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Considering lateral influence from adjacent lane, an improved car-following model is developed in this paper. Then linear and
nonlinear stability analyses are carried out. The modified Korteweg-de Vries (MKdV) equation is derived with the kink-antikink
soliton solution. Numerical simulations are implemented and the result shows good consistency with theoretical study.

1. Introduction

Traffic flow is a system of consecutive vehicles with inter-
action [1]. Recently various models have been developed,
including general models, safety distance models, action
point models, optimal velocity models (OVM), cellular
automaton models, and fuzzy logic models [2–4]. Among
those models, OVM developed by Bando et al. [5, 6] is well
known for its accuracy and rationality. Afterwards Helbing
and Tilch [7] calibrated the OV model by experimental
data and developed a generalized force model (GFM) to
overcome the deficiencies. But both OVM and GFM cannot
describe the phenomenon that the following vehicle may not
decelerate when the leading vehicle is much faster even if
the headway distance is smaller than safety distance. Then
the inconsistencies of previous models were overcome by
a continuous microscopic single-lane model, the intelligent
driver model, developed by Treiber et al. [8] by the analysis
of German freeways data. After this, a full velocity difference
model (FVDM) was developed by Jiang et al. [9, 10] to solve
the disadvantage. However, there are still some problems in
previous models, which are discussed in detail and improved
by Treiber and Kesting [11]. Also the gas-kinetic-basedmodel
was investigated by observed data and simulation experi-
ments, which showed good agreement with phenomena in
reality [12]. In this century, many new models have been
established by considering decentralized delayed-feedback
control [13], delay time due to driver’s reaction [14], extended

OV function for acceleration difference [15], multiple velocity
difference [16], and optimal velocity difference [17].

To study traffic jam waves in OVM, Komatsu and Sasa
[18] firstly derived the modified Korteweg-de Vries (MKdV)
equation to describe kink waves. Then Muramatsu and
Nagatani [19] derived Korteweg-de Vries (KdV) equation
from OVM to describe sliton waves in traffic jam, and
Nagatani also found triangular shock wave solved Burgers
equation [20]. From then many models have been analyzed
by nonlinear stability theory aforementioned. Nagatani [21]
derivedMKdV equation near critical point in two continuum
models: partial differential and discrete lattice model. Yu
[22] presented a simplifiedOVMconsidering relative velocity
and derived KdV and MKdV equations. Ge et al. developed
several intelligent transportation system (ITS) based models
with KdV and MKdV analysis [23] and also did similar
research in three OVM based models [24]. Yu et al. [25]
recently build a two-delay model with MKdV investigation
and implemented numerical simulations. More studies show
that the triangular wave, soliton wave, and kink wave occur
in stable region, metastable region, and unstable region,
respectively [20, 26, 27].

However, only a few researches focused on car-following
with lateral impact, in which case the lateral influence from
adjacent lane should be considered. Nagatani [28] presented
two lattice models to simulate traffic flow wave on a two-
lane highway with lane changing. Jin et al. [29] considered
the lane-width influence and developed a non-lane-based
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FVDM with simulation experiments. Ge et al. [30] studied
the influence from neighbor vehicle or nonmotor vehicle
by considering two more OV functions and analyzed the
stability condition by control theorymethod. Based on previ-
ous work, this paper investigates a new car-following model
considering lateral influence by introducing the combination
of twoOV functions. In Section 2 the newmodel is developed
and linear stability analysis is carried out in Section 3. In Sec-
tion 4 the MKdV equation is derived to obtain kink-antikink
soliton solution. Then numerical simulation experiments are
performed to verify the theoretical study in Section 5. The
summary is given in Section 6.

2. Improved OVM

The typical OV model is presented as [5, 6]

𝑑
2
𝑥
𝑛
(𝑡)

𝑑𝑡2
= 𝛼 [𝑉

op
(Δ𝑥
𝑛
(𝑡)) − V

𝑛
(𝑡)] , (1)

where 𝑥
𝑛
(𝑡) and V

𝑛
(𝑡) are the position and velocity of the 𝑛th

vehicle, Δ𝑥
𝑛
(𝑡) is the headway distance between the 𝑛th and

its leading vehicle, 𝛼 is the sensitivity parameter of the driver,
and 𝑉

op
(⋅) is the optimal velocity function described as [5]

𝑉
op

(Δ𝑥
𝑛
(𝑡)) =

Vmax
2

[tanh (Δ𝑥
𝑛
(𝑡) − ℎ

𝑐
) + tanh (ℎ

𝑐
)] , (2)

where Vmax is the maximum velocity on a particular roadway
and ℎ
𝑐
means the safety headway distance.

However, as noticed in the study on roadway, a driver
usually focuses not only the leading vehicle on the present
lane, but also the vehicle on adjacent lane, especially when
the neighbor vehicle decelerates. This phenomenon occurs
because of the potential action of lane changing or the
avoidance of collision when the lane width is small [29].
Hence the lateral influence should be considered in car-
following model even if lane changing does not occur.

It is assumed that the driver makes his decision upon the
combination impact of leading vehicle and neighbor vehicle
by introducing a second OV function, which can be defined
as

𝑉
op

(𝑙
𝑛
(𝑡)) = {

𝑉
op

(Δ𝑥
𝑙,𝑛+1

(𝑡)) , 𝑙V ≤ Δ𝑥
𝑙,𝑛+1

(𝑡) < 𝑑,

0, others,
(3)

where Δ𝑥
𝑙,𝑛+1

(𝑡) is the headway distance between the 𝑛th
vehicle and its leading vehicle on the adjacent lane, 𝑙V is the
length of a normal vehicle, and 𝑑 is a preset constant.

Referring to previous study, ΔV
𝑛
(𝑡) and ΔV

𝑙,𝑛
(𝑡) are intro-

duced [7], where ΔV
𝑛
(𝑡) = V

𝑛+1
(𝑡) − V

𝑛
(𝑡) and ΔV

𝑙,𝑛
(𝑡) can be

given as

ΔV
𝑙,𝑛

(𝑡) = {
V
𝑙,𝑛

(𝑡) − V
𝑛
(𝑡) , 𝑙V ≤ Δ𝑥

𝑙,𝑛+1
(𝑡) < 𝑑,

0, others,
(4)

in which V
𝑙,𝑛
(𝑡) is the velocity of the leading vehicle on

adjacent lane.

The new model can be expressed as

𝑑
2
𝑥
𝑛
(𝑡)

𝑑𝑡2
= 𝛼 [𝑝𝑉

op
(Δ𝑥
𝑛
(𝑡)) + 𝑞𝑉

op
(Δ𝑥
𝑙,𝑛

(𝑡)) − V
𝑛
(𝑡)]

+ 𝜆
1
ΔV
𝑛
(𝑡) + 𝜆

2
ΔV
𝑙,𝑛

(𝑡) ,

(5)

where 𝑝 and 𝑞 are the weights of the two OV functions and
𝜆
1
and 𝜆

2
are the weights of velocity difference.

3. Linear Stability Analysis

According to linear stability analysis method [6], stable
condition of the uniform traffic flow is given by

𝑥
(0)

𝑛
(𝑡) = 𝑛ℎ

𝑐
+ 𝑉

op
(ℎ) 𝑡,

𝑥
(0)

𝑙,𝑛
(𝑡) = 𝑛ℎ

𝑐
+ 𝑉

op
(ℎ) 𝑡.

(6)

Let 𝑦
𝑛
(𝑡) and 𝑦

𝑙,𝑛
(𝑡) be small deviations from 𝑥

(0)

𝑛
(𝑡) and

𝑥
(0)

𝑙,𝑛
(𝑡) as 𝑥

𝑛
(𝑡) = 𝑥

(0)
(𝑡) + 𝑦

𝑛
(𝑡) and 𝑥

𝑙,𝑛
(𝑡) = 𝑥

(0)

𝑙
(𝑡) + 𝑦

𝑙,𝑛
(𝑡).

The linearized equation can be obtained:

𝑑
2
𝑦
𝑛
(𝑡)

𝑑𝑡2
= 𝛼 [𝑝𝑉

󸀠
(Δ𝑥
(0)

) Δ𝑦 (𝑡)

+ 𝑞𝑉
󸀠

(Δ𝑥
(0)

𝑙
) Δ𝑦
𝑙
(𝑡) − V

𝑛
(𝑡)]

+ 𝜆
1
ΔV
𝑛
(𝑡) + 𝜆

2
ΔV
𝑙𝑛
(𝑡) ,

(7)

where 𝑉
󸀠 and 𝑉

󸀠 are the derivatives of OV functions
𝑉

op
(Δ𝑥
𝑛
(𝑡)) and 𝑉

op
(𝑙
𝑛
(𝑡)). By expanding 𝑦

𝑛
(𝑡) ∝ exp(𝑖𝑘𝑛 +

𝑧𝑡) and 𝑦
𝑙,𝑛
(𝑡) ∝ exp(𝑖𝑘𝑛 + 𝑧𝑡), (7) can be rewritten as

𝑧
2
+ [𝛼 − (𝜆

1
+ 𝜆
2
) (𝑒
𝑖𝑘
− 1)] 𝑧

− 𝛼 (𝑝𝑉
󸀠
+ 𝑞𝑉
󸀠

) (𝑒
𝑖𝑘
− 1) = 0.

(8)

Then expand 𝑧 by the order of 𝑖𝑘 at the point of 𝑖𝑘 ≈ 0 as
𝑧 = 𝑧

1
𝑖𝑘 + 𝑧

2
(𝑖𝑘)
2
+ ⋅ ⋅ ⋅ and insert it into (8). The following

terms can be obtained:

𝑧
1
= 𝑝𝑉
󸀠
+ 𝑞𝑉
󸀠

,

𝑧
2
= (

1

2
+

𝜆
1
+ 𝜆
2

𝛼
) (𝑝𝑉

󸀠
+ 𝑞𝑉
󸀠

) −

(𝑝𝑉
󸀠
+ 𝑞𝑉
󸀠

)
2

𝛼
.

(9)

According to previous study, the vehicle system is stable
when 𝑧

2
> 0, which is

𝛼 > 2 (𝑝𝑉
󸀠
+ 𝑞𝑉
󸀠

) − 2 (𝜆
1
+ 𝜆
2
) , (10)

and the neutral stability condition has the following form:

𝛼
𝑐
= 2 (𝑝𝑉

󸀠
+ 𝑞𝑉
󸀠

) − 2 (𝜆
1
+ 𝜆
2
) . (11)

The stability surface is described in Figure 1. Parameters
are set as Vmax = 4, ℎ

𝑐
= 7, 𝑝 = 1, 𝑞 = 0, 𝜆

1
= 0.2, and

𝜆
2
= 0 in Figure 1(a), while 𝑝 = 0.8, 𝑞 = 0.2, 𝜆

1
= 0.16, and

𝜆
2
= 0.04 in Figure 1(c). As can be seen, the unstable region

is smaller considering influence from adjacent lane [25].
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Figure 1: Headway-sensitivity space for (a) and (b): 𝑝 = 1, 𝑞 = 0, 𝜆
1
= 0.2, and 𝜆

2
= 0 and (c) and (d): 𝑝 = 0.8, 𝑞 = 0.2, 𝜆

1
= 0.16, and

𝜆
2
= 0.04.

4. Nonlinear Stability Analysis

For the convenience of nonlinear analysis, (5) is rewritten as

𝑑
2
Δ𝑥
𝑛
(𝑡)

𝑑𝑡2
= 𝛼 [𝑝𝑉 (Δ𝑥

𝑛+1
(𝑡)) − 𝑝𝑉 (Δ𝑥

𝑛
(𝑡))

+ 𝑞𝑉 (Δ𝑥
𝑙,𝑛+1

(𝑡))

− 𝑞𝑉 (Δ𝑥
𝑙,𝑛

(𝑡)) −
𝑑Δ𝑥
𝑛
(𝑡)

𝑑𝑡
]

+ 𝜆
1

𝑑Δ𝑥
𝑛+1

(𝑡)

𝑑𝑡
− 𝜆
1

𝑑Δ𝑥
𝑛
(𝑡)

𝑑𝑡

+ 𝜆
2

𝑑Δ𝑥
𝑙,𝑛+1

(𝑡)

𝑑𝑡
− 𝜆
2

𝑑Δ𝑥
𝑙,𝑛

(𝑡)

𝑑𝑡
.

(12)

MKdVequation is obtained in unstable region around the
critical point (ℎ

𝑐
, 𝛼
𝑐
), where 𝑉

󸀠󸀠
= 0. By the analysis method

in [18], the long wave expansion is applied in this section.

Two slow scales for space variable 𝑛 and time variable 𝑡 are
introduced. We define slow variables𝑋 and 𝑇 as

𝑋 = 𝜀 (𝑛 + 𝑏𝑡) , 𝑇 = 𝜀
3
𝑡, (13)

where 𝑏 is a constant determined later and 𝜀 = √𝛼
𝑐
/𝛼 − 1.

Headways for two lanes are set as

Δ𝑥
𝑛
(𝑡) = ℎ

𝑐
+ 𝜀𝑅 (𝑋, 𝑇) ,

Δ𝑥
𝑙,𝑛

(𝑡) = ℎ
𝑐
+ 𝜀𝑅 (𝑋, 𝑇) .

(14)

Expanding (12) to the fifth order of 𝜀 then gives

𝜀
2
[𝛼𝑏 − 𝛼 (𝑝𝑉

󸀠
+ 𝑞𝑉
󸀠

)] 𝜕
𝑋
𝑅

+ 𝜀
3 [

[

𝑏
2
−

𝛼 (𝑝𝑉
󸀠
+ 𝑞𝑉
󸀠

)

2
− (𝜆
1
+ 𝜆
2
) 𝑏]

]

𝜕
2

𝑋
𝑅
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+ 𝜀
4 [

[

𝛼𝜕
𝑇
𝑅 −

𝛼 (𝑝𝑉
󸀠󸀠󸀠

+ 𝑞𝑉
󸀠󸀠󸀠

)

6
𝜕
𝑋
𝑅
3

−

𝛼 (𝑝𝑉
󸀠
+ 𝑞𝑉
󸀠

) + 3𝑏 (𝜆
1
+ 𝜆
2
)

6
𝜕
3

𝑋
𝑅]

]

+ 𝜀
5 [

[

(2𝑏 − 𝜆
1
− 𝜆
2
) 𝜕
𝑋
𝜕
𝑇
𝑅

−

𝛼 (𝑝𝑉
󸀠
+ 𝑞𝑉
󸀠

) + 4𝑏 (𝜆
1
+ 𝜆
2
)

24
𝜕
4

𝑋
𝑅

−

𝛼 (𝑝𝑉
󸀠󸀠󸀠

+ 𝑞𝑉
󸀠󸀠󸀠

)

12
𝜕
2

𝑋
𝑅
3]

]

= 0.

(15)

It is noticed that the 𝜕
𝑋
𝜕
𝑇
𝑅 in the sixth order term of (15)

can be eliminated by taking the derivative of 𝑋 in the fifth
order term.Then insert 𝑏 = 𝑝𝑉

󸀠
+ 𝑞𝑉
󸀠 and 𝛼

𝑐
/𝛼 − 1 = 𝜀

2 into
(15); that is,

[𝜕
𝑇
𝑅 − 𝑚

1
𝜕
3

𝑋
𝑅 + 𝑚

2
𝜕
𝑋
𝑅
3
]

+ 𝜀 [𝑚
3
𝜕
2

𝑋
𝑅 + 𝑚

4
𝜕
4

𝑋
𝑅 + 𝑚

5
𝜕
2

𝑋
𝑅
3
] = 0,

(16)

where

𝑚
1
=

(𝛼 + 3𝜆
1
+ 3𝜆
2
) (𝑝𝑉

󸀠
+ 𝑞𝑉
󸀠

)

6𝛼
,

𝑚
2
= −

(𝑝𝑉
󸀠󸀠󸀠

+ 𝑞𝑉
󸀠󸀠󸀠

)

6
,

𝑚
3
=

(𝑝𝑉
󸀠
+ 𝑞𝑉
󸀠

)

2
,

𝑚
4
= [

[

4 (2𝑝𝑉
󸀠
+ 2𝑞𝑉

󸀠

− 𝜆
1
− 𝜆
2
) (𝛼 + 3𝜆

1
+ 3𝜆
2
)

24𝛼2

−
𝛼 + 4 (𝜆

1
+ 𝜆
2
)

24𝛼

]

]

(𝑝𝑉
󸀠
+ 𝑞𝑉
󸀠

) ,

𝑚
5
=

2 (2𝑝𝑉
󸀠
+ 2𝑞𝑉

󸀠

− 𝜆
1
− 𝜆
2
) − 𝛼

12𝛼
(𝑝𝑉
󸀠󸀠󸀠

+ 𝑞𝑉
󸀠󸀠󸀠

) .

(17)

In order to have standard MKdV equation, the following
transformations are made in (16):

𝑇 =
1

𝑚
1

𝑇
𝑚
, 𝑅 = √

𝑚
1

𝑚
2

𝑅
𝑚
. (18)

Then (16) can be rewritten as

[𝜕
𝑇
𝑚

𝑅
𝑚

− 𝜕
3

𝑋
𝑅
𝑚

+ 𝜕
𝑋
𝑅
3

𝑚
]

+
𝜀

𝑚
1

[𝑚
3
𝜕
2

𝑋
𝑅
𝑚

+ 𝑚
4
𝜕
4

𝑋
𝑅
𝑚

+
𝑚
1
𝑚
5

𝑚
2

𝜕
2

𝑋
𝑅
3

𝑚
] = 0.

(19)

Ignoring the 𝑂(𝜀) term, we have MKdV equation with a
kink-antikink soliton solution expressed as

𝑅
𝑚0

(𝑋, 𝑇
𝑚
) = √𝐵 tanh[√

𝐵

2
(𝑋 − 𝐵𝑇

𝑚
)] . (20)

To determine the value of amplitude 𝐵, the solvable
condition is considered:

(𝑅
𝑚0

,𝑀 [𝑅
𝑚0

]) ≡ ∫

∞

−∞

𝑅
𝑚0

𝑀[𝑅
𝑚0

] 𝑑𝑋 = 0, (21)

where 𝑀[𝑅
𝑚0

] means the 𝑂(𝜀) term in (19). By performing
the integration of (21), the value of amplitude 𝐵 can be
obtained:

𝐵 =
5𝑚
2
𝑚
3

2𝑚
2
𝑚
4
− 3𝑚
1
𝑚
5

. (22)

The kink-antikink soliton solution of headway can be
written as follows:

Δ𝑥
𝑛
= ℎ
𝑐
+ √(

𝛼
𝑐

𝛼
− 1)(

5𝑚
1
𝑚
3

2𝑚
2
𝑚
4
− 3𝑚
1
𝑚
5

)

× tanh{√(
𝛼
𝑐

𝛼
− 1)

5𝑚
2
𝑚
3

4𝑚
2
𝑚
4
− 6𝑚
1
𝑚
5

× [𝑛 + (𝑝𝑉
󸀠
+ 𝑞𝑉
󸀠

) 𝑡

− (
𝛼
𝑐

𝛼
− 1)

5𝑚
2
𝑚
3
𝑡

2𝑚
2
𝑚
4
− 3𝑚
1
𝑚
5

]} .

(23)

With the amplitude of (23), we have the coexisting
surface in Figures 1(b) and 1(d) based on Figures 1(a) and
1(c), respectively. The space is divided into three regions:
stable region above the coexisting surface, metastable region
between coexisting surface and stability surface, and unstable
region below stability surface. However, the limitation should
be noted that this nonlinear analysis is only valid at the critical
point when ℎ = ℎ

𝑐
.

5. Numerical Simulation

Consider a two-lane system with 100 vehicles running on
each lane under a periodic boundary condition without
overtaking or lane changing. The initial values are Vmax = 4,
ℎ
𝑐
= 7, and 𝑑 = 10 on both lanes. In this section, only the

situation of 𝑝 + 𝑞 = 1 is simulated, because we suppose that
the sum of OV functions’ weights should remain as 1, which
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Figure 2: Space-time evolution of headway for lane1 in (a) and lane2 in (b) when 𝑝 = 0.8, 𝑞 = 0.2, 𝜆
1
= 0.16, and 𝜆

2
= 0.04 and for lane1 in

(c) and lane2 in (d) when 𝑝 = 0.6, 𝑞 = 0.4, 𝜆
1
= 0.12, and 𝜆

2
= 0.08.

means the driver has no extra attention when considering
lateral influence.

First add a disturbance on one lane as follows:

for lane1, {Δ𝑥
𝑛
(0) = 7–0.3 45 < 𝑛 < 50

Δ𝑥
𝑛
(0) = 7 others;

for lane2, Δ𝑥
𝑛
(0) = 7 0 < 𝑛 ≤ 100.

(24)

Set 𝛼 = 2.85, 𝑝 = 0.8, 𝑞 = 0.2, 𝜆
1

= 0.16, and 𝜆
2

=

0.04 for the first simulation test. Figure 2 shows the space-
time evolution of headway for lane1 in (a) and lane2 in (b)
from 900 s to 1000 s. Then set 𝛼 = 2.85, 𝑝 = 0.6, 𝑞 = 0.4,
𝜆
1
= 0.12, and 𝜆

2
= 0.08 for the next simulation. The results

are shown in Figures 2(c) and 2(d). It is noticed that when

the proportion of lateral influence increases from 0.2 to 0.4,
the density wave on lane2 becomes heavier, while on lane1 the
perturbation decays.

Second, we consider both lanes have small disturbances,
which are defined as follows:

for lane1, {Δ𝑥
𝑛
(0) = 7–0.1 45 < 𝑛 < 50

Δ𝑥
𝑛
(0) = 7 others;

for lane2, {Δ𝑥
𝑛
(0) = 7–0.3 45 < 𝑛 < 50

Δ𝑥
𝑛
(0) = 7 others.

(25)

Let 𝛼 = 2.85, 𝑝 = 1, 𝑞 = 0, 𝜆
1

= 0.2, and 𝜆
2

= 0,
which cannot satisfy the stable condition in (10). Figure 3
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Figure 3: Space-time evolution of headway for lane1 in (a) and lane2 in (b) and headway profile of traffic wave at 𝑡 = 950 s for lane1 in (c)
and lane2 in (d). (𝛼 = 2.85, 𝑝 = 1, 𝑞 = 0, 𝜆

1
= 0.2, and 𝜆

2
= 0).

shows the space-time evolution of headway for lane1 in (a)
and lane2 in (b) from 900 s to 1000 s. The headway profiles
of traffic wave at 𝑡 = 950 s are in (c) for lane1 and (d) for
lane2. It is observed that the small perturbation propagates
into traffic jam on both lanes. Furthermore, traffic jam is
more serious in lane2 due to the larger initial headway
perturbation.

Then suppose 𝛼 = 2.85, 𝑝 = 0.8, 𝑞 = 0.2, 𝜆
1

= 0.16,
and 𝜆

2
= 0.04. Figure 4 describes the space-time evolution of

headway and the headway profiles of traffic wave at 𝑡 = 950 s
corresponding to Figure 3. The initial perturbation decays
after sufficient time on both lanes. Thus the consideration of
lateral impact from adjacent lane can suppress traffic jam.

The amplitude of traffic wave in lane2 is larger just like in
Figure 3.

Finally when 𝛼 = 2.2, 𝑝 = 0.8, 𝑞 = 0.2, 𝜆
1

= 0.16,
and 𝜆

2
= 0.04, the system is more unstable and serious

kink-antikink waves are observed in Figure 5. Unlike Figures
3 or 4, there is no significant difference between the two
lanes, because all the vehicles get influenced heavily by lateral
impact.

Then we exchange the disturbances of the two lanes, and
simulations show similar results. In other words, the situation
on lane1 after exchange is like lane2 before exchange, the same
for lane 2. By simulation, the theoretical analysis of MKdV
solution can be described.
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Figure 4: Space-time evolution of headway for lane1 in (a) and lane2 in (b) and headway profile of traffic wave at 𝑡 = 950 s for lane1 in (c)
and lane2 in (d). (𝛼 = 2.85, 𝑝 = 0.8, 𝑞 = 0.2, 𝜆

1
= 0.16, and 𝜆

2
= 0.04).

6. Conclusions

In this paper, a new car-following model is proposed con-
sidering lateral influence from adjacent lane. Linear and
nonlinear stability analyses are carried out, from which
MKdV equation is obtained. Numerical simulations show
that new model has good consistency with theoretical study
and can suppress traffic jam wave. However, when 𝛼 satisfied
the unstable condition, both lanes will have serious traffic jam
of same level despite different initial headway perturbation.
In conclusion, even though lane changing does not happen,
considering lateral impact has influence on car-following

behavior indeed and can keep the vehicle system more
stable.
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