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The efficiency and accuracy of common time and frequency domainmethods that are used to simulate the response of a rotor system
with malfunctions are compared and analyzed. The Newmark method and the incremental harmonic balance method are selected
as typical representatives of time and frequency domain methods, respectively. To improve the simulation efficiency, the fixed
interface component mode synthesis approach is combined with the Newmark method and the receptance approach is combined
with the incremental harmonic balance method. Numerical simulations are performed for rotor systems with single and double
frequency excitations. The inherent characteristic that determines the efficiency of the two methods is analyzed. The results of the
analysis indicated that frequency domain methods are suitable single and double frequency excitation rotor systems, whereas time
domain methods are more suitable for multifrequency excitation rotor systems.

1. Introduction

Numerical simulation plays an important role in the study
of rotor systems with malfunctions. With complex structures
of the modern rotor systems (e.g., multidisc or parallel
shafts) and the inherent strong nonlinear characteristics of
malfunctions [1] (e.g., the self-excitation property of oil whirl
and oil whip, the parametric vibration characteristics of the
crack rotor, and the nonlinear stiffness of rotor to stator
rub), few analytical solutions work well in analyzing these
strongly nonlinear systems with large degree of freedom
(DOF).Therefore, numerical simulationmay be the only way
to predict the response of these systems accurately.

The numerical simulation methods commonly used
in rotor dynamics can be divided into two types: time
domain methods and frequency domain methods. The time
domain methods mainly include the Runge-Kutta method
[2], Newmark-𝛽 method [3], and the shooting method [4].
The frequency domainmethodsmainly include the harmonic
balance (HB) method [5], describing function (DF) method
[6], incremental harmonic balance (IHB) method [7], and so
forth.

When analyzing large-scale rotor systems with complex
structures, both the time domain and the frequency domain

methods will encounter the challenge of solving a large
system of equationswith numerous interdependent variables.
Therefore, a dimension reduction approachmust be adopted.
There are two kinds of dimension reduction approaches that
arewidely used: the dynamical substructure approach and the
receptance-based approach. The former is often combined
with time domain methods and the latter is often combined
with frequency domain methods.The fixed interface compo-
nent mode synthesis approach [8] (CMS) is the most widely
used dynamic substructure approach, in which the structure
is divided into the linear part and the nonlinear part. Modal
truncation is applied to the linear portion and only the lower-
order modes are retained, which reduces the dimension of
the former structure. The frequency domain methods often
achieve dimension reduction using linear receptance data [9,
10], in which the vibrations of the linear parts are substituted
by those of the nonlinear parts. The dimension of the former
system then reduces to equal the number of nonlinear DOFs.

Both the types ofmethods have advantages and disadvan-
tages. Frequency domainmethods are highly efficient because
they can skip the transient response and obtain the steady
state response directly. However, thesemethods can only seek
periodic and quasiperiodic responses. They also generally
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need prior information on the behavior of the system, such
as which harmonic terms in the responses are dominant [11].
Time integration methods are capable of seeking periodic,
aperiodic, and quasiperiodic solutions as well as transient
responses.However, they have low efficiencywhen solving for
steady state responses since the transient responses must be
solved first.

Modern rotor systems have various forms and excitation
conditions. Therefore, selecting an appropriate numerical
method with good precision and high efficiency is very
important when analyzing a rotor system with fault. Few
studies have compared the efficiency and accuracy of the time
and frequency domain methods or discussed the application
scope of these methods when applied to malfunctioning
rotor systems. In this study, the two types of methods are
compared and analyzed. Typical time domain and frequency
domain methods are applied and compared under different
conditions of excitation. The inherent characteristic that
determines the efficiency of the two methods is analyzed.
The scopes of application of the two kinds of methods are
discussed.

2. Typical Time and Frequency
Domain Methods

2.1. The Newmark-𝛽 Method and the Fixed Interface Compo-
nent Mode Synthesis Approach. TheNewmark-𝛽method is a
commonly used time integration method with good conver-
gence and computational stability.Therefore it is chosen here
to represent time domain methods.

The equation of motion of a malfunctioning rotor system
can be written as

Mẍ +Dẋ + Kx + f
𝑛
(x, ẋ) = F (𝑡) , (1)

where M, D, and K are the mass, damping (including linear
viscous damping and gyroscopic moment), and stiffness
matrices, respectively; x is the displacement vector; F(𝑡) is
the excitation vector caused by the imbalance; f

𝑛
(x, ẋ) is the

nonlinear force vector, which is a function of x and ẋ; the dots
above x in (1) denote derivatives with respect to time 𝑡.

Letting N(x, ẋ) = Dẋ + Kx + f
𝑛
(x, ẋ), (1) can be changed

to

Mẍ + N (x, ẋ) = F (𝑡) . (2)

Based on known values of x
𝑛
, ẋ
𝑛
, ẍ
𝑛
at time 𝑡

𝑛
, the

approximate values ẍ
𝑛+1

and ẋ
𝑛+1

are [12]

ẋ
𝑛+1
= 𝑎
1
(x
𝑛+1
− x
𝑛
) − 𝑎
4
ẋ
𝑛
− 𝑎
5
ẍ
𝑛
,

ẍ
𝑛+1
= 𝑎
0
(x
𝑛+1
− x
𝑛
) − 𝑎
2
ẋ
𝑛
− 𝑎
3
ẍ
𝑛
,

(3)

where 𝑎
0
= 1/(𝛽Δ𝑡2), 𝑎

1
= 𝛾/(𝛽Δ𝑡), 𝑎

2
= 1/(𝛽Δ𝑡), 𝑎

3
=

1/(2𝛽) − 1, 𝑎
4
= 𝛾/𝛽 − 1, and 𝑎

5
= (Δ𝑡/2)(𝛾/𝛽 − 2).

Let

̃̇x
𝑛+1
= −𝑎
1
x
𝑛
− 𝑎
4
ẋ
𝑛
− 𝑎
5
ẍ
𝑛
,

̃̈x
𝑛+1
= −𝑎
0
x
𝑛
− 𝑎
2
ẋ
𝑛
− 𝑎
3
ẍ
𝑛
.

(4)

Equation (3) can then be rewritten as

ẋ
𝑛+1
= ̃̇x
𝑛+1
+ 𝑎
1
x
𝑛+1
,

ẍ
𝑛+1
= ̃̈x
𝑛+1
+ 𝑎
0
x
𝑛+1
.

(5)

Assuming that x𝑖+1
𝑛+1

= x𝑖
𝑛+1

+ Δx𝑖
𝑛+1

, where Δx𝑖
𝑛+1

is the
increment, the above equation is given by

ẋ𝑖+1
𝑛+1
= ẋ𝑖
𝑛+1
+ 𝑎
1
Δx𝑖
𝑛+1
,

ẍ𝑖+1
𝑛+1
= ẍ𝑖
𝑛+1
+ 𝑎
0
Δx𝑖
𝑛+1
.

(6)

Expanding (2) via a Taylor series around x𝑖
𝑛+1

yields

Δx𝑖
𝑛+1
(𝑎
0
M + 𝑎

1
C (ẋ𝑖
𝑛+1
) + K (x𝑖

𝑛+1
))

= F
𝑛+1
(𝑡) −Mẍ𝑖

𝑛+1
− N (ẋ𝑖

𝑛+1
, x𝑖
𝑛+1
) .

(7)

With J
𝑛+1
= 𝑎
0
M+𝑎
1
C(ẋ𝑖
𝑛+1
)+K(x𝑖

𝑛+1
), (7) can be changed

to

J
𝑛+1
Δx𝑖
𝑛+1
= F
𝑛+1
(𝑡) −Mẍ𝑖

𝑛+1
− N (ẋ𝑖

𝑛+1
, x𝑖
𝑛+1
) , (8)

where J
𝑛+1

is the instantaneous stiffness matrix. Δx𝑖
𝑛+1

can
be obtained using (8) and x𝑖+1

𝑛+1
= x𝑖
𝑛+1
+ Δx𝑖
𝑛+1

, x
𝑛+1

can be
obtained when convergence criteria are satisfied.

There are four DOFs in one node and if the rotor system
is made up of 𝑁 nodes, there are a total of 4𝑁 DOFs in
the system. The dimension of the instantaneous stiffness
matrix J

𝑛+1
is 4𝑁 × 4𝑁. As 𝑁 increases, the calculation

speed decreases rapidly.The fixed interface component mode
synthesis approach can be used to reduce the number of
dimensions of the system and thus the simulation efficiency
can be increased.

The DOFs of the rotor system are separated into two
distinct groups. The linear group x

1
contains the DOFs that

are not related to the nonlinear forces. The nonlinear group
x
2
contains the DOFs that are related to the nonlinear forces.

Equation (2) is rearranged into the following form:

[
M
𝑖𝑖

M
𝑖𝑗

M
𝑗𝑖

M
𝑗𝑗

]{
ü
𝑖

ü
𝑗

} + [
C
𝑖𝑖

C
𝑖𝑗

C
𝑗𝑖

C
𝑗𝑗

]{
u̇
𝑖

u̇
𝑗

} + [
K
𝑖𝑖

K
𝑖𝑗

K
𝑗𝑖

K
𝑗𝑗

]{
u
𝑖

u
𝑗

}

= {
F
𝑖

F
𝑗

} + {
0
F
𝑏

} .

(9)

The nonlinear DOFs are fixed and the modes of the
system comprised of the remaining DOFs are calculated.The
modes that contribute most to the responses of the former
rotor system are chosen to construct the fixed interface
normal mode set:

𝜓
𝑚
= [𝜓
𝑙
0]
𝑇

. (10)

Assuming unit displacement in each nonlinear DOF
and setting the movement of the linear DOFs to zero, the
constrained mode of the nonlinear DOFs can be obtained:

X
𝑖
= −K−1
𝑖𝑖
K
𝑖𝑗
X
𝑗
. (11)
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The constrained mode set can then be constructed from
all the constrained modes:

𝜓
𝑐
= [
−K−1
𝑖𝑖
K
𝑖𝑗

I ] . (12)

The modal matrix of the dimension-reduced system can
then be obtained by combining the normal mode set and the
constrained mode set:

𝜓 = [𝜓
𝑚
𝜓
𝑐
] . (13)

Using the modal matrix, (9) can be rewritten as:

M̃ü + D̃u̇ + K̃u = F̃ (𝑡) + { 0F
𝑏

} , (14)

where M̃ = 𝜓𝑇 [
M𝑖𝑖 M𝑖𝑗
M𝑗𝑖 M𝑗𝑗 ] 𝜓, D̃ = 𝜓𝑇 [

D𝑖𝑖 D𝑖𝑗
D𝑗𝑖 D𝑗𝑗 ] 𝜓, K̃ =

𝜓𝑇 [
K𝑖𝑖 K𝑖𝑗
K𝑗𝑖 K𝑗𝑗 ] 𝜓, and F̃ = 𝜓𝑇 {F𝑖F

𝑗

}.

The response u can be obtained using Newmark method,
and the response x can then be obtained by x = 𝜓u.

In the derivation process above, the dimension reduction
mainly depends on the reduction of the normal modes.
However, this may result in a loss of accuracy.

2.2. Incremental Harmonic Balance Method and Dimension
Reduction Using Receptance Data. In the three commonly
used frequency domain simulation methods (HB, DF, and
IHB), the IHB method is equivalent to the HB method
plus the Newton-Raphson method [13]. The IHB method
can handle strong nonlinearities and is therefore chosen to
represent the frequency domain methods. Here, the mul-
tidimensional IHB is introduced because there are many
multifrequency excited systems in engineering, such as the
dual-rotor system in aeroengines. The detailed information
of the single frequency IHB method can be seen in [14, 15].

The equation of motion of a multifrequency excited rotor
system is expressed as

Mẍ + Cẋ + Kx + f
𝑛
(x, ẋ) =

𝑟

∑
𝑖=1

(F
𝑐𝑖
cos𝜔
𝑖
𝑡 + F
𝑠𝑖
sin𝜔
𝑖
𝑡) ,

(15)

where 𝜔
𝑖
are the exciting frequencies and F

𝑐𝑖
and F

𝑠𝑖
are the

amplitudes of the exciting forces corresponding to 𝜔
𝑖
.

When the rotor system is in steady state, the response x
of the rotor system can be expanded to the form of a multiple
Fourier series:

𝑥
𝑘
= 𝑎
0𝑘
+
𝑅1

∑
𝑙1=−𝑅1

⋅ ⋅ ⋅
𝑅𝑟

∑
𝑙𝑟=−𝑅𝑟

(𝑎
𝑙1 ⋅⋅⋅𝑙𝑟𝑘

cos(
𝑟

∑
𝑖=1

𝑙
𝑖
𝜔
𝑖
𝑡)

+ 𝑏
𝑙1 ⋅⋅⋅𝑙𝑟𝑘

sin(
𝑟

∑
𝑖=1

𝑙
𝑖
𝜔
𝑖
𝑡)) .

(16)

Assuming𝜔 = [𝜔
1
, . . . , 𝜔

𝑟
]𝑇, l
𝑖
= [𝑙
1
, . . . , 𝑙
𝑟
], and ]

𝑖
= l
𝑖
⋅𝜔,

(10) can be simplified to

𝑥
𝑘
= 𝑎
0𝑘
+

𝑝

∑
𝑖=1

(𝑐
𝑖𝑘
cos ]
𝑖
𝑡 + 𝑑
𝑖𝑘
sin ]
𝑖
𝑡) = C

𝑠
A
𝑘
, (17)

where C
𝑠
= [1 cos ]

1
𝑡 sin ]

1
𝑡 ⋅ ⋅ ⋅ cos ]

𝑝
𝑡 sin ]

𝑝
𝑡] and

A
𝑘
= [𝑎
0𝑘
𝑐
1𝑘
𝑑
1𝑘
⋅ ⋅ ⋅ 𝑐
𝑝𝑘
𝑑
𝑝𝑘
]
𝑇.

Let S = diag [C
𝑠
C
𝑠
⋅ ⋅ ⋅ C

𝑠
] and A =

[A𝑇
1

A𝑇
2
⋅ ⋅ ⋅ A𝑇

𝑁
]
𝑇

. Therefore, x = SA. Assume that

x = x
0
+ 𝜀x. (18)

Substitute (18) into (15) and neglecting the high-order
harmonic components, one obtains

MS̈𝜀A + CṠ𝜀A + KS𝜀A + C
𝑛
Ṡ𝜀A + K

𝑛
S𝜀A

= − (MS̈A
0
+CṠA

0
+ KSA

0
)

+
𝑟

∑
𝑖=1

(F
𝑐𝑖
cos𝜔
𝑖
𝑡 +F
𝑠𝑖
sin𝜔
𝑖
𝑡) − f
𝑛
(x
0
) ,

(19)

where K
𝑛
= 𝜕f
𝑛
/𝜕x and C

𝑛
= 𝜕f
𝑛
/𝜕ẋ.

Let 𝜏 = [𝜔
1
𝑡, . . . , 𝜔

𝑟
𝑡]𝑇 = [𝜏

1
, . . . , 𝜏

𝑟
]𝑇 and applying the

Galerkin’s procedure, (19) yields

∫
2𝜋

0

⋅ ⋅ ⋅ ∫
2𝜋

0

S𝑇 (MS̈ + CṠ + KS + C
𝑛
Ṡ + K

𝑛
S) d𝜏
1
⋅ ⋅ ⋅ d𝜏
𝑟
⋅ 𝜀A

= −∫
2𝜋

0

⋅ ⋅ ⋅ ∫
2𝜋

0

S𝑇 (MS̈ + CṠ + KS) d𝜏
1
⋅ ⋅ ⋅ d𝜏
𝑟
⋅ A
0

+ ∫
2𝜋

0

⋅ ⋅ ⋅ ∫
2𝜋

0

S𝑇 [
𝑟

∑
𝑖=1

(F
𝑐𝑖
cos𝜔
𝑖
𝑡 + F
𝑠𝑖
sin𝜔
𝑖
𝑡)

− f
𝑛
(x
0
) ]
𝑟

d𝜏
1
⋅ ⋅ ⋅ d𝜏.

(20)

Equation (20) can be rewritten as

K
𝑚
ΔA = R

𝑚1
A
0
+ R
𝑚2
. (21)

A
0
can be obtained from (21) iteratively, following which

x can be obtained.
K
𝑚
is the instantaneous stiffness matrix and has dimen-

sions [𝑁× (2𝑟+ 1)] × [𝑁× (2𝑟+ 1)]. An increase in the DOFs
and the number of harmonic components will greatly reduce
the computational efficiency of the IHB method.

The receptance data is used in the dimension reduction
strategy in the IHB method. The DOFs of the rotor system
are separated into two distinct groups. The nonlinear group
x
1
contains the DOFs that are related to the nonlinear forces

and the linear group x
2
contains theDOFs that are not related

to the nonlinear forces. Rearrange (15) to

[
M
11

M
12

M
21

M
22

]{
ẍ
1

ẍ
2

} + [
C
11

C
12

C
21

C
22

]{
ẋ
1

ẋ
2

}

+ [
K
11

K
12

K
21

K
22

]{
x
1

x
2

} + {
f
𝑛1
(x
1
, ẋ
1
)

0
}

= {
F
11

F
21

} cos𝜔𝑡 + {F12F
22

} sin𝜔𝑡.

(22)
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When the nonlinear system is in steady state, the response
vector x is periodic and the nonlinear force vector f

𝑛
(x, ẋ) is

also periodic, which can be expressed as

f
𝑛
(x, ẋ) = SP, (23)

where P = [P𝑇
1

P𝑇
2
⋅ ⋅ ⋅ P𝑇
ℎ
]
𝑇

and P
𝑖

=

[𝑝
0𝑖
𝑝
1𝑖
𝑞
1𝑖
⋅ ⋅ ⋅ 𝑝
𝑟𝑖
𝑞
𝑟𝑖
]
𝑇.

Assume that C
𝑠𝑒
= [1 𝑒𝑗𝜔𝑡 𝑗𝑒−𝑗𝜔𝑡 ⋅ ⋅ ⋅ 𝑒𝑗𝑟𝜔𝑡 𝑗𝑒−𝑗𝑟𝜔𝑡],

S
𝑒
= diag [C

𝑠𝑒
C
𝑠𝑒
⋅ ⋅ ⋅ C

𝑠𝑒
], and x = S

𝑒
A. Therefore x =

Re(x) and x satisfies the following equation:

Mẍ + Cẋ + Kx + f
𝑛
= F
1
𝑒𝑗𝜔𝑡 + 𝑗F

2
𝑒−𝑗𝜔𝑡, (24)

where f
𝑛
= S
𝑒
P and f

𝑛
= Re(f

𝑛
).

Rewrite (24) as

[
M
11

M
12

M
21

M
22

]{
ẍ
1

ẍ
2

} + [
C
11

C
12

C
21

C
22

]{
ẋ
1

ẋ
2

}

+ [
K
11

K
12

K
21

K
22

]{
x
1

x
2

} + {
f
𝑛1

0
}

= {
F
11

F
21

} 𝑒𝑗𝜔𝑡 + 𝑗 {
F
12

F
22

} 𝑒𝑗𝜔𝑡.

(25)

Assume that x = ∑
𝑟

𝑘=0
x
𝐻𝑘
, where x

𝑘
=

[𝑥
𝐻1𝑘

𝑥
𝐻2𝑘

⋅ ⋅ ⋅ 𝑥
𝐻𝑁𝑘

] is the 𝑘th order harmonic term
of x, and 𝑥

𝐻𝑖𝑘
= 𝑝
𝑖𝑘
𝑒𝑗𝑘𝜔𝑡 + 𝑗𝑞

𝑖𝑘
𝑒−𝑗𝑘𝜔𝑡. From (25), the 𝑘th

harmonic term of x
𝐻2𝑘

can be written as

x
𝐻2𝑘

= − (K
22
−M
22
𝑘2𝜔2 + 𝑗C

22
𝑘𝜔)
−1

× (K
21
−M
21
𝑘2𝜔2 + 𝑗C

21
𝑘𝜔) x

𝐻1𝑘
.

(26)

Substituting (26) into the first equation of (25) yields

M
𝑒𝑘
ẍ
𝐻1𝑘

+ C
𝑒𝑘
ẋ
𝐻1𝑘

+ K
𝑒𝑘
x
𝐻1𝑘

+ f
𝐻𝑛1𝑘

= 0, (27)

where

M
𝑒𝑘
= M
11
−M
12
(K
22
−M
22
𝑘2𝜔2 + 𝑗C

22
𝑘𝜔)
−1

× (K
21
−M
21
𝑘2𝜔2 + 𝑗C

21
𝑘𝜔) ,

C
𝑒𝑘
= C
11
− C
12
(K
22
−M
22
𝑘2𝜔2 + 𝑗C

22
𝑘𝜔)
−1

× (K
21
−M
21
𝑘2𝜔2 + 𝑗C

21
𝑘𝜔) ,

K
𝑒𝑘
= K
11
− K
12
(K
22
−M
22
𝑘2𝜔2 + 𝑗C

22
𝑘𝜔)
−1

× (K
21
−M
21
𝑘2𝜔2 + 𝑗C

21
𝑘𝜔)

(28)

and f
𝐻𝑛1𝑘

is the 𝑘th harmonic term of f
𝑛1
.

For the fundamental harmonic term x
𝐻1
, assume that

x
𝐻1
= x
𝐿
+ Δx
𝐻1
, where x

𝐿
= (K − 𝜔2M + 𝑗𝜔C)−1F

1
𝑒𝑗𝜔𝑡 +

(K−𝜔2M−𝑗𝜔C)−1𝑗F
2
𝑒−𝑗𝜔𝑡 is the response of the no-rub rotor

system. Δx
𝐻1

then satisfies the following equation:

MΔẍ
𝐻1
+ CΔẋ

𝐻1
+ KΔx

𝐻1
+ f
𝐻𝑛1

= 0. (29)

From (29), we get

M
𝑒1
ẍ
𝐻11

+ C
𝑒1
ẋ
𝐻11

+ K
𝑒𝑘
x
𝐻11

+ f
𝐻𝑛11

= M
𝑒1
ẍ
𝐿1
+ C
𝑒1
ẋ
𝐿1
+ K
𝑒𝑘
x
𝐿1
.

(30)

From (27) and (30), we get
𝑟

∑
𝑘=0

M
𝑒𝑘
ẍ
𝐻1𝑘

+
𝑟

∑
𝑘=0

C
𝑒𝑘
ẋ
𝐻1𝑘

+
𝑟

∑
𝑘=0

K
𝑒𝑘
x
𝐻1𝑘

+ f
𝑛

= M
𝑒1
ẍ
1𝐿
+ C
𝑒1
ẋ
1𝐿
+ K
𝑒1
x
1𝐿
.

(31)

The dimensions of (31) are much less than that of the
original system and only related to the nonlinear forces. This
is because the responses of the linear part are represented by
the responses of nonlinear parts using the receptance data.
The real part of (31) can be written as

Re(
𝑟

∑
𝑘=0

M
𝑒𝑘
ẍ
𝐻1𝑘

+
𝑟

∑
𝑘=0

C
𝑒𝑘
ẋ
𝐻1𝑘

+
𝑟

∑
𝑘=0

K
𝑒𝑘
x
𝐻1𝑘
) + f
𝑛
(x, ẋ)

= Re (M
𝑒1
ẍ
1𝐿
+ C
𝑒1
ẋ
1𝐿
+ K
𝑒1
x
1𝐿
) .

(32)

Equation (32) can be solved using the IHB method. After
x
1
is obtained, x

2
can be recovered from x

1
using (26).

Since the characteristics of local nonlinearity are utilized,
the harmonic terms of all DOFs of the system can be
represented by the responses of theDOFswith nonlinearities.
Therefore, only the nonlinearDOFs are retained and the com-
putation speed increases greatly. In addition, the accuracy of
the results is maintained.

3. Numerical Example and Discussion

3.1. Single Frequency Excitation. A double-span rotor is
comprised of two rotors that are connected by a membrane
coupling as shown in Figure 1. For the finite element model,
the two rotors are divided into beam segments with dimen-
sions that are listed in Table 1. The coupling is represented by
a hollow shaft with an outer diameter of 160mm, an inner
diameter of 140mm, and a length of 500mm. The hollow
shaft is located between nodes 16 and 17.

Assuming that the elastic modulus of the steel material
is 2 × 1011 Pa, the supporting stiffness of the left and right
rotor is 1.5 × 108N/m and 1 × 109N/m, respectively. The
eccentricities of the left rotor are at nodes 8 and 9, values of
𝑚𝑟
1
= 5 × 10−3 kg ⋅ m, respectively. The eccentricities of

the right rotor are at nodes 24 and 25, values of 𝑚𝑟
2
= 4 ×

10−2 kg ⋅m, respectively. The rotor system is assumed to have
proportional damping with a mass damping factor of 𝛼

0
= 0

and a stiffness damping factor of 𝛽
0
= 0.001.

Assuming that the full angular rub occurs on node 24 and
that the clearance is 8×10−5m, the friction coefficient is 0.15.

Figure 2(a) shows a comparison of the time response
for a rotational speed of 450 rad/s and a contact stiffness of
1 × 109N/m. The results of the Newmark method without
dimension reduction are used as a benchmark. In Figure 2(a),
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Figure 1: The model of the two-span rotor system.
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Figure 2: The rotor system response under single frequency excitation.

Table 1: Shaft segment dimension of the two-span rotor system.

Segment 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
𝐿 (mm) 80 80 290 100 200 240 150 180 160 180 130 100 80 75 75
𝐷 (mm) 140 180 210 220 235 250 250 300 240 235 230 190 160 140 140
Segment 16 17 18 19 20 21 22 23 24 25 26 27 28 29
𝐿 (mm) 75 75 62 360 90 390 300 500 300 700 80 360 62 100
𝐷 (mm) 225 225 270 300 360 420 450 460 450 440 380 310 270 225

“I” represents the results of the Newmark method with the
CMS approach with 5 normal modes, “△” represents the
results of the Newmark method with the CMS approach
with 10 normal modes, and “×” represents the results of the
IHB method with receptance dimension reduction. The time
domain methods need a large number of normal modes to
attain accuracy targets, whereas frequency domain methods
attain very good accuracy more effectively.

The frequency domain methods combined with the arc-
length algorithm [16, 17] can obtain the unstable steady state
responses, as shown in Figure 2(b). The curves are the results
for contact stiffness values of 5 × 108N/m, 1 × 109N/m, and
2 × 109N/m, respectively. 𝑎𝑏 and 𝑐𝑏 are the unstable steady
state responses. Figure 2(c) shows the stable and unstable
time responses for a rotational speed of 550 rad/s.

A comparison of the efficiency of the two methods is
listed in Table 2. The computations were performed on a
microcomputer operating at 2.83GHz with 3.25GB of RAM.

Table 2: CPU time for the two methods under single frequency
excitation.

Method Time (s)
Newmark, CMS order 5 14.08
Newmark, CMS order 10 16.11
Newmark, CMS order 20 19.76
IHB, 𝑟 = 1 0.29

The calculation time of the frequency domain method is
significantly less than that of the time domain method.

3.2. Double Frequency Excitation. A model of the dual rotor
system of an aeroengine is shown in Figure 3 with the
dimensions of the two rotors listed in Tables 3 and 4.

Bearings I, II, and III are fixed with supports. Bearing
IV is an intershaft bearing that connects the outer and inner
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Figure 3: Model of the dual-rotor system.

Table 3: The dimensions of the inner rotor.

Segment 1 2 3 4 5 6 7
Node 1 2 2 3 3 4 4 5 5 6 6 7 7 8
Length (mm) 150 100 250 1000 250 100 150
Diameter (mm) 100 500 100 100 100 500 100

Table 4: The dimensions of the outer rotor.

Segment 1 2 3 4 5
Node 9 10 10 11 11 12 12 13 13 14
Length (mm) 200 100 400 100 200
External diameter (mm) 200 400 200 400 200
Internal diameter (mm) 150 150 150 150 150

rotors.The stiffness of the bearings is 7×106N/m each. Since
there are imbalances in both rotors, the system experiences
double frequency excitation. The eccentricity of the inner
rotor is 0.02 kg ⋅ m and mounted on node 4; the eccentricity
of the outer rotor is 0.05 kg ⋅m and mounted on node 11. The
rotor system is assumed to have proportional damping with a
mass damping factor of 𝛼

0
= 0 and a stiffness damping factor

of 𝛽
0
= 0.001. Assuming that the rubbing occurs at node 12

and that the clearance is 𝑒 = 2×10−4m, the rubbing is partial
rubbing with the rubbing angle of 0–90 degrees. The rotating
speed of the outer rotor is 1.4 times that of the inner rotor.
Assuming the rotating speed of the inner rotor is 𝜔

1
and that

of the outer rotor is 𝜔
2
, so 𝜔
2
/𝜔
1
= 1.4.

The IHBmethod is compared with the Newmarkmethod
to predict the steady state responses of the dual rotor system.
When the IHB method is applied, the harmonic terms are
chosen based on the method by Ushida and Chua [18] as the
following ranges are chosen for this study: −3 ≤ 𝑙

1
≤ 3 and

−3 ≤ 𝑙
2
≤ 3, 𝑙
1
𝜔
1
+𝑙
2
𝜔
2
≥ 0. After eliminating the frequencies

with negative values, there are all together 25 harmonic terms
in the responses.

In Figure 4, “–” represents the results obtained by the
IHBmethod for a rotating speed of 100 rad/s, “△” represents
the results obtained by the Newmark method for 5 normal
modes, and “×” are the results obtained by the Newmark
method for 10 normal modes. The results obtained by the
IHB method are almost equal to those obtained by the
Newmark with a large number of normal modes. However,
the Newmark method can only produce time domain results,
whereas the IHB method can produce both time domain

Table 5: CPU time for the two methods under double frequency
excitation.

Method Time (s)
Newmark, CMS order 5 6.49
Newmark, CMS order 10 8.85
Newmark, CMS order 20 10.48
IHB, 𝑟 = 25 34.7

and frequency results simultaneously. For example, when
the IHB method is used to obtain the responses in a given
speed range, the amplitude-frequency responses curve and
the three-dimensional spectrum diagram can be readily
obtained. When the rotating speed 𝜔

1
varies from 50 rad/s to

350 rad/s and𝜔
2
/𝜔
1
= 1.4, the amplitude-frequency response

curve of node 4 is shown in Figure 4(b). The corresponding
three-dimensional spectrum diagram is shown in Figure 4(c)
and contains information on each harmonic term.

The computational time for each method is listed in
Table 5.

3.3. Discussion. The simulation results above show that the
frequency domain methods are much more efficient than
the time domain methods in single frequency excitation
condition. This is because of the following.

(1) The frequency domainmethods can skip the transient
responses. They can obtain the steady state responses
directly, while the time domain methods must devote
computational time and resources to calculate the
transient responses, especially when the damping is
small.

(2) The size of the instantaneous stiffness matrix is very
small. When the number of the nonlinear DOFs and
harmonic terms is small, the size of the instantaneous
stiffness matrix in frequency domain methods is
also small. In contrast, the size of the instantaneous
stiffness matrix in time domain methods is mainly
determined by the number of normal modes.

The results also show that the efficiency of the IHB
method is very high for single frequency excitation but
descends quickly for double frequency excitation. This is
because of the following.

(1) Calculating themultiple integral for double frequency
excitation is time-consuming. The Galerkin integra-
tion procedure in the IHB method for the double
frequency excitation involves a multiple integral pro-
cess, which is very time-consuming. For example,
for single frequency excitation, one period is divided
into 100 subintervals in both the Newmark and
IHB method. Therefore, the two methods complete
the integration over the same time frame. However,
for double frequency excitation, 10,000 subintervals
must be created for the multiple integral of the IHB
method, which results inmuch higher time costs than
in the Newmark method.
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Figure 4: The responses under double frequency excitation.

(2) The dimensions of instantaneous stiffness matrix are
very high in double frequency excitation when using
the IHBmethod.Thedimensions of the instantaneous
stiffness matrix increase with the increase in the
number of harmonic terms, which is much higher for
double frequency excitation than for single frequency
excitation. For example, when −5 ≤ 𝑙

1
≤ 5 and

−5 ≤ 𝑙
2
≤ 5, 𝜔

2
/𝜔
1
= 1.4, the number of harmonic

terms is 𝑟 = 49 and the size of the instantaneous
stiffnessmatrix is 99𝑁×99𝑁.This ismuch larger than
the dimensions of 11𝑁 × 11𝑁 for single frequency
excitation. For the Newmarkmethod, the dimensions
of the instantaneous stiffnessmatrix remain the same.

If the number of DOFs of the rotor system is larger
with fewer nonlinear DOFs, and the damping is small, the
frequency domain methods can still have a high efficiency.
Otherwise, time domain methods are more efficient.

There are some rotor systems in practice, such as the
geared supercharger, that experience three ormore than three
frequencies excitations. If frequency domain methods are
applied, the multiple integral and the large instantaneous
stiffness matrix will require too much computational time to
determine the response.Therefore, time domainmethods are
most appropriate in those scenarios.

4. Conclusions

Time domain and frequency domain methods are used to
predict the responses of rotor system with malfunctions. The
efficiency and accuracy of the two types of methods are
compared based on the excitation type.Themain conclusions
are as follows.

(1) The dimension reduction approach in time domain
methods is a substructure approach. The high order
modes are truncated, whichmay affect the accuracy of
themethods. Frequency domainmethods that use the
receptance data for dimension reduction can retain
accuracy.

(2) The efficiency of the frequency domain methods is
determined by the number of excitation frequen-
cies and the number of harmonic terms. These two
factors determine the complexity of the numerical
integration process and the size of the instantaneous
stiffness matrix. Frequency domain methods are
highly efficient for single frequency excitations but
suffer a decline in efficiency for multiple frequency
excitations. The size of the instantaneous stiffness
matrix remains the same in time domain methods.
Therefore, the efficiency remains the same for both
single and multifrequency excitation.

(3) Frequency domain methods are recommended for
single frequency excitation. Time domain methods
are recommended in cases where there are three or
more frequency excitations. For double frequency
excitations, the choice of simulation method depends
on the specific conditions.
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