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We discuss the approximate controllability of fractional evolution equations involving generalized Riemann-Liouville fractional
derivative. The results are obtained with the help of the theory of fractional calculus, semigroup theory, and the Schauder fixed
point theorem under the assumption that the corresponding linear system is approximately controllable. Finally, an example is
provided to illustrate the abstract theory.

1. Introduction

Many social, physical, biological, and engineering problems
can be described by fractional partial differential equations.
In fact, fractional differential equations are considered as
an alternative model to nonlinear differential equations. In
the last two decades, fractional differential equations (see,
e.g., [1–4] and the references therein) have attracted many
scientists, and notable contributions have been made to
both the theory and applications of fractional differential
equations. Several researchers have studied the existence
results of initial and boundary value problems involving frac-
tional differential equations. The motivation for those works
arises from both the development of the theory of fractional
calculus itself and the applications of such constructions in
various fields, including physics, chemistry, aerodynamics,
and electrodynamics of complex medium. Recently, Zhou
and Jiao [5] discussed the existence of mild solutions of
fractional evolution and neutral evolution equations in an
arbitrary Banach space in which the mild solution is defined
using the probability density function and semigroup theory.
Using the same method, Zhou et al. [6] gave a suitable
definition of a mild solution for an evolution equation
involving a Riemann-Liouville fractional derivative. Using

sectorial operators, Shu and Wang [7] gave a definition of a
mild solution for fractional differential equations with order
1 < 𝛼 < 2 and established existence results. Agarwal et al.
[8] studied the existence and dimension of the set of mild
solutions of semilinear fractional differential equations inclu-
sions. Hilfer [9] proposed a generalized Riemann-Liouville
fractional derivative, for short, which includes Riemann-
Liouville fractional derivative and Caputo fractional deriva-
tive. Very recently, Gu and Trujillo [10] investigated a class of
evolution equations involving Hilfer fractional derivatives.

Recently, the approximate controllability of fractional
semilinear evolution systems in abstract spaces has been
studied by many researchers. In [11], Sakthivel et al. studied
the approximate controllability of semilinear fractional dif-
ferential systems. Kumar and Sukavanam [12, 13] obtained
a new set of sufficient conditions for the approximate con-
trollability of a class of semilinear delay control systems
of fractional order by using the contraction principle and
the Schauder fixed point theorem. Balasubramaniam et al.
[14] derived sufficient conditions for the approximate con-
trollability of impulsive fractional integrodifferential systems
with nonlocal conditions in Hilbert space. Using the analytic
resolvent method and the continuity of a resolvent in the
uniform operator topology, Fan [15] derived existence and
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approximate controllability results of a fractional control sys-
tem. Liu and Bin [16] studied existence of mild solutions and
approximate controllability results for impulsive fractional
abstract Cauchy problems involving Riemann-Liouville frac-
tional derivatives. More recently, Mahmudov [17] formulated
and proved a new set of sufficient conditions for the approx-
imate controllability of fractional neutral type evolution
equations in Banach spaces by using Schauder’s fixed point
theorem. However, the approximate controllability of frac-
tional evolution equations with Hilfer fractional derivative
has not yet been studied.

Motivated by the aforementioned papers, we study the
approximate controllability of a class of fractional evolution
equations:

𝐷
],𝜇
0

+
𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ (0, 𝑏] ,

𝐼
(1−])(1−𝜇)
0

+
𝑥 (0) = 𝑥

0

,

(1)

where 𝐷],𝜇
0

+
is the Hilfer fractional derivative, 0 ≤ ] ≤ 1,

0 < 𝜇 < 1, the state 𝑥(⋅) takes value in a Hilbert space 𝑋,
and 𝐴 is the infinitesimal generator of a strongly continuous
semigroup of bounded linear operators {𝑆(𝑡), 𝑡 > 0} in 𝑋.
The control function 𝑢 takes values in a Hilbert space 𝑈, 𝑢 ∈
𝐿
2

([0, 𝑏], 𝑈), and 𝐵 : 𝑈 → 𝑋 is a linear bounded operator.
The function 𝑓 : [0, 𝑏] × 𝑋 → 𝑋 will be specified in later
sections.

The focus of this paper is the study of the approximate
controllability of fractional semilinear differential equations
in Hilbert spaces.We will explore approximate controllability
using techniques from [18]. The method is inspired by
viewing the problem of approximate controllability as the
limit of optimal control problems and replacing it via the
convergence of resolvent operators (the resolvent condition,
(R)).

2. Preliminaries

Define
𝐶
],𝜇
([0, 𝑏] , 𝑋)

= {𝑥 ∈ 𝐶 ((0, 𝑏] , 𝑋) :

lim
𝑡→0

+

𝑡
(1−𝜆)(1−𝜇)

𝑥 (𝑡) exists and is finite}

(2)

with the norm ‖ ⋅ ‖],𝜇 defined by

‖𝑥‖],𝜇 = sup
0≤𝑡≤𝑏


𝑡
(1−𝜆)(1−𝜇)

𝑥 (𝑡)

. (3)

Obviously, 𝐶],𝜇
([0, 𝑏], 𝑋) is a Banach space.

Let us recall the following definitions from fractional
calculus.

Definition 1 (see [1]). The fractional integral of order 𝛼 > 0

with the lower limit 𝑎 for a function 𝑓 : [𝑎,∞) → R is
defined as

𝐼
𝛼

𝑎

+𝑓 (𝑡) =
1

Γ (𝛼)
∫

𝑡

𝑎

𝑓 (𝑠)

(𝑡 − 𝑠)
1−𝛼

𝑑𝑠, 𝑡 > 0, 𝛼 > 0, (4)

provided that the right-hand side is pointwise defined on
[0,∞), where Γ is the gamma function.

Definition 2 (see [9]). TheHilfer derivative of order 0 ≤ ] ≤ 1
and 0 < 𝜇 < 1 with lower limit 𝑎 is defined as

𝐷
],𝜇
𝑎

+
𝑓 (𝑡) = 𝐼

](1−𝜇)
0

+

𝑑

𝑑𝑡
𝐼
(1−])(1−𝜇)
𝑎

+
𝑓 (𝑡) , (5)

for functions such that the expression on the right-hand side
exists.

Remark 3. When ] = 0, 0 < 𝜇 < 1, the Hilfer fractional
derivative coincides with the classical Riemann-Liouville
fractional derivative:

𝐷
0,𝜇

𝑎

+
𝑓 (𝑡) =

𝑑

𝑑𝑡
𝐼
1−𝜇

𝑎

+
𝑓 (𝑡) =

𝐿

𝐷
𝜇

𝑎

+
𝑓 (𝑡) . (6)

When ] = 1, 0 < 𝜇 < 1, the Hilfer fractional derivative
coincides with the classical Caputo fractional derivative:

𝐷
1,𝜇

𝑎

+
𝑓 (𝑡) = 𝐼

1−𝜇

𝑎

+

𝑑

𝑑𝑡
𝑓 (𝑡) =

𝐶

𝐷
𝜇

𝑎

+
𝑓 (𝑡) . (7)

For 𝑥 ∈ 𝑋, we define two families of operators {S],𝜇(𝑡) :

𝑡 ≥ 0} and {P
𝜇

(𝑡) : 𝑡 ≥ 0} by

S],𝜇 (𝑡) = 𝐼
](1−𝜇)
0

+
P
𝜇

(𝑡) , P
𝜇

(𝑡) = 𝑡
𝜇−1

T
𝜇

(𝑡) ,

T
𝜇

(𝑡) = ∫

∞

0

𝜇𝜃Ψ
𝜇

(𝜃) 𝑆 (𝑡
𝜇

𝜃) 𝑑𝜃,

(8)

where

Ψ
𝜇

(𝜃) =

∞

∑

𝑛=1

(−𝜃)
𝑛−1

(𝑛 − 1)!Γ (1 − 𝑛𝜇)
sin (𝑛𝜋𝛼) , 𝜃 ∈ (0,∞) ,

(9)

is a function ofWright-type defined on (0,∞)which satisfies

Ψ
𝛼

(𝜃) ≥ 0, ∫

∞

0

Ψ
𝛼

(𝜃) 𝑑𝜃 = 1,

∫

∞

0

𝜃
𝜁

Ψ
𝜇

(𝜃) 𝑑𝜃 =
Γ (1 + 𝜁)

Γ (1 + 𝜇𝜁)
, 𝜁 ∈ (−1,∞) .

(10)

Lemma 4 (see [10]). The operators S],𝜇 and P
𝜇

have the
following properties.

(i) For any fixed 𝑡 > 0, S],𝜇(𝑡) and P
𝜇

(𝑡) are linear and
bounded operators, and


P
𝜇

(𝑡) 𝑥

≤
𝑀𝑡
𝜇−1

Γ (𝜇)
‖𝑥‖ ,


S],𝜇 (𝑡) 𝑥


≤

𝑀𝑡
(]−1)(1−𝜇)

Γ (] (1 − 𝜇) + 𝜇)
‖𝑥‖ .

(11)

(ii) {P
𝜇

(𝑡) : 𝑡 > 0} is compact, if {𝑆(𝑡) : 𝑡 > 0} is compact.
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In this paper we adopt the following definition of mild
solution of the initial-value problem (1); see [10].

Definition 5. A solution 𝑥(⋅; 𝑢) ∈ 𝐶([0, 𝑏], 𝑋) is said to be a
mild solution of (1) if for any 𝑢 ∈ 𝐿

2

([0, 𝑏], 𝑈) the integral
equation

𝑥 (𝑡) = S],𝜇 (𝑡) 𝑥0 + ∫
𝑡

0

P
𝜇

(𝑡 − 𝑠) [𝐵𝑢 (𝑠) + 𝑓 (𝑠, 𝑥 (𝑠))] 𝑑𝑠

(12)

is satisfied, for all 0 ≤ 𝑡 ≤ 𝑏.

Let 𝑥(𝑏; 𝑢) be the state value of (12) at the terminal time 𝑏
corresponding to the control 𝑢. We introduce the setR(𝑏) =

{𝑥(𝑏; 𝑢) : 𝑢 ∈ 𝐿
2

([0, 𝑏], 𝑈)}, which is called the reachable set
of system (12) at terminal time 𝑇, and denote its closure in𝑋
byR(𝑏).

Definition 6. The system (1) is said to be approximately
controllable on [0, 𝑏] if R(𝑏) = 𝑋; that is, given an arbitrary
𝜀 > 0 it is possible to steer from the point 𝑥

0

to within a
distance 𝜀 from all points in the state space𝑋 at time 𝑏.

Remark 7. (i) When ] = 0, the fractional equation (12) sim-
plifies to the classical Riemann-Liouville fractional equation
which has been studied by Zhou et al. in [6]. In this case

S
0,𝜇

(𝑡) = P
𝜇

(𝑡) = 𝑡
𝜇−1

T
𝜇

(𝑡) , 0 < 𝑡 ≤ 𝑏. (13)

(ii) When ] = 1, the fractional equation (12) simplifies to the
classical Caputo fractional equation which has been studied
by Zhou and Jiao in [5]. In this case

S
1,𝜇

(𝑡) = S
𝜇

(𝑡) , 0 ≤ 𝑡 ≤ 𝑏, (14)

where S
𝜇

(𝑡) is defined in [5].

3. Main Results

To investigate the approximate controllability of system (12),
we impose the following conditions:
(H1) 𝑆(𝑡), 𝑡 > 0, is compact;
(H2) the function𝑓 : [0, 𝑏]×𝑋 → 𝑋 satisfies the following:

(a) 𝑓(𝑡, ⋅) : 𝑋 → 𝑋 is continuous for each 𝑡 ∈

(0, 𝑏],
(b) for each 𝑥 ∈ 𝑋, 𝑓(⋅, 𝑥) : (0, 𝑏] → 𝑋 is strongly

measurable;

(H3) there is a constant 𝜇
1

∈ (0, 𝜇) and 𝑛 ∈ 𝐿1/𝜇1([0, 𝑏],R+)
such that, for every 𝑥 ∈ 𝑋 and almost all 𝑡 ∈ [0, 𝑏], we
have

𝑓 (𝑡, 𝑥)
 ≤ 𝑛 (𝑡) . (15)

Consider the following linear fractional differential sys-
tem:

𝐷
],𝜇
0

+
𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) , 𝑡 ∈ (0, 𝑏] ,

𝐼
(1−])(1−𝜇)
0

+
𝑥 (0) = 𝑥

0

.

(16)

The approximate controllability for the linear fractional
system (16) is a natural generalization of approximate control-
lability of linear first order control system. It is convenient at
this point to introduce the following controllability and
resolvent operators associated with (16):

𝐿
𝑏

0

= ∫

𝑏

0

P
𝜇

(𝑏 − 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠,

Γ
𝑏

0

= ∫

𝑏

0

P
𝜇

(𝑏 − 𝑠) 𝐵𝐵
∗

P
∗

𝜇

(𝑏 − 𝑠) 𝑑𝑠,

𝑅 (𝜀, Γ
𝑏

0

) = 𝜀 (𝜀𝐼 + Γ
𝑏

0

)
−1

,

(17)

respectively, where 𝐵∗ denotes the adjoint of 𝐵 and P∗
𝜇

(𝑡) is
the adjoint of P

𝜇

(𝑡). It is straightforward to show that the
operator 𝐿𝑏

0

is a linear bounded operator for 1/2 < 𝜇 ≤ 1.
We also impose the following resolvent condition:

(R) for every ℎ ∈ 𝑋, 𝜀(𝜀𝐼 + Γ𝑏
0

)
−1

(ℎ) converges to zero as
𝜀 → 0

+ in strong topology.

Remark 8. The assumption (R) is equivalent to the approxi-
mate controllability of the linear system (16); see [19, 20].

In order to formulate the controllability problem in the
form in which the fixed point theorem is readily applica-
ble, it is assumed that the corresponding linear system is
approximately controllable. It will be shown that system (1) is
approximately controllable provided that we can show for all
𝜀 > 0 there exists a continuous function 𝑥 ∈ 𝐶([0, 𝑏], 𝑋) such
that

𝑢
𝜀

(𝑡, 𝑥) = 𝐵
∗

P
∗

𝜇

(𝑏 − 𝑡) (𝜀𝐼 + Γ
𝑏

0

)
−1

𝑝 (𝑥) ,

𝑥 (𝑡) = S],𝜇 (𝑡) 𝑥0 + ∫
𝑡

0

P
𝜇

(𝑡 − 𝑠) [𝐵𝑢 (𝑠) + 𝑓 (𝑠, 𝑥 (𝑠))] 𝑑𝑠,

(18)

where

𝑝 (𝑥) = ℎ −S],𝜇 (𝑏) 𝑥0 − ∫
𝑏

0

P
𝜇

(𝑏 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠. (19)

Based on this observation, our goal is to find conditions for
the solvability of (18). Note also that it will be shown that the
control in (18) drives the system (1) from 𝑥

0

to

ℎ − 𝜀 (𝜀𝐼 + Γ
𝑏

0

)
−1

𝑝 (𝑥) (20)

provided that the system (18) has a solution.
For all 𝜀 > 0, consider the operatorΦ

𝜀

: 𝐶
],𝜇
([0, 𝑏], 𝑋) →

𝐶
],𝜇
([0, 𝑏], 𝑋) defined as follows:

(Φ
𝜀

𝑥) (𝑡) := S],𝜇 (𝑡) 𝑥0

+ ∫

𝑡

0

P
𝜇

(𝑡 − 𝑠) [𝐵𝑢
𝜀

(𝑠, 𝑥) + 𝑓 (𝑠, 𝑥 (𝑠))] 𝑑𝑠.

(21)
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Let 𝑥 ∈ 𝐶],𝜇
([0, 𝑏], 𝑋). Observe that

lim
𝑡→0

+

𝑡
(1−])(1−𝜇)

S],𝜇 (𝑡) 𝑥0

= lim
𝑡→0

+

𝑡
(1−])(1−𝜇)

Γ (] (1 − 𝜇))
∫

𝑡

0

(𝑡 − 𝑠)
](1−𝜇)−1

𝑠
𝜇−1

P
𝜇

(𝑠) 𝑥
0

𝑑𝑠

= lim
𝑡→0

+

1

Γ (] (1 − 𝜇))
∫

1

0

(1 − 𝑠)
](1−𝜇)−1

𝑠
𝜇−1

P
𝜇

(𝑡𝑠) 𝑥
0

𝑑𝑠

=
𝑥
0

Γ (] (1 − 𝜇) + 𝜇)
.

(22)

Define 𝑡(1−])(1−𝜇)(Φ
𝜀

𝑥) (𝑡) as follows:

𝑡
(1−])(1−𝜇)

(Φ
𝜀

𝑥) (𝑡)

:=

{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{

{

𝑡
(1−])(1−𝜇)S],𝜇 (𝑡) 𝑥0

+ 𝑡
(1−])(1−𝜇)

∫

𝑡

0

P
𝜇

(𝑡 − 𝑠)

× [𝐵𝑢
𝜀

(𝑠, 𝑥) + 𝑓 (𝑠, 𝑥 (𝑠))] 𝑑𝑠,

0 < 𝑡 ≤ 𝑏,

𝑥
0

Γ (] (1 − 𝜇) + 𝜇)
,

𝑡 = 0.

(23)

It will be shown that for all 𝜀 > 0 the operator Φ
𝜀

:

𝐶
],𝜇
([0, 𝑏], 𝑋) → 𝐶

],𝜇
([0, 𝑏], 𝑋) has a fixed point. To prove

this we will employ the Schauder fixed point theorem.

Lemma 9. Let 0 ≤ ] ≤ 1 and 1/2 < 𝜇 ≤ 1. If assumptions
(H1)–(H3) hold, then for any 𝜀 > 0 the control function 𝑢

𝜀

(𝑡, 𝑥)

has the following properties:

(i) ‖𝑢
𝜀

(𝑡, 𝑥)‖ ≤ (𝑀
𝐵

𝑀(𝑏 − 𝑡)
𝜇−1

/𝜀Γ(𝜇))(‖ℎ‖ +

(𝑀𝑏
(]−1)(1−𝜇)

/Γ(](1 − 𝜇) + 𝜇))‖𝑥
0

‖ + (𝑀/Γ(𝜇))

((1 − 𝜇
1

)
1−𝜇
1𝑏
𝜇−𝜇
1/(𝜇 − 𝜇

1

)
1−𝜇
1)‖𝑛‖
1/𝜇
1

),

(ii) for any 𝑡 ∈ [0, 𝑏] we have lim
𝑛→∞

‖𝑢
𝜀

(𝑡, 𝑥
𝑛

) −

𝑢
𝜀

(𝑡, 𝑥)‖ = 0, where 𝑀
𝐵

= ‖𝐵‖, ‖𝑛‖
1/𝜇
1

is 𝐿1/𝜇1 norm
of 𝑛.

Proof. (i) By the definition of 𝑢
𝜀

(𝑡, 𝑥) we have

𝑢𝜀 (𝑡, 𝑥)


≤

𝐵
∗

P
∗

𝜇

(𝑏 − 𝑡) (𝜀𝐼 + Γ
𝑇

0

)
−1

𝑝 (𝑥)



≤
𝑀
𝐵

𝑀(𝑏 − 𝑡)
𝜇−1

Γ (𝜇)


(𝜀𝐼 + Γ

𝑇

0

)
−1

𝑝 (𝑥)



≤
𝑀
𝐵

𝑀(𝑏 − 𝑡)
𝜇−1

𝜀Γ (𝜇)

𝑝 (𝑥)


≤
𝑀
𝐵

𝑀(𝑏 − 𝑡)
𝜇−1

𝜀Γ (𝜇)

⋅ (‖ℎ‖ +

S],𝜇 (𝑏) 𝑥0



+



∫

𝑏

0

P
𝜇

(𝑏 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠



) .

(24)

Using the Hölder inequality and (H3) yields
𝑢𝜀 (𝑡, 𝑥)



≤
𝑀
𝐵

𝑀(𝑏 − 𝑡)
𝜇−1

𝜀Γ (𝜇)

⋅ (‖ℎ‖ +
𝑀𝑏
(]−1)(1−𝜇)

Γ (] (1 − 𝜇) + 𝜇)
𝑥0



+
𝑀

Γ (𝜇)
∫

𝑏

0

(𝑏 − 𝑠)
𝜇−1

𝑛 (𝑠) 𝑑𝑠)

≤
𝑀
𝐵

𝑀(𝑏 − 𝑡)
𝜇−1

𝜀Γ (𝜇)

× (‖ℎ‖ +
𝑀𝑏
(]−1)(1−𝜇)

Γ (] (1 − 𝜇) + 𝜇)
𝑥0



+
𝑀

Γ (𝜇)
(∫

𝑡

0

(𝑡 − 𝑠)
(𝜇−1)/(1−𝜇

1
)

𝑑𝑠)

1−𝜇
1

⋅ (∫

𝑡

0

𝑛
1/𝜇
1

(𝑠) 𝑑𝑠)

𝜇
1

)

≤
𝑀
𝐵

𝑀(𝑏 − 𝑡)
𝜇−1

𝜀Γ (𝜇)

⋅ (‖ℎ‖ +
𝑀𝑏
(]−1)(1−𝜇)

Γ (] (1 − 𝜇) + 𝜇)
𝑥0



+
𝑀

Γ (𝜇)

(1 − 𝜇
1

)
1−𝜇
1

𝑏
𝜇−𝜇
1

(𝜇 − 𝜇
1

)
1−𝜇
1

‖𝑛‖
1/𝜇
1

) .

(25)

(ii) Assume that lim
𝑛→∞

‖𝑥
𝑛

− 𝑥‖],𝜇 = 0. Then we have

lim
𝑛→∞

𝑥
𝑛

(𝑠) = 𝑥 (𝑠) , 0 < 𝑠 ≤ 𝑏. (26)

From (H2), it follows that

lim
𝑛→∞

𝑓 (𝑠, 𝑥
𝑛

(𝑠)) = 𝑓 (𝑠, 𝑥 (𝑠)) a.e. in [0, 𝑏] . (27)

Using (H3), we get

(𝑏 − 𝑠)
𝜇−1 𝑓 (𝑠, 𝑥𝑛 (𝑠)) − 𝑓 (𝑠, 𝑥 (𝑠))

 ≤ 2 (𝑏 − 𝑠)
𝜇−1

𝑛 (𝑠) ,

a.e. in [0, 𝑏] .

(28)
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Since 𝑠 → 2(𝑏 − 𝑠)
𝜇−1

𝑛(𝑠) is integrable on [0, 𝑏], by the
Lebesgue dominated convergence theorem, we have

∫

𝑏

0

(𝑏 − 𝑠)
𝜇−1 𝑓 (𝑠, 𝑥𝑛 (𝑠)) − 𝑓 (𝑠, 𝑥 (𝑠))

 𝑑𝑠 → 0,

as 𝑛 → ∞.

(29)

Further, it follows that

𝑝 (𝑥𝑛) − 𝑝 (𝑥)


≤
𝑀

Γ (𝜇)
∫

𝑏

0

(𝑏 − 𝑠)
𝜇−1 𝑓 (𝑠, 𝑥𝑛 (𝑠)) − 𝑓 (𝑠, 𝑥 (𝑠))

 𝑑𝑠 → 0,

as 𝑛 → ∞.

(30)

Thus

𝑢𝜀 (𝑡, 𝑥𝑛) − 𝑢𝜀 (𝑡, 𝑥)


=

𝐵
∗

P
∗

𝜇

(𝑏 − 𝑡) (𝜀𝐼 + Γ
𝑏

0

)
−1

(𝑝 (𝑥
𝑛

) − 𝑝 (𝑥))


≤
𝑀
𝐵

𝑀

𝜀Γ (𝜇)

𝑝 (𝑥𝑛) − 𝑝 (𝑥)
 → 0, as 𝑛 → ∞.

(31)

Lemma 10. Let 0 ≤ ] ≤ 1 and 1/2 < 𝜇 ≤ 1. Under
assumptions (H1)–(H3), for any 𝜀 > 0 there exists a positive
number 𝑟 := 𝑟(𝜀) such that Φ

𝜀

(𝐵
𝑟

) ⊂ 𝐵
𝑟

, where

𝐵
𝑟

:= {𝑥 ∈ 𝐶
],𝜇
([0, 𝑏] , 𝑋) : ‖𝑥‖],𝜇 ≤ 𝑟} . (32)

Proof. Let 𝜀 > 0 be fixed and 𝑥 ∈ 𝐵
𝑟

. Since 𝑥(𝑡) is continuous,
it follows from (H2) that 𝑓(𝑡, 𝑥(𝑡)) is a measurable function
on [0, 𝑏]. Using the Hölder inequality and (H3) yields


𝑡
(1−])(1−𝜇)

(Φ
𝜀

𝑥) (𝑡)


≤

𝑡
(1−])(1−𝜇)

S],𝜇 (𝑡) 𝑥0


+



𝑡
(1−])(1−𝜇)

∫

𝑡

0

P
𝜇

(𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠



+



𝑡
(1−])(1−𝜇)

∫

𝑡

0

P
𝜇

(𝑡 − 𝑠) 𝐵𝑢
𝜀

(𝑠, 𝑥) 𝑑𝑠



=: 𝐼
1

+ 𝐼
2

+ 𝐼
3

.

(33)

We estimate each of 𝐼
𝑖

, 𝑖 = 1, 2, 3, separately. By the
assumption (H3), we have

𝐼
1

≤

𝑡
(1−])(1−𝜇)

S],𝜇 (𝑡) 𝑥0

≤

𝑀

Γ (] (1 − 𝜇) + 𝜇)
𝑥0

 ,

𝐼
2

≤ 𝑡
(1−])(1−𝜇)

∫

𝑡

0


P
𝜇

(𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠))

𝑑𝑠

≤
𝑀𝑡
(1−])(1−𝜇)

Γ (𝜇)
∫

𝑡

0

(𝑡 − 𝑠)
𝜇−1 𝑓 (𝑠, 𝑥 (𝑠))

 𝑑𝑠

≤
𝑀𝑡
(1−])(1−𝜇)

Γ (𝜇)
∫

𝑡

0

(𝑡 − 𝑠)
𝜇−1

𝑛 (𝑠) 𝑑𝑠

≤
𝑀𝑡
(1−])(1−𝜇)

Γ (𝜇)
(∫

𝑡

0

(𝑡 − 𝑠)
(𝜇−1)/(1−𝜇

1
)

𝑑𝑠)

1−𝜇
1

⋅ (∫

𝑡

0

𝑛
1/𝜇
1

(𝑠) 𝑑𝑠)

𝜇
1

≤
𝑀𝑏
(1−])(1−𝜇)

Γ (𝜇)

(1 − 𝜇
1

)
1−𝜇
1

𝑏
𝜇−𝜇
1

(𝜇 − 𝜇
1

)
1−𝜇
1

‖𝑛‖
1/𝜇
1

.

(34)

Combining the estimates (33)-(34) yields

𝐼
1

+ 𝐼
2

<
𝑀

Γ (] (1 − 𝜇) + 𝜇)
𝑥0



+
𝑀𝑏
(1−])(1−𝜇)

Γ (𝜇)

(1 − 𝜇
1

)
1−𝜇
1

𝑏
𝜇−𝜇
1

(𝜇 − 𝜇
1

)
1−𝜇
1

‖𝑛‖
1/𝜇
1

:= Δ.

(35)

Next, observe that

𝐼
3

≤ 𝑡
(1−])(1−𝜇)

∫

𝑡

0


P
𝜇

(𝑡 − 𝑠) 𝐵𝑢
𝜀

(𝑠, 𝑥)

𝑑𝑠

= 𝑡
(1−])(1−𝜇)

∫

𝑡

0


P
𝜇

(𝑡 − 𝑠) 𝐵𝐵
∗

P
∗

𝜇

(𝑏 − 𝑠)

⋅ (𝜀𝐼 + Γ
𝑇

0

)
−1

𝑝 (𝑥)


𝑑𝑠

≤ 𝑡
(1−])(1−𝜇)

∫

𝑡

0


P
𝜇

(𝑡 − 𝑠) 𝐵𝐵
∗

P
∗

𝜇

(𝑏 − 𝑠)

𝑑𝑠

⋅

(𝜀𝐼 + Γ

𝑇

0

)
−1

𝑝 (𝑥)



≤
𝑀
2

𝐵

𝑀
2

𝑡
(1−])(1−𝜇)

Γ
2

(𝜇)

⋅ ∫

𝑡

0

(𝑡 − 𝑠)
𝜇−1

(𝑏 − 𝑠)
𝜇−1

𝑑𝑠

(𝜀𝐼 + Γ

𝑇

0

)
−1

𝑝 (𝑥)



=
𝑀
2

𝐵

𝑀
2

𝑡
(1−])(1−𝜇)

Γ
2

(𝜇)

𝑏
2𝜇−1

𝜇


(𝜀𝐼 + Γ

𝑇

0

)
−1

𝑝 (𝑥)
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≤
1

𝜀

𝑀
2

𝐵

𝑀
2

𝑡
(1−])(1−𝜇)

Γ
2

(𝜇)

𝑏
2𝜇−1

𝜇

𝑝 (𝑥)


≤
1

𝜀

𝑀
2

𝐵

𝑀
2

Γ
2

(𝜇)

𝑏
2𝜇−1

𝜇
(𝑏
(1−])(1−𝜇)

‖ℎ‖ + Δ) .

(36)

Thus,

𝑡
(1−])(1−𝜇)

(Φ
𝜀

𝑥) (𝑡)


≤ Δ +
1

𝜀

𝑀
2

𝐵

𝑀
2

Γ
2

(𝜇)

𝑏
2𝜇−1

𝜇
(𝑏
(1−])(1−𝜇)

‖ℎ‖ + Δ) .

(37)

The last two inequalities imply that for large enough 𝑟 > 0 the
following inequality holds:


𝑡
(1−])(1−𝜇)

(Φ
𝜀

𝑧
𝑟

) (𝑡)

≤ 𝑟. (38)

Therefore, Φ
𝜀

maps 𝐵
𝑟

into itself.

Lemma 11. Let 0 ≤ ] ≤ 1 and 1/2 < 𝜇 ≤ 1. If
assumptions (H1)–(H3) hold, then the set {Φ

𝜀

𝑥 : 𝑥 ∈ 𝐵
𝑟

} is
an equicontinuous family of functions on [0, 𝑏].

Proof. For 0 < 𝑡 < 𝑡 + ℎ ≤ 𝑏, we have

(𝑡 + ℎ)

(1−])(1−𝜇)
(Φ
𝜀

𝑧) (𝑡 + ℎ) − 𝑡
(1−])(1−𝜇)

(Φ
𝜀

𝑧) (𝑡)


≤

(𝑡 + ℎ)

(1−])(1−𝜇)
S],𝜇 (𝑡 + ℎ) 𝑥0 − 𝑡

(1−])(1−𝜇)
S],𝜇 (𝑡) 𝑥0



+



∫

𝑡+ℎ

𝑡

(𝑡 + ℎ − 𝑠)
(1−])(1−𝜇)

(𝑡 + ℎ − 𝑠)
𝜇−1

⋅T
𝜇

(𝑡 + ℎ − 𝑠) [𝐵𝑢
𝜀

(𝑠, 𝑧) + 𝑓 (𝑠, 𝑧 (𝑠))] 𝑑𝑠



+



∫

𝑡

0

((𝑡 + ℎ − 𝑠)
(1−])(1−𝜇)

(𝑡 + ℎ − 𝑠)
𝜇−1

− (𝑡 − 𝑠)
(1−])(1−𝜇)

(𝑡 − 𝑠)
𝜇−1

)

×T
𝜇

(𝑡 + ℎ − 𝑠) [𝐵𝑢
𝜀

(𝑠, 𝑧) + 𝑓 (𝑠, 𝑧 (𝑠))] 𝑑𝑠



+



∫

𝑡

0

(𝑡 − 𝑠)
(1−])(1−𝜇)

(𝑡 − 𝑠)
𝜇−1

⋅ (T
𝜇

(𝑡 + ℎ − 𝑠) −T
𝜇

(𝑡 − 𝑠))

⋅ [𝐵𝑢
𝜀

(𝑠, 𝑧) + 𝑓 (𝑠, 𝑧 (𝑠))] 𝑑𝑠



≤ 𝐼
4

+ 𝐼
5

+ 𝐼
6

+ 𝐼
7

.

(39)

For 0 < 𝑡 < 𝑡 + ℎ ≤ 𝑏, we have

𝐼
4

≤

(𝑡 + ℎ − 𝑠)

(1−])(1−𝜇)
S],𝜇 (𝑡 + ℎ)

− (𝑡 − 𝑠)
(1−])(1−𝜇)

S],𝜇 (𝑡)


𝑥0
 .

(40)

By Lemma 4, we know that 𝑡(1−])(1−𝜇)S],𝜇(𝑡) is uniformly
continuous on [0, 𝑏], which enables us to deduce that
lim
ℎ→0

+𝐼
4

= 0.
By condition (H3), we deduce that lim

ℎ→0

+𝐼
5

= 0.
Noting that


(𝑡 + ℎ − 𝑠)

(1−])(1−𝜇)
(𝑡 + ℎ − 𝑠)

𝜇−1

− (𝑡 − 𝑠)
(1−])(1−𝜇)

(𝑡 − 𝑠)
𝜇−1


𝑚 (𝑠)

≤ (𝑡 − 𝑠)
(1−])(1−𝜇)

(𝑡 − 𝑠)
𝜇−1

𝑚(𝑠) ,

(41)

and ∫𝑡
0

(𝑡 − 𝑠)
(1−])(1−𝜇)

(𝑡 − 𝑠)
𝜇−1

𝑚(𝑠)𝑑𝑠 exists, it follows from
the Lebesgue dominated convergence theorem that

∫

𝑡

0


(𝑡 + ℎ − 𝑠)

(1−])(1−𝜇)
(𝑡 + ℎ − 𝑠)

𝜇−1

− (𝑡 − 𝑠)
(1−])(1−𝜇)

(𝑡 − 𝑠)
𝜇−1


𝑚 (𝑠) → 0,

(42)

as ℎ → 0
+. It follows that lim

ℎ→0

+𝐼
6

= 0.
For 𝜀 > 0 sufficiently small, we have

𝐼
7

≤ (∫

𝑡−𝜀

0

+∫

𝑡

𝑡−𝜀

) (𝑡 − 𝑠)
(1−])(1−𝜇)

(𝑡 − 𝑠)
𝜇−1

⋅

T
𝜇

(𝑡 + ℎ − 𝑠) −T
𝜇

(𝑡 − 𝑠)


⋅
𝐵𝑢𝜀 (𝑠, 𝑧) + 𝑓 (𝑠, 𝑧 (𝑠))

 𝑑𝑠.

(43)

Since the compactness of T
𝜇

(𝑡) (𝑡 > 0) implies the
continuity ofT

𝜇

(𝑡) (𝑡 > 0) in the uniform operator topology,
it can be easily seen that lim

ℎ→0

+𝐼
7

= 0.
The case 𝑡 = 0 and 0 < ℎ ≤ 𝑏 follows from (23).
Thus, the set {Φ

𝜀

𝑥 : 𝑥 ∈ 𝐵
𝑟

} is an equicontinuous family
of functions in 𝐶],𝜇

([0, 𝑏], 𝑋).

Lemma 12. Let 0 ≤ ] ≤ 1 and 1/2 < 𝜇 ≤ 1. Let assumptions
(H1)–(H3) hold. For any 𝑡 ∈ [0, 𝑏] the set 𝑉(𝑡) := {(Φ

𝜀

𝑥)(𝑡) :

𝑥 ∈ 𝐵
𝑟

} is relatively compact in𝑋.

Proof. Let 0 < 𝑡 ≤ 𝑏 be fixed and let 𝜆 be a real number
satisfying 0 < 𝜆 < 𝑡. For 𝛿 > 0 define the operator Φ𝜆,𝛿

𝜀

on 𝐵
𝑟

by

(Φ
𝜆,𝛿

𝜀

𝑥) (𝑡) :=
1

Γ (] (1 − 𝜇))
𝑆 (𝜆
𝜇

𝛿)

⋅ ∫

𝑡

𝜆

𝑠
𝜇−1

(𝑡 − 𝑠)
1−](1−𝜇)

⋅ ∫

∞

𝛿

𝜇𝜃Ψ
𝜇

(𝜃) 𝑆 (𝑠
𝜇

𝜃 − 𝜆
𝜇

𝛿) 𝑑𝜃 𝑑𝑠𝑥
0

+ 𝜇𝑆 (𝜆
𝜇

𝛿)∫

𝑡−𝜆

0

∫

∞

𝛿

𝜃 (𝑡 − 𝑠)
𝜇−1

Ψ
𝜇

(𝜃)

⋅ 𝑆 ((𝑡 − 𝑠)
𝜇

𝜃 − 𝜆
𝜇

𝛿) 𝑑𝜃

⋅ [𝐵𝑢
𝜀

(𝑠, 𝑧) + 𝑓 (𝑠, 𝑧 (𝑠))] 𝑑𝑠.

(44)
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Since 𝑆(𝑡) is a compact operator, the set {(Φ𝜆,𝛿
𝜀

𝑥)(𝑡) : 𝑥 ∈ 𝐵
𝑟

}

is relatively compact in𝑋. Moreover, for each 𝑥 ∈ 𝐵
𝑟

, we have


(Φ
𝜀

𝑥) (𝑡) − (Φ
𝜆,𝛿

𝜀

𝑥) (𝑡)


≤
1

Γ (] (1 − 𝜇))

⋅



∫

𝑡

0

𝑠
𝜇−1

(𝑡 − 𝑠)
1−](1−𝜇) ∫

𝛿

0

𝜇𝜃Ψ
𝜇

(𝜃) 𝑆 (𝑠
𝜇

𝜃) 𝑑𝜃 𝑑𝑠𝑥
0



+
1

Γ (] (1 − 𝜇))

⋅



∫

𝜆

0

𝑠
𝜇−1

(𝑡 − 𝑠)
1−](1−𝜇) ∫

∞

𝛿

𝜇𝜃Ψ
𝜇

(𝜃) 𝑆 (𝑠
𝜇

𝜃) 𝑑𝜃 𝑑𝑠𝑥
0



+ 𝜇



∫

𝑡

0

∫

𝛿

0

𝜃 (𝑡 − 𝑠)
𝜇−1

Ψ
𝜇

(𝜃) 𝑆 ((𝑡 − 𝑠)
𝜇

𝜃)

⋅ [𝐵𝑢
𝜀

(𝑠, 𝑥) + 𝑓 (𝑠, 𝑥 (𝑠))] 𝑑𝜃 𝑑𝑠



+ 𝜇



∫

𝑡

𝑡−𝜆

∫

∞

𝛿

𝜃 (𝑡 − 𝑠)
𝜇−1

Ψ
𝜇

(𝜃) 𝑆 ((𝑡 − 𝑠)
𝜇

𝜃)

⋅ [𝐵𝑢
𝜀

(𝑠, 𝑥) + 𝑓 (𝑠, 𝑥 (𝑠))] 𝑑𝜃 𝑑𝑠



=: 𝐼
8

+ 𝐼
9

+ 𝐼
10

+ 𝐼
11

.

(45)

A similar argument as before yields

𝐼
8

≤
𝜇𝑀

Γ (] (1 − 𝜇))
∫

𝑡

0

𝑠
𝜇−1

(𝑡 − 𝑠)
1−](1−𝜇) 𝑑𝑠(∫

𝛿

0

𝜃Ψ
𝜇

(𝜃) 𝑑𝜃)
𝑥0



≤
𝜇𝑀

Γ (] (1 − 𝜇))
1

𝑡
(1−])(1−𝜇)

⋅ ∫

1

0

(1 − 𝑠)
](1−𝜇)−1

𝑠
𝜇−1

𝑑𝑠(∫

𝛿

0

𝜃Ψ
𝜇

(𝜃) 𝑑𝜃)
𝑥0



≤
𝜇𝑀

Γ (] (1 − 𝜇))
1

𝑡
(1−])(1−𝜇)

⋅ 𝐵 (] (1 − 𝜇) , 𝜇) (∫
𝛿

0

𝜃Ψ
𝜇

(𝜃) 𝑑𝜃)
𝑥0

 ,

𝐼
9

≤
𝜇𝑀

Γ (] (1 − 𝜇))

⋅ ∫

𝜆

0

𝑠
𝜇−1

(𝑡 − 𝑠)
1−](1−𝜇) 𝑑𝑠 (∫

∞

𝛿

𝜃Ψ
𝜇

(𝜃) 𝑑𝜃)
𝑥0



≤
𝜇𝑀𝑏

](1−𝜇)−1

Γ (] (1 − 𝜇)) Γ (1 + 𝜇)
𝜆
𝜇

𝜇
(∫

∞

𝛿

𝜃Ψ
𝜇

(𝜃) 𝑑𝜃)
𝑥0

 ,

(46)

where we have used the equality

∫

∞

0

𝜃
𝛽

𝜇

Ψ
𝜇

(𝜃) 𝑑𝜃 =
Γ (1 + 𝛽)

Γ (1 + 𝜇𝛽)
. (47)

From (46), it follows that

𝐼
8

→ 0, 𝐼
9

→ 0 as 𝜆 → 0
+

, 𝛿 → 0
+

. (48)

Similarly,

𝐼
10

→ 0, 𝐼
11

→ 0 as 𝜆 → 0
+

, 𝛿 → 0
+

. (49)

Consequently, for each 𝑥 ∈ 𝐵
𝑟

,

(Φ
𝜀

𝑥) (𝑡) − (Φ
𝜆,𝛿

𝜀

𝑥) (𝑡)

→ 0 as 𝜆 → 0

+

, 𝛿 → 0
+

.

(50)

Therefore, there exist relatively compact sets arbitrarily close
to the set {(Φ

𝜀

𝑥)(𝑡) : 𝑥 ∈ 𝐵
𝑟

}. Hence, the set {(Φ
𝜀

𝑥)(𝑡) : 𝑥 ∈

𝐵
𝑟

} is relatively compact in𝑋.

Lemma 13. Let 0 ≤ ] ≤ 1 and 1/2 < 𝜇 ≤ 1. If assumptions
(H1)–(H3) hold, then the operator Φ

𝜀

: 𝐶
],𝜇
([0, 𝑏], 𝑋) →

𝐶
],𝜇
([0, 𝑏], 𝑋) is continuous on 𝐵

𝑟

.

Proof. Observe that, for all 𝑡 ∈ [0, 𝑏], 𝑥
𝑛

, 𝑥 ∈ 𝐵
𝑟

, we have

𝑡
(1−])(1−𝜇)

(Φ
𝜀

𝑥
𝑛

) (𝑡) − 𝑡
(1−])(1−𝜇)

(Φ
𝜀

𝑥) (𝑡)


≤
𝑀𝑡
(1−])(1−𝜇)

Γ (𝜇)

⋅ ∫

𝑡

0

(𝑡 − 𝑠)
𝜇−1

⋅ (
𝑓 (𝑠, 𝑥𝑛 (𝑠)) − 𝑓 (𝑠, 𝑥 (𝑠))



+ 𝑀
𝑏

𝑢𝜀 (𝑠, 𝑥𝑛) − 𝑢𝜀 (𝑠, 𝑥)
) 𝑑𝑠.

(51)

The rest of the proof is similar to the proof of Lemma 9.

Theorem 14. If assumptions (H1)–(H3) hold and 1/2 < 𝜇 ≤ 1,
then there exists a solution to (18).

Proof. According to infinite-dimensional version of the
Ascoli-Arzela theorem if (i) for 𝑡 ∈ [0, 𝑏], the set 𝑉(𝑡) :=

{(Φ
𝜀

𝑥)(𝑡) : 𝑥 ∈ 𝐵
𝑟

} is relatively compact in 𝑋; (ii) family
{Φ
𝜀

𝑥 : 𝑥 ∈ 𝐵
𝑟

} is uniformly bounded and equicontinuous,
and then {Φ

𝜀

𝑥 : 𝑥 ∈ 𝐵
𝑟

} is relatively compact family in
𝐶
],𝜇
([0, 𝑏], 𝑋). Properties (i) and (ii) follow from Lemmas

10–12. By Lemma 13, for any 𝜀 > 0, the operator Φ
𝜀

is
continuous. Thus from the Schauder fixed point theorem Φ

𝜀

has a fixed point.Therefore, the fractional control system (18)
has a solution on [0, 𝑏]. The proof is complete.

We are now in a position to state and prove themain result
of the paper.

Theorem 15. Let 0 ≤ ] ≤ 1 and 1/2 < 𝜇 ≤ 1. Suppose
that conditions (H1)–(H3) (R) are satisfied. Then system (1) is
approximately controllable on [0, 𝑏].
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Proof. Let 𝜀 > 0 and let 𝑥𝜀 be a fixed point ofΦ
𝜀

in 𝐵
𝑟(𝜀)

.Then
𝑥
𝜀 is a mild solution of (1) on [0, 𝑏] under the control

𝑢
𝜀

(𝑡, 𝑥
𝜀

) = 𝐵
∗

S
∗

],𝜇 (𝑏 − 𝑡) (𝜀𝐼 + Γ
𝑇

0

)
−1

𝑝 (𝑥
𝜀

) ,

𝑝 (𝑥
𝜀

) = ℎ −S],𝜇 (𝑏) 𝑥0 − ∫
𝑏

0

P
𝜇

(𝑏 − 𝑠) 𝑓 (𝑠, 𝑥
𝜀

(𝑠)) 𝑑𝑠

(52)

and satisfies the following equality:

𝑥
𝜀

(𝑏) = S],𝜇 (𝑏) 𝑥0

+ ∫

𝑏

0

(𝑏 − 𝑠)
𝛼−1

P
𝜇

(𝑏 − 𝑠)

⋅ [𝐵𝑢
𝜀

(𝑠, 𝑥
𝜀

) + 𝑓 (𝑠, 𝑥
𝜀

(𝑠))] 𝑑𝑠

= S],𝜇 (𝑏) 𝑥0 + (−𝜀𝐼 + 𝜀𝐼 + Γ
𝑏

0

) (𝜀𝐼 + Γ
𝑏

0

)
−1

𝑝 (𝑥
𝜀

)

+ ∫

𝑏

0

P
𝜇

(𝑏 − 𝑠) 𝑓 (𝑠, 𝑥
𝜀

(𝑠)) 𝑑𝑠

= ℎ − 𝜀 (𝜀𝐼 + Γ
𝑏

0

)
−1

𝑝 (𝑥
𝜀

) .

(53)

It follows from (H3) that for all 𝜀 > 0

∫

𝑏

0

𝑓 (𝑠, 𝑥
𝜀

(𝑠))


1/𝜇
1

𝑑𝑠 ≤ ∫

𝑇

0

𝑛
1/𝜇
1

(𝑠) 𝑑𝑠. (54)

Consequently, the sequence {𝑓(⋅, 𝑥𝜀(⋅))} is bounded. As such,
there is a subsequence, still denoted by {𝑓(⋅, 𝑥

𝜀

(⋅))}, that
converges weakly to, say, 𝑓(⋅) in 𝐿1/𝜇1([0, 𝑏], 𝑋). Then

𝑝 (𝑥
𝜀

) − 𝑝


=



∫

𝑏

0

P
𝜇

(𝑏 − 𝑠) [𝑓 (𝑠, 𝑥
𝜀

(𝑠)) − 𝑓 (𝑠)] 𝑑𝑠



≤ sup
0≤𝑡≤𝑏



∫

𝑡

0

P
𝜇

(𝑡 − 𝑠) [𝑓 (𝑠, 𝑥
𝜀

(𝑠)) − 𝑓 (𝑠)] 𝑑𝑠



→ 0,

(55)

as 𝜀 → 0
+, because of the compactness of an operator

𝑓 (⋅) → ∫

⋅

0

P
𝜇

(⋅ − 𝑠) 𝑓 (𝑠) 𝑑𝑠 : 𝐿
1/𝜇
1

([0, 𝑏] , 𝑋)

→ 𝐶 ([0, 𝑏] , 𝑋) ,

(56)

where

𝑝 = ℎ −S],𝜇𝑥0 − ∫
𝑏

0

P
𝜇

(𝑏 − 𝑠) 𝑓 (𝑠) 𝑑𝑠. (57)

Then, by (53), the assumption (R), and ‖𝜀(𝜀𝐼 + Γ𝑏
0

)
−1

‖ ≤ 1, it
follows that
𝑥
𝜀

(𝑏) − ℎ


=

𝜀 (𝜀𝐼 + Γ

𝑏

0

)
−1

(𝑝 (𝑥
𝜀

) − 𝑝) + 𝜀 (𝜀𝐼 + Γ
𝑏

0

)
−1

(𝑝)


≤
𝑝 (𝑥
𝜀

) − 𝑝
 +


𝜀 (𝜀𝐼 + Γ

𝑏

0

)
−1

(𝑝)

→ 0

(58)

as 𝜀 → 0
+. This gives the approximate controllability. The

theorem is proved.

Remark 16. Theorem 15 is a generalization of the existing
results on the approximate controllability of fractional differ-
ential equations. When ] = 0, the fractional control system
(12) simplifies to the classical Riemann-Liouville fractional
control equation which has been studied by Liu and Bin [16].
When ] = 1, the fractional equation (12) simplifies to the
classical Caputo fractional control system which has been
studied by Sakthivel et al. [11].

4. Applications

The partial differential system arises in the mathematical
modeling of heat transfer

𝐷
],3/4
0

+ 𝑥 (𝑡, 𝜃) = 𝑥
𝜃𝜃

(𝑡, 𝜃) + 𝑏 (𝜃) 𝑢 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡, 𝜃)) ,

𝑥 (𝑡, 0) = 𝑥 (𝑡, 𝜋) = 0, 𝑡 > 0,

𝐼
(1/4)(1−])
0

+ 𝑥 (0) = 𝑥
0

, 0 < 𝜃 < 𝜋, 0 ≤ 𝑡 ≤ 𝑏,

(59)

where 𝑢 ∈ 𝐿
2

[0, 𝑏], 𝑋 = 𝐿
2

[0, 𝜋], ℎ ∈ 𝑋, 0 ≤ ] ≤ 1, 𝜇 = 3/4,
and 𝑓 : 𝑅 × 𝑅 → 𝑅 is continuous and uniformly bounded.
Let 𝐵 ∈ 𝐿(𝑅,𝑋) be defined as

(𝐵𝑢) (𝜃) = 𝑏 (𝜃) 𝑢,

𝐵
∗V =

∞

∑

𝑛=1

⟨𝑏, 𝑒
𝑛

⟩ ⟨V, 𝑒
𝑛

⟩ ,

(60)

where 0 ≤ 𝜃 ≤ 𝜋, 𝑢 ∈ 𝑅, and 𝑏(𝜃) ∈ 𝐿
2

[0, 𝜋], and let 𝐴 :

𝑋 → 𝑋 be operator defined by 𝐴𝑧 = 𝑧 with domain

𝐷(𝐴) = {𝑧 ∈ 𝑋 | 𝑧, 𝑧
 are absolutely continuous,

𝑧


∈ 𝑋, 𝑧 (0) = 𝑧 (𝜋) = 0} .

(61)

Then

𝐴𝑧 =

∞

∑

𝑛=1

− 𝑛
2

⟨𝑧, 𝑒
𝑛

⟩ 𝑒
𝑛

, 𝑧 ∈ 𝐷 (𝐴) , (62)

where 𝑒
𝑛

(𝜃) = √2/𝜋 sin 𝑛𝜃, 0 ≤ 𝑥 ≤ 𝜋, 𝑛 = 1, 2, . . .. It is
known that 𝐴 generates a compact semigroup 𝑆(𝑡), 𝑡 > 0, in
𝑋 and is given by

𝑆 (𝑡) 𝑥 =

∞

∑

𝑛=1

𝑒
−𝑛

2
𝑡

⟨𝑥, 𝑒
𝑛

⟩ 𝑒
𝑛

, 𝑥 ∈ 𝑋. (63)

Moreover, for any 𝑥 ∈ 𝑋 we have

T
3/4

(𝑡) =
3

4
∫

∞

0

𝜃Ψ
3/4

(𝜃) 𝑆 (𝑡
3/4

𝜃) 𝑑𝜃,

T
3/4

(𝑡) 𝑥 =
3

4

∞

∑

𝑛=1

∫

∞

0

𝜃Ψ
3/4

(𝜃) exp (−𝑛2𝑡3/4𝜃) 𝑑𝜃 ⟨𝑥, 𝑒
𝑛

⟩ 𝑒
𝑛

.

(64)
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In order to show that the associated linear system is
approximately controllable on [0, 𝑏], we need to show that
(𝑏 − 𝑠)

𝛼−1

𝐵
∗T
𝜇

(𝑏 − 𝑠)𝑥 = 0 ⇒ 𝑥 = 0. Indeed, observe that

(𝑏 − 𝑠)
𝜇−1

𝐵
∗

T
𝜇

(𝑏 − 𝑠) 𝑥

= (𝑏 − 𝑠)
𝜇−1

⋅

∞

∑

𝑛=1

(𝑏, 𝑒
𝑛

)
3

4
∫

∞

0

𝜃Ψ
3/4

(𝜃) exp (−𝑛2𝑡3/4𝜃) 𝑑𝜃 ⟨𝑥, 𝑒
𝑛

⟩

= (𝑏 − 𝑠)
𝜇−1

3

4

⋅

∞

∑

𝑛=1

∫

∞

0

𝜃Ψ
3/4

(𝜃) exp (−𝑛2𝑡3/4𝜃) 𝑑𝜃 ⟨𝑏, 𝑒
𝑛

⟩ ⟨𝑥, 𝑒
𝑛

⟩ = 0.

(65)

So, ⟨𝑥, 𝑒
𝑛

⟩ = 0 ⇒ 𝑥 = 0 provided that ⟨𝑏, 𝑒
𝑛

⟩ =

∫
𝜋

0

𝑏(𝜃)𝑒
𝑛

(𝜃)𝑑𝜃 ̸= 0 for 𝑛 = 1, 2, 3, . . .. Therefore, the asso-
ciated linear system is approximately controllable provided
that ∫𝜋

0

𝑏(𝜃)𝑒
𝑛

(𝜃)𝑑𝜃 ̸= 0 for 𝑛 = 1, 2, 3, . . .. Because of
the compactness of the semigroup 𝑆(𝑡) (and consequently
T
3/4

) generated by 𝐴, the associated linear system of (59) is
not exactly controllable but it is approximately controllable.
Hence, according toTheorem 15, system (59) will be approx-
imately controllable on [0, 𝑏].
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