

2.

The hypotheses of Theorem 5 are sufficient but not nec-
essary for the occurrence of complex behavior in the positive
quadrant. In fact, due to the continuity of rational expressions
in terms of their parameters, the conclusions of Theorem 5
hold if the quantities 𝐷

𝑎𝑏
, 𝐷


𝑎𝑏
, and 𝐷



𝑐𝑏
are sufficiently small

but not necessarily zero. Numerical simulations indicate
that Li-Yorke chaos persists in the positive quadrant if the
parameters in the last system above are slightly perturbed.
Caution is needed though because if we deviate too much
from the conditions ofTheorem 5, then the nontrivial nature
of the singularity set must be taken into account before a
claim of the occurrence of chaos can be verified.
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period-doubling bifurcation of quadratic fractional second
order difference equation,” Discrete Dynamics in Nature and
Society, vol. 2014, Article ID 920410, 13 pages, 2014.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


