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The paper proposes a two-stage supply chainmodel for price sensitive demand in imperfect production systemwhile manufacturer
and supplier are the members of the chain. The supplier screens the raw materials first and supplies good materials to the
manufacturer at a constant rate. The production rate varies randomly within a finite interval. The inventory cycle of the
manufacturer starts with shortages and production and it finishes with shortages again, in which shortages are partially backlogged.
We consider a mixture of LIFO (last in, first out) and FIFO (first in, first out) dispatching policies to fill the backlogged demand.
Thus, the objective of the proposed paper is to determine the optimal ordering lot-size and selling price of the manufacturer such
that the per unit average integrated expected profit of the supply chain model is maximized. A numerical example is provided to
analyze and illustrate the behavior and application of the model. Finally, sensitivity analysis of the key parameters are presented to
test feasibility of the model.

1. Introduction

Nowadays, the production inventory management has
absorbed a lot of interest, among the researchers as well as
practitioners, because production process is one of the most
important parts to the companies for their business strategy.
In reality, manufacturing companies have been facing big
challenges to adjust and control the proper production
rate, considering the limitations of labor, machines, power,
technology, raw materials, environment, and so forth.
Careful production planning is necessary to enrich any
businesses, otherwise companies may face overages or
shortages of the products. In the increased globalization
and competitive marketing system, it is main concern for
the industries to find out marketing strategies in production
process. Now, our aim is to study a supply chain model
consisting of supplier and manufacturer incorporating the
important factors: production, pricing, partial backlogging,
dispatching policy, defective items, and so forth.

Joint pricing and replenishment policy for deteriorating
inventory, where demand decreases linearly with time and
cost of items, was developed by Wee [1]. Abad [2] studied

an optimal pricing and lot-sizing model under conditions
of perishability and partial backordering. Salameh and Jaber
[3] introduced a modified inventory model for imperfect
quality itemswhen using the EPQ/EOQ formulae. Hayek and
Salameh [4] addressed a production inventory model where
the production systemwas not perfect.They studied the effect
of imperfect quality items on the finite production model.
Yang [5] analyzed an integrated buyer-vendor mathematical
model for deteriorating item with quantity discount and
found out optimal replenishment and pricing policy for price
sensitive demand. Papachristos and Skouri [6] reviewed the
papers of Salameh and Jaber [3] and discussed the issue
of no shortages in inventory models with imperfect quality
and especially in models with proportional imperfect quality.
Sarker and Al Kindi [7] studied an EOQmodel with optimal
ordering policies during the sale period for different scenarios
where the optimal ordering policies were compared for
the different discount scenarios to study the effect of the
discounted price and the length of the sale period. Wee et al.
[8] extended the model of Salameh and Jaber [3] and devel-
oped an optimal inventory model for items with imperfect
quality and shortage backordering. Lo et al. [9] developed
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an integrated production and inventory model considering
the factors varying rate of deterioration, partial backordering,
inflation, imperfect production processes, andmultiple deliv-
eries from the perspectives of both the manufacturer and the
retailer. Cárdenas-Barrón [10] corrected the derivation of the
optimal ordering policies, mathematical expressions of the
model of Sarker and Kindi [7]. He also derived the closed
forms for the optimal total gain costs for each case. Sana
[11] studied a production-inventory model in an imperfect
production process over a finite planning horizon where the
production rate was a dynamic variable and demand rate was
time sensitive. An EOQ (economic order quantity) model
of deteriorating item over finite time horizon was addressed
by Sana [12, 13]. He considered that the demand rate was
quadratic decreasing function of price and the time horizon
divided into 𝑛 equal periods with 𝑛 different prices. Khanra et
al. [14] analyzed anEOQmodel taking time varying quadratic
demand for a deteriorating item having time dependent
demand when delay in payment was permissible. Zhang et al.
[15] studied a two-itemEOQmodelwith partial backordering
in consideration of the correlated demand caused by cross-
selling. They considered that the sales of the minor item
can either be promoted by the successful sales or be pulled
down by the lost sales of the major item where the demand
of the major item was independent, but the demand of
the minor item was partially correlated with the sales of
the major item. Toews et al. [16] addressed a deterministic
EOQ and EPQ (economic production quantity) model with
partial backordering at a rate that is linearly dependent on
time to delivery. Sana [12] presented a three-layer imperfect
production inventory model where replenishment lot-size of
supplier and production rate of manufacturer were decisions
variables and production cost per unit itemwas dependent on
production rate. Sarkar and Moon [17] studied a production
inventory model for stochastic demand with the effect of
inflation. Pal et al. [18] extended the model of Sana [12]
introducing product reliability, different holding cost for
good and defective items, and reworking of defective items
in the environment of supply chain management. Glock [19]
reviewed lot-size models focusing on coordinated inventory
replenishment decisions between buyer and vendor and their
impact on the performance of the supply chain. Pal et al. [20]
analyzed a multi-item EOQ inventory model considering
price and level of price breaks dependent demand rate. They
also assumed that vendor offered discount on selling price
to the customers according to level of price breaks. Sicilia
et al. [21] developed an inventory system with a mixture of
backorders and lost sales, where the backordered demand
rate was an exponential function of time, the customers
waiting time before receiving the item. Wee and Widyadana
[22] studied an integrated single-vendor single-buyer inven-
tory model with multiple deliveries considering stochastic
machine unavailability time. Pal et al. [23] analyzed an
imperfect EPQ price dependent inventory model over two
types of cycles where the retailer sells only good product
with actual price in the first cycle and, in the second, he sells
the products with a discount price. Chang [24] developed an
integrated production-inventory problem for deteriorating
items in a two-echelon supply chain assuming that the

deterioration rate of the item was a constant or follows a
continuous probability distribution function. Lee and Kim
[25] addressed an integrated production-distribution model
to determine an optimal policy with both deteriorating and
defective items under a single-vendor single-buyer system.
San-José et al. [26] studied a production-inventory model for
a single product with shortages and lost sale where both the
backorder cost and the lost sale cost depended on a fixed cost
and a cost proportional to the shortage time. They applied
a mixture between the dispatching policies known as LIFO
(last in, first out) and FIFO (first in, first out) in the discipline
of service to fill the backlogged demand. Many researchers
[6, 27–39] and (Pentico and Drake [40] studied production
inventory model, considering many issues such as pricing,
imperfect production, and backlogging of products.

In this paper, a two-level supply chain of supplier and
manufacturer has been addressed in an imperfect produc-
tion system while production rate varies randomly within
finite limits. The supplier supplies good raw material, after
screening thewhole lot, to themanufacturer and the defective
items are sold at lower price to outsider at a single lot. The
market demand of the products is considered as selling price
sensitive. The inventory cycle of the manufacturer starts and
ends with shortages where shortages are partially backlogged.
When production is running but inventory level remains
into shortages, then the manufacturer applies mixture of
LIFO and FIFO dispatching policies to fill up backlogged
demand. Now, the objective of our paper is to find out the
optimal inventory lot-size and optimal selling price so that
the integrated expected per unit average profit of the chain is
maximized.

The rest of the paper is organized as follows. Section 2
illustrates fundamental assumptions and notations. Formu-
lation of the model is discussed in Section 3. Section 4
analyzes Numerical analysis. Sensitivity analysis is illustrated
in Section 5 and finally conclusion of the paper is provided in
Section 6.

2. Fundamental Assumptions and Notations

2.1. Assumptions. The following assumptions are adopted to
develop the model.

(i) Model is developed for single item over infinite
planning horizon.

(ii) Replenishment rate of supplier is instantaneously
infinite, but its size is finite; thatmeans replacement of
lot-size is sufficiently large at any number, if needed.

(iii) Demand rate of the customers is dependent on selling
price.

(iv) Production rate of the inventory system is not fixed.

(v) Production system is not perfect; it produces good as
well as defective items.

(vi) Production cost per unit item depends on production
lot-size.

(vii) Shortages are allowed and partially backlogged.



Journal of Industrial Engineering 3

(viii) When production is running but inventory level
remains into shortages, the manufacturer considers
the mixture between the LIFO and FIFO dispatching
policies to satisfy the customer service.

2.2. Notations. The following notations are used throughout
the paper.

𝑄: Replenishment lot-size of supplier
𝐷(𝑝): Demand rate of the customers
𝛼: Fraction of defective raw materials at supplier level
𝛽𝐷(0): Production rate of the defective items
𝜆: Rate of fraction of backorder shortages
𝐴
𝑠
: Setup cost of the supplier

ℎ
𝑠
: Holding cost ($) per unit per unit time of the

supplier
ℎ
𝑚
: Holding cost ($) per unit per unit time for good

items of the manufacturer
ℎ
󸀠

𝑚
: Holding cost ($) per unit per unit time for

defective items of the manufacturer
ℎ
󸀠󸀠

𝑚
: Holding cost ($) per unit per unit time for stored

raw material of the manufacturer
𝑏
𝑐
:The backlogging cost ($) per unit per unit time due

to shortages
𝑙
𝑐
: The lost sale cost ($) per unit per unit time

𝑤
𝑠
: Selling price ($) per unit of good raw materials at

supplier level
𝑤
󸀠

𝑠
: Selling price ($) per unit of defective rawmaterials

at supplier level
𝑝
󸀠: Selling price ($) per unit of defective products at

manufacturer level
𝐶
𝑟
: Purchasing cost ($) per unit item

𝐶
𝑝
(𝑄): Per unit production cost ($)

𝑡
1
: Time length of delivering raw material by the

supplier
𝑡
𝑟
: Time length of backlogging during production run

𝑡
𝑝
: Production run-time of the manufacturer

𝑡
𝑠
− 𝑡
𝑝
: Time required for selling the items which are

stored during production run
𝑇 − 𝑡
𝑠
: Time cycle of shortages when production is

stopped
𝑇: Cycle time of the supply chain.

3. Formulation of the Model

In the model, we formulate a two-echelon production inven-
tory model (see Figure 1) considering customers’ demand
𝐷(𝑝) of the products is price sensitive where 𝐷

󸀠

(𝑝) =

𝑑𝐷(𝑝)/𝑑𝑝 < 0. The supplier delivers the screened good raw
materials to the manufacturer for production. The manufac-
turer production system is not perfect and the production rate
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Figure 1: Logistic diagram of the production inventory model.

is also not fixed. It produces defective products at a rate𝛽𝐷(0)

where (1 + 𝛽)𝐷(0) + 𝜖 is the production rate of the system.
We assume that 𝜖 is a random variable whose variation of
range is not so high. Here, we consider that the range of 𝜖 is
−3𝜇/2 ≤ 𝜖 ≤ 𝜇where 𝜇 is a positive real constant greater than
1 but very small compared to𝐷(0).The production rate of the
system is not generally fixed due to quality of raw material,
labour performance, weather, and so forth. The situation of
lesser production from target rate is generallymore incidence
than the situation of higher production from target rate. So,
we consider that the addition part (𝜖) of production rate is
random variable and its range is −3𝜇/2 ≤ 𝜖 ≤ 𝜇.The defective
items are sold in a lot to the other markets after completing
the production. We develop the model considering that the
inventory cycle of the manufacturer starts with shortages
and production. In the time interval, when production and
shortages are both running in the system, two cases may
occur. If the new demand is satisfied before backlogged then
the system is in LIFO (last in, first out). In the other case,
when backlogged order is filled up before new demand, then
the system is in FIFO (first in, first out). In that time interval,
we formulate the model considering the mixture of LIFO
and FIFO dispatching policies. Recovering from backlogged
situation, the manufacturing system produces products up to
time 𝑡

𝑝
and then he sells the stored items to the customers up

to time 𝑡
𝑠
. The system falls again in the shortages after time

𝑡
𝑠
continues up to end of running cycle (𝑇). The individual

cases for the supplier and the manufacturer are discussed in
the following subsection.

3.1. Suppliers Individual Profit. In the study, the supplier
screens the raw material at the rate 𝑆

𝑟
and supplies the

good raw material at a rate {(1 + 𝛽)𝐷(0) + 𝜇} to the
manufacturer. The manufacturer orders to supply materials
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at rate {(1 + 𝛽)𝐷(0) + 𝜇} to avoid production disruption
during production run-time because the production rate is
({1 + 𝛽}𝐷(0) + 𝜖) where 𝜖 is a random variable with range
−3𝜇/2 ≤ 𝜖 ≤ 𝜇. So, maximum production rate may be
{(1+𝛽)𝐷(0)+𝜇}.The total defectivematerials at supplier level
are sent back with sale price 𝑤

󸀠

𝑠
per unit item to the outside.

The governing differential equation, in this stage, is

𝑑𝐼
𝑠
(𝑡)

𝑑𝑡

= − {(1 + 𝛽)𝐷 (0) + 𝜇} ,

with 𝐼
𝑠
(0) = (1 − 𝛼)𝑄,

𝐼
𝑠
(𝑡
1
) = 0, 0 ≤ 𝑡 ≤ 𝑡

1
.

(1)

Using the above boundary conditions, we have, from (1),

𝐼
𝑠
(𝑡) = 𝑄 (1 − 𝛼) − {(1 + 𝛽)𝐷 (0) + 𝜇} 𝑡, 0 ≤ 𝑡 ≤ 𝑡

1
. (2)

Now,

𝐼
𝑠
(𝑡
1
) = 0 󳨐⇒ 𝑡

1
=

𝑄 (1 − 𝛼)

{(1 + 𝛽)𝐷 (0) + 𝜇}

. (3)

Therefore, using (2) and (3), the holding cost for good
material is

IC
𝑠
= ℎ
𝑠
∫

𝑡
1

0

𝐼
𝑠
(𝑡) 𝑑𝑡 = ℎ

𝑠

𝑄
2

(1 − 𝛼)
2

2 {(1 + 𝛽)𝐷 (0) + 𝜇}

. (4)

The holding cost for damaged/imperfect material is

IC
𝑠
𝑑

= ℎ
𝑠
𝛼𝑄

𝑄

𝑆
𝑟

=

ℎ
𝑠
𝛼𝑄
2

𝑆
𝑟

. (5)

The average profit of supplier, using (4) and (5), is

𝐸𝜋
𝑠
(𝑄)

=

1

𝑄

[Total revenue from sales − Total inventory cost

− Screening cost − Total setup cost]

=

1

𝑄

[{(1 − 𝛼)𝑤
𝑠
+ 𝛼𝑤
󸀠

𝑠
− 𝐶
𝑠
}𝑄

−ℎ
𝑠
(

𝑄
2

(1 − 𝛼)
2

2 {(1 + 𝛽)𝐷 (0) + 𝜇}

+

𝛼𝑄
2

𝑆
𝑟

) − 𝐴
𝑠
]

= {(1 − 𝛼)𝑤
𝑠
+ 𝛼𝑤
󸀠

𝑠
− 𝐶
𝑠
}

− ℎ
𝑠
(

(1 − 𝛼)
2

2 {(1 + 𝛽)𝐷 (0) + 𝜇}

+

𝛼

𝑆
𝑟

)𝑄 −

𝐴
𝑠

𝑄

.

(6)

3.2. Manufacturers Individual Profit. In the proposed study,
the manufacturer starts production for a new cycle when the
backlogged level of products touches the level 𝑆. Collecting
the rawmaterials at rate (1+𝛽)𝐷(0)+𝜇 from the supplier, the
manufacturer produces the products at varying production

rate (1 + 𝛽)𝐷(0) + 𝜖 where 𝜖 is a random variable with range
−3𝜇/2 ≤ 𝜖 ≤ 𝜇. As the maximum production rate may
be (1 + 𝛽)𝐷(0) + 𝜇, the manufacturer stores the extra raw
materials in a temporary warehouse at a rate [{(1 + 𝛽)𝐷(0) +

𝜇} − {(1 + 𝛽)𝐷(0) + 𝜖}] = (𝜇 − 𝜖) up to time 𝑡
1
and then

the stored materials are used for the rest of production run-
time (𝑡

𝑝
−𝑡
1
).Themanufacturing system is not totaly perfect.

It produces defective items at constant rate 𝛽𝐷(0) which are
sold in a lot after the production run with less selling price.
As the manufacturer faces both backlogged demand and the
new customers’ demand in the beginning of production, he
uses the mixture of LIFO and FIFO dispatching policies. In
the time interval when production and shortages are both
running, a fraction (𝜃) of new demands is only filled up
according to the priority of the customers demand (𝐷(𝑝))
with backlogged demand. In that time, the rest of the new
customers ((1 − 𝜃)𝐷(𝑝)) have to wait for their demand, but a
fraction (1 − 𝜆) of that customers leave the system for their
busy schedule or other reasons and others (𝜆(1 − 𝜃)𝐷(𝑝))
are waiting for their demand products. Recovering from
backlogged situation, that is, after time 𝑡

𝑟
, the production of

the manufacturing system is continuing up to time 𝑡
𝑝
and

the finished products are piled up at rate [{(1 + 𝛽)𝐷(0) +

𝜖} − 𝐷(𝑝)] through the time (𝑡
𝑝

− 𝑡
𝑟
). After the production

run, these finished stored products satisfied the customers’
demand (𝐷(𝑝)) up to time 𝑡

𝑠
. Again, the system falls again

into the shortages after time 𝑡
𝑠
continues up to end of running

cycle (𝑇), that is, when the shortages level of products touches
the level 𝑆. Now, the on-hand inventory 𝐼

𝑚
𝑖

(𝑡), (𝑖 = 1, 2, 3, 4)

for good items, 𝐼
𝑚
𝑑

for defective products, and 𝐼
𝑤
𝑖

(𝑡), (𝑖 =

1, 2) for stored rawmaterials in temporary warehouse at time
𝑡 at the manufacturer can be represented by the following
differential equations considering𝜓 = 𝜃+𝜆(1−𝜃) = 𝜃+𝜆−𝜆𝜃:

𝑑𝐼
𝑚
1
(𝑡)

𝑑𝑡

= {(𝐷 (0) + 𝜖) − 𝜓𝐷 (𝑝)} − 𝑆,

with 𝐼
𝑚
1

(𝑡
𝑟
) = 0, 𝐼

𝑚
1
(0) = −𝑆, 0 ≤ 𝑡 ≤ 𝑡

𝑟
.

𝑑𝐼
𝑚
2
(𝑡)

𝑑𝑡

= (𝐷 (0) + 𝜖) − 𝐷 (𝑝) ,

with 𝐼
𝑚
2

(𝑡
𝑟
) = 0, 𝑡

𝑟
≤ 𝑡 ≤ 𝑡

𝑝
.

𝑑𝐼
𝑚
3
(𝑡)

𝑑𝑡

= −𝐷 (𝑝) ,

with 𝐼
𝑚
3

(𝑡
𝑝
) = 𝐼
𝑚
2

(𝑡
𝑝
) , 𝐼

𝑚
3

(𝑡
𝑠
) = 0, 𝑡

𝑝
≤ 𝑡 ≤ 𝑡

𝑠
,

𝑑𝐼
𝑚
4
(𝑡)

𝑑𝑡

= −𝜆𝐷 (𝑝) , with 𝐼
𝑚
4

(𝑡
𝑠
) = 0, 𝑡

𝑠
≤ 𝑡 ≤ 𝑇,

𝑑𝐼
𝑚
𝑑
(𝑡)

𝑑𝑡

= 𝛽𝐷 (0) , with 𝐼
𝑚
𝑑
(0) = 0, 0 ≤ 𝑡 ≤ 𝑡

𝑝
,

𝑑𝐼
𝑚
𝑤1

(𝑡)

𝑑𝑡

= (𝜇 − 𝜖) , with 𝐼
𝑚
𝑤1

(0) = 0, 0 ≤ 𝑡 ≤ 𝑡
1
,

𝑑𝐼
𝑚
𝑤2

(𝑡)

𝑑𝑡

= (𝜇 − 𝜖) 𝑡
1
− {(1 + 𝛽)𝐷 (0) + 𝜖} ,

with 𝐼
𝑚
𝑤2

(𝑡
𝑝
) = 0, 𝑡

1
≤ 𝑡 ≤ 𝑡

𝑝
.

(7)
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Using the above boundary conditions, we have, from (7),

𝐼
𝑚
1
(𝑡) = (𝑡 − 𝑡

𝑟
) (𝐷 (0) + 𝜖 − 𝐷 (𝑝)𝜓 − 𝑆) , 0 ≤ 𝑡 ≤ 𝑡

𝑟
,

𝐼
𝑚
2
(𝑡) = (𝑡 − 𝑡

𝑟
) (𝐷 (0) + 𝜖 − 𝐷 (𝑝)) , 𝑡

𝑟
≤ 𝑡 ≤ 𝑡

𝑝
,

𝐼
𝑚
3
(𝑡) = (𝑡

𝑝
− 𝑡
𝑟
) (𝐷 (0) + 𝜖) − 𝐷 (𝑝) (𝑡 − 𝑡

𝑟
) ,

𝑡
𝑝

≤ 𝑡 ≤ 𝑡
𝑠
,

𝐼
𝑚
4
(𝑡) = 𝜆𝐷 (𝑝) (𝑡

𝑠
− 𝑡) , 𝑡

𝑠
≤ 𝑡 ≤ 𝑇,

𝐼
𝑚
𝑑
(𝑡) = 𝐷 (0) 𝛽𝑡, 0 ≤ 𝑡 ≤ 𝑡

𝑝
,

𝐼
𝑚
𝑤1

(𝑡) = (𝜇 − 𝜖) 𝑡, 0 ≤ 𝑡 ≤ 𝑡
1
,

𝐼
𝑚
𝑤2

(𝑡) = (𝑡 − 𝑡
𝑝
) {𝑡
1
(𝜇 − 𝜖) − (𝐷 (0) (1 + 𝛽) + 𝜖)} ,

𝑡
1
≤ 𝑡 ≤ 𝑡

𝑝
.

(8)

Again

𝐼
𝑚
1
(0) = −𝑆 󳨐⇒ 𝑡

𝑟
=

𝑆

𝐷 (0) + 𝜖 − 𝐷 (𝑝)𝜓 − 𝑆

,

𝑡
𝑝

=

Production lot-size
Production rate

=

𝑄 (1 − 𝛼)

𝐷 (0) (1 + 𝛽) + 𝜖

,

𝐼
𝑚
3

(𝑡
𝑠
) = 0

󳨐⇒ 𝑡
𝑠
=

1

𝐷 (𝑝)

[

𝑄 (1 − 𝛼) (𝐷 (0) + 𝜖)

𝐷 (0) (1 + 𝛽) + 𝜖

−

𝑆 (𝐷 (0) + 𝜖 − 𝐷 (𝑝))

𝐷 (0) − 𝑆 + 𝜖 − 𝐷 (𝑝)𝜓

] ,

𝐼
𝑚
4
(𝑇) = −𝑆

󳨐⇒ 𝑇 =

1

𝐷 (𝑝) 𝜆

× [𝑆 + (

𝑄 (1 − 𝛼) (𝐷 (0) + 𝜖)

𝐷 (0) (1 + 𝛽) + 𝜖

−

𝑆 (𝐷 (0) + 𝜖 − 𝐷 (𝑝))

𝐷 (0) − 𝑆 + 𝜖 − 𝐷 (𝑝)𝜓

)𝜆] .

(9)

The inventory cost for good items is

IC
𝑚
𝑔

= ℎ
𝑚

[∫

𝑡
𝑟

0

𝐼
𝑚
1
(𝑡) 𝑑𝑡 + ∫

𝑡
𝑝

𝑡
𝑟

𝐼
𝑚
2
(𝑡) 𝑑𝑡

+∫

𝑡
𝑠

𝑡
𝑝

𝐼
𝑚
3
(𝑡) 𝑑𝑡 + ∫

𝑇

𝑡
𝑠

𝐼
𝑚
4
(𝑡) 𝑑𝑡]

= ( {𝐷 (0) + 𝜖} {𝐷 (0) − 𝐷 (𝑝) + 𝜖}

× [𝐷 (0) 𝑆 (1 + 𝛽) + 𝑆𝜖 − 𝑄 (1 − 𝛼)

× {𝐷 (0) − 𝑆 + 𝜖 − 𝜓𝐷 (𝑝)}]
2

)

× (2𝐷 (𝑝) {𝐷 (0) (1 + 𝛽) + 𝜖}
2

× {𝐷 (0) − 𝑆 + 𝜖 − 𝜓𝐷 (𝑝)}
2

)

−1

.

(10)

The inventory cost for defective items is

IC
𝑚
𝑑

= ℎ
󸀠

𝑐
∫

𝑡
𝑝

0

𝐼
𝑚
𝑑
(𝑡) 𝑑𝑡 =

ℎ
󸀠

𝑐
𝐷 (0)𝑄

2

(1 − 𝛼)
2

𝛽

2{𝐷 (0) (1 + 𝛽) + 𝜖}
2
. (11)

The inventory cost for stored raw materials in temporary
warehouse is

IC
𝑚
𝑤

= ℎ
󸀠󸀠

𝑐
∫

𝑡
1

0

𝐼
𝑤
1
(𝑡) 𝑑𝑡 + ∫

𝑡
𝑝

𝑡
1

𝐼
𝑤
2
(𝑡) 𝑑𝑡

=

ℎ
󸀠󸀠

𝑐
𝑄
2

(1 − 𝛼)
2

(𝜇 − 𝜖)

2((1 + 𝛽)𝐷 (0) + 𝜖)
2

((1 + 𝛽)𝐷 (0) + 𝜇)
3

× [(𝐷 (0))
3

(1 + 𝛽)
3

− 𝑄 (1 − 𝛼) (𝜇 − 𝜖)
2

+ 𝜖𝜇
2

+ 𝐷 (0)

× (1 + 𝛽) 𝜇 (2𝜖 + 𝜇) + 𝐷
2

(0) (1 + 𝛽)
2

(𝜖 + 2𝜇)] .

(12)

The total amount of backlogged cost at the end of cycle is

BC
𝑚

= ∫

𝑡
𝑟

0

(1 − 𝜃) 𝜆𝐷 (𝑝) 𝑑𝑡 + ∫

𝑇

𝑡
𝑠

𝜆𝐷 (𝑝) 𝑑𝑡

= 𝑆 +

𝐷 (𝑝) 𝑆 (1 − 𝜃) 𝜆

𝐷 (0) − 𝑆 + 𝜖 − 𝜓𝐷 (𝑝)

.

(13)

The total amount of lost sale cost during shortages time is

LC
𝑚

= 𝑙
𝑐
((1 − 𝜃) ∫

𝑡
𝑟

0

(1 − 𝜆)𝐷 (𝑝) 𝑑𝑡 + ∫

𝑇

𝑡
𝑠

(1 − 𝜆)𝐷 (𝑝) 𝑑𝑡)

= 𝑙
𝑐
[

𝐷 (𝑝) 𝑆 (1 − 𝜃) (1 − 𝜆)

𝐷 (0) − 𝑆 + 𝜖 − 𝐷 (𝑝)𝜓

+

𝑆 (1 − 𝜆)

𝜆

] .

(14)

In this case, total expected average per unit quantity profit of
the manufacturer is

𝐸𝜋
𝑚

(𝑄, 𝑝)

=

1

𝑄

[Total expected revenue from sales

− Total expected production cost

− Total expected inventory cost

− Total expected backlogging cost
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− Total expected lost sale cost]

=

1

𝑄

𝐸 [(𝐷 (0) + 𝜖) 𝑝𝑡
𝑝
+ 𝑝
󸀠

𝛽𝐷 (0) 𝑡
𝑝

− (1 − 𝛼)𝑄 (𝑤
𝑠
+ 𝐶
𝑝
)

− IC
𝑚
𝑔

− IC
𝑚
𝑑

− IC
𝑚
𝑤

− BC
𝑚

− LC
𝑚
] .

(15)

3.3. Integrated Profit. Hence, from (6) and (15), the integrated
expected average profit per unit per quantity is

𝐸𝜋 (𝑄, 𝑝) = 𝐸𝜋
𝑠
(𝑄) + 𝐸𝜋

𝑚
(𝑄, 𝑝)

= 𝑍
1
(𝑝) + 𝑄𝑍

2
(𝑝) + 𝑄

2

𝑍
3
(𝑝) +

𝑍
4
(𝑝)

𝑄

,

(16)

𝑍
1
(𝑝)

=

2ℎ
𝑚
𝑆 (1 − 𝛼)

5 (𝐴 − 𝐵𝑝
2
) (𝑆 − 𝐵𝑝

2
𝜓 + 𝐴 (𝛽 + 𝜓)) 𝜇

× [𝐴𝛽 (𝐴 − 𝐵𝑝
2

+ 𝐴𝛽) Log[

2𝐴 (1 + 𝛽) − 3𝜇

𝐴 (1 + 𝛽) + 𝜇

]

− (𝑆
2

− (𝐴 − 𝐵𝑝
2

)

2

(1 − 𝜓)𝜓

− (𝐴 − 𝐵𝑝
2

) 𝑆 (1 − 2𝜓) )

× Log[

2 (𝐴 (1 − 𝜓) − 𝑆 + 𝐵𝑝
2

𝜓) − 3𝜇

𝐴 (1 − 𝜓) − 𝑆 + 𝐵𝑝
2
𝜓 + 𝜇

]]

+ (1 − 𝛼) (𝑝 − 𝑤
𝑠
) − 2𝐴 (𝑝 − 𝑝

󸀠

) (1 − 𝛼) 𝛽

× Log[

𝐴 (1 + 𝛽) + 𝜇

𝐴 (1 + 𝛽) − 3𝜇/2

] (5𝜇)
−1

−

ℎ
𝑚
𝑆 (1 − 𝛼) ((𝐴𝛽 − 𝑆) Log [4] − 5𝜇)

5 (𝐴 − 𝐵𝑝
2
) 𝜇

−

2ℎ
𝑚
𝑆 (1 − 𝛼) (1 − 𝜓) Log [2]

5𝜇

,

𝑍
2
(𝑝)

= −

1

10

(1 − 𝛼)
2

× [

10𝐴ℎ
𝑚
𝛽 (𝐴 − 𝐵𝑝

2

+ 𝐴𝛽)

(𝐴 − 𝐵𝑝
2
) (2𝐴 (1 + 𝛽) − 3𝜇) (𝐴 (1 + 𝛽) + 𝜇)

+

10𝐴ℎ
󸀠

𝑚
𝛽

(2𝐴 (1 + 𝛽) − 3𝜇) (𝐴 + 𝐴𝛽 + 𝜇)

+

2

𝜇

Log[

2𝐴 (1 + 𝛽) − 3𝜇

𝐴 (1 + 𝛽) + 𝜇

]

× (

ℎ
𝑚

(𝐴 − 𝐵𝑝
2

+ 2𝐴𝛽)

(𝐴 − 𝐵𝑝
2
)

− ℎ
󸀠󸀠

𝑚
)

+

ℎ
󸀠󸀠

𝑚
(𝐴 (1 + 𝛽) Log [4] − 𝜇 (5 − Log [4]))

𝜇 (𝐴 + 𝐴𝛽 + 𝜇)

+

5ℎ
𝑚

𝐴 − 𝐵𝑝
2
−

ℎ
𝑚
Log [4]

𝜇

(1 +

2𝐴𝛽

𝐴 − 𝐵𝑝
2
)] ,

𝑍
3
(𝑝)

=

ℎ
󸀠󸀠

𝑚
(1 − 𝛼)

3

5𝜇(𝐴 (1 + 𝛽) + 𝜇)
3

× [{𝐴 (1 + 𝛽) + 𝜇}
2

× {3Log[

2𝐴 (1 + 𝛽) − 3𝜇

𝐴 (1 + 𝛽) + 𝜇

] − 1 − 3Log [2]}

+ (2𝐴 (1 + 𝛽) {8𝐴
2

(1 + 𝛽)
2

+ 64𝐴 (1 + 𝛽) 𝜇

+29𝜇
2

}

−179𝜇
3

) (8 (2𝐴 (1 + 𝛽) − 3𝜇))
−1

] ,

𝑍
4
(𝑝)

= −[ℎ
𝑚
𝑆
2

(𝑆
2

+ 𝐵𝑝
2

𝑆 (1 − 2𝜓)

− 𝐴
2

(1 − 𝜓)𝜓 − 𝐵
2

𝑝
4

(1 − 𝜓)𝜓

+𝐴 (2𝐵𝑝
2

(1 − 𝜓)𝜓 − 𝑆 (1 − 2𝜓)))

× ((𝐴 − 𝐵𝑝
2

) (𝐴 (1 − 𝜓) + 𝐵𝑝
2

𝜓 + 𝜇 − 𝑆)

× (2 (𝐴(1 − 𝜓) + 𝐵𝑝
2

𝜓 − 𝑆) − 3𝜇))

−1

+

ℎ
𝑚
𝑆
2

(2𝑆 − (1 − 2𝜓) (𝐴 − 𝐵𝑝
2

))

5 (𝐴 − 𝐵𝑝
2
) 𝜇

× [Log [2]

− Log[

2 (𝐴 (1 − 𝜓) + 𝐵𝑝
2

𝜓 − 𝑆) − 3𝜇

𝐴 (1 − 𝜓) + 𝐵𝑝
2
𝜓 − 𝑆 + 𝜇

]]

+ 𝑙
𝑐
[

𝑆 (1 − 𝜆)

𝜆

+

2 (𝐴− 𝐵𝑝
2

) 𝑆 (1 − 𝜃) (1 − 𝜆)

5𝜇

× Log[

𝐴 − 𝑆 − (𝐴 − 𝐵𝑝
2

) 𝜓 + 𝜇

𝐴 − 𝑆 − (𝐴 − 𝐵𝑝
2
) 𝜓 − 3𝜇/2

]]

+

ℎ
𝑚
𝑆
2

2 (𝐴 − 𝐵𝑝
2
)

+ 𝐿 (1 − 𝛼)
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+ 𝑏
𝑐
(𝑆 +

2 (𝐴 − 𝐵𝑝
2

) 𝑆 (1 − 𝜃) 𝜆

5𝜇

× Log[

𝐴− 𝑆− (𝐴 − 𝐵𝑝
2

) 𝜓+ 𝜇

𝐴− 𝑆− (𝐴 − 𝐵𝑝
2
) 𝜓− 3𝜇/2

])] .

(17)

Proposition 1. 𝑍
4
(𝑝) < 0 for all 0 < 𝑝 < √𝐴/𝐵.

Proof. In the expression 𝑍
4
(𝑝), we see that all the terms are

individual positive within the third bracket except the first
two terms for all 0 < 𝑝 < √𝐴/𝐵. First term is very small,
it does not affect very much. In the second term, we see that
[Log[2] − Log[(2(𝐴(1 − 𝜓) + 𝐵𝑝

2

𝜓 − 𝑆) − 3𝜇)/(𝐴(1 − 𝜓) +

𝐵𝑝
2

𝜓− 𝑆+𝜇)]] = [Log[2] − Log[2] + Log[(𝐴(1 −𝜓) +𝐵𝑝
2

𝜓−

𝑆 + 𝜇)/((𝐴(1 − 𝜓) + 𝐵𝑝
2

𝜓 − 𝑆) − 3𝜇/2)]] = Log[(𝐴(1 − 𝜓) +

𝐵𝑝
2

𝜓 − 𝑆 + 𝜇)/((𝐴(1 − 𝜓) + 𝐵𝑝
2

𝜓 − 𝑆) − 3𝜇/2)] > 0 as (𝐴(1 −

𝜓)+𝐵𝑝
2

𝜓−𝑆+𝜇)/((𝐴(1−𝜓)+𝐵𝑝
2

𝜓−𝑆)−3𝜇/2) > 1. Hence,
the expression 𝑍

4
(𝑝) is negative for all 0 < 𝑝 < √𝐴/𝐵.

Partial differentiations of the profit function (16) with
respect to 𝑄 and 𝑝 are

𝜕𝐸𝜋 (𝑄, 𝑝)

𝜕𝑄

= 𝑍
2
(𝑝) + 2𝑍

2
(𝑝)𝑄 −

𝑍
4
(𝑝)

𝑄
2

, (18)

𝜕𝐸𝜋 (𝑄, 𝑝)

𝜕𝑝

=

𝑑𝑍
1
(𝑝)

𝑑𝑝

+ 𝑄

𝑑𝑍
2
(𝑝)

𝑑𝑝

+

1

𝑄

𝑑𝑍
4
(𝑝)

𝑑𝑝

, (19)

𝜕
2

𝐸𝜋 (𝑄, 𝑝)

𝜕𝑄
2

= 2𝑍
3
(𝑝) +

2𝑍
4
(𝑝)

𝑄
3

, (20)

𝜕
2

𝐸𝜋 (𝑄, 𝑝)

𝜕𝑝
2

=

𝑑
2

𝑍
1
(𝑝)

𝑑𝑝
2

+ 𝑄

𝑑
2

𝑍
2
(𝑝)

𝑑𝑝
2

+

1

𝑄

𝑑
2

𝑍
4
(𝑝)

𝑑𝑝
2

,

(21)

𝜕
2

𝐸𝜋 (𝑄, 𝑝)

𝜕𝑄𝜕𝑝

=

𝑑𝑍
2
(𝑝)

𝑑𝑝

−

1

𝑄
2

𝑑𝑍
4
(𝑝)

𝑑𝑝

. (22)

Proposition 2. 𝜕
2

𝐸𝜋(𝑄, 𝑝)/𝜕𝑄
2

< 0 for all 0 < 𝑝 < √𝐴/𝐵.

Proof. As 𝜕
2

𝐸𝜋(𝑄, 𝑝)/𝜕𝑄
2

= 2𝑍
3
(𝑝) + 2𝑍

4
(𝑝)/𝑄

3 where
𝑍
4
(𝑝) < 0 (see Proposition 1), we can say 𝜕

2

𝐸𝜋(𝑄, 𝑝)/𝜕𝑄
2

<

0 if |2𝑍
3
(𝑝)| < |2𝑍

4
(𝑝)/𝑄

3

|. We see from expression 𝑍
3
(𝑝)

that 𝑍
3
(𝑝) does not depend on 𝑝; that is, it is constant

expression. Also, it is clear that the value of the term 𝑍
3
(𝑝)

is very small. But 𝑄
3

𝑍
3
(𝑝) may not be so small such that

|𝑍
4
(𝑝)| > |𝑄

3

𝑍
3
(𝑝)| when 𝑄 is very large. Hence, 𝜕2𝐸𝜋(𝑄,

𝑝)/𝜕𝑄
2

< 0 for all 0 < 𝑝 < √𝐴/𝐵 if |𝑍
4
(𝑝)| > |𝑄

3

𝑍
3

(𝑝)|.

Proposition 3. The solutions (𝑄
∗

, 𝑝
∗

) of the equations
𝜕𝐸𝜋(𝑄, 𝑝)/𝜕𝑄 = 0 and 𝜕𝐸𝜋(𝑄, 𝑝)/𝜕𝑝 = 0 are optimal if
|𝑑
2

𝑍
1
(𝑝)/𝑑𝑝

2

| < |𝑄(𝑑
2

𝑍
2
(𝑝)/𝑑𝑝

2

) + (1/𝑄)(𝑑
2

𝑍
3
(𝑝)/𝑑𝑝

2

)|

and 2(𝑍
3
(𝑝) + 𝑍

4
(𝑝)/𝑄

3

)(𝑑
2

𝑍
1
(𝑝)/𝑑𝑝

2

+ 𝑄(𝑑
2

𝑍
2
(𝑝)/𝑑𝑝

2

) +

(1/𝑄)(𝑑
2

𝑍
4
(𝑝)/𝑑𝑝

2

)) > (𝑑𝑍
2
(𝑝)/𝑑𝑝 − (1/𝑄

2

)(𝑑𝑍
4
(𝑝)/𝑑𝑝))

2

are satisfied at the point (𝑄∗, 𝑝∗).

Proof. The solutions (𝑄
∗

, 𝑝
∗

) of the equations 𝜕𝐸𝜋(𝑄,

𝑝)/𝜕𝑄 = 0 and 𝜕𝐸𝜋(𝑄, 𝑝)/𝜕𝑝 = 0 are optimal if the Hessian
matrix of per unit expected integrated profit function (16) is
negative definite at that solution point.

Hessian matrix of the per unit expected profit function is

𝐻 = (

𝜕
2

𝐸𝜋(𝑄, 𝑝)

𝜕𝑄
2

𝜕
2

𝐸𝜋(𝑄, 𝑝)

𝜕𝑄𝜕𝑝

𝜕
2

𝐸𝜋(𝑄, 𝑝)

𝜕𝑄𝜕𝑝

𝜕
2

𝐸𝜋(𝑄, 𝑝)

𝜕𝑝
2

)

(𝑄
∗
,𝑝
∗
)

. (23)

Therefore

|𝐻| = [2(𝑍
3
(𝑝) +

𝑍
4
(𝑝)

𝑄
3

)

× (

𝑑
2

𝑍
1
(𝑝)

𝑑𝑝
2

+ 𝑄

𝑑
2

𝑍
2
(𝑝)

𝑑𝑝
2

+

1

𝑄

𝑑
2

𝑍
4
(𝑝)

𝑑𝑝
2

)

−(

𝑑𝑍
2
(𝑝)

𝑑𝑝

−

1

𝑄
2

𝑑𝑍
4
(𝑝)

𝑑𝑝

)

2

]

(𝑄
∗
,𝑝
∗
)

.

(24)

Now, the matrix 𝐻 will be negative definite if
𝜕
2

𝐸𝜋(𝑄, 𝑝)/𝜕𝑄
2

< 0, 𝜕2𝐸𝜋(𝑄, 𝑝)/𝜕𝑝
2

< 0, and |𝐻| > 0 at
(𝑄
∗

, 𝑝
∗

). From Proposition 2, we have 𝜕
2

𝐸𝜋(𝑄, 𝑝)/𝜕𝑄
2

< 0.
The expression 𝜕

2

𝐸𝜋(𝑄, 𝑝)/𝜕𝑝
2 will be negative when |𝑑

2

𝑍
1

(𝑝)/𝑑𝑝
2

| < |𝑄(𝑑
2

𝑍
2
(𝑝)/𝑑𝑝

2

) + (1/𝑄)(𝑑
2

𝑍
3
(𝑝)/𝑑𝑝

2

)| (see
(20)). Now, the determinant value of the matrix 𝐻 will
be positive if 𝜕

2

𝐸𝜋(𝑄, 𝑝)/𝜕𝑄
2

< 0, 𝜕
2

𝐸𝜋(𝑄, 𝑝)/𝜕𝑝
2

< 0,
and 2(𝑍

3
(𝑝) + 𝑍

4
(𝑝)/𝑄

3

)(𝑑
2

𝑍
1
(𝑝)/𝑑𝑝

2

+ 𝑄(𝑑
2

𝑍
2
(𝑝)/𝑑𝑝

2

)

+(1/𝑄)(𝑑
2

𝑍
4
(𝑝)/𝑑𝑝

2

))>(𝑑𝑍
2
(𝑝)/𝑑𝑝−(1/𝑄

2

)(𝑑𝑍
4
(𝑝)/𝑑𝑝))

2.
Hence the proof.

4. Numerical Example

Here, we illustrate our model numerically to gain the insight
behavior of the model. We consider the demand function
𝐷(𝑝) as 𝐷(𝑝) = 𝐴 − 𝐵𝑝

2; that is, the demand rate decreases
quadratically with respect to the increasing price, where the
parameters of demand function are assumed to satisfy 𝐴 >>

𝐵, as demand rate can never be negative; that is, selling price
will never be greater than√𝐴/𝐵; otherwise negative demand
will appear.

We consider the values of the parameters in appropriate
units as follows: ℎ

𝑠
= $1.5 per unit per unit time, ℎ

𝑚
= $3 per

unit per unit time, ℎ󸀠
𝑚

= $2.5 per unit per unit time, ℎ󸀠󸀠
𝑚

= $2
per unit per unit time, 𝑏

𝑐
= $5per unit per unit time,𝛼 = 0.05,

𝛽 = 0.2, 𝜇 = 10, 𝐴 = 1000, 𝐵 = 0.12, 𝑆 = 100 unit, 𝜃 = 0.2,
𝜆 = 0.75, 𝑙

𝑐
= $2 per unit per unit time, 𝑝󸀠 = 𝑝/3, 𝑤

𝑠
= $40

per unit, 𝐿 = 4000 𝑤
󸀠

𝑠
= $15 per unit, 𝐶

𝑠
= $25 per unit,

𝑆
𝑟
= 10000, 𝑆

𝑐
= $0.05 per unit, and 𝐴

𝑠
= $400.

Then, the optimal lot-size is 𝑄
∗

= 1373.77 unit,
optimal selling price is 𝑝

∗

= $85.63, and optimal per unit
expected integrated profit is 𝐸𝜋(𝑄

∗

, 𝑝
∗

) = $36.45. We also
have supplier individual per unit expected average profit
𝐸𝜋
𝑠
(𝑄
∗

, 𝑝
∗

) = $12.95, manufacturer individual per unit
expected average profit 𝐸𝜋

𝑚
(𝑄
∗

, 𝑝
∗

) = $23.50, optimal
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production run-time 𝑡
∗

𝑝
= 1.09 unit, optimal cycle time 𝑇

∗

=

9.26, optimal time length of delivering raw material by the
supplier 𝑡

∗

1
= 1.08 unit, optimal time length of backlogging

during production run 𝑡
∗

𝑟
= 0.20 unit, optimal time required

for selling the items which are stored during production run
(𝑡
∗

𝑠
−𝑡
∗

𝑝
) = 6.63 unit, and optimal time cycle of shortageswhen

production is stopped (𝑇
∗

− 𝑡
∗

𝑠
) = 1.55 unit.

The above results are optimal as 𝜕
2

𝐸𝜋(𝑄
∗

, 𝑝
∗

)/𝜕𝑝
2

=

−0.31 ≤ 0, 𝜕2𝐸𝜋(𝑄
∗

, 𝑝
∗

)/𝜕𝑄
2

= −7.37 × 10
−6

≤ 0, and
((𝜕
2

𝐸𝜋(𝑄
∗

, 𝑝
∗

)/𝜕𝑄
2

)(𝜕
2

𝐸𝜋(𝑄
∗

, 𝑝
∗

)/𝜕𝑝
2

) − (𝜕
2

𝐸𝜋(𝑄
∗

, 𝑝
∗

)/

𝜕𝑄𝜕𝑝) − (𝜕
2

𝐸𝜋(𝑄
∗

, 𝑝
∗

)/𝜕𝑝𝜕𝑄)) = 1.47 × 10
−6

≥ 0 at the
value of 𝑄

∗

= 1373.77 unit and 𝑝
∗

= $85.63. It is clear
from Figure 2 that the objective function 𝐸𝜋 is concave and
unimodal function.

5. Sensitivity Analysis

From Table 1, we observe the sensitivity of the parameters
which help the decision makers to take appropriate decisions
on their marketing strategy. The following features and
managerial insights are observed.

(i) With the increasing value of the demand function
parameter 𝐴 (Figure 3), the optimal lot-size, optimal
selling price, optimal per unit expected integrated
profit, and optimal per unit expected profit of the sup-
plier and manufacturer increase but the production
run-time (𝑡

𝑝
) and cycle time (𝑇) decrease.

(ii) The optimal ordering size and production run-time
(𝑡
𝑝
) increase but optimal selling price per unit

expected integrated profit and per unit expected profit
of the supplier and manufacturer decreases with the
increasing value of demand function parameter 𝐵

(Figure 4). The cycle time 𝑇 also decreases with
higher value of 𝐵 for both cases.

(iii) When the value of the backlogged level 𝑆 (Figure 5)
is increased, the optimal ordering size and pro-
duction run-time (𝑡

𝑝
) decrease but optimal selling

price increases. The cycle time (𝑇), the optimal per
unit expected integrated profit, and optimal per unit
expected profit of the supplier and manufacturer
increase with the higher value of 𝑆.

(iv) The optimal ordering size, the optimal selling price,
𝑡
𝑝
, 𝑇, optimal per unit expected integrated profit, and

optimal per unit expected profit of the supplier and
manufacturer decrease with the higher value of per
unit per unit time holding cost (ℎ

𝑚
, Figure 6) of the

good products of manufacturer.
(v) When the parameter 𝜆 (Figure 7) is increased, the

optimal ordering size, optimal production run-time
(𝑡
𝑝
), and optimal cycle time (𝑇) decrease. But, optimal

selling price, optimal per unit expected integrated
profit, and optimal per unit expected profit of the
supplier and manufacturer increase with the higher
value of 𝜆.

(vi) With the increasing value of parameter 𝛽 (Figure 8),
the optimal lot-size, optimal selling price, optimal
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Figure 2: Expected per unit integrated profit versus lot-size and
price.
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Figure 3: Profit versus 𝐴.

cycle time (𝑇), and optimal per unit expected profit
of the supplier increase but optimal production run-
time (𝑡

𝑝
), optimal per unit expected integrated profit,

and optimal per unit expected profit of the manufac-
turer decrease.

6. Conclusion

In markets, a manufacturer plays important and critical role
for any business organization. Controlling and adjusting
manufacturing rates according to the demand in the market
are big challenges to the manufacturers because they face
the constraints of labor, machines, power, technology, raw
materials, environment, and so forth. Another important
factors are adjusting proper delivery time of the products to
the customers and tying up the customers during shortages of
the products. Keeping in mind the above factors, the authors
formulate and analyze a joint pricing and ordering policy
for two-echelon production inventory model. In the model,
after screening, supplier delivers good raw material to the
manufacturer for production and sells the rest of materials
to the outside. The production rate of the manufacturer
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Table 1: Sensitivity Analysis of Numerical Example.

Parameter values Optimal Solutions
𝑄 𝑝 𝑡

𝑝
𝑇 𝐸𝜋

𝑠
𝐸𝜋
𝑚

𝐸𝜋

𝐴

800 1313.53 75.93 1.30 9.75 12.83 15.02 27.85
900 1345.23 80.91 1.19 9.49 12.90 19.38 32.27
1100 1399.77 90.13 1.01 9.07 12.99 27.42 40.41
1200 1423.67 94.42 0.94 8.89 13.03 31.17 44.19

𝐵

0.10 1328.42 94.21 1.05 9.58 12.95 30.41 43.36
0.11 1351.96 89.63 1.07 9.41 12.95 26.71 39.67
0.13 1394.12 82.11 1.11 9.13 12.94 20.67 33.61
0.14 1413.20 78.97 1.12 9.01 12.94 18.15 31.09

𝑆

100 1381.15 85.18 1.09 8.64 12.94 23.10 36.04
125 1378.07 85.40 1.09 8.94 12.95 23.29 36.24
175 1368.24 85.88 1.08 9.61 12.95 23.73 36.68
200 1361.45 86.15 1.08 9.99 12.95 23.99 36.94

ℎ
𝑚

1.0 1673.39 86.71 1.33 13.80 12.89 26.24 39.12
1.5 1493.60 86.09 1.18 10.92 12.93 24.69 37.62
2.5 1285.55 85.25 1.02 8.16 12.96 22.52 35.48
3.0 1216.61 84.94 0.97 7.36 12.97 21.69 34.66

𝜆

0.50 1458.71 85.40 1.16 10.29 12.93 22.89 35.82
0.65 1399.93 85.56 1.11 9.59 12.94 23.30 36.24
0.80 1363.19 85.66 1.08 9.12 12.95 23.59 36.53
0.95 1338.38 85.72 1.06 8.79 12.95 23.80 36.75

𝛽

0.10 1289.67 85.45 1.12 9.19 12.92 26.71 39.63
0.15 1332.11 85.54 1.10 9.23 12.93 25.04 37.97
0.25 1414.71 85.72 1.08 9.30 12.96 22.09 35.05
0.30 1454.94 85.81 1.06 9.33 12.97 20.79 33.76
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Figure 4: Profit versus 𝐵.
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Figure 5: Profit versus 𝑆.
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Figure 7: Profit versus 𝜆.

is not fixed, a portion of the production rate is varying
randomly. The production process of the manufacturer is
not perfect, it produces good as well as defective products.
After completion of the production, manufacturer sells them
outside themarket in a lot.We develop themodel considering
that the inventory cycle of the manufacturer starts and ends
with shortages where shortages are partially backlogged.
A mixture of the LIFO and FIFO dispatching policies are
applied to fill up the backlogged demand. An integrated
two-echelon supply chain model over price sensitive market
demand is analyzed with respect to the ordering lot-size
of raw material and selling price of the manufacturer such
that the expected per unit profit of the integrated model is
maximum.We also study themodel through some numerical
examples and discuss the sensitivity of the main parameters.
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Figure 8: Profit versus 𝛽.

The major contribution of the model is to study a sup-
plier-manufacturer imperfect production inventory model
with varying production ratewhere themarket demand of the
products is considered as selling price sensitive. The mixture
of LIFO and FIFO dispatching policies are considered to fill
up backlogged demand.

In future, the present model can be extended considering
stochastic types of competitive market demand. The present
model could also be extended combining financial strategies
such as quantity discount, cash discount, and others into the
model. We may also introduce some restriction like storage,
capital, and so forth to our model.
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