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Abstract 

Two freshwater macrophytes, Ottelia alismoides and Ottelia acuminata, were grown at low (mean 5 

µmol L-1) and high (mean 400 µmol L-1) CO2 concentrations under natural conditions. The ratio of 

PEPC to RuBisCO activity was 1.8 in O. acuminata in both treatments. In O. alismoides, this ratio 

was 2.8 and 5.9 when grown at high and low CO2, respectively, as a result of a 2-fold increase in 

PEPC activity. The activity of PPDK was similar to, and changed with, PEPC (1.9-fold change). The 

activity of the decarboxylating NADP-malic enzyme (ME) was very low in both species while NAD-

ME activity was high and increased with PEPC activity in O. alismoides. These results suggest that O. 

alismoides might perform a type of C4 metabolism with NAD-ME decarboxylation, despite lacking 

Kranz anatomy. The C4-activity was still present at high CO2 suggesting that it could be constitutive. 

O. alismoides at low CO2 showed diel acidity variation of up to 34 μequiv g-1 FW indicating that it 

may also operate a form of Crassulacean Acid Metabolism (CAM). pH-drift experiments showed that 

both species were able to use bicarbonate. In O. acuminata, the kinetics of carbon uptake were altered 

by CO2 growth conditions, unlike in O. alismoides. Thus the two species appear to regulate their 

carbon concentrating mechanisms differently in response to changing CO2. O. alismoides is 

potentially using three different concentrating mechanisms. The Hydrocharitaceae have many species 

with evidence for C4, CAM, or some other metabolism involving organic acids, and are worthy of 

further study. 



3 
 

 

Introduction 

All eukaryotic photoautotrophs, plus their cyanobacterial predecessor, assimilate CO2, via the Calvin 

Benson-Bassham or reductive pentose phosphate cycle where the carboxylation reaction is catalyzed 

by ribulose 1,5-bisphosphate carboxylase-oxygenase (RuBisCO; EC 4.1.1.39; (Raven et al. 2012)). 

However, RuBisCO, has a relatively low affinity for CO2 and will also fix oxygen competitively 

leading to subsequent further carbon loss via photorespiration (Bowes et al. 1971; Ogren 2003). Some 

terrestrial plants have a biochemical carbon dioxide concentrating mechanism (CCM), whereby 

carbon is fixed by the oxygen insensitive phosphoenol pyruvate carboxylase (PEPC; EC 4.1.1.31) 

producing a C4 acid, oxaloacetate (OAA), that is rapidly converted into malate or aspartate. The C4 

acid is then decarboxylated, to produce elevated concentrations of CO2 around RuBisCO, minimising 

photorespiration (Hatch and Slack 1966 ; Raghavendra and Sage 2011). Most terrestrial C4 plants 

have ‘Kranz anatomy’, where the initial carboxylation by PEPC is spatially separated from 

subsequent decarboxylation and RuBisCO fixation, in order to prevent futile cycling (Raghavendra 

and Sage 2011). However, a dramatic variant of C4 plant was discovered in a submersed monocot, 

Hydrilla verticillata (Hydrocharitaceae; Holaday and Bowes 1980; Bowes 2011) that operates an 

inducible single-celled C4 metabolism with CO2 concentrating in the chloroplast. About a decade ago, 

C4 metabolism was also described in single-cells of two land plants (Chenopodiaceae), Biernertia 

cycloptera and Borszczowia aralocapsica with RuBisCO and PEPC in different parts of the same cell 

(Edwards et al. 2004; Voznesenskaya et al. 2002; Voznesenskaya et al. 2001). 

Three major sub-types of C4 plants have been described based on the decarboxylation step 

that liberates CO2 from the C4 acid compounds. In two sub-types, malate is decarboxylated to form 

CO2 and pyruvate, one with NADP-malic enzyme (NADP-ME, EC 1.1.1.40) and one with NAD-

malic enzyme (NAD-ME, EC 1.1.1.39). The pyuvate re-enters the cycle via pyruvate phosphate 

dikinase (PPDK EC 2.7.9.1) that regenerates phosphoenolpyruvate, the substrate for PEPC. In a third 

sub-type, PEP carboxykinase (PEPCK, EC 4.1.1.49) decarboxylates OAA to form CO2 and PEP. In 
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the plants with NAD-ME or PEPc kinase, aspartate rather than malate is shuttled from the mesophyll 

to the bundle sheath cells (Raghavendra and Sage 2011). 

Other terrestrial plants, especially those associated with arid environments, possess 

Crassulacean Acid Metabolism (CAM) where there is a temporal separation of carbon-fixation by 

PEPC and RuBisCO. In these plants, PEPC is active at night causing malate to accumulate within the 

vacuole. This C4 acid is then decarboxylated during the day to produce CO2 that is fixed by RuBisCO. 

This is primarily a water conserving mechanism minimising gaseous exchange during the day but it 

also serves to conserve carbon by reducing respiratory carbon loss (Cushman and Bohnert 1999; 

Silvera et al. 2010). 

Concentrations of CO2 in lakes frequently exceed air-equilibrium as a result of input from the 

catchment of CO2 or terrestrially fixed organic carbon that is oxidised to CO2 (Cole et al. 2007; 

Maberly et al. 2013). However, in productive systems the rate of carbon-fixation in a unit volume of 

water can greatly exceed rates of carbon supply from the atmosphere, or other sources, leading to 

depletion of CO2 virtually to zero (Maberly 1996) limiting productivity (Ibelings and Maberly 1998; 

Jansson et al. 2012). Furthermore, the rate of CO2 diffusion in water is about 104-times lower in water 

than in air (Raven 1970) leading to substantial transport limitation through the boundary layer 

surrounding objects in water (Black et al. 1981). As a consequence, the concentration of CO2 needed 

to half-saturate the net photosynthesis of freshwater macrophytes is roughly 8 to 14 times air-

equilibrium (Maberly and Madsen 1998). 

Freshwater macrophytes have a range of avoidance, amelioration or exploitation strategies to 

overcome the problem of limited inorganic carbon supply (Klavsen et al. 2011).The most frequent 

CCM in freshwater macrophytes is based on the biophysical use of bicarbonate (Maberly and Madsen 

2002). Bicarbonate is the most abundant form of inorganic carbon in all freshwaters where the pH is 

between about 6.3 and 10.1: the first and second dissociation constants of the carbonate system. Even 

when concentrations of CO2 are strongly depleted as a result of photosynthetic carbon uptake, 

concentrations of bicarbonate can still be substantial. Freshwater concentrations of bicarbonate range 
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from zero in acid systems to over 100 mmol L-1 in soda lakes (Talling 1985). The use of bicarbonate, 

like other CCMs, is an active process requiring the expenditure of energy and may involve ‘polar 

leaves’ with localised areas of proton extrusion leading to conversion of bicarbonate to CO2 and 

subsequent inward diffusion, or direct uptake of bicarbonate (Elzenga and Prins 1987). 

Although much less widespread, some freshwater macrophytes also possess a type of C4 

metabolism. The best studied is that of the dioecious form of the hydrocharitacean Hydrilla 

verticillata (Bowes 2011; Holaday and Bowes 1980) that operates an inducible single-celled C4 

mechanism based on carbon fixation by PEPC and decarboxylation by NADP-ME, in addition to 

being able to use bicarbonate. Similar, albeit less well characterised, C4 mechanisms appear to operate 

in other monocotyledons: Egeria densa (Hydrocharitaceae; (Browse et al. 1977; Casati et al. 2000), 

and in amphibious species Eleocharis vivipara (Cyperaceae) (Ueno et al. 1988), and Orcuttia viscidia, 

Neostapfia colusana and Tuctoria greenii (Poaceae; Keeley and Sandquist 1992)).  

A number of freshwater macrophytes have also been shown to possess CAM (Keeley 1981, 

1998). These include species within the genus Isoetes (Lycopodiophyta), and the angiosperms 

Littorella uniflora (Madsen 1987b, a), Crassula helmsii (Newman and Raven 1995) (Klavsen and 

Maberly 2009)  and Vallisneria spiralis (Keeley 1998). Underwater, CAM acts as a carbon-

conserving mechanism that reduces the loss of respiratory carbon at night and exploits the nocturnal 

concentrations of CO2 that are often higher than during the day (Klavsen et al. 2011). 

In terrestrial plants, the global frequency of C4 is about 3% (Edwards et al. 2004) and that of 

CAM about 6%, (Silvera et al. 2010) with the remainder (91%) being C3 and so lacking CCMs. In 

contrast, about 55% of aquatic angiosperms have a biophysical CCM based on HCO3
- use and others 

have a biochemical CCM based on CAM (4%) or C4 (3% ; Maberly and Madsen 2002).  

The Hydrocharitaceae contains a number of species with biochemical CCMs, including the 

C4 syndrome (e.g Hydrilla verticillata, Egeria densa) or CAM activity (e.g Vallisneria spiralis) but 

many ecologically important species within this family have not been studied. One species-rich genus 

within the Hydrocharitaceae that has been little studied is Ottelia Pers. Here we characterized the 
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CCMs of two species from China, Ottelia acuminata, (Gagne.) Dandy var. lunanensis H. Li and 

Ottelia alismoides (Linn.) Pers., and tested their ability to acclimate to different concentrations of 

CO2. 

Material and Methods 

 

Plant material and growth conditions 

Ottelia acuminata and O. alismoides were both collected from Yunnan Province, China and then 

cultivated in a greenhouse in Wuhan Botanical Garden for several years. Seeds were germinated in a 

growth chamber (temperature 25°C) and when the seedlings reached about 20 cm tall, they were 

transferred to 10 cm diameter plant pots containing sediment from nearby Donghu Lake and placed 

inside glass tanks (30 x 40 x 60 cm tall) containing about 65 litres of tap water with an alkalinity of 

about 2 mequiv L-1. The glass tanks were located in a glasshouse on the flat roof of the laboratory in 

larger tanks (about 400 L) of running water to reduce diurnal changes in water temperature. The 

experiment was started on 11 July 2012 and finished on 29 September 2012. During the experimental 

period, snails and moribund leaves were removed every day. Two or three times each day, water 

temperature was recorded and a water sample collected to measure pH with a combination pH 

electrode (Metrohm 6.0238.000, Herisau, Switzerland) connected to a meter (Metrohm 718 STAT 

Titrino). 

Two treatments were produced with four replicate tanks per treatment, each containing both 

species. In the ‘low CO2’ treatment, the natural photosynthetic activity of the plants was allowed to 

deplete the inorganic carbon concentration of the water and increase the pH. In the ‘high CO2’ 

treatment, tank water saturated with CO2 was added to the tanks two to three times each day to reduce 

the pH to between 6.6 and 7.0 and thereby increase the concentration of CO2. The tanks were gently 

stirred to mix the water after each addition of CO2 solution. Both treatments were out of equilibrium 

with air CO2 and although CO2 concentrations varied over time, the concentrations in the two 

treatments were very different. 
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Enzyme activity measurements 

Leaves were harvested, blotted dry and quickly weighed to determine fresh weight, and then frozen in 

a pestle and mortar with liquid nitrogen. Typically, about 0.6 g fresh weight (FW) of leaf was 

extracted and 3 mL of ice-cold extraction buffer was added for each gram FW of leaf. The extraction 

buffer comprised 50 mM Tris, 0.1 mM EDTA, 15 mM MgCl2, pH 8 (buffer A) plus 10% glycerol. 

Following grinding to a smooth paste, the whole extract was centrifuged at 5°C for 45 minutes at 

12,000 g (Heraeus, Biofuge Fresco, Germany). The supernatant (the crude extract) was stored on ice 

prior to measuring enzyme activity. 

RuBisCO activity was measured in crude extracts by coupling its activity to NADH oxidation 

using phosphoglycerate kinase from yeast (PGK; Sigma St Louis, MO USA) and glyceraldehyde-3-

phosphate dehydrogenase from rabbit muscle (GAPDH; Sigma). Prior to measuring activity, the 

extract was incubated in buffer A in the presence of 20 mM bicarbonate for 5 min. Activity was then 

followed using buffer A with 0.2 mM NADH (Sigma), 1 mM ATP (Sigma), 5 mM DTT (Shanghai 

Chemical Reagents Company, China), 5 units of PGK and 5 units of GAPDH and 1 mM ribulose 1,5-

bisphosphate (Sigma). The disappearance of NADH was followed at 340 nm using a UV-Vis 

spectrophotometer (TU-1810PC, Purkinje General, China). The calculated carboxylase activity took 

account of the fact that two molecules of NADH are oxidized for every molecule of RuBP catalyzed.  

PEPC activity was measured using buffer A, with 20 mM bicarbonate and 1 mM phosphoenol 

pyruvate (Sigma) to produce oxaloacetate that is in turn coupled to malate dehydrogenase (MDH, 

Sigma) activity using an excess of this enzyme. The reaction mixture therefore also contained 0.2 mM 

NADH and 5 units of MDH. Activity was continuously followed by recording a decrease of 

absorbance at 340 nm. 

NAD-ME activity was measured spectrophotometrically in buffer A supplemented with 1 

mM NAD (Biosharp, Japan), 10 mM malate (Energy Chemical, Shanghai, China), 1 mM MnCl2, and 

5 mM dithiothreitol. NADP-ME activity in crude extracts was measured spectrophotometrically in 
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buffer A containing 1.5 mM NADP (Sigma), 10 mM malate; 1 mM MnCl2, and 5 mM dithiothreitol. 

Activities of NAD-ME and NADP-ME were followed continuously by recording an increase of 

absorbance at 340 nm. 

PPDK activity was measured spectrophotometrically, at 340 nm, in the opposite direction to 

the one operating in C4 photosynthesis, by following pyruvate formation and NADH disappearance 

using lactate dehydrogenase (LDH, Amresco, Biochemicals and Life Science Research Products). The 

reaction was carried out in buffer A supplemented with 5 mM PEP, 1.2 mM AMP (Sigma), 1 mM 

pyrophosphate, 2.5 mM dithiothreitol, 0.2 mM NADH and 2 units of LDH. 

All activities were maximal activities for the studied growth conditions but are not in vivo 

activities. 

 

CAM activity 

The daily change in titratable acidity was calculated as the difference between the minimum and 

maximum amount of titratable acidity per unit fresh mass. The minimum amount of acid was 

measured on plants collected at the end of the pH-drift experiment (July) or collected towards the end 

of the light period on 14-16 August and 27-29 September 2012. The maximum amount of acid was 

assayed after incubation of material in the dark at 25°C for 18 hours in 1 mmol L-1 equimolar 

NaHCO3 and KHCO3 at a concentration of CO2 of about 700 µmol L-1 (pH about 6.4). About 0.2 g 

fresh mass of material was quickly blotted, carefully weighed, roughly chopped into 10 mL plastic 

stoppered tubes and frozen at -20 °C. Prior to analysis, 5 mL of deionised water was added and the 

tubes were boiled for 15 minutes, cooled and stored in a refrigerator. Titratable acidity was assayed on 

an aliquot from each tube by end-point titration to pH 8.3 using approximately 0.01 mol L-1 NaOH, 

standardized by Gran titration against 0.1 mol L-1 HCl. Measurements were made in triplicate and 

results are expressed as µequiv g-1 FW. 

 

pH-drift 
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The ability of leaves to use bicarbonate was assessed in pH-drift experiments (Maberly and Spence 

1983). Leaves were cleaned by gentle rubbing to remove the marl deposit from their upper surface. 

They were then rinsed for about 10 minutes in one of the two test media: equimolar concentration of 

NaHCO3 and KHCO3 at total HCO3
- concentrations of 0.1 or 1.0 mmol L-1. The leaves were placed in 

30 mL test tubes with ground glass stoppers containing 25 mL of solution and about 5 mL air. The 

tubes were incubated in a growth cabinet at a constant temperature of 25°C and receiving about 75 

µmol photon m-2 s-1 (photosynthetically available radiation) from fluorescent tubes, measured with a 

cosine corrected sensor (Li-Cor LI-192SA). The pH was measured after 24 hours and roughly every 6 

to 12 hours thereafter until a maximum pH was reached. The final alkalinity in the solution was 

measured by Gran titration with a standard solution of HCl.  

 

Kinetics of O2 evolution 

Rates of net photosynthesis were measured as O2 evolution at 25°C at a photon irradiance of 120 

µmol photon m-2 s-1. Leaves (0.2 to 0.5 g fresh weight) were collected from the growth tanks, and 

cleaned by gentle rubbing to remove the marl deposit from their upper surface. They were then rinsed 

for about 10 minutes in a solution of 20 mM Tricine, pH 7. The leaves were then placed in a glass and 

Perspex chamber, the volume of which was 120 mL, in Tricine buffer bubbled briefly with nitrogen 

(starting O2 concentration 60 to 70% air saturation). The chamber was sealed and the O2 

concentration measured with an optical oxygen electrode (YSI Pro ODO Yellow Spring Instruments, 

USA) calibrated in air at 100% humidity and 25°C. Incremental small volumes (6 to 90 µL) of 2 mol 

L-1 Na/KHCO3 stock were added to generate a range of inorganic carbon concentrations from 0.1 to 

3.8 mmol L-1. The output of the electrode was logged on a computer and linear regressions of 

concentration against time were used to calculate rates of oxygen exchange. The kinetic response was 

fitted to the Michaelis-Menten equation. 

 

Soluble protein, chlorophyll and leaf area 
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The soluble protein concentration of crude extracts was assayed using the Bio-Rad (Hercules, CA, 

USA) reagent using bovine serum albumin as a standard (Bradford 1976). The content of chlorophyll 

a and b in the leaves of Ottelia was determined on 0.1 to 0.5 g fresh leaf material (n = 3 to 6). 

Chlorophyll was extracted overnight at 4°C with 95 % ethanol and chlorophyll concentration was 

calculated from absorbance measured in a spectrophotometer (TU-1810PC) using the equations of 

(Brain and Solomon 2007). Projected (1 –sided) leaf area was calculated from digital photographs 

using AreaAna software (Huazhong University of Sciences and Technology, China). 

 

Results 

 

Growth conditions 

The temperature was identical (around 29°C) in the low and high CO2 treatments and relatively 

constant (Table 1). The pH in the low CO2 treatment was more than one pH unit greater than in the 

high CO2 treatment. Precipitation of calcium carbonate on the leaves of both species of Ottelia in the 

low CO2 treatment caused the alkalinity to be on average nearly one mequiv L-1 lower than in the high 

CO2 treatment. The bicarbonate concentration in the low CO2 treatment was consequently also lower 

than that in the high CO2 treatment. The CO2 concentration was 80-fold lower in the low vs the high 

CO2 treatment. 

 

Soluble protein, chlorophyll and leaf area 

Growth in low or high CO2 did not have a statistically significant effect on the soluble protein, 

chlorophyll and leaf area of O. alismoides, although the ratio of chlorophyll a to chlorophyll b was 

slightly higher at high vs low CO2 (P<0.05; Table 2). For O. acuminata, the chlorophyll content per 

unit fresh weight was 1.7-fold higher in leaves grown at low CO2 compared to leaves grown at high 

CO2 (P<0.01; Table 2).  
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Enzyme activities 

The activity of RuBisCO on a protein basis was similar in both species and did not vary with the CO2 

growth conditions (Fig. 1A). In O. alismoides, PEPC activity was 2-fold higher in low CO2 compared 

to high CO2 leaves (Student’s t-test, P<0.001) but was constant in O. acuminata (Fig. 1B). 

Consequently the ratio of PEPC to RuBisCO activity increased significantly from 2.8 to 5.9 in O. 

alismoides (Student’s t-test, P<0.001) while it remained constant at about 1.8 in O. acuminata (Fig. 

1C).  

Pyruvate phosphate dikinase (PPDK), a key enzyme in two of the three decarboxylation types 

of C4, showed a similar pattern of change to PEPC (Fig. 1D). The CO2 concentration during growth 

did not affect PPDK activity in O. acuminata but triggered a 1.9-fold increase in O. alismoides at low 

compared to high CO2 that was highly significant (Student’s t-test, P<0.001). There was a significant 

correlation between activity of PEPC and PPDK (Fig. 2A). The activity of the widespread 

decarboxylating enzyme NADP-ME was very low in both species. The activity of NADP-ME at low 

and high CO2 concentration during growth did not change in O. alismoides, but decreased at low CO2 

in O. acuminata (Student’s t-test, P<0.05; Fig. 1E). Activity of NADP-ME did not correlate with 

changes in activity of PEPC (Fig. 2B). In contrast to NADP-ME, activities of NAD-ME (Fig. 1F) 

were very high and up to 27-fold greater than the activity of PEPC. In O. acuminata NAD-ME 

activity was slightly, but significantly, greater in the low CO2-grown compared to high CO2-grown 

leaves (Student’s t-test, P<0.05). The pattern in O. alismoides was similar but difference between high 

and low CO2 treatments were not significant (Student’s t-test, P= 0.08). The activity of NAD-ME 

increased with that of PEPC in O. alismoides (Fig. 2C). We were not able to measure PEPCK 

spectrophotometrically as malate dehydrogenase was present in the crude extract and would interfere 

with the assay.  

 

CAM capacity 
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The CAM capacity of the two species was assessed initially by measuring diel change in acidity. 

Across the two species and growth conditions for CO2, acidity levels varied between 14 and 24 

µequiv g-1 FW in the light and between 22 and 44 µequiv g-1 FW in the dark (Fig. 3). There was a 

statistically significant difference between light and dark acidity levels in O. alismoides at low CO2 of 

about 24 µequiv g-1 FW (Student’s t-test, P<0.05; Fig. 3). O. alismoides at high CO2 showed a small 

diel change in acidity that was not statistically significant, but there was no evidence for diel acidity 

variation in O. acuminata in either condition.  

In O. alismoides, the capacity to undertake CAM was re-measured in August and September.  

In August, a similar pattern was obtained and in leaves grown at low CO2 there was a statistically 

significant (Student’s t-test, P<0.01) diel change in acidity of 34 µequiv g-1 FW (Fig. 3b), slightly 

greater than in July. However, in September there was no indication of a diel acidity change in either 

CO2 treatment (Fig. 3c). Even in the absence of a diel change in acidity, there was a substantial 

amount of acidity on all measuring occasions, 26 to 44 µequiv g-1 FW, at the end of the dark period. 

 

pH-drift 

The pH-drift experiments provided clear evidence for bicarbonate use in both species. The final 

concentration of bicarbonate was relatively constant and low with values between 0.06 and 0.09 mmol 

L-1 in the low CO2 treatment and 0.06 and 0.11 mmol L-1 in the high CO2 treatment (Table 3). The 

final CO2 concentration was very low, in the range of 3 to 26 nmol L-1 and tended to be lower when 

measured at the higher concentration of bicarbonate which is again consistent with use of bicarbonate 

and lower than would be expected from C4 photosynthesis alone based on CO2 uptake. For example, 

assuming a low C4 CO2 compensation point of 3 ppm in air, at 25°C this would be equivalent to 100 

nmol L-1, roughly 4- to 30- times higher than the final CO2 concentrations in the drift experiments. 

There were small differences in the final CO2 concentration between CO2 treatments at the 

low bicarbonate test concentration, especially in O. acuminata, with lower final CO2 concentrations in 

the low CO2 treatment. There were substantial but reproducible shifts in alkalinity despite rinsing the 
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leaves several times in the test medium prior to the experiment. In the lower alkalinity experiment, 

alkalinity increased but in the higher alkalinity experiments, alkalinity was unchanged in the presence 

of O. acuminata but reduced in the presence of O. alismoides. 

 

Kinetics of O2 evolution 

Oxygen exchange was measured as a function of dissolved inorganic carbon (DIC) concentration at 

pH 7 in both species and both treatments (Fig. 4). In O. alismoides, the kinetic responses of leaves 

from the low and high CO2 treatments were not significantly different (variance ratio test; F2,12 = 

1.82, p = 0.20). Using the combined data, the maximum net rate of O2 evolution was 27.2 (SD = 1.2) 

µmol O2 g-1 FW h-1 which is equivalent to 56 and 39 µmol O2 mg-1 Chla h-1 at high and low CO2 

respectively. The K½ for DIC was 1.29 (SD = 0.15) mmol L-1 which at pH 7 is equivalent to 0.199 

mmol L-1 CO2 and 1.090 mmol L-1 HCO3
-. In O. acuminata, the kinetic responses of leaves from the 

two treatments were significantly different (variance ratio test; F2,12 = 5.00, P < 0.05). At the low CO2 

treatment, the maximum rate of O2 evolution was 44.0 (SD = 3.9) µmol O2 g-1 FW h-1 (48 µmol O2 

mg-1 Chla h-1)  and the K½ for DIC was 1.64 (SD = 0.34) mmol L-1. At the high CO2 growth 

treatment, the maximum rate of O2 evolution was 37.8 (SD = 4.9) µmol O2 g-1 FW h-1 (69 µmol O2 

mg-1 Chla h-1) and the K½ for DIC was 2.36 (SD = 0.62) mmol L-1. At pH 7, the K½ at low and high 

CO2 growth treatments are equivalent to 0.253 and 0.363 mmol L-1 respectively for CO2 and 1.386 

and 1.994 mmol L-1 respectively for HCO3
-. The maximum rate of O2 evolution was greater in O. 

acuminata than in O. alismoides, but the values of K½ were between 1.27- and 1.82-fold greater in O. 

acuminata than in O. alismoides. If the maximum rate of O2 evolution is expressed on a protein basis, 

however, the rates in the two species are very similar.  

 

Discussion 

 

Comparison of carbon concentrating mechanisms in Ottelia with other aquatic and terrestrial plants 
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Ottelia acuminata and O. alismoides both have the carboxylating, PEP regenerating and 

decarboxylating enzymes needed to operate a C4 pathway. In both species and under both growth 

treatments, the activity of PEPC was greater than that of RuBisCO and in plants adapted to low CO2, 

PEPC:RuBisisCO ratios were 5.9 and 1.8 for O. alismoides and O. acuminata respectively. The ratio 

for O. alismoides is similar to those reported for Hydrilla verticillata and the ratio for O. acuminata is 

identical to that of Egeria densa (Table 4) both of which are regarded as C4 aquatic plants (Bowes 

2011; Casati et al. 2000). The PEPC:RuBisCO ratio of O. alismoides is slightly lower than in some 

terrestrial C4 plants, but very similar to the single-celled C4 plants Borszczowia aralocaspica and 

Bienertia cycloptera (Voznesenskaya et al. 2002; Voznesenskaya et al. 2001) (Table 4). In contrast, 

terrestrial C3 plants and aquatic plants lacking a biochemical concentrating mechanism have 

PEPC:RuBisCO ratios substantially less than 1 (Table 4). PPDK regenerates PEP, the substrate for 

PEPC. In the two species of Ottelia, activities of PPDK were equivalent to those of PEPC and so 

should be able to support PEPC activity. The high activities in Ottelia are similar to those in terrestrial 

C4 plants (Table 4) although the ratio of PPDK to PEPC in Ottelia is greater. Of the two potential 

decarboxylating enzymes, the activity of NAD-ME was 130-times greater than NADP-ME in O. 

alismoides and 340-times greater in O. acuminata. NAD-ME is a mitochondrial enzyme that can act 

as the decarboxylating enzyme in the terrestrial single-celled C4 plants B. aralocaspica and Bienertia 

cycloptera (Voznesenskaya et al. 2002; Voznesenskaya et al. 2001) (Table 4). The apparent 

decarboxylation by NAD-ME in Ottelia, if confirmed, would be the first report of an aquatic plant 

belonging to the NAD-ME C4-subtype. Casati et al. (Casati et al. 2000) assumed that NADP-ME was 

the decarboxylation pathway in Egeria densa as the activity of this enzyme increased on transfer to 

low CO2 conditions. However, NAD-ME actitvity was not measured and the activity of NADP-ME 

was about half that of PEPC so it is not impossible that NAD-ME is also involved in decarboxyation 

in this species. H. verticillata is also assumed to belong to the NADP-ME sub-group (Bowes 2011; 

Bowes et al. 2002) but much more evidence is available to support this contention since physiological 

characteristics changed in parallel to NADP-ME activity and oxygen inhibition measurements are 

consistent with high concentrations of CO2 being generated in the chloroplast where NADP-ME is 

located  (Magnin et al. 1997; Reiskind et al. 1997). In H. verticillata, the ratio of NAD-ME to NADP-
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ME is about five, much less than that found in the two species of Ottelia studied here (Table 4). 

However, further work is needed to confirm that Ottelia is operating NAD-ME C4 photosynthesis. It 

has been reported that versions of the enzymes used in the variants of C4 photosynthesis can occur in 

C3 plants. For example, in the C3 Arabidopsis there are one or more isoforms of PEPC, PEPCK, 

NAD-ME, NADP-ME and PPDK which have different functions (Aubry et al. 2011). Analysis of 

enzyme activity might help to temper future claims of C4 photosynthetic metabolism based solely on 

genomics or transcriptomics and detailed studies of biochemical turnover using short-term labelling 

with 14C-labelled inorganic carbon should be investigated in the future. 

Preliminary examination of leaf sections for both species under the light microscope has 

shown no evidence for Kranz anatomy (data not shown) so it is possible that Ottelia is also operating 

a single-cell C4 mechanism. However, unlike Hydrilla and Egeria, the leaves of both Ottelia species 

are four cells thick, so RuBisCO and PEPC could be localized in different types of cell. 

The C4 system in O. alismoides and O. acuminata is not abolished at high CO2 (400 μmol 

CO2 L-1; over 30-fold air-equilibrium) unlike in the two other well-studied C4 freshwater 

macrophytes, E. densa and H. verticillata. The C4 syndrome may be constitutive in Ottelia as it is in 

the marine macroalga Udotea flabellum (Reiskind and Bowes 1991; Reiskind et al. 1988) although the 

effect on Ottelia of other environmental factors such as low temperature or light has not been tested. 

Both species of Ottelia studied here showed an ability to use bicarbonate as an exogenous 

carbon source based on the pH-drift experiments and also the rates of oxygen evolution as a function 

of inorganic carbon concentration, despite the use of a buffer to maintain constant pH. Bicarbonate 

use is a widespread feature in freshwater angiosperms (Maberly & Madsen 2002), however, its 

combination in a species able to show CAM has not been reported before as far as we are aware. 

 

Distribution of biochemical CCMs in terrestrial and aquatic plants 

Several lines of evidence show that in the terrestrial environment, C4 photosynthesis became 

widespread around 11 to 5 million years ago during periods of hot and arid conditions and that it is 



16 
 

polyphyletic and arose at least 62 times (Sage et al. 2011). C3-C4 metabolism has been described in 

several species in the genera Moricandia, Panicum and Flaveria. C3-C4 intermediates are important 

because they are viewed as possible evolutionary intermediates between the C3 and C4 photosynthetic 

pathways (Peisker 1996). In all known Flaveria C3-C4 intermediates, both RuBisCO and PEP 

carboxylase are not entirely compartmentalized between mesophyll and bundle-sheath cells, as is 

observed in C4 species (von Caemmerer 2000). Different Flaveria C3-C4 intermediates fix between 

15 to 85% of atmospheric CO2 into C4 acids during short-term exposure to 14CO2; however, transfer 

of label to the C3 cycle does not occur at the rates normally observed in C4 species (Monson et al. 

1986). Our results showed that there was a statistically significant difference between light and dark 

acidity levels in O. alismoides at low CO2 of about 24-34 µequiv g-1 FW in July and August. 

However, in September there was no indication of a diel acidity change in either CO2 treatment. Even 

in the absence of a diel change in acidity, there was a substantial amount of acidity on all measuring 

occasions, at the end of the dark period. C3-C4 intermediate photosynthesis could be a possible 

metabolism involving organic acids besides CAM.  

Aquatic C4 photosynthesis is probably more ancient than that of terrestrial C4 and is also 

likely to be polyphyletic. The marine macroalga Udotea flabellum (Chlorophyta, Udoteaceae) 

performs C4 metabolism but PEPCK is believed to carry out the dual role of carboxylation and 

decarboxylation (Reiskind and Bowes 1991). It has recently been proposed that another marine 

macroalga Ulva prolifera (Chlorophyta, Ulvophyceae) has C4 metabolism based on the presence of 

PEPC and PPDK (Xu et al. 2012). Within microalgae, C3-C4 metabolism has been described in some 

marine diatoms (Bacillariophyta, that arose about 180 million years ago) such as Thalassiosira 

weissflogii (Reinfelder 2011; Reinfelder et al. 2000) but appears to be absent in others such as T. 

pseudonana and Phaedodactylum tricornutum (Haimovich-Dayan et al. 2013; Roberts et al. 2007). 

Within aquatic angiosperms, C4 photosynthesis appears to be largely restricted to the 

Hydrocharitaceae, a monocotyledonous family of 18 genera and about 120 species that is believed to 

have an Oriental origin about 65 million years ago (Chen et al. 2012). The genus Stratiotes is believed 

to be the first diverging lineage of the Hydrocharitaceae and two clades have been recognized: Clade 
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A includes Hydrilla, Najas, Vallisneria and the seagrasses Halophila, Thalassia and Enhalus, and 

Clade B includes Ottelia, Egeria, Elodea and Lagarosiphon (Chen et al. 2012). Both clades contain 

species with C4 activity: within Clade A in Hydrilla (Bowes 2002, 2011) and possibly in the seagrass 

Halophila (Koch et al. 2013); within Clade B in Egeria (Casati et al. 2000) and Ottelia (this study). 

Outwith the Hydrocharitaceae, although within the order Alismatales, the aquatic angiosperm 

(seagrass) Cymodocea (Cymodoceaceae) may also have some evidence for C4 metabolism (Koch et 

al. 2013) but this requires further investigation. 

There is also a high incidence of CAM-like activity, or at least evidence for elevated 

concentrations of organic acids, in the Hydrocharitaceae. The report here of CAM in O. alismoides at 

low CO2 contrasts with the data from (Webb et al. 1988) where a diel change of only 7 μequiv g-1 FW 

has been found in the amphibious Ottelia ovalifolia; however our results suggest that CAM is 

facultative in O. alismoides and apparently absent in O. acuminata so this is not necessarily 

contradictory. Vallisneria americana and V. spiralis (Clade B) show evidence for CAM with diel 

changes in acidity of up to 42 and 51 μequiv g-1 FW respectively (Keeley 1998; Webb et al. 1988). 

Diel changes in acid contents in other Hydrocharitaceae such as species from the genera Egeria, 

Elodea and Lagarosiphon are relatively low (Keeley 1998; Webb et al. 1988). Earlier studies reported 

fixation of 14C into C4 acids in species of freshwater Hydrocharitaceae within the genera: Egeria, 

Elodea and Lagarosiphon (Brown et al. 1974; Browse et al. 1977; Degroote and Kennedy 1977; 

Salvucci and Bowes 1983) and also in the marine Halophila (Beer 1989) although there is little 

evidence for turnover in pulse-chase experiments. Thus, the precise role of these acids and their 

relationship to C4, CAM and C3-C4 intermediates or other functions such as pH-regulation remains to 

be elucidated within the Hydrocharitaceae in species that do not appear to operate C4 or CAM.  

 

Comparison of O. acuminata and O. alismoides 

O. alismoides is an annual plant and is widespread in tropical and warmer regions of Asia and 

Australia (Cook and Urmikonig 1984). It can grow in still or flowing water to a depth of about 1 m. It 

is also found elsewhere as a non-native such as in Louisiana in the south of the USA 
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(http://plants.usda.gov ). In contrast, O. acuminata is a perennial with a restricted distribution, being 

confined to western China where it grows in still and flowing water to a depth of 5 m. Both species 

are able to use bicarbonate in addition to CO2 as an inorganic carbon source for photosynthesis, but 

O. alismoides appears to have greater flexibility in its CCMs with apparently facultative CAM and 

constitutive C4 metabolism. It is tempting to suggest that this flexibility of CCM operation may be 

linked to its annual growth cycle with the requirement to produce seeds at the end of a growing 

season, its distribution in shallow tropical waters where ecological success is likely to be favoured by 

high growth rates, and also that an efficient and effective carbon uptake system may increase its 

potential to invade other non-native habitats.   
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Figure captions 

Fig. 1 Comparison of the activity of C3 and C4 metabolic enzymes in crude extracts from O. 

alismoides (light grey bars) and O acuminata (dark grey bars) grown under low and high CO2 

concentrations for RuBisCO: ribulose 1,5-bisphosphate carboxylase-oxygenase (A); PEPC: PEP 

carboxylase (B); Ratio of PEPC to RuBisCO activity (C); PPDK: pyruvate phosphate dikinase (D); 

NADP-ME: NADP-malic enzyme (E); NAD-ME: NADP-malic enzyme (F). Means and standard 

deviation are presented. Statistical differences between high and low CO2 treated plants are 

designated as follows: NS, not significant, *, P < 0.05, **, P < 0.01, ***, P < 0.001  

 

Fig. 2 Correlations between activities of A, PPDK; B, NADP-ME and C, NAD-ME and activity of 

PEPC for O. alismoides () and O. acuminata () grown at low and high concentrations of CO2. 

Each point represents the mean activity from one tank. 1:1 activity is represented by a solid line 

 

Fig. 3 Acidity of extracts from O. alismoides (white bars) and O. acuminata (grey bars) grown under 

low and high CO2 concentrations, measured at the end of the dark period (hatched bars) and in the 

light (open bars) in July (A), August (B) and September (C). Means and standard deviation are 

presented. Statistical differences between high and low CO2 treated plants are designated as follows: 

NS, not significant, *, P < 0.05. Where there is a significant difference between light and dark acidity, 

the difference is given as Δ  

 

Fig. 4 Rate of net photosynthesis as a function of the concentration of HCO3
- (A and C) or CO2 (B 

and D) in O. alismoides (A and B) and O acuminata (C and D) grown under low () and high () 

CO2 concentrations 
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Table 1 Conditions in the two growth treatments. Mean values are given with ranges in parentheses  

acalculated as a geometric mean. 

Conditions Low CO2 High CO2 
Temperature (°C) 29 (27-31) 29 (27-31) 
pHa 8.27 (7.43-9.19) 6.99 (6.71-7.37) 
Alkalinity (mequivalent L-1) 1.21 (0.82-1.74) 2.08 (1.94-2.23) 
CO2 (µmol L-1) 5 (0.1-19) 401 (156-748) 
HCO3 (mmol L-1) 1.05 (0.37-1.69) 1.98 (1.66-2.23) 



21 
 

Table 2 Characteristics of the Ottelia species grown at low and high CO2 concentration 

 Chla+b / FW 
(mg g-1) 

Chla : Chlb Protein/ FW 
(mg g-1) 

Specific Leaf Area 
(1-sided cm2 g-1 FW) 

Species Low High Low High Low High Low High 
O. acuminata 1.26  

(0.14) 
0.74  
(0.12) 

2.74 
(0.19) 

3.03 
(0.38) 

2.11  
(0.10) 

1.97  
(0.10) 

95.5  
(26.2) 

72.2  
(16.2) 

O. alismoides 0.95 
(0.32) 

0.65  
(0.36) 

2.75 
(0.08) 

2.90 
(0.08) 

1.62 
(0.22) 

1.34 
(0.21) 

100.5 
(7.9) 

85.5  
(22.1) 
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Table 3 Carbon concentrations at the end of the pH drift experiments. Mean values are given with SD 
in parentheses  

 

 

Species [CO2] 
treatment 

Starting 
Alk 
(mM) 

Final 
Alk 
(mM) 

Max 
pH 

CT 
(mM) 

CO2 
(nM) 

HCO3
- 

(mM) 
CT /Alk 

O. acuminata Low 0.1 0.36 
(0.13) 

10.21 
(0.13) 

0.117 
(0.056) 

7.6 
(2.1) 

0.060 
(0.024) 

0.32 
(0.05) 

 Low 1.0 1.04 
(0.01) 

10.72 
(0.01) 

0.278 
(0.011) 

3.0 
(0.3) 

0.074 
(0.004) 

0.27 
(0.01) 

 High 0.1 0.17 
(0.11) 

9.64 
(0.30) 

0.084 
(0.042) 

28.9 
(17.8) 

0.062 
(0.024) 

0.53 
(0.11) 

 High 1.0 1.06 
(0.06) 

10.68 
(0.02) 

0.322 
(0.025) 

4.1 
(0.4) 

0.091 
(0.007) 

0.30 
(0.01) 

O. alismoides Low 0.1 0.31 
(0.13) 

10.01 
(0.28) 

0.119 
(0.047) 

15.8 
(13.0) 

0.071 
(0.035) 

0.4 
(0.13) 

 Low 1.0 0.84 
(0.06) 

10.64 
(0.04) 

0.224 
(0.018) 

3.4 
(0.60 

0.068 
(0.007) 

0.27 
(0.02) 

 High 0.1 0.37 
(0.18) 

10.01 
(0.21) 

0.175 
(0.121) 

26.4 
(30.6) 

0.111 
(0.089) 

0.45 
(0.15) 

 High 1.0 0.83 
(0.01) 

10.52 
(0.06) 

0.290 
(0.035) 

7.2 
(2.5) 

0.107 
(0.022) 

0.35 
(0.04) 
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Table 4 Comparison of activities of photosynthetic enzymes in aquatic and terrestrial plants. Activities (μmol mg-1 Chla h-1) were measured between 22 and 
30°C 
* Adapted to low CO2 conditions. 

$ Ratio based on average of the range of activities for PEPC and RuBisCO. 

nd, Not determined. 

 

ENVIRONMENT/ Species Type RuBisCO PEPC PPDK NADP-
ME 

NAD-
ME 

PEPC: 
RuBisCO 

Reference 

AQUATIC         
14 species C3 187 29 - - - 0.2 (Farmer et al. 1986) 
Hydrilla verticillata* C4 NADP-ME 23-45 116-330 30-41 23-30 104-175 6.6$ (Holaday and Bowes 1980; 

Magnin et al. 1997; Salvucci 
and Bowes 1983)   

Egeria densa* C4 NADP-ME 71 130  60  1.8 (Casati et al. 2000; Salvucci 
and Bowes 1983)  

Eleocharis        (Ueno et al. 1988) 
Isoetes howellii CAM 256 36 110 37 2 0.1 (Keeley 1998)  
Crassula aquatica CAM 392 178 208 78 2 0.5 (Keeley 1998) 
Ottelia acuminata* C4? 55 100 114 11 3740 1.8 This study 
Ottelia alismoides* C4 NAD-

ME/CAM? 
45 264 246 13 1740 5.9 This study 

         
TERRESTRIAL         
Suaeda heterophylla C3 424 18 15 nd 168 0.04 (Voznesenskaya et al. 2001) 
Borszczowia aralocaspica Single-cell C4 130 768 511 145 226 5.9 (Voznesenskaya et al. 2001) 
Bienertia cycloptera Single-cell C4 258 1368 101 20 510 5.3 (Voznesenskaya et al. 2002) 
Average C4 NADP-ME 60-240 780-1440 240-480 600-960 <60 7.4$ (Kanai and Edwards 1999) 
Average C4 NAD-ME 60-180 720-1500 24-540 <60 300-1080 9.3$ (Kanai and Edwards 1999) 
Average C4 PEP-CK 60-240 1020-1620 120-240 <60 60-180 7.3$ (Kanai and Edwards 1999) 
Mesembryanthemum crystallinum CAM 80 1039 44 62 112 13.0 (Winter et al. 1982) 



24 
 

References 
Aubry S, Brown NJ, Hibberd JM (2011) The role of proteins in C3 plants prior to their recruitment into 

the C4 pathway.  Journal of Experimental Botany 62: 3049-3059 
Beer S (1989) Photosynthesis and photorespiration of marine angiosperms. Aquatic Botany 34:153-

166 
Black MA, Maberly SC, Spence DHN (1981) Resistances to carbon dioxide fixation in 4 submerged 

freshwater macrophytes. New Phytologist 89:557-568 
Bowes G, Ogren WL, Hageman RH (1971) Phosphoglycolate production catalyzed by ribulose 

diphosphate carboxylase. Biochem. Biophys. Res. Comm. 45:716-722 
Bowes G (2011) Single-Cell C4 Photosynthesis in Aquatic Plants. In: Raghavendra AS, Sage RF (eds) C4 

Photosynthesis and Related CO2 Concentrating Mechanisms, vol 32. Advances in 
Photosynthesis and Respiration. pp 63-80 

Bowes G, Rao SK, Estavillo GM, Reiskind JB (2002) C4 mechanisms in aquatic angiosperms: 
comparisons with terrestrial C4 systems. Functional Plant Biology 29:379-392 

Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantitites of 
protein utilizing principle of protein-dye binding. Analytical Biochemistry 72:248-254 

Brain RA, Solomon KR (2007) A protocol for conducting 7-day daily renewal tests with Lemna gibba. 
Nature Protocols 2:979-987 

Brown JMA, Dromgoole FI, Towsey MW, Browse J (1974) Photosynthesis and photorespiration in 
aquatic macrophytes. Royal Society of New Zealand Bulletin 12:243-249 

Browse JA, Dromgoole FI, Brown JMA (1977) Photosynthesis in aquatic macrophyte Egeria densa. 1. 
CO2-14 fixation at natural CO2 concentrations. Australian Journal of Plant Physiology 4:169-
176 

Casati P, Lara MV, Andreo CS (2000) Induction of a C4-like mechanism of CO2 fixation in Egeria 
densa, a submersed aquatic species. Plant Physiology 123:1611-1621 

Chen L-Y, Chen J-M, Gituru RW, Wang Q-F (2012) Generic phylogeny, historical biogeography and 
character evolution of the cosmopolitan aquatic plant family Hydrocharitaceae. Bmc 
Evolutionary Biology 12 

Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, 
Downing JA, Middelburg JJ, Melack J (2007) Plumbing the global carbon cycle: Integrating 
inland waters into the terrestrial carbon budget. Ecosystems 10:171-184 

Cook CDK, Urmikonig K (1984) A revision of the genus Ottelia (Hydrocharitaceae). 2. The species of 
Eurasia, Australasia and America. Aquatic Botany 20:131-177 

Cushman JC, Bohnert HJ (1999) Crassulacean acid metabolism: Molecular genetics. Annual Review of 
Plant Physiology and Plant Molecular Biology 50:305-332 

Degroote D, Kennedy RA (1977) Photosynthesis in Elodea canadensis Michx. 4 carbon acid synthesis. 
Plant Physiology 59:1133-1135 

Edwards GE, Franceschi VR, Voznesenskaya EV (2004) Single-cell C4 photosynthesis versus the dual-
cell (Kranz) paradigm. Annual Review of Plant Biology 55:173-196 

Elzenga JTM, Prins HBA (1987) Light induced polarity of redox reactions in leaves of Elodea 
canadensis Michx. Plant Physiology 85:239-242 

Farmer AM, Maberly SC, Bowes G (1986) Activities of carboxylation enzymes in freshwater 
macrophytes. Journal of Experimental Botany 37:1568-1573 

Haimovich-Dayan M, Garfinkel N, Ewe D, Marcus Y, Gruber A, Wagner H, Kroth PG, Kaplan A (2013) 
The role of C4 metabolism in the marine diatom Phaeodactylum tricornutum. New 
Phytologist 197:177-185 

Hatch MD, Slack CR (1966) Photosynthesis by sugar-cane leaves. A new carboxylation reaction and 
the pathway of sugar formation. The Biochemical Journal 101:103-111 

Holaday AS, Bowes G (1980) C4 acid metabolism and dark CO2 fixation in a submersed aquatic 
macrophyte (Hydrilla verticillata). Plant Physiology 65:331-335 



25 
 

Ibelings BW, Maberly SC (1998) Photoinhibition and the availability of inorganic carbon restrict 
photosynthesis by surface blooms of cyanobacteria. Limnology and Oceanography 43:408-
419 

Jansson M, Karlsson J, Jonsson A (2012) Carbon dioxide supersaturation promotes primary 
production in lakes. Ecology Letters 15:527-532 

Kanai R, Edwards GE (1999) The biochemistry of C4 photosynthesis. In: Sage RF, Monson RK (eds) C4 
Plant Biology. Academic Press, San Diego, pp 49-88 

Keeley JE (1981) Isoetes howelli- a submerged aquatic CAM plant. American Journal of Botany 
68:420-424 

Keeley JE (1998) CAM photosynthesis in submerged aquatic plants. Botanical Review 64:121-175 
Keeley JE, Sandquist DR (1992) Carbon- freshwater plants. Plant Cell and Environment 15:1021-1035 
Klavsen SK, Maberly SC (2009) Crassulacean acid metabolism contributes significantly to the in situ 

carbon budget in a population of the invasive aquatic macrophyte Crassula helmsii. 
Freshwater Biology 54:105-118 

Klavsen SK, Madsen TV, Maberly SC (2011) Crassulacean acid metabolism in the context of other 
carbon-concentrating mechanisms in freshwater plants: a review. Photosynthesis Research 
109:269-279 

Koch M, Bowes G, Ross C, Zhang X-H (2013) Climate change and ocean acidification effects on 
seagrasses and marine macroalgae. Global Change Biology 19:103-132 

Maberly SC (1996) Diel, episodic and seasonal changes in pH and concentrations of inorganic carbon 
in a productive lake. Freshwater Biology 35:579-598 

Maberly SC, Barker PA, Stott AW, De Ville MM (2013) Catchment productivity control CO2 emissions 
from lakes. Nature Climate Change 3:391-394 

Maberly SC, Madsen TV (1998) Affinity for CO2 in relation to the ability of freshwater macrophytes 
to use HCO3. Functional Ecology 12:99-106 

Maberly SC, Madsen TV (2002) Freshwater angiosperm carbon concentrating mechanisms: 
processes and patterns. Functional Plant Biology 29:393-405 

Maberly SC, Spence DHN (1983) Photosynthetic inorganic carbon use by freshwater plants. Journal 
of Ecology 71:705-724 

Madsen TV (1987a) Interactions between internal and external CO2 pools in the photosynthesis of 
the aquatic CAM plants Littorella uniflora (L) Aschers and Isoetes lacustris L. New Phytologist 
106:35-50 

Madsen TV (1987b) Sources of inorganic carbon acquired through CAM in Littorella uniflora (L) 
Aschers. Journal of Experimental Botany 38:367-377 

Magnin NC, Cooley BA, Reiskind JB, Bowes G (1997) Regulation and localization of key enzymes 
during the induction of Kranz-less, C4-type photosynthesis in Hydrilla verticillata. Plant 
Physiology 115:1681-1689 

Newman JR, Raven JA (1995) Photosynthetic carbon assimilation in Crassula helmsii. Oecologia 
101:494-499 

Ogren W.L. (2003). Affixing the O to Rubisco: discovering the source of photorespiratory glycolate 
and its regulation. Photosynthesis Research.76: 53-63 

Raghavendra AS, Sage RF (2011) C4 Photosynthesis and Related CO2 Concentrating Mechanisms 
Introduction. In: Raghavendra AS, Sage RF (eds) C4 Photosynthesis and Related CO2 
Concentrating Mechanisms, vol 32. Advances in Photosynthesis and Respiration. pp 17-25 

Raven JA (1970) Exogenous inorganic carbon sources in plant photosynthesis. Biological Reviews 
45:167-220 

Raven JA, Giordano M, Beardall J, Maberly SC (2012) Algal evolution in relation to atmospheric CO2: 
carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles. Philosophical 
transactions of the Royal Society of London Series B, Biological sciences 367:493-507 



26 
 

Reinfelder JR (2011) Carbon Concentrating Mechanisms in eukaryotic marine phytoplankton. In: 
Carlson CA, Giovannoni SJ (eds) Annual Review of Marine Science, Vol 3, vol 3. Annual 
Review of Marine Science. pp 291-315 

Reinfelder JR, Kraepiel AML, Morel FMM (2000) Unicellular C4 photosynthesis in a marine diatom. 
Nature 407:996-999 

Reiskind JB, Bowes G (1991) The role of phosphoenolpyruvate carboxykinase in a marine macroalga 
with C4-like photosynthetic characteristics. Proceedings of the National Academy of Sciences 
of the United States of America 88:2883-2887 

Reiskind JB, Madsen TV, VanGinkel LC, Bowes G (1997) Evidence that inducible C4-type 
photosynthesis is a chloroplastic CO2-concentrating mechanism in Hydrilla, a submersed 
monocot. Plant Cell and Environment 20:211-220 

Reiskind JB, Seamon PT, Bowes G (1988) Alternative methods of photosynthetic carbon assimilation 
in marine macroalgae. Plant Physiology 87:686-692 

Roberts K, Granum E, Leegood RC, Raven JA (2007) Carbon acquisition by diatoms. Photosynthesis 
Research 93:79-88 

Sage RF, Christin P-A, Edwards EJ (2011) The C4 plant lineages of planet Earth. Journal of 
Experimental Botany 62:3155-3169 

Salvucci ME, Bowes G (1983) Two photosynthetic mechanisms mediating the low photorespiratory 
state in submersed aquatic angiosperms. Plant Physiology 73:488-496 

Silvera K, Neubig KM, Whitten WM, Williams NH, Winter K, Cushman JC (2010) Evolution along the 
crassulacean acid metabolism continuum. Functional Plant Biology 37:995-1010 

Talling JF (1985) Inorganic carbon reserves of natural waters and eco-physiological consequences of 
their photosynthetic depletion: microalgae. In: Lucas WJ, Berry JA (eds) Inorganic Carbon 
Uptake by Photosynthetic Organisms. The American Society of Plant Physiologists, Rockville, 
Maryland, pp 404-420 

Ueno O, Samejima M, Muto S, Miyachi S (1988) Photosynthetic characteristics of an amphibious 
plant, Elocharis vivipara. Expression of C4 and C3 modes in contrasting environments. 
Proceedings of the National Academy of Sciences of the United States of America 85:6733-
6737 

Voznesenskaya EV, Franceschi VR, Kiirats O, Artyusheva EG, Freitag H, Edwards GE (2002) Proof of C4 
photosynthesis without Kranz anatomy in Bienertia cycloptera (Chenopodiaceae). Plant 
Journal 31:649-662 

Voznesenskaya EV, Franceschi VR, Kiirats O, Freitag H, Edwards GE (2001) Kranz anatomy is not 
essential for terrestrial C4 plant photosynthesis. Nature 414:543-546 

Webb DR, Rattray MR, Brown JMA (1988) A preliminary survey for Crassulacean acid metabolism 
(CAM) in submerged aquatic macrophytes in New Zealand. New Zealand Journal of Marine 
and Freshwater Research 22:231-235 

Winter K, Foster JG, Edwards GE, Holtum JAM (1982) Intracellular-localization of enzymes of carbon 
metabolism in Mesembryanthemum crystallinum exhibiting C3 photosynthetic 
characteristics or performing Crassulacean acid metabolism. Plant Physiology 69:300-307 

Xu J, Fan X, Zhang X, Xu D, Mou S, Cao S, Zheng Z, Miao J, Ye N (2012) Evidence of coexistence of C3 
and C4 photosynthetic pathways in a green-tide-forming alga, Ulva prolifera. PloS One 
7:e37438    

 

 



27 
 

0

1

2

3

O. alism-
High

O. alism-
Low

O. acum-
High

O. acum-
Low

PE
PC

  (
µm

ol
 m

g-1
pr

ot
ei

n 
m

in
 -1 )

NS

***

B

0

0.2

0.4

0.6

0.8

1

O. alism-
High

O. alism-
Low

O. acum-
High

O. acum-
Low

R
ub

is
C

O
   (

µm
ol

 m
g-1

pr
ot

ei
n 

m
in

-1
)

NS

NS

A

0

1

2

3

O. alism-
High

O. alism-
Low

O. acum-
High

O. acum-
Low

PP
D

K
  (

µm
ol

 m
g-1

pr
ot

ei
n 

m
in

-1
)

***

NS

D

0

0.1

0.2

0.3

O. alism-
High

O. alism-
Low

O. acum-
High

O. acum-
Low

N
A

D
P-

M
 E

  (
µm

ol
 m

g-1
pr

ot
ei

n 
m

in
-1

)

NS *

E

0

10

20

30

40

50

O. alism-
High

O. alism-
Low

O. acum-
High

O. acum-
Low
N

A
D

-M
 E

 (µ
m

ol
 m

g-1
pr

ot
ei

n 
m

in
-1

)

NS

*

F

0

2

4

6

8

O. alism-
High

O. alism-
Low

O. acum-
High

O. acum-
Low

PE
PC

 : R
ub

is
C

O
 

NS

***

C

 
Figure 1. 
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Figure 2. 
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