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Preface 

It is hard to find a field in theoretical physics which can compete with 
the theory of phase transitions and critical phenomena with respect to the 
number of written textbooks, reviews and monographs. In our opinion, 
writing a new book can be justified only by treating in a different manner 
new trends existing in the area. What do we have in mind in our case? 
There are just a few books on critical phenomena in systems with confined 
geometry: a collection of reprints [Cardy, ed. (1988)], a collection of reviews 
[Privman, ed. (1990)], and the monograph [Krech (1994)] on the Casimir 
effect. Indeed, in some modern texbooks on critical phenomena one can 
find special chapters devoted to this topic, see, e.g., [Cardy (1996)], [Domb 
(1996)], [Zinn-Justin (1996)], [Henkel (1999)]. Against the background of 
the numerous papers that appear annually, the gap in the monographic 
literature on the subject is obvious. The present book attempts to partially 
fill up this gap. We hope also to give our modest contribution in spreading 
the scaling ideas for fruitful interpretation and analysis of phase transitions 
in classical and quantum systems of finite volume. 

It is a well known fact that the volume is an irrelevant parameter for the 
local properties of a macroscopic system and, therefore, can be chosen arbi
trary large. The conventional statistical mechanical theory studies abstract 
systems, consisting of infinitely many particles in an infinite volume, due 
to the essential simplifications that occur in their description. Moreover, it 
becomes possible to describe phase transitions mathematically in terms of 
discontinuous or singular behavior of some thermodynamic functions. In 
constructing the above, so called thermodynamic limit [Van Hove (1949)], 
[Fisher (1964)], one has to keep constant values of some intensive quan-

Vll 
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VU1 Preface 

tities. For example, in the canonical Gibbs ensemble the increase in the 
number of particles N has to be accompanied by a proportional increase 
in the volume V, so that the density p = N/V be constant. Any intensive 
quantity ay of a finite system can be written in the form ay = a,oo + Say, 
where a ^ is the bulk value and Say is a finite-size correction which tends 
to zero as V —► oo. The finite-size correction Say contains a more detailed 
information about the shape of the system and the boundary conditions. 
Usually, the correction term becomes essential under rather special condi
tions, e.g., in the vicinity of a second-order phase transition. When the 
relevant thermodynamic parameters approach a critical point, the correla
tion length £ of an infinite system will grow unboundedly. Therefore, if we 
apply the theory of infinite (bulk) systems for the description of a large 
but finite system, very close to the critical point the bulk correlation length 
will become comparable with the smallest size of the system and deviations 
from the real critical behaviour will set in. 

In the beginning of the 70's, M. Fisher and his followers developed a 
comprehensive theory of finite-size scaling. As in the bulk case, this theory 
of critical behaviour of finite systems is based on renormalization group 
properties and offers a universal description depending, in addition, on the 
shape of the system and the type of boundary conditions. 

During the last two decades, the study of finite-size effects has under
gone an extensive development and gained still growing importance for the 
theory of phase transitions and critical phenomena. The factors stimulating 
the interest in these studies may be classified in three groups. 

1. On the one side, singularities in intensive thermodynamic functions 
may appear only in the limit of an infinitely large system. On the other 
side, all the experimental observations pertain to finite samples. As men
tioned above, finite-size effects necessarily become essential near a critical 
point. This fact, combined with the traditional difficulties in the description 
of strongly interacting many-particle systems, poses a serious challenge to 
the theory. The study of the universal features of finite-size effects, which 
arise due to large-scale collective behaviour (highly correlated classical or 
quantum fluctuations), is a subject of the modern theory of finite-size scal
ing. The latter theory reveals the intimate mechanism of how the critical 
singularities build up in the thermodynamic limit, as well as the role of 
boundary and shape effects. 

2. The interpretation of experimental results on finite-size effects in real 
systems is not a simple task for several reasons. First of all, they are de-
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Preface ix 

tectable only in samples of a rather small size (in all, or at least one spatial 
dimension), and are generally mixed up with strong effects due to gravi
ty, impurities, or other inhomogeneities. In practice, the divergence of the 
correlation length is limited also by the finite temperature resolution. Nev
ertheless, the high precision of some modern experimental techniques makes 
finite-size effects accessible. Correlation lengths of the order of hundreds 
of nanometers have been achieved. A number of successful measurements 
have been performed and substantial progress has been made in overcom
ing most of the standing problems. There are various types of experimental 
results, for which the theory of finite-size effects seems relevant. Such are 
the specific heat and superfluid density measurements near the superfluid 
("lambda") transition of liquid helium in small pores and thin films [Gas-
parini and Rhee (1992)], [Nissen et. al. (1993)]; or the direct measurements 
of magnetization in nanoscale ferrimagnetic particles [Tang et. al. (1991)], 
[Kulkarni et. al. (1994)]. In some binary fluids (2.6-lutidine and water) 
demixed between narrowly spaced plates [Scheiber et. al. (1979)], shift-
s in the critical temperature Tc as large as 100 mK have been observed. 
Magnetic insulators, such as transition metals difluorides, can be epitaxi-
ally grown in very thin films. The latter show both finite-size shift in the 
critical point and rounding of the thermodynamic singularities. It is an 
experimental observation that the specific heat as a function of tempera
ture shows one or two maxima, depending on the layer thickness [Lederman 
et. al. (1993a)], [Lederman et. al. (1993b)], in quantitative agreement with 
the theory of finite-size scaling. Highly precise measurements of magnetic 
phase transitions in some ultrathin Fe and Ni films exhibit thickness depen
dence of Tc and crossovers between different regimes which reveal important 
aspects of the universality hypothesis and finite-size scaling theory [Durr 
et. al. (1989)], [Li and Baberschke (1992)]. Some layered superconductors 
(including high-temperature superconductors) also exhibit a pronounced 
size effect in Tc which has been discussed in [Michielsen et. al. (1991)], 
[Schneider (1991)]. 

3. Along with the development of highly productive computer systems, 
the numerical methods of modelling took a prominent place between the 
laboratory experiment and theory in the study of phase transitions and 
critical phenomena. Since, due to technical limitations, one works with 
rather small systems consisting of, say, up to 106 particles, the finite-size 
effects in the numerical data are essential. It is the finite-size scaling theory 
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X Preface 

which is the most reliable tool for extrapolation to the thermodynamic limit 
of data obtained by Monte Carlo and Molecular Dynamics simulations, 
as well as by transfer-matrix calculations, or exact diagonalization of the 
Hamiltonian for small lattice systems. 

The aim of the present book is to familiarize the reader with the rich 
collection of ideas, methods and results relevant to the theory of critical 
phenomena in systems with confined geometry. At that the authors believe 
in the instructive role of the simple models approach towards the better 
understanding of complex physical systems. Thus, by following a tradition 
which exists from the very beginning of the theory of phase transition, we 
put the accent on the derivation of rigorous and exact results. We have 
confined ourselves to the investigation of few exactly solved models which 
allow one to derive analytical expressions for the physical quantities of 
interest, preferably at any space dimensionality. 

Here it is in place to emphasize that the thermodynamic limit leads to 
great simplifications in the analytical results. In the case of finite systems, 
the derivation of exact results (valid for any finite number of particles) is 
a much more complicated task. Hence, the number of models subject to 
rigorous finite-size analysis is extremely limited. For example, even in the 
case of ideal gases, see [Ziff et. al. (1977)], one has to avoid taking the usual 
limit (as V —¥ oo) 

where d is the space dimensionality, and the sum runs over the set of normal 
modes which depends on the shape of the system and the boundary condi
tions. Obviously, the starting expressions one usually has at hand for finite 
systems are very cumbersome. Moreover, one has to derive their asymptotic 
form in special regimes, when the values of the temperature and the rele
vant external fields tend to the critical point together with L —v oo, so that 
the ratio L/f remains of the order of unity. Such a finite-size scaling anal
ysis requires specific analytical techniques, the description of which takes 
a due place in the present book. Some of the calculations are performed 
rather circumstantially, so that the reader could master the mathematical 
tools, the details of which are usually lacking in the specialized papers on 
the subject. 

Of course, the selection of the material in a monograph depends on the 
taste and professional interests of its authors. The present case is not an 
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Preface X I 

exception. Attention is paid to some specific problems and mathematical 
tools characteristic of the case of long-range interactions with power-law 
decay. Another example is the probabilistic point of view on finite-size 
scaling which makes close connection with the concept of limit Gibbs states. 
Of special interest to the reader could be the investigation of systems in 
which the quantum fluctuations play an essential role together with the 
thermal ones. The extension of the finite-size scaling theory to such systems 
is based on the observation that the Gibbs weight exp(—(¥H), where 0 = 
(kT)-1 is the inverse temperature, and 7i is the Hamiltonian, is formally 
identical with the time evolution operator exp(itH/h) upon replacement of 
time t by the imaginary quantity ih0. Hence, the partition function of a 
quantum system looks like a classical partition function with an additional 
dimension, except that this extra dimension is of finite extent 0h in units of 
time. When the temperature goes to zero and the quantum effects become 
important, the size in this "imaginary time direction" tends to infinity. 
This observation provides an useful interpretation of quantum effects as 
finite-size effects. 

Confined critical systems, due to the presence of strong fluctuations, 
exhibit appearance of long-range forces between the walls - a phenomenon 
which is the direct analogue of the well-known Casimir effect in electromag-
netism. There are different model approaches for obtaining the universal 
scaling functions that govern the Casimir forces. In this book a detailed, 
pedagogical account is given of the exact results obtained in the spherical 
approximation for both classical and quantum systems. Finally, we present 
a survey of the theoretical results known for other models, make comments 
and give reference to experimental results. 

Unfortunately, many important topics are omitted due to the lack of 
space and expertize on the part of the authors. 

The exposition of the main issues is given in a self-contained form which 
presumes the reader's knowledge in the framework of standard courses on 
the theory of phase transitions and critical phenomena. The authors experi
ence in the preparation of one-semester courses for students at the Catholic 
University of Leuven (JGB) and the University of Wuppertal (DMD) is 
taken into account. 

The authors are greatly indebted to Professor Yu Lu for initiating the 
writing of this book and for his permenent encouragement. We are very 
greatful to Professors S. Dietrich, J. Rudnick, V. A. Zagrebnov, the Doctors 
H. Chamati, E. Korutcheva and M. Krech for the exchange of information, 
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xii Preface 

critical reading and commenting on parts of the text. Two of the authors 
(D.M.D. and N.S.T.) would like to thank the International Center for The
oretical Physics, Trieste, for the hospitality during their visits in 1998 and 
1999, when a part of this book was written. 

The partial support of the Bulgarian National Fund for Scientific Re
search, Projects F-608 and MM-603, is greatfully acknowledged. 
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