
Research Article
Optimal Acceleration-Velocity-Bounded Trajectory Planning in
Dynamic Crowd Simulation

Fu Yue-wen,1 Li Meng,2 Liang Jia-hong,1 and Hu Xiao-qian1

1 College of Information System and Management, National University of Defense Technology, Changsha, Hunan 410073, China
2 Army Officer Academy of PLA, Hefei 230031, China

Correspondence should be addressed to Fu Yue-wen; thdinf@126.com

Received 24 April 2014; Accepted 28 July 2014; Published 31 August 2014

Academic Editor: Yuxin Zhao

Copyright © 2014 Fu Yue-wen et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Creating complex and realistic crowd behaviors, such as pedestrian navigation behavior with dynamic obstacles, is a difficult and
time consuming task. In this paper, we study one special type of crowdwhich is composed of urgent individuals, normal individuals,
and normal groups. We use three steps to construct the crowd simulation in dynamic environment. The first one is that the urgent
individuals move forward along a given path around dynamic obstacles and other crowd members. An optimal acceleration-
velocity-bounded trajectory planningmethod is utilized tomodel their behaviors, which ensures that the durations of the generated
trajectories are minimal and the urgent individuals are collision-free with dynamic obstacles (e.g., dynamic vehicles). In the second
step, a pushing model is adopted to simulate the interactions between urgent members and normal ones, which ensures that the
computational cost of the optimal trajectory planning is acceptable. The third step is obligated to imitate the interactions among
normal members using collision avoidance behavior and flocking behavior. Various simulation results demonstrate that these three
steps give realistic crowd phenomenon just like the real world.

1. Introduction

Crowds, ubiquitous in the real world from groups of humans
to flocks of insects, are vital features to model in a virtual
environment. The simulation of pedestrians is a difficult
challenge that is beginning to capture the attention of
researchers and practitioners in evacuation simulation and
urban planning. The field of computer graphics, in which
virtual human animation has been an important research
interest for decades, has contributed technologies funda-
mental to the computer-assisted visualization, including the
automatic animation of pedestrian [1–3]. Until now, various
simulation models and architectures have been developed.
Whether the behaviors of the crowd are realistic or not
has many relations with the methods used in constructing
the crowd models. This paper focuses on one special crowd
phenomenon which is significant in real world. The crowd
which is composed of urgent members and normal ones
has the following characteristics: the urgent members are
the people who move forward along a fixed, given path for
something urgent to do.The normal ones are the people who

move in normal ways, just like most of the people in their
daily lives. In real world, urgent people do not allow others
to get in their way. Consequently, if the normal members
are in a predefined range of the urgent ones, the latter will
push them away. However, we must ensure that the urgent
members are collision-free with the dynamic obstacles in the
environment. Moreover, the interactions among the normal
members are important issues to improve the authenticity
of the crowd behaviors. For this special crowd, all of these
propose demands for the studies of its behaviors.

Given the observations in real world, how is it possible
that the urgent people can safely navigate through crowds and
dynamic obstacles along a predefined path? The key insight
is that the urgent people typically engage in moving forward
just considering the dynamic obstacle: they push the normal
members away from their trajectories to make room for their
navigations.

In our work, we have been developing an autonomous,
self-animating model of pedestrian crowd capable of per-
forming a broad variety of natural activities in urban
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Figure 1: Components of the crowd behaviors.

dynamic environments. Because the acceleration and velocity
of real person are bounded, we have adopted an optimal
acceleration-velocity-bounded trajectory planning method
in planning area and a comprehensive artificial life approach
(e.g., collision avoidance method and flocking method)
to addressing the problem of pedestrian behaviors. Our
approach is inspiredmost heavily by the work of Johnson and
Hauser [4] on optimal trajectory planning and by Foudil and
Noureddine [5] on collision avoidance modeling in crowd
simulation with priority rules. Also, Olfati-Saber’s work on
flocking model is used for reference [6].

In summary, our main contributions exist in three
aspects.

(1) Construct the behaviors of the urgent members with
an optimal acceleration-velocity-bounded trajectory
planning method. This novel method ensures that
the urgent members reach their destinations as soon
as possible and are collision-free with the dynamic
obstacles.

(2) Simulate the interactions between the urgent mem-
bers and the normal ones. A novel pushing model
is adopted to ensure that the normal members will
not get in the way of the urgent ones. In this way,
the normal members will not be treated as dynamic
obstacles which promotes that the computational cost
of the trajectory planning is acceptable for real time
application.

(3) Imitate the interactions among the normal members.
These interactions play a major role in synthesizing
the animations of the crowd.Thekey insight is that the
normal members typically engage in joint collision
avoidance: they adapt their moving to each other to
make room for navigation. So the collision avoidance
behavior and the flocking behavior are exploited.

The above three aspects are combined together to gener-
ate realistic behaviors for our special crowd.The components
of the crowd are represented in Figure 1.

As illustrated in Figure 1, the crowd behaviors consist
of four parts: optimal trajectory planning, pushing model,
collision avoidance behavior, and flocking behavior, each of
which is responsible for dealing with different interactions.
By designing and combining the respective behaviors of these
four parts, realistic and complex behavior phenomena are
achieved.

The organization of the rest of this paper is as follows.
At first, Section 2 describes background and related works in
trajectory planning, collision avoidance model, and flocking
behavior. In Section 3, we give the detailed process of the
optimal acceleration-velocity-bounded trajectory planning
method and the pushing model. In Section 4, the collision
avoidance model and flocking behavior for crowd simulation
are presented briefly. After performing experiments with 3D
virtual environments, simulation results and conclusions are
stated at the end of this paper.

2. Related Work

In this paper, the behavior of the urgent members is a
trajectory planning problem which has a vast difference with
path planning. In respect of optimal trajectory planning
problemwith dynamic constraints in dynamic environments,
Fraichard first addressed optimal trajectory planning in
dynamic environments, that is, motion planning for robot
subject to dynamic constraints and moving in a workspace
with moving obstacles [7]. A novel concept of state-time
space was introduced and a near-time-optimal trajectory was
obtained by searching a set of canonical trajectories. The
state-time space for planning in a dynamic environment is
theCartesian product of configuration space and time, that is,
𝐶×𝑇. Fraichard defined the canonical trajectories as the ones
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which had piecewise constant acceleration and changed its
value at discrete times [7]. Fiorini and Shiller also presented
a two-stage approach to plan a local time-optimal trajectory
for a manipulator arm in the dynamic environments [8]. An
optimization-based planningwas used by Park et al. to handle
the planning problem in arbitrary dynamic environments [9].
However, the dynamic constraints were ignored in their work
[9]. Fiorini and Shiller presented a global optimal motion
planning for Mars Rover which accounted for traversability
and dynamic stability [10]. Recently, Maček et al. adopted
rapidly exploring random trees and B-splines to develop a
collision-free trajectory planning method in dynamic urban-
like scenarios. This method can run automatically with the
natural acceleration/deceleration phases according to the
dynamic obstacles along the predefined path. The advantage
of this method is that the vehicle velocities can be searched
with a minimum time. Maček et al. have used kinodynamic
planning techniques to explore the vehicle’s action space [11].
While these above algorithms are able to find paths as well as
velocity profiles, they have the defect of ignoring the acceler-
ation constraint or obtaining near-optimal trajectories.

More recently, Johnson and Hauser have presented
an optimal, exact, polynomial-time planner for optimal
bounded-acceleration trajectories along a fixed, given path
with dynamic obstacles [4]. In their method, the planner uses
a velocity interval propagation technique to compute reach-
able velocity sets at obstacle vertices in the path-time space.
In this process, the acceleration and velocity constraints are
considered in path-velocity plane. This approach gives us
great promotions in fulfillment of this paper to generate the
optimal trajectories of urgent members. However, in this
method the goal velocity is an interval rather than a fixed
value. This is not the case in real life; for example, the goal
velocity of the virtual human at the goal position is equal to
zero. So the optimal trajectory planning in this paper is more
complex and intractable.

In respect of collision avoidance behaviors for individuals
and groups, techniques for simulating a crowd as a single
entity have been proposed, as well as those which consider
each person in the crowd separately. Collision avoidance is
one of the crucial problems in crowd simulation. Without
collision avoidance, crowd simulation does not look realistic.
In crowd simulation, static and dynamic objects are the two
types of obstacle thatmust concern us.Themotionless objects
can be seen as static obstacles, while dynamic objects refer
to human, animals, and vehicles in the urban environments
[12]. However, devising collision avoidance behavior among
a number of individuals is more complex than designing the
one between just two individuals. Morini et al. presented a
short-term avoidance algorithm [13]. Aiming at the applica-
tions of densely populated urban environment, Tecchia and
Chrysanthou proposed a simple and fast collision detection
method. In theirmethod, two different approaches for detect-
ing and avoiding collision of the moving objects were used.
Feurtey proposed an algorithm for collision avoidance which
was planned from their current position to the goal based on
the predicting andmodifying trajectories. So in theirmethod,
the agents could predict their way by using the position and
speed information of the obstacles [13]. Musse andThalmann

developed a multiresolution collision avoidance behavior for
group interrelationship in multiresolution [14]. Foudil and
Noureddine proposed a novel collision avoidance behavior
for crowd simulation with priority rules. This method also
provides us with great inspirations for our paper to generate
various collision avoidance strategies for normal members
[5].

In respect of flocking behavior for groups, many
researchers used flocking algorithm to model flock, herd,
and large crowds of people. Flocking is one of the pioneer
techniques used to model a crowd of animals or humans.
Flocking is basically composed of three rules: separation-
steer away from neighbors and obstacle, cohesion-steer
towards the centre of nearby entities, and alignment-steer
in the average velocity and direction with the neighbors. In
recent years, various distributed control algorithms have been
proposed for the motion of multiple dynamic agents and
the multiagent systems. For example, the flocking problem
with one virtual leader was considered by Shi et al. [15].
Su et al. investigated the problem of controlling a group of
autonomous agents to track multiple virtual leaders. They
proved that the agents with the same virtual leader attained
the same velocity, and the center and average velocity of
the whole group converged to the weighted center and
average velocity of all the leaders [16]. Olfati-Saber proposed
a groundbreaking work on flocking for multiagent dynamic
systems. He proposed three types of flocking algorithm. The
first one is the basic flocking algorithm with only separation,
cohesion, and alignment. Then one single leader agent was
added to obtain the second algorithm. His third algorithm
was obligated to deal with flocking problem in the presence
of multiple obstacles. Also, a systematic method is provided
for analyzing the split/rejoin maneuver of flocking [6].

All these above techniques can be seen as the lamp to light
up our researches in generating realistic crowd behaviors of
this paper.

3. Optimal Acceleration-Velocity-Bounded
Trajectory Planning

3.1. Preliminaries. Suppose the virtual humans are simplified
into cylinder with a unified radius. It is assumed that they
move in the workspace W = 𝑅

2. The configuration of a
virtual human is uniquely defined by the triple (𝑥, 𝑦, 𝜃) ∈ 𝐶,
where 𝐶 = 𝑅

2
× [0, 2𝜋] denotes the configuration space.

Suppose one urgent individual A is given a fixed param-
eterized geometric path 𝑆 which is a continuous sequence
of configurations, that is, a straight line or a curve in the
configuration space. In this paper, we assume that 𝑆 must
be piecewise of class 𝐶1 (a curve is of class 𝐶𝑛 if it is
differentiable 𝑛 times and if its 𝑛th derivative is continuous).
Because the urgent individual moves along 𝑆, we can reduce
its configuration to a single variable 𝑠 which satisfies 𝑞(𝑠) :
[0, 1] → 𝐶. 𝑠(𝑡) is a time scaling function 𝑠 : [0, 𝑡

𝑓
] → [0, 1]

which assigns value 𝑠 to each time 𝑡 ∈ [0, 𝑡
𝑓
]. 𝑠 ⋅ 𝐿

𝑆
represents

the distance traveled along 𝑆 in which 𝐿
𝑆
represents the total

length of 𝑆. Moreover, the time scaling 𝑠(𝑡) should be twice-
differentiable and monotonic ( ̇𝑠(𝑡) ≥ 0 for all 𝑡 ∈ [0, 𝑡

𝑓
]).
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The twice-differentiability of 𝑠(𝑡) ensures that the urgent
individual’s acceleration ̈𝑞(𝑡) is well defined and bounded
[17].

The dynamic planning problem occurs in the path-
velocity-time state space, that is, 𝑠 × ̇𝑠 × 𝑡 space which is
denoted as PVT [4]. So, the state of one urgent individual
𝑥 = (𝑠, ̇𝑠, 𝑡) consists of variable 𝑠 ∈ [0, 1], velocity ̇𝑠, and time
𝑡 ∈ [0, 𝑡max]. For a given 𝑞(𝑠), the following holds:

̇𝑞 =
𝑑𝑞

𝑑𝑠
̇𝑠,

̈𝑞 =
𝑑
2
𝑞

𝑑𝑠2
̇𝑠
2
+
𝑑𝑞

𝑑𝑠
̈𝑠.

(1)

The dynamic constraints of the urgent individuals must
satisfy velocity and acceleration bounds:

0 ≤ √ ̇𝑞2
𝑥
+ ̇𝑞2
𝑦
≤ Vmax, ̇𝑞

𝑥
≥ 0, ̇𝑞

𝑦
≥ 0,

0 ≤ √ ̈𝑞2
𝑥
+ ̈𝑞2
𝑦
≤ 𝑎max.

(2)

Substituting (2) into (1), we get the following dynamic
constraints on variable 𝑠:

̇𝑠 ∈ [ ̇𝑠min (𝑠, 𝑎max, Vmax) , ̇𝑠max (𝑠, 𝑎max, Vmax)] , (3)

̈𝑠 ∈ [ ̈𝑠min (𝑠, ̇𝑠, 𝑎max, Vmax) , ̈𝑠max (𝑠, ̇𝑠, 𝑎max, Vmax)] (4)

with ̇𝑠min(𝑠, 𝑎max, Vmax) ≥ 0 and ̈𝑠min(𝑠, ̇𝑠, 𝑎max, Vmax) < 0 <
̈𝑠max(𝑠, ̇𝑠, 𝑎max, Vmax). A trajectory 𝑥(𝑡) = (𝑠(𝑡), ̇𝑠(𝑡), 𝑡) defined
over 𝑡 ∈ [𝑡

0
, 𝑡
𝑓
] in state space is dynamically feasible if and

only if (3) and (4) are satisfied at the same time.Then, we say
that a goal state 𝑥

𝑓
is dynamically reachable from initial state

𝑥
0
if a dynamically feasible trajectory𝑥(𝑡)over interval [𝑡

0
, 𝑡
𝑓
]

such that 𝑥(𝑡
0
) = 𝑥
0
and 𝑥(𝑡

𝑓
) = 𝑥
𝑓
is existed. Note that there

is a one-to-one correspondence between the trajectory 𝑥(𝑡)
and its time scaling function 𝑠(𝑡).

Let 𝑂
𝑖
𝑖 ∈ {1, . . . , 𝑚} be the set of moving obstacles. Let

𝑂
𝑖
(𝑡) denote the region of W occupied by 𝑂

𝑖
at time 𝑡 and

A(𝑞(𝑠(𝑡))) the region ofW occupied byA at position 𝑞(𝑠(𝑡))
along 𝑆. Then the obstacle region in state space is defined as

𝑋obs = {(𝑠, ̇𝑠, 𝑡) | ∃𝑖 ∈ {1, . . . , 𝑚} ,A (𝑞 (𝑠 (𝑡))) ∩ 𝑂𝑖 (𝑡) ̸= 0} .

(5)

Obviously, the𝑋obs corresponds to (𝑠(𝑡), 𝑡) points in 𝑠 × 𝑡
space.The trajectory 𝑥(𝑡) is collision-free if (𝑠(𝑡), 𝑡) ∉ 𝑋obs for
𝑡 ∈ [𝑡
0
, 𝑡
𝑓
].

Above all, we can formally state the problem which is to
be solved. Let (𝑠

0
, ̇𝑠
0
, 0) be the start state ofA and (𝑠

𝑓
, ̇𝑠
𝑓
, 𝑡
𝑓
)

its goal state.
A trajectory Γ : [0, 1] → PVT is a solution to the

problem if and only if

(1) Γ(0) = (𝑠
0
, ̇𝑠
0
, 0), Γ(1) = (𝑠

𝑓
, ̇𝑠
𝑓
, 𝑡
𝑓
), and ̇𝑠

0
, ̇𝑠
𝑓
≥ 0,

(2) Γ is dynamically feasible and collision-free for 𝑡 ∈
[0, 𝑡
𝑓
] and 𝑡

𝑓
≤ 𝑡max. 𝑡max is the maximal time given

for the planner,

(3) ̇𝑠
𝑓
is a specific value (e.g., ̇𝑠

𝑓
= 0) rather than a velocity

interval.

We are interested in finding an exact time-optimal tra-
jectory, that is, a trajectory such that 𝑡

𝑓
should be minimal.

Moreover, ̇𝑠
𝑓
is an interval in Johnson’s method rather than a

specific value. So the optimal trajectory planning in this paper
is more complex and intractable.

3.2. Optimal Acceleration-Velocity-Bounded Trajectory Plan-
ning. The method that we have developed in order to
solve the above problem is initially motivated by the work
described in [4]. We improve Johnson’s method in order to
find out the exact time-optimal trajectory between an initial
and a specific goal state. The flowchart of our method is
illustrated in Figure 2.

Next we will describe every part of Figure 2 in detail.

3.2.1. Compute Reachable Velocity Sets

(I) Compute Reachable Velocity Sets from One Specified Initial
State. The goal of this section is to facilitate the comput-
ing reachable velocity intervals from one specified initial
state. Without loss of generality, we suppose the specified
initial state is 𝑥

𝐼
= (𝑠

𝐼
, ̇𝑠
𝐼
, 𝑡
𝐼
) which can be any state

in {(𝑠
0
(𝑡
0
), ̇𝑠
0
(𝑡
0
), 𝑡
0
), . . . , (𝑠

2𝑚+1
(𝑡
2𝑚+1

), ̇𝑠
2𝑚+1

(𝑡
2𝑚+1

), 𝑡
2𝑚+1

)}.
The dynamically reachable set of velocities 𝑅(𝑡; 𝑥

𝐼
) from 𝑥

𝐼

at any point in time 𝑡 ≥ 𝑡
𝐼
is the set of velocities attainable

at 𝑡 from 𝑥
𝐼
via dynamically feasible trajectories. It can be

computed in 𝑠× ̇𝑠 space. In order to simplify the computation,
we assume that 𝑆 is a straight line. Then (3) and (4) can be
simplified into

̇𝑠 ∈ [0,
Vmax
𝐿
𝑆

] ,

that is, ̇𝑠min (𝑠, 𝑎max, Vmax) = 0;

̇𝑠max (𝑠, 𝑎max, Vmax) =
Vmax
𝐿
𝑆

,

(6)

̈𝑠 ∈ [−
𝑎max
𝐿
𝑆

,
𝑎max
𝐿
𝑆

] ,

that is, ̈𝑠min (𝑠, ̇𝑠, 𝑎max, Vmax) = −
𝑎max
𝐿
𝑆

;

̈𝑠max (𝑠, ̇𝑠, 𝑎max, Vmax) =
𝑎max
𝐿
𝑆

.

(7)

Johnson showed that𝑅(𝑡; 𝑥
𝐼
) is bounded by atmost six curves

[4] which are denoted in Figure 3 in our paper.
In Figure 3, parabolic segment (a) corresponds to the

process in whichA firstly takes the minimal acceleration for
time 𝑡

𝑠
and then switches to maximal acceleration for time

𝑡 − 𝑡
𝑠
. Itmust be noted that the terminal velocity of the process

of deceleration and the one of the process of accelerationmust
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Figure 2: Flowchart of optimal trajectory planning.
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satisfy formulation (6).The states on (a) can be formulated as
in the following equation:

𝑥
𝑡𝐼+𝑡
= (𝑠
𝐼
+ ̇𝑠
𝐼
𝑡
𝑠
+
1

2
̈𝑠min𝑡
2

𝑠
+ ( ̇𝑠
𝐼
+ ̈𝑠min𝑡𝑠) (𝑡 − 𝑡𝑠)

+
1

2
̈𝑠max(𝑡 − 𝑡𝑠)

2

, ̇𝑠
𝐼
+ ̈𝑠min𝑡𝑠 + ̈𝑠max (𝑡 − 𝑡𝑠) ,

𝑡
𝐼
+ 𝑡) ,

̇𝑠
𝐼
+ ̈𝑠min𝑡𝑠 ≥ ̇𝑠min, ̇𝑠

𝐼
+ ̈𝑠min𝑡𝑠 + ̈𝑠max (𝑡 − 𝑡𝑠) ≤ ̇𝑠max.

(8)

Similarly, parabolic segment (d) corresponds to the process,
takes the maximal acceleration for time 𝑡

𝑠
, and then switches

to minimal acceleration for time 𝑡 − 𝑡
𝑠
. The states on (d) can

be formulated as

𝑥
𝑡𝐼+𝑡
= (𝑠
𝐼
+ ̇𝑠
𝐼
𝑡
𝑠
+
1

2
̈𝑠max𝑡
2

𝑠
+ ( ̇𝑠
𝐼
+ ̈𝑠max𝑡𝑠) (𝑡 − 𝑡𝑠)

+
1

2
̈𝑠min(𝑡 − 𝑡𝑠)

2

, ̇𝑠
𝐼
+ ̈𝑠max𝑡𝑠 + ̈𝑠min (𝑡 − 𝑡𝑠) ,

𝑡
𝐼
+ 𝑡) ,

̇𝑠
𝐼
+ ̈𝑠max𝑡𝑠 ≤ ̇𝑠max, ̇𝑠

𝐼
+ ̈𝑠max𝑡𝑠 + ̈𝑠min (𝑡 − 𝑡𝑠) ≥ ̇𝑠min.

(9)

Parabolic segment (c) corresponds to the process, takes the
maximal acceleration until reaching ̇𝑠max(𝑠, 𝑎max, Vmax) at the
time 𝑡V, progresses with ̇𝑠max(𝑠, 𝑎max, Vmax) until time 𝑡

𝑠
elapse,

and then decelerates for time 𝑡 − 𝑡
𝑠
. The states on (c) can be

formulated as

𝑥
𝑡𝐼+𝑡
= (𝑠
𝐼
+ ̇𝑠
𝐼
𝑡V +

1

2
̈𝑠max𝑡
2

V + ̇𝑠max (𝑡𝑠 − 𝑡V) + ̇𝑠max (𝑡 − 𝑡𝑠)

+
1

2
̈𝑠min(𝑡 − 𝑡𝑠)

2

, ̇𝑠max + ̈𝑠min (𝑡 − 𝑡𝑠) , 𝑡𝐼 + 𝑡) ,

𝑡V = (
̇𝑠max − ̇𝑠

𝐼

̈𝑠max
) ; ̇𝑠

𝐼
+ ̈𝑠max𝑡𝑠 ≥ ̇𝑠max.

(10)

Similarly, parabolic segment (f) corresponds to the process,
takes the minimal acceleration until reaching ̇𝑠min(𝑠, 𝑎max,
Vmax), progresses with ̇𝑠min(𝑠, 𝑎max, Vmax) until time 𝑡

𝑠
elapse,

and then accelerates for time 𝑡 − 𝑡
𝑠
. The states on (f) can be

formulated as

𝑥
𝑡𝐼+𝑡
= (𝑠
𝐼
+ ̇𝑠
𝐼
𝑡V +

1

2
̈𝑠min𝑡
2

V + ̇𝑠min (𝑡𝑠 − 𝑡V) + ̇𝑠min (𝑡 − 𝑡𝑠)

+
1

2
̈𝑠max(𝑡 − 𝑡𝑠)

2

, ̇𝑠min + ̈𝑠max (𝑡 − 𝑡𝑠) , 𝑡𝐼 + 𝑡) ,

𝑡V = (
̇𝑠min − ̇𝑠

𝐼

̈𝑠min
) ; ̇𝑠

𝐼
+ ̈𝑠min𝑡𝑠 ≤ ̇𝑠min.

(11)

Line segment (b) corresponds to the process, takes the
minimal acceleration for time 𝑡

𝑠
, and then switches to max-

imal acceleration until reaching ̇𝑠max(𝑠, 𝑎max, Vmax), finally
progressing with ̇𝑠max(𝑠, 𝑎max, Vmax) until time 𝑡 elapse. The
states on (b) can be formulated as

𝑥
𝑡𝐼+𝑡
= (𝑠
𝐼
+ ̇𝑠
𝐼
𝑡
𝑠
+
1

2
̈𝑠min𝑡
2

𝑠
+ ( ̇𝑠
𝐼
+ ̈𝑠min𝑡𝑠) 𝑡V

+
1

2
̈𝑠max𝑡
2

V + ̇𝑠max (𝑡 − 𝑡𝑠 − 𝑡V) , ̇𝑠max, 𝑡𝐼 + 𝑡) ,

𝑡V = (
̇𝑠max − ̇𝑠

𝐼
− ̈𝑠min𝑡𝑠
̈𝑠max

) ; ̇𝑠
𝐼
+ ̈𝑠min𝑡𝑠 ≥ ̇𝑠min;

̇𝑠
𝐼
+ ̈𝑠min𝑡𝑠 + ̈𝑠max𝑡V ≥ ̇𝑠max.

(12)

Similarly, line segment (e) corresponds to the process, takes
the maximal acceleration for time 𝑡

𝑠
, and then switches to

minimal acceleration until reaching ̇𝑠min(𝑠, 𝑎max, Vmax), finally
progressing with ̇𝑠min(𝑠, 𝑎max, Vmax) until time 𝑡 elapse. The
states on (e) can be formulated as

𝑥
𝑡𝐼+𝑡
= (𝑠
𝐼
+ ̇𝑠
𝐼
𝑡
𝑠
+
1

2
̈𝑠max𝑡
2

𝑠
+ ( ̇𝑠
𝐼
+ ̈𝑠max𝑡𝑠) 𝑡V

+
1

2
̈𝑠min𝑡
2

V + ̇𝑠min (𝑡 − 𝑡𝑠 − 𝑡V) , ̇𝑠min, 𝑡𝐼 + 𝑡) ,

𝑡V = (
̇𝑠min − ̇𝑠

𝐼
− ̈𝑠max𝑡𝑠
̈𝑠min

) ; ̇𝑠
𝐼
+ ̈𝑠max𝑡𝑠 ≤ ̇𝑠max;

̇𝑠
𝐼
+ ̈𝑠max𝑡𝑠 + ̈𝑠min𝑡V ≤ ̇𝑠min.

(13)

All these six curves enclose the reachable velocity set
𝑅(𝑡; 𝑥

𝐼
) from one single initial state 𝑥

𝐼
= (𝑠
𝐼
, ̇𝑠
𝐼
, 𝑡
𝐼
) which is

graphically showed as the shadow region in Figure 3.

(II) Compute Reachable Velocity Interval at a Point in 𝑠 × 𝑡
Space from 𝑥

𝐼
= (𝑠
𝐼
, ̇𝑠
𝐼
, 𝑡
𝐼
). After obtaining the reachable

velocity set in 𝑠 × ̇𝑠 space, we can then compute the reachable
velocity interval at a point (𝑠

𝐺
(𝑡
𝐺
), 𝑡
𝐺
) in 𝑠 × 𝑡 space from the

initial state 𝑥
𝐼
= (𝑠
𝐼
(𝑡
𝐼
), ̇𝑠
𝐼
, 𝑡
𝐼
). We use { ̇𝑠

𝐺
(𝑡
𝐺
)} to represent

the reachable velocity interval at (𝑠
𝐺
(𝑡
𝐺
), 𝑡
𝐺
). We use 𝑅(𝑡

𝐺
−

𝑡
𝐼
; 𝑥
𝐼
) to compute { ̇𝑠

𝐺
(𝑡
𝐺
)} in the following formulation:

{ ̇𝑠
𝐺
(𝑡
𝐺
)} = [ ̇𝑠

𝐺
, ̇𝑠
𝐺
] = 𝑅 (𝑡

𝐺
− 𝑡
𝐼
; 𝑥
𝐼
) ∩ {(𝑠, ̇𝑠) | 𝑠 = 𝑠

𝐺
} (14)
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̇s ̇s

xI xI

(a) (a)

(b) (b)
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Figure 4: Reachable velocity sets from one initial state.

in which ̇𝑠
𝐺
and ̇𝑠
𝐺
represent the upper and lower bounds

of velocity interval { ̇𝑠
𝐺
(𝑡
𝐺
)}, respectively. ̇𝑠

𝐺
is defined as the

intersection of a boundary curve of 𝑅(𝑡
𝐺
− 𝑡
𝐼
; 𝑥
𝐼
) with 𝑠 = 𝑠

𝐺
.

We only need to consider three boundary cures in
computing ̇𝑠

𝐺
(curves (a), (b), and (f)) and ̇𝑠

𝐺
(curves (c), (d),

and (e)), as illustrated in Figure 4.
In this process, we determine the switching time 𝑡

𝑠
by

substituting 𝑠 = 𝑠
𝐺
into (8), (11), and (12) for ̇𝑠

𝐺
and (9),

(10), and (13) for ̇𝑠
𝐺
, respectively, and solving the resulting

quadratic equation. At the same time, the constraints in (8)∼
(13) are validated to determine if some trajectories exist from
𝑥
𝐼
= (𝑠
𝐼
, ̇𝑠
𝐼
, 𝑡
𝐼
) to (𝑠

𝐺
(𝑡
𝐺
), { ̇𝑠
𝐺
(𝑡
𝐺
)}, 𝑡
𝐺
).

(III) VIP Algorithm Computing Reachable Velocity Interval
from an Initial Velocity Interval. After computing the reach-
able velocity interval from an initial specified velocity, we
can extend it to compute the reachable velocity interval from
an initial velocity interval which forms the backbone of
optimal trajectory planner. It takes (𝑠

𝐺
(𝑡
𝐺
), { ̇𝑠
𝐺
(𝑡
𝐺
)}, 𝑡
𝐺
) and

a target point (𝑠
𝐻
(𝑡
𝐻
), 𝑡
𝐻
) in 𝑠 × 𝑡 space as input. It outputs a

range of target velocities { ̇𝑠
𝐻
(𝑡
𝐻
)} = [ ̇𝑠

𝐻
, ̇𝑠
𝐻
] reachable from

(𝑠
𝐺
(𝑡
𝐺
), { ̇𝑠
𝐺
(𝑡
𝐺
)}, 𝑡
𝐺
). { ̇𝑠
𝐻
(𝑡
𝐻
)} = [ ̇𝑠

𝐻
, ̇𝑠
𝐻
] is computed in the

following steps.

Step 1. Compute the reachable velocity interval 𝑉
1
= 𝑅(𝑡
𝐻
−

𝑡
𝐺
; 𝑥
𝐺
) ∩ {(𝑠, ̇𝑠) | 𝑠 = 𝑠

𝐻
} for initial velocity ̇𝑠

𝐺
= ̇𝑠
𝐺
from

(𝑠
𝐺
(𝑡
𝐺
), ̇𝑠
𝐺
, 𝑡
𝐺
).

Step 2. Compute the reachable velocity interval 𝑉
2
= 𝑅(𝑡
𝐻
−

𝑡
𝐺
; 𝑥
𝐺
) ∩ {(𝑠, ̇𝑠) | 𝑠 = 𝑠

𝐻
} for initial velocity ̇𝑠

𝐺
= ̇𝑠
𝐺
from

(𝑠
𝐺
(𝑡
𝐺
), ̇𝑠
𝐺
, 𝑡
𝐺
).

Step 3. The goal of this step is maximizing the terminal
velocity at (𝑠

𝐻
(𝑡
𝐻
), 𝑡
𝐻
). It does so by constructing a parabolic

trajectory with acceleration ̈𝑠max(𝑠, ̇𝑠, 𝑎max, Vmax) that inter-
polates (𝑠

𝐺
(𝑡
𝐺
), 𝑡
𝐺
) and (𝑠

𝐻
(𝑡
𝐻
), 𝑡
𝐻
). If the initial velocity

̇𝑠
interpolate
𝐺,max of this interpolating parabolic trajectory belongs to
{ ̇𝑠
𝐺
(𝑡
𝐺
)}, then 𝑉

3
= { ̇𝑠

interpolate
𝐺,max }.

Step 4. The goal of this step is minimizing the terminal
velocity at (𝑠

𝐻
(𝑡
𝐻
), 𝑡
𝐻
). It also does so by constructing

a parabolic trajectory with acceleration ̈𝑠min(𝑠, ̇𝑠, 𝑎max, Vmax)
that interpolates (𝑠

𝐺
(𝑡
𝐺
), 𝑡
𝐺
) and (𝑠

𝐻
(𝑡
𝐻
), 𝑡
𝐻
). If the initial

velocity ̇𝑠
interpolate
𝐺,min of this interpolating parabolic trajectory

belongs to { ̇𝑠
𝐺
(𝑡
𝐺
)}, then 𝑉

4
= { ̇𝑠

interpolate
𝐺,min }.

Step 5. Finally, the output velocity interval { ̇𝑠
𝐻
(𝑡
𝐻
)} =

[ ̇𝑠
𝐻
, ̇𝑠
𝐻
] = 𝑉
1
∪𝑉
2
∪𝑉
3
∪𝑉
4
. Note that either 𝑉

1
, 𝑉
2
, 𝑉
3
, or 𝑉
4

may be empty.

Because the goal of the method in this section is prop-
agating the velocity intervals, from one velocity interval to
the other as long as we know the initial and terminal point in
𝑠 × 𝑡 space, we call this method velocity interval propagation
(VIP algorithm). Steps 1∼4 can be represented as { ̇𝑠

𝐻
(𝑡
𝐻
)} =

VIP((𝑠
𝐺
(𝑡
𝐺
), { ̇𝑠
𝐺
(𝑡
𝐺
)}, 𝑡
𝐺
), (𝑠
𝐻
(𝑡
𝐻
), 𝑡
𝐻
)) in short.

3.2.2. Computing theOptimal Trajectory. Suppose there are𝑚
dynamic obstacles in the environment; then only 2𝑚 vertices
are important to our optimal planning which correspond to
the upper left and lower right vertex of the obstacles [4]. Let
(𝑠
1
(𝑡
1
), 𝑡
1
), . . . , (𝑠

2𝑚
(𝑡
2𝑚
), 𝑡
2𝑚
) be the sequence of upper left

and lower right obstacle vertices such that 𝑡
0
≤ 𝑡
𝑖
≤ 𝑡
𝑓
for all

𝑖 = 1, . . . , 2𝑚. Then we sort these 2𝑚 vertices by increasing
𝑡 coordinate and denote (𝑠

0
(𝑡
0
), ̇𝑠
0
(𝑡
0
), 𝑡
0
) = (𝑠

0
, ̇𝑠
0
, 0) and

(𝑠
2𝑚+1

(𝑡
2𝑚+1

), ̇𝑠
2𝑚+1

(𝑡
2𝑚+1

), 𝑡
2𝑚+1

) = (𝑠
𝑓
, ̇𝑠
𝑓
, 𝑡
𝑓
). Our planner

consists of four stages.
In the first stage, using the VIP algorithm, we can

get the velocity interval from any vertex of one dynamic
obstacle to any vertex of another one for (𝑠

0
(𝑡
0
), 𝑡
0
), . . . ,

(𝑠
2𝑚
(𝑡
2𝑚
), 𝑡
2𝑚
); that is, we carry out { ̇𝑠

𝑗
(𝑡
𝑗
)} = VIP((𝑠

𝑖
(𝑡
𝑖
),

{ ̇𝑠
𝑖
(𝑡
𝑖
)}, 𝑡
𝑖
), (𝑠
𝑗
(𝑡
𝑗
), 𝑡
𝑗
)) for all 𝑖, 𝑗 ∈ [1, 2𝑚]; 𝑖 ̸= 𝑗.
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In the second stage, we get 2𝑚 channels and 2𝑚 ter-
minal velocity intervals of these channels. These terminal
velocity intervals can be merged into 2𝑚 velocity intervals
{{ ̇𝑠
1,union(𝑡1)}, . . . , { ̇𝑠2𝑚,union(𝑡2𝑚)}} corresponding to the 2𝑚

vertices with union operation.
In the third stage, we use VIP algorithm to connect

(𝑠
2𝑚
(𝑡
2𝑚
), 𝑡
2𝑚
) with (𝑠

2𝑚+1
(𝑡
2𝑚+1

), 𝑡
2𝑚+1

) by taking these 2𝑚
velocity intervals as input to determine the terminal velocity
interval at given terminal time. We use discrete 𝑡𝑘

𝑖,𝑓
to

represent the given terminal time:

𝑡
𝑘

𝑖,𝑓
= 𝑡
𝑖
+ 𝑘 ⋅ Δ𝑡 𝑘 = 1, . . . , ⌊

𝑡max − 𝑡𝑖
Δ𝑡

⌋ . (15)

Then we can get the terminal velocity interval at every
given terminal time 𝑡𝑘

𝑖,𝑓
by calling { ̇𝑠

𝑘
(𝑡
𝑘

𝑖,𝑓
)} = VIP((𝑠

𝑖
(𝑡
𝑖
),

{ ̇𝑠
𝑖,union(𝑡𝑖)}, 𝑡𝑖), (𝑠𝑘(𝑡

𝑘

𝑖,𝑓
), 𝑡
𝑘

𝑖,𝑓
)) 𝑖 = 1, . . . , 2𝑚; 𝑘 = 1, . . . ,

⌊(𝑡max − 𝑡𝑖)/Δ𝑡⌋.
In the fourth stage, we judge if ̇𝑠

𝑓
is in these ∑2𝑚

𝑖=1
⌊(𝑡max −

𝑡
𝑖
)/Δ𝑡⌋ terminal velocity intervals or not. If true, we return

the trajectory with minimal terminal time 𝑡𝑘
𝑖,𝑓

which is the
optimal trajectory and its final velocity equals ̇𝑠

𝑓
. If not, the

planner returns failure. It means that no trajectory exists
between the initial state and the goal state ofAwhich satisfies
the dynamic constraints and is collision-free with dynamic
obstacles.

Complexity Analysis. The computational cost of the planner
mainly comes from the first and the third stage. In the first
stage, we must call the VIP algorithm for 2𝑚 times. In the
third stage, VIP algorithm is called∑2𝑚

𝑖=1
⌊(𝑡max−𝑡𝑖)/Δ𝑡⌋ times.

Then the complexity of our planner is 𝑂(2𝑚 + ∑2𝑚
𝑖=1
⌊(𝑡max −

𝑡
𝑖
)/Δ𝑡⌋) < 𝑂(2

𝑚
+2𝑚⌊𝑡max/Δ𝑡⌋)which is equivalent to𝑂(2

𝑚
).

This computational cost is vast for big 𝑚 values. However,
there are only several dynamic obstacles in our environment
and this is why we apply pushing behavior to deal with the
interaction between the urgent members and the normal
members.

3.3. Pushing Model. Pushing model is used to model the
interactions between the urgent members and the normal
ones; that is, the normal members will be pushed away when
they are in a predefined range of the urgent ones. We use the
four following rules to model pushing behavior between any
normal individual 𝑖 and urgent one 𝑗:

If 𝑑
𝑖𝑗
= 0 Then 𝑉→

𝑖𝑗
= −𝑉max

If 0 < 𝑑
𝑖𝑗
< 𝜇 Then 𝑉→

𝑖𝑗
= −𝑀 ⋅ 𝑉max ⋅ 𝑒

−𝑑𝑖𝑗 +𝑉
0

If

𝑉→
𝑖𝑗


> √𝑉2max − (𝑉

⊥
→
𝑖𝑗

)

2

Then 𝑉→
𝑖𝑗
= −√𝑉2max − (𝑉

⊥
→
𝑖𝑗

)

2

If 𝑑
𝑖𝑗
≥ 𝜇 Then 𝑉→

𝑖𝑗
= 𝑉
0

(16)

inwhich𝑑
𝑖𝑗
denotes the distance between 𝑖 and 𝑗.𝜇 represents

the threshold of the interaction distance. 𝑉→
𝑖𝑗

represents

the velocity of 𝑖 at the direction of vector →𝑖𝑗 . 𝑉⊥→
𝑖𝑗

represents
the velocity of 𝑖 at the perpendicular direction of vector
→
𝑖𝑗 . 𝑉max indicates the maximal velocity at which a normal
individual moves. And 𝑉

0
represents the velocity of 𝑖 before

the interaction between 𝑖 and 𝑗 happens.
This novel pushing model ensures that the urgent mem-

bers will never collide with the normal ones. So we do
not need to consider the normal members in the process
of optimal trajectory planning whose cost time will greatly
reduce owing to only the dynamic obstacles being considered.

4. Collision Avoidance Behaviors
and Flocking Behaviors

4.1. Collision Avoidance Behaviors. In this section, we present
the collision avoidance behaviors on the basis of Foudil and
Noureddine’s work. As a general approach, this method can
be combined with different crowd and multiagent simulation
algorithms. In each time step of the simulation, we need to
predict if every agent will collide with other agents in the
crowd. Then we must determine the type of collision which
may happen. In real life, there are three possible types of
collision [5]. The first type is toward collision behavior. It
happens when two agents are moving head-on toward each
other. The second one is away collision. It happens when one
agent who is behind the other one is moving with a bigger
velocity and whose moving direction is consistent with the
line from the back agent to the front one. The third collision
behavior is glancing collisionwhich happens when two agents
are walking in roughly the same direction.

These three types of collision behaviors are shown in
Figure 5.

We use a series of rules to realize these three collision
avoidance behaviors separately. In toward collision behavior,
we use the following strategy to avoid the forthcoming
collision: the agent who has a low priority can select waiting
or changing its moving direction and the agent who has an
upper priority selects keeping its moving on with unchanged
direction and velocity. In respect to away collision, the back
agent can select slowing its velocity or changing its moving
direction to any side. We deal with glancing collision with the
same manner as the toward collision behavior.

Particularly, when these three collision avoidance behav-
iors conflict with each other, we resolve this problem by
predefining the priority order of them. In this paper, the
priority order of these three types of collision avoidance
behaviors is toward collision, away collision, and glancing
collision from high to low.

4.2. Flocking Behaviors. Flocking behaviors are used tomodel
the collective gathering behaviors of the normal groups.
Aiming at the agents group consisting of one leader agent
and𝑁 follower ones, we use a distributed control method to
simulate the flocking behavior [15, 16]. The motion of each
virtual agent is described by two integrators as

ṗ
𝑖
(𝑡) = v

𝑖
(𝑡)

v̇
𝑖
(𝑡) = a

𝑖
(𝑡)

𝑖 = 1, 2, . . . , 𝑁, (17)
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(a) Toward collision (b) Away collision (c) Glancing collision

Figure 5: Three types of the collision behaviors.

Dynamic obstacle 2

Normal individual

Urgent individual 1

Normal groups 1

Fixed path S of the
urgent individual

Urgent individual 2

Normal groups 2

Urgent individual 3

Dynamic obstacle 1

Figure 6: The dynamic environment of the experiments.

where p
𝑖
, k
𝑖
, and a

𝑖
are denoted as the position, velocity,

and acceleration of agent 𝑖, respectively. Similarly, the virtual
leader has the following dynamics of motion:

ṗ
𝛾
(𝑡) = k

𝛾
(𝑡) ,

k̇
𝛾
(𝑡) = a

𝛾
(𝑡) ,

(18)

where p
𝛾
, k
𝛾
, and a

𝛾
represent the position, velocity, and

acceleration of leader agent, respectively. The control algo-
rithm of the flocking method is given as

a
𝑖
= − ∑

𝑗∈N𝑖(𝑡)

∇p𝑖𝜓𝛼 (

p
𝑖
− p
𝑗

𝜎
) + ∑

𝑗∈N𝑖(𝑡)

𝑎
𝑖𝑗
(𝑡) (k
𝑗
− k
𝑖
)

+ a𝑖
𝛾
− 𝑐
1
(p
𝑖
− p𝑖
𝛾
) − 𝑐
2
(k
𝑖
− k𝑖
𝛾
)

𝑖 = 1, . . . , 𝑁 𝑐
1
, 𝑐
2
> 0,

(19)

where N
𝑖
(𝑡) = {𝑗 : ‖p

𝑖
− p
𝑗
‖ ≤ 𝑅, 𝑗 = 1, 2, . . . , 𝑁, 𝑗 ̸= 𝑖}

is the set of spatial neighbors of agent 𝑖. 𝑅 represents the
interaction range. ‖ ⋅ ‖

𝜎
is the Euclidean norm and ‖z‖

𝜎
=

(1/𝜀)[√1 + 𝜀‖z‖2 − 1] 𝜀 > 0 for a vector z. 𝜓
𝛼
is the artifi-

cial nonnegative smooth pairwise potential function whose
characteristics depend on the relative distances between
agent 𝑖 and its neighbors: 𝜓

𝛼
reaches its maximal value as

‖p
𝑖
− p
𝑗
‖
𝜎
→ 0, and 𝜓

𝛼
acquires its unique minimal value

at a predefined distance ‖𝑑‖
𝜎
. When ‖p

𝑖
− p
𝑗
‖
𝜎
< ‖𝑑‖

𝜎
, agent

𝑖 attains repulsion force from 𝑗 by ∇p𝑖𝜓𝛼(‖p𝑖 − p𝑗‖𝜎). When
‖p
𝑖
− p
𝑗
‖
𝜎
= ‖𝑑‖

𝜎
, the repulsion force and attraction force

between 𝑖 and 𝑗 become balance. When ‖𝑑‖
𝜎
< ‖p
𝑖
− p
𝑗
‖
𝜎
<

‖𝑅‖
𝜎
, agent 𝑖 attains attraction force from 𝑗. And when

‖p
𝑖
− p
𝑗
‖
𝜎
≥ ‖𝑅‖

𝜎
, 𝜓
𝛼
becomes constant; then no force exists

between 𝑖 and 𝑗. 𝑐
1
and 𝑐
2
are positive constants which reflect

the influence degree from leader’s position and velocity. 𝑎
𝑖𝑗
(𝑡)

is the adjacent weight coefficient.

5. Experimental Results and Discussion

In our simulation, we employ a human animation software
package called DI-Guy, which is commercially available from
Boston Dynamics Inc. We control the moving of the urgent
members and normal members using SDK interface by C++
programs. The scenario can be depicted as follows: in a
city populated with a majority of civilians and 2 moving
cars. The civilians consist of three urgent individuals and
50 normal members comprising 30 normal individuals and
2 normal groups with 10 members, respectively. The cars’
moving characteristics are known previously. The priority
values of the 50 normal agents are selected randomly from
the interval [0, 1]. The interaction range 𝑅 = 10m and the
predefined distance 𝑑 = 8m. The values of 𝑎

𝑖𝑗
and 𝜓

𝛼
are set

the same as those in [6], and 𝑐
1
= 0.81, 𝑐

2
= 2√𝑐1, and𝑁 = 10.

The dynamic environment of the experiments is depicted in
Figure 6.
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Figure 7: The 𝑠 × 𝑡 spaces of urgent individuals.

In Figure 6, we set 𝑎max = 1.2m/s
2 and Vmax = 8m/s.

Length of the specified paths of urgent individuals is 𝐿
𝑆1
=

20m and 𝐿
𝑆2
= 30m and 𝐿

𝑆3
= 25m. The first dynamic

obstacle (moving cars) moves at a constant speed of 10m/s
(Car1) and the second moves at a constant speed of 5m/s
(Car2). The 𝑠 × 𝑡 spaces of the three urgent individuals in the
dynamic environment are depicted in Figure 7.

Figure 8 illustrates the reachable sets and the optimal
trajectory for each urgent individual.

The visualization simulation results of the crowd behav-
iors in 3D space are illustrated in Figure 9.

From Figure 8, we can see that the gradient in 𝑠 × 𝑡 space
is +∞ which means that the terminal velocity of the urgent
individual is zero, and this satisfies the requirement of the
problem definition in Section 3.1; for example, in Figure 8(b),
urgent individual 2 takes the maximal acceleration until
reaching A point before Car1 arrives at his path and then
switches to deacceleration for the pathA-B in case of colliding
with Car2. After that, he continues to take themaximal accel-
eration for path B-C and then deaccelerates to zero from C
point to the terminal point of the whole path. Figure 9 depicts
realistic and believable crowd behaviors in city environment:
the urgent individual can reach the destination along a given
path inminimal time and be collision-free with dynamic cars.
Simultaneously, the agents of the two normal groups show

real gathering behaviors according to the flocking method
and the normal individuals try to keep away from the urgent
ones and avoid collision with each other.

The computation cost of our approach is illustrated in
Figure 10 when we change the numbers of the dynamic
obstacles. Similarly, Figure 11 depicts the cost time of our
approach according to the number of the normal members
in the crowd.

From Figure 10, we can see that the cost time of our
approach is influenced vastly by the number of dynamic
obstacles in the environment. However the experiment
results in Figure 11 show that the cost time of our approach
changes slightly according to the number of the normal
members. This means that the increase in the number of
the normal members does not generate much computational
cost. And all the above results are in accordancewith previous
analyses.

6. Conclusions

Although there have been some research studies on optimal
trajectory planning for various purposes, few efforts have
been conducted to simulate the realistic crowd behaviors
with it, such as pedestrian navigation behavior in dynamic
environment. In this paper, we first present an optimal
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Figure 8: The optimal trajectory, time, and the velocity interval of urgent individuals.

(a) 𝑡 = 2.41 s (b) 𝑡 = 4.2 s

(c) 𝑡 = 6.5 s (d) 𝑡 = 7.5 s

Figure 9: Visualization simulation results of the crowd behaviors.
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Figure 10: Cost time of our approach according to the number of
the dynamic obstacles.
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Figure 11: Cost time of our approach according to the number of
the normal members in the crowd.

acceleration-velocity-bounded trajectory planning method
along a fixed, given path with dynamic obstacles. We use
it to generate the optimal trajectory of the urgent members
under the dynamic constraints. This planner ensures that
the moving time of the urgent members is minimal by
using a velocity interval propagation algorithm to compute
reachable velocity sets at obstacle vertices in 𝑠 × 𝑡 space.
Moreover, the cost time of this optimal trajectory planning
method is acceptable by applying a novel pushing model.
Finally, combining with the collision avoidance behavior and
the flocking behavior, the crowd simulation with dynamic
vehicles is implemented. So, the potential of our approach
for planning the optimal trajectories and modeling the social
behaviors of the crowd is promising.
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