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Abstract. This paper presents the dynamic response of a delaminated composite beam under the action of a moving oscillating
mass. In this analysis the Poisson’s effect is considered for the first time. Moreover, the effects of rotary inertia and shear
deformation are incorporated. In our modeling linear springs are used between delaminated surfaces to simulate the dynamic
interaction between sub-beams. To solve the governing differential equations of motion using modal expansion series, eigen-
solution technique is used to obtain the natural frequencies and their corresponding mode shapes necessary for forced vibration
analysis. The obtained results for the free and forced vibrations of beams are verified against reported similar results in the
literatures. Moreover, the maximum dynamic response of such beam is compared with an intact beam. The effects of different
parameters such as the velocity of oscillating mass, different ply configuration and the delamination length, its depth and spanwise
location on the dynamic response of the beam are studied. In addition, the effects of delamination parameters on the oscillator
critical speed are investigated. Furthermore, different conditions under which the detachment of moving oscillator from the beam
will initiate are investigated.
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1. Introduction

Having the properties of high strength-stiffness, lightweight, fatigue resistance etc, advanced composite materials
are widely used in various structural designs like aircraft, helicopters, automobiles, marine and submarine vehicles
besides other engineering applications. However, composites are very sensitive to the damage induced during their
fabrication or service life. One of the commonly encountered types of defects or damages in the laminated composite
structures is delamination. It is known that a structure becomes more flexible and its dynamic characteristics will
change if any delamination is generated while the composite structure is in the service. Hence, the continuous
measurement of the dynamic response of a structure offers a method for detection of any sort of damage such as
delamination on the structure.

In the last three decades there has been growing interest in studying the free vibration of delaminated beams.
Wang et al. [1] have studied the free vibrations of an isotropic beam with a through-width delamination by using
four Euler–Bernoulli beams connected at the delamination boundaries. The coupling effect of the longitudinal and
flexural motions in the delaminated layers was considered in their formulations. It was found that for beams with
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a short delamination close to the midplane the results for the natural frequencies were close to the experimental
results. However, according to this study dramatic interpenetration of the delaminated sub-laminates was seen in
the case of off-midplane delaminations that is physically impossible. This is because the delaminated layers were
assumed to deform ‘freely’ without touching each other (known as free mode) and thus have different transverse
deformation. To avoid this kind of incompatibility, Mujumdar and Suryanarayan [2] proposed a model based on
the assumption that the delaminated layers are constrained to have identical transverse deformations. They called
this as the constrained mode in contrast with the free mode proposed by Wang et al. [1]. Similar constrained mode
approach was used by Tracy and Pardoen [3] on a simply supported composite beam, Hu and Hwu [4] on a sandwich
beam, and Shu and Fan [5] on a bimaterial beam.

Valoor and Chandrashekhara [6] extended a model for thick composites to include the effects of the transverse
shear deformation and the rotary inertia. In addition, the Poisson’s effect was included due to its significance in
the analysis of angle-ply laminated beams. They have used the ‘constrained mode’ model to represent the free
vibrational behavior of the delaminated beam i.e. they have assumed that the sub-laminates in the delamination
regions have the identical displacements and rotations. In their analysis, it was assumed that the delamination is at
the midplane and the in-plane displacement was ignored. To simulate the ‘open’ and ‘closed’ behavior between the
delaminated layers in the free vibrational analysis, Luo and Hanagud [7] presented an analytical model based on
the Timoshenko beam theory by using the piecewise-linear springs. In their work, the spring stiffness would then
be equal to zero (0) for the free mode and infinity (∞) for the constrained mode. Moreover, the effect of coupling
between the longitudinal and bending vibrations has been considered in their analysis because it was shown by Shen
and Grady [8] that this coupling has significant effect on the natural frequencies and mode shapes of the delaminated
beam. It should be mentioned that Luo and Hanagud have ignored the Poisson’s effect in their study. Shu and Della
have presented a simple analytical solution for the free vibration of composite beams with two non-overlapping [9]
and overlapping [10] delaminations using the free and constrained modes. Their formulations were based on the
classical beam theory to estimate the lower bound of the natural frequency if the free mode is considered and upper
bound of the natural frequency if the constrained mode is considered. Ostachowicz and Zak [11] have presented
a study on the damped vibration of a laminated cantilever beam with a single closing delamination using the finite
element method.

On the other hand, the vibration of a structure excited by a moving system has been the subject of numerous
investigations for more than a century [12] with reference to machining processes and behavior of railway tracks and
bridges. In this class in general, three types of problems are considered in the literatures:

i If the inertia of the subsystem is neglected, the problem reduces to that of vibration of the distributed system
subjected to a given external moving force and is called the moving force problem.

ii If one takes into account the inertia of the moving subsystem and assumes infinite coupling stiffness between
subsystem and the beam, the moving mass problem is obtained.

iii Whereas if the coupling stiffness is finite, we end up with the moving oscillator problem.

Clearly, the last problem is the most general of the three. The dynamic response of an intact beam due to a moving
system has received a good amount of attention in the literatures [12–28], whereas to the authors’ best knowledge,
dynamic analysis of the delaminated beam under the action of moving oscillator has been studied only in Ref. [29].

A presentation of aspects on car body design for mass transit vehicles and methods which had been evolved
for the analysis of non-linear flexible railway vehicles by use of normal modes has been presented by Persson
and Holgersson [13]. In the end of the paper, results from an experimental modal analysis have been shown.
Esmailzadeh and Ghorashi [14] analyzed the effects of shear deformation, rotary inertia and the load distribution
span on the vibration of the Timoshenko beam subjected to a traveling mass. Later on, the dynamic response of
an unsymmetric composite laminated orthotropic beam subjected to moving loads has been studied by Kadivar and
Mohebpour [15]. In this paper, one-dimensional finite element analysis based on the classical lamination and first
order shear deformation theories are considered. Moreover, different beam elements with 16, 20 and 24 degrees of
freedom are used. In addition, the dynamic response of the considered beam under the action of a moving load has
been compared to those of an isotropic simple beam. The formulation also has been applied to the static and free
vibration analysis.

Fryba [16] has presented the analytical solutions for the simple problems of simply supported beams with uniform
cross-section under moving load. Chen et al. [17] have investigated the effects of the boundary flexibility on the
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vibration of a continuum with a moving oscillator. In there, the flexibility in the boundaries was modeled by linear
and transverse springs. The dynamic response of an elastically supported infinite beam to an oscillatory mass with
constant velocity has been studied by Mackertich [18]. The shear deformation and rotary inertia has been considered
in this paper. The nonlinear dynamics of longitudinal ground vehicle traction have been investigated in detail by
Olson et al. [19]. Kargarnovin and Younesian [20] studied the response of an isotropic Timoshenko beam with
uniformcross-section and infinite length supported by a generalized Pasternak-type viscoelastic foundation subjected
to an arbitrary-distributed harmonic moving load. The governing equations of the motion were solved using complex
Fourier transformation in conjunction with the residue and convolution integral theorems. The dynamic response for
a Timoshenko or Bernoulli-Euler beam with various boundary conditions subjected to moving concentrated forces
have been analyzed by Lou et al. [21].

Lou [22] has presented some new finite-element formulae overcoming the shortcomings of the conventional
ones to calculate the sectional forces at any cross-section of a Bernoulli-Euler beam on continuously viscoelastic
foundation subjected to concentrated moving loads. The dynamic behavior of a laminated composite beam (LCB)
supported by a generalized Pasternak type viscoelastic foundation subjected to a moving two-degree-of-freedom
(DOFs) oscillator with a constant traveling velocity has been studied by Ahmadian et al. [23,24]. Semi-analytical
solution using the Ritz method has been considerd in their papers. The bending moment-the beam deflection at the
beam center and just below the oscillator position have been obtained at different oscillator’s velocity. Finally, the
corresponding velocity related to the maximum value of those parameters has been determined. Recently, Asphalt
trackbed deflection under moving dynamic load has been solved analytically [25]. The rail has been modeled as an
Euler beam. Tie and ballast have been modeled as a discrete supporting system. Asphalt trackbed has been modeled
as another Euler beam on Winkler foundation (sub-grade soil). Chen et al. [26] have investigated the dynamic
stiffness matrix of an infinite Timoshenko beam on viscoelastic foundation to a harmonic moving. A Timoshenko
beam on the Pasternak viscoelastic bed subjected to a moving load has been investigated by mode summations
modal analysis method [27]. Sapountzakis and Kampitsis [28] have developed a boundary element method for the
geometrically nonlinear response of shear deformable beams of simply or multiply connected constant cross-section,
traversed by moving loads, resting on tensionless nonlinear three-parameter viscoelastic foundation, undergoing
moderate large deflections under general boundary conditions. The beam is subjected to the combined action of
arbitrarily distributed or concentrated transverse moving loading as well as to axial loading.

At year 2011 in our own work [29], the dynamic analysis of a delaminated composite beam under the action
of moving oscillatory mass based on the classical beam theory has been investigated. The beam was analyzed as
four interconnected sub-beams using the delamination limits as their boundaries. The constrained mode has been
adopted in dynamic analysis of two overlayed neighboring sub-beams. The continuity and equilibrium conditions
have been imposed between the adjoining sub-beams along the beam’s length. The beam response variation due to
the delamination with respect to the intact beam has been investigated.

To the authors’ best knowledge; there is no even single investigation in the literatures on the dynamic response of
the delaminated composite Timoshenko beam due to a moving oscillator in which the first order shear deformation
theory is considered. Owing to the high ratio of the in-plane modulus to transverse shear modulus, transverse shear
deformation effects are pronounced in the composite laminates. Thus, the main contribution of the present work is to
analyze the dynamic behavior of the delaminated thick composite beam under the action of moving oscillator taking
into account the Poisson’s effect, transverse shear deformation and longitudinal-bending coupling. Moreover, it has
to be mentioned that the Poisson’s effect plays significant role when considering the analysis of angle-ply laminated
beams.

2. Mathematical formulation

2.1. Geometry

Consider a thick composite beam of length � and rectangular cross-section of b × h, having an embedded
delamination as shown in Fig. 1 of depth h2 located at a distance �1 from the left end which is taken as the origin of
the x−z coordinate system. Furthermore, it is assumed that the beam is under the action of an oscillator moving at a
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Fig. 1. Delaminated composite beam traversed by a moving oscillator.

Sub-beam 1
Sub-beam 2

Sub-beam 3
Sub-beam 4

Fig. 2. Representation of beam with delamination into four sub-beams.

constant velocity v along the axial direction of the beam entering from the left end. In order to analyze the dynamic
of such beam, Timoshenko beam theory is employed. In addition, ξ(t) denotes the location of the moving oscillator
at time t. The two parameters q(t) and k are, respectively the vertical displacements of the mass measured from its
equilibrium position and oscillator stiffness. When q = 0, the oscillator is at rest and is subjected to its own weight.
Moreover, it should be emphasized that the time interval of [0, �/v] will be considered in this analysis.

As it can be seen from Fig. 2, after delamination, the representative beam can be modeled as a combination of
four sub-beams connected at the delamination boundaries x = �1 and x = �1 + �d. In this way, we will have four
sub-beams of 1 to 4 with lengths and thicknesses of �i × hi (i = 1 to 4) where �2 = �3 = �d, �4 = � − �1 − �2,
h1 = h4 = h and h2 and h3 the thicknesses of sub-beams 2 and 3, respectively. Note that, the reaction force between
delaminated sub-beams 2 and 3 is a kind of distributed force modeled by finite number of linear springs [7].

2.2. Equations of motion

The governing differential equation for the longitudinal vibration of a delaminated Timoshenko ith sub-beams
represented in Fig. 1 is [7]:

Ai
∂2ui

∂x2
−mi

∂2ui

∂t2
= 0, (i = 1, 2, 3 and 4) (1)

Moreover, the motion equations related to the flexural and transverse vibrations of intact sub-beams 1 and 4 are [7]:

Si
∂

∂x

(
∂wi

∂x
− ψi

)
−mi

∂2wi

∂t2
= Fi(x, t)

Di
∂2ψi

∂x2
+ Si

(
∂wi

∂x
− ψi

)
− Ji

∂2ψi

∂t2
= 0

∣∣∣∣∣∣∣∣
(i=1and4)

(2)

Similarly for the delaminated sub-beams 2 and 3 are [7]:

Si
∂

∂x

(
∂wi

∂x
− ψi

)
−mi

∂2wi

∂t2
+ qi = Fi(x, t)

Di
∂2ψi

∂x2
+ Si

(
∂wi

∂x
− ψi

)
− Ji

∂2ψi

∂t2
= 0

∣∣∣∣∣∣∣∣
(i=2 and 3)

(3)

in whichF3(x, t) = 0. In these equations,ui andwi denote the longitudinal and flexural displacements, respectively;
ψi is the slope of the deflection curve caused by bending moment. Di and Ai (i = 1 to 4) are modified bending
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stiffness and modified extensional stiffness of either of sub-beams, respectively which are defined as following by
including the Poisson’s effect [6,30]:

Ai = A11 − A2
12

A22
+

(A12A26 −A16A22)
2

A22 (A2
26 −A22A66)

Di = D11 − D2
12

D22
+

(D12D26 −D16D22)
2

D22 (D2
26 −D22D66)

∣∣∣∣∣∣∣∣∣
(i=1,2,3 and 4)

in which Aij and Dij are given as [30]:

Aij = b

ni∑
k=1

Q
k

ij (zk − zk−1), Dij =
b

3

ni∑
k=1

Q
k

ij

(
z3

k − z3
k−1

)
,

Furthermore, Si, mi and Ji are the cross sectional shear stiffness, the mass per unit length and the cross-sectional
mass moment of inertia, respectively [30]:

Si = ksb

ni∑
k=1

Q
k

55 (zk − zk−1), mi = b

ni∑
k=1

ρk (zk − zk−1), Ji =
b

3

ni∑
k=1

ρk
(
z3

k − z3
k−1

)
(4)

where ρ is the mass density of the lamina, zk and zk−1 are the location of the kth lamina with respect to the neutral

axis of the ith sub-beam, ni is the number of plies of the beam, ks is the shear correction factor and Q
k

ij are the
transformed material constants [30]. The indicated distributed lateral forces in Eq. (3) i.e. qi(x, t), (i = 2, 3) are
defined as [7]:

q2(x, t) = kf [w3(x, t) − w2(x, t)]
(5)

q3(x, t) = kf [w2(x, t) − w3(x, t)]

in which kf is known as the spring constant. In addition Fi(x, t) in Eq. (3) is the applied external force which
varies depending on the oscillator position. For example F (x, t) at time interval of 0 � t � �1/v becomes
− [mg + k (w1(ξ, t) − q(t))] δ(x−vt). More specifically the equation of motion of the moving oscillator at different
position can easily be obtained as:

m q̈ + k q =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

kw1(ξ, t)δ(x − vt) t � �1
v

kw2(ξ, t)δ(x − vt)
�1
v
< t � �1 + �d

v

kw4(ξ, t)δ(x − vt)
�1 + �d
v

< t � �

v

(6)

where δ is the Dirac-delta function.
In this study in order to perform the dynamic analysis we prefer to use the modal expansion technique. To do this,

primarily the natural frequencies and mode shapes of the system out of free vibration analysis have to be obtained.
This procedure is dealt with in the next section.

2.3. Free vibration

In order to calculate natural frequencies and mode shapes, we set the forcing terms i.e., Fi(x, t) in Eqs (2) and (3)
to zero. Using Eq. (2), the uncoupled flexural equations of motion for the intact sub-beams 1 and 4 are as follows:

∂4wi

∂x4
−

(
m1

S1
+
J1

D1

)
∂4wi

∂x2 ∂t2
+
m1

D1

∂2wi

∂t2
+
J1m1

D1S1

∂4wi

∂t4
= 0, (i = 1 and 4) (7)

Similarly, by using Eq. (3), the coupled flexural equations of motion for the delaminated sub-beams of 2 and 3 are:
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∂4w2

∂x4
−

(
m2

S2
+
J2

D2

)
∂4w2

∂x2 ∂t2
+
m2

D2

∂2w2

∂t2
+
J2m2

D2S2

∂4w2

∂t4

=
k

D2

(w3 − w2) +
kJ2

D2S2

(
∂2w3

∂t2
− ∂2w2

∂t2

)
− k

S2

(
∂2w3

∂x2
− ∂2w2

∂x2

)
(8)

∂4w3

∂x4
−

(
m3

S3
+
J3

D3

)
∂4w3

∂x2 ∂t2
+
m3

D3

∂2w3

∂t2
+
J3m3

D3S3

∂4w3

∂t4

=
k

D3

(w2 − w3) +
kJ3

D3S3

(
∂2w2

∂t2
− ∂2w3

∂t2

)
− k

S3

(
∂2w2

∂x2
− ∂2w3

∂x2

)

In free vibrations analysis, one can assume [32]:

ui(x, t) = ui(x)ejωt and wi(x, t) = wi(x)ejωt (9)

Substituting Eq. (9) in Eqs (1), (7) and (8), one can obtain:

d2ui

dx2
+ γ2

i ui = 0, (i = 1, 2, 3 and 4) (10-a)

d4w1

dx4
+ 2b1

d2wi

dx2
+ c1wi = 0, (i = 1 and 4) (10-b)

d4w2

dx4
+ 2b2

d2w2

dx2
+ c2w2 = d2 (w3 − w2) + e2

(
d2w3

dx2
− d2w2

dx2

)
(10-c)

d4w3

dx4
+ 2b3

d2w3

dx2
+ c3w3 = d3 (w2 − w3) + e3

(
d2w2

dx2
− d2w3

dx2

)
(10-d)

in which:

γ2
i =

miω
2

Ai

∣∣∣∣
(i=1,2,3 and 4)

,

[
2bi =

(
mi

Si
+
Ji

Di

)
ω2, ci =

(
Jiω

2

Si
− 1

)
miω

2

Di

]∣∣∣∣
(i=1,2 and 3)[

di
k

Di

(
1 − Jiω

2

Si

)
, ei = − k

Si

]∣∣∣∣
(i=1 and 3)

At this stage it should be noted that for beams withmoderate to high slenderness ratio and low order of delamination
opening modes, only one work is reported in which the term ei in above relations has been dropped out because of
its smallness [7], nevertheless in this study we are going to consider it in our formulation independent of the value
of the slenderness ratio.

From Eqs (10-c) and (10-d), we can get the uncoupled differential equation for the sub-beams 2 and 3 as follows:

d8wi

dx8
+ �
a1
d6wi

dx6
+ �
a2
d4wi

dx4
+ �
a3
d2wi

dx2
+ �
a4wi = 0, (i = 2 and 3) (11)

where:
�
a1 = 2(b2 + b3) + e2 + e3,

�
a2 = c2 + d2 + c3 + d3 − e2 e3 + (2b2 + e2) (2b3 + e3)

�
a3 = (2b2 + e2) (c3 + d3) + (2b3 + e3) (c2 + d2) − e2d3 − e3d2,

�
a4 = (c2 + d2) (c3 + d3) − d2d3

For a cantilever beam (clamped at x = 0) and for a simply supported beam with movable boundary at the right
end, the boundary conditions are, u1|x=0 = 0, du4

dx

∣∣
x=�

= 0, and the longitudinal deformations for each sub-beams
out of Eq. (10-a) become:
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u1 = C1 sin (γ1x) ,

u2 = C2 sin (γ2x) + C3 cos (γ2x)
(12)

u3 = C4 sin (γ3x) + C5 cos (γ3x)

u4 = C6 cos [γ1 (�− x)]

On the basis of Eq. (10-b), one can get:

w1 = C7 sin (α1x) + C8 cos (α1x) + C9 sinh (β1x) + C10 cosh (β1x)
(13)

w4 = C11 sin (α1x) + C12 cos (α1x) + C13 sinh (β1x) + C14 cosh (β1x)

in which:

α2
1 = b1 +

√
b21 − c1, β2

1 = −b1 +
√
b21 − c1

Having on hand the general solution for w1 and w4, one can easily obtain following expressions for ψ1 and ψ4

using Eq. (2):

ψ1(x) = −C7ᾱ1 cos (α1x) + C8ᾱ1 sin (α1x) + C9β̄1 cosh (β1x) + C10β̄1 sinh (β1x)
(14)

ψ4(x) = −C11ᾱ1 cos (α1x) + C12ᾱ1 sin (α1x) + C13β̄1 cosh (β1x) + C14β̄1 sinh (β1x)

where:

ᾱ1 =

m1ω
2

S1
− α2

1

α1
, β̄1 =

m1ω
2

S1
+ β2

1

β1

In certain cases where the k/Eavg. is small, it can be proved that the roots of characteristic equation i.e. Eq. (11),
yields to four real and four pure imaginary roots [7]. Under such circumstances, if the roots of Eq. (11) are
±α2,±α3,±β2 and ± β3 then, the solutions for Eqs (10-c) and (10-d) become:

w2 = C15 sin (α2x) + C16 cos (α2x) + C17 sin (α3x) + C18 cos (α3x) +

C19 sinh (β2x) + C20 cosh (β2x) + C21 sinh (β3x) + C22 cosh (β3x)
(15)

w3 = C15α̂2 sin (α2x) + C16α̂2 cos (α2x) + C17α̂3 sin (α3x) + C18α̂3 cos (α3x) +

C19β̂2 sinh (β2x) + C20β̂2 cosh (β2x) + C21β̂3 sinh (β3x) + C22β̂3 cosh (β3x)

In which �
αi,

�

βi in above relations are some constant coefficients such as:[
�
αi =

c2 + d2 − (2b2 + e2)α2
i + α4

i

d2 − e2 α2
i

,
�

βi =
c2 + d2 + (2b2 + e2)β2

i + β4
i

d2 + e2 β2
i

]
(i=2,3)

(16)

Having on hand the general solutions for w2 and w3, one can easily get the general solutions for ψ2 and ψ3, using
Eq. (3). This yields to:

ψ2 = − C15ᾱ2 cos (α2x) + C16ᾱ2 sin (α2x) − C17ᾱ3 cos (α3x) + C18ᾱ3 sin (α3x) +

C19β̄2 cosh (β2x) + C20β̄2 sinh (β2x) + C21β̄3 cosh (β3x) + C22β̄3 sinh (β3x)
(17)

ψ3 = − C15α̃2 cos (α2x) + C16α̃2 sin (α2x) − C17α̃3 cos (α3x) + C18α̃3 sin (α3x) +

C19β̃2 cosh (β2x) + C20β̃2 sinh (β2x) + C21β̃3 cosh (β3x) + C22β̃3 sinh (β3x)

in which:

ᾱi =

m2ω
2

S2
− α2

i +
k

S2
(α̂i − 1)

αi
, β̄i =

m2ω
2

S2
+ β2

i +
k

S2

(
β̂i − 1

)

βi

α̃i =

m3ω
2

S3
α̂i − α2

i α̂i +
k

S3
(1 − α̂i)

αi
, β̃i =

m3ω
2

S3
β̂i − β2

i β̂i +
k

S3

(
1 − β̂i

)

βi

∣∣∣∣∣∣∣∣∣∣∣∣
(i=2 and 3)
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Equations (12)–(15) and (17) give the general solutions for the delaminated Timoshenko beam. Twenty two
unknowns, i.e. Ci (i = 1, 2, . . ., 22) can be determined by imposing the appropriate boundary and compatibility
conditions.

a) The boundary conditions for example:
The cantilever beam:

w1(0) = 0, ψ1(0) = 0, ψ′
4(�) = 0 and w′

4(�) − ψ4(�) = 0 (18-a)

the simply supported beam:

w1(0) = 0, ψ′
1(0) = 0, w4(�) = 0 and ψ′

4(�) = 0 (18-b)

Indeed, in our analysis the other types of boundary conditions can be considered without any difficulties. In
general, the simply supported and cantilever beams are the most used types of boundary conditions which we
are going to focus on them in our analysis in the present work.
b) The compatibility conditions:
at x = �1 :

w1 = w2, w1 = w3, ψ1 = ψ2, ψ1 = ψ3, u2 = u1 −H2w
′
1, u3 = u1 +H3w

′
1

D1ψ
′
1 = D2ψ

′
2 +D3ψ

′
3 −A2H2u

′
2 +A3H3u

′
3 (19)

S1 (w′
1 − ψ1) = S2 (w′

2 − ψ2) + S3 (w′
3 − ψ3) , A1u

′
1 = A2u

′
2 +A3u

′
3

at x = �1 + �d :

w4 = w2, w4 = w3, ψ4 = ψ2, ψ4 = ψ3, u2 = u4 −H2w
′
4, u3 = u4 +H3w

′
4

D1ψ
′
4 = D2ψ

′
2 +D3ψ

′
3 −A2H2u

′
2 +A3H3u

′
3 (20)

S1 (w′
4 − ψ4) = S2 (w′

2 − ψ2) + S3 (w′
3 − ψ3) , A4u

′
4 = A2u

′
2 +A3u

′
3

By imposing above boundary and compatibility conditions in the obtained general solutions, 22 linear homogenous
equations in terms of 22 unknown coefficientsCi (i = 1, . . ., 22) are obtained out ofwhichC′

is can be calculated. The
determinant of the coefficient matrix must be zero to have a nontrivial solution forC

′
iswhich forms the characteristic

equation for frequencies (eigenvalues). For each frequency, the corresponding mode shape is determined by the
eigenvector solution of the equations.

2.4. Dynamic response

In this study, we are going to use a piecewise-linear spring model with high stiffness constant (constrained mode)
to simulate the behavior between the delaminated surfaces.

Using the separation of variables technique and expressing the dynamic responses of the beam i.e.
wi(x, t) and ψi(x, t) in modal co-ordinates; we have:

wi(x, t) =
n∑

j=1

Wij(x) qj(t), ψi(x, t) =
n∑

j=1

Ψij(x) pj(t) (i = 1, 2, 3 and 4) (21)

where Wij(x) and Ψij(x) are the assumed vibration modes satisfying the boundary conditions; qj(t) and pj(t) are
the generalized co-ordinates and n is the number of assumed modes.

Substituting Eq. (21) in Eqs (2) and (3) and applying the Ritz method, results in:

∫ �1

o

⎡
⎣m1

n∑
j=1

W1j q̈j − S1

n∑
j=1

W ′′
1jqj + S1

n∑
j=1

Ψ′
1jpj

⎤
⎦W1kdx +

∫ �1+�d

�1

⎡
⎣m2

n∑
j=1

W2j q̈j − S2

n∑
j=1

W ′′
2jqj + S2

n∑
j=1

Ψ′
2jpj − k

n∑
j=1

W3jqj + k

n∑
j=1

W2jqj

⎤
⎦W2kdx+

(22)
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∫ �1+�d

�1

⎡
⎣m3

n∑
j=1

W3j q̈j − S3

n∑
j=1

W ′′
3jqj + S3

n∑
j=1

Ψ′
3jpj − k

n∑
j=1

W2jqj + k

n∑
j=1

W3jqj

⎤
⎦W3kdx+

∫ �

�1+�d

⎡
⎣m1

n∑
j=1

W4j q̈j − S1

n∑
j=1

W ′′
4jqj + S1

n∑
j=1

Ψ′
4jpj

⎤
⎦W4kdx = Fk(t)

∫ �1

o

⎡
⎣J1

n∑
j=1

Ψ1j p̈j − S1

n∑
j=1

W ′
1jqj + S1

n∑
j=1

Ψ1jpj −D1

n∑
j=1

Ψ′′
1jpj

⎤
⎦Ψ1kdx +

∫ �1+�d

�1

⎡
⎣J2

n∑
j=1

Ψ2j p̈j − S2

n∑
j=1

W ′
2jqj + S2

n∑
j=1

Ψ2jpj −D2

n∑
j=1

Ψ′′
2jpj

⎤
⎦ Ψ2kdx+

(23)∫ �1+�d

�1

⎡
⎣J3

n∑
j=1

Ψ3j p̈j − S3

n∑
j=1

W ′
3jqj + S3

n∑
j=1

Ψ3jpj −D3

n∑
j=1

Ψ′′
3jpj

⎤
⎦ Ψ3kdx+

∫ �

�1+�d

⎡
⎣J1

n∑
j=1

Ψ4j p̈j − S1

n∑
j=1

W ′
4jqj + S1

n∑
j=1

Ψ4jpj −D1

n∑
j=1

Ψ′′
4jpj

⎤
⎦ Ψ4kdx = 0, (k = 1, 2, . . . , n)

in which using the properties of the Dirac-delta function Fk(t) can be written as:

Fk(t) = −

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[
mg + k

n∑
i=1

W1iqi(t) − kq(t)
]
W1k(vt) t � �1

v[
mg + k

n∑
i=1

W2iqi(t) − kq(t)
]
W2k(vt) �1

v < t � �1+�d

v[
mg + k

n∑
i=1

W4iqi(t) − kq(t)
]
W4k(vt) �1+�d

v < t � �
v

(24)

or in a more compact form:⎧⎪⎪⎨
⎪⎪⎩

n∑
j=1

mkj q̈j +
n∑

j=1

kq
kjqj +

n∑
j=1

cqkjpj = Fk(t)

n∑
j=1

Jkj p̈j +
n∑

j=1

kp
kjpj +

n∑
j=1

cpkjqj = 0
, (k = 1, 2, . . . , n) (25)

and in the matrix form:[
M 0
0 J

] {
q̈
p̈

}
+

[
Kq Cq

Cp Kp

]{
q
p

}
=

{
F
0

}
(26)

where:

M = {mkj , k = 1, . . . n; j = 1, . . . , n} , J = {Jkj , k = 1, . . . n; j = 1, . . . , n}

Kq =
{
kq

kj , k = 1, . . . n; j = 1, . . . , n
}
, Kp =

{
kp

kj , k = 1, . . . n; j = 1, . . . , n
}

(27)
Cq =

{
cqkj , k = 1, . . . n; j = 1, . . . , n

}
, Cp =

{
cpkj , k = 1, . . . n; j = 1, . . . , n

}

q = {q1, q2, . . . , qn}T
, p = {p1, p2, . . . , pn}T

, F = {F1, F2, . . . , Fn}T

It should be mentioned that the two above matrices equations and Eq. (6) are coupled second-order ordinary
differential equations.
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Table 1
Fundamental frequencies (Hz) of the beam with single delamination located at interface 3

Delamination Present Ahmadian et al. [29] Della and Shu [9] Luo and Hanagud [7] Shen and Grady [8]
Length (mm) Cons.a Free Cons. Cons. Free Cons. Free Averaged test Cons.

Intact 81.87 81.87 81.88 81.88 81.88 81.86 81.86 79.83 82.04
25.4 82 82 81.57 81.57 81.57 82.02 82.01 80.12 81.46
50.8 80.77 80.73 80.25 80.25 80.23 80.79 80.74 79.75 79.93
76.2 77.8 77.51 77.27 77.27 77.16 77.82 77.52 76.96 76.71
101.6 73.12 71.71 72.66 72.66 72.2 73.15 71.73 72.46 71.66
aCons. stands for the constrained mode.

Fig. 3. Interface locations of the delaminations for a [0/90]2s Graphite/Epoxy composite laminate [8].

In order to enter to the calculation phase, numbers of different computer programs using MATLAB Software are
developed out of which primarily the natural frequencies and corresponding mode shapes will be obtained. Then,
based on the obtained results for the mode shapes, the dynamic response of the delaminated composite beam will be
done. In the following section, detailed analysis will be discussed.

3. Numerical results and discussions

In this section primarily, different case studies for free vibration analysis will be presented through which the
accuracy and efficiency of the present method will be discussed. To check on the accuracy of the presented method
in the free vibration analysis, the obtained results are compared with those existing results for a cantilever beam
with a single delamination. Then, the dynamic response of a delaminated thick composite beam will be investigated
numerically and the effect of different parameters on the dynamic response will be discussed.

3.1. Free vibration analysis: Cantilever composite beam with a single delamination

In this case, the delaminated layers i.e., sub-beams 2 and 3, are assumed to vibrate independently (free mode) or
vibrate together (constrained mode) one at a time. These vibrational modes can be modeled by setting the spring
stiffness to zero (0) or infinity (∞) for the free and the constrained modes, respectively. In this way, we can estimate
the lower and upper bounds for the natural frequency using the free mode and constrained mode, respectively [10].

In order to check on the validity of the obtained results out of the developed computer program primarily, the
obtained results for the free vibration analysis of a cantilever composite beam with a single delamination will be
compared with those reported by the experimental and analytical analysis [8], with analytical results based on the
Timoshenko beam theory [7], with analytical results based on the classical beam theory [9,10,29].

The beam is made of T300/934 graphite/epoxy with a [0/90]2s and material properties as used in Ref. [8]. The
dimensions of the beam are 127 × 12.7 × 1.016 mm3. Different centrally located delaminations are considered one
at a time with lengths of 25.4, 50.8, 76.2 and 101.6 mm. The location of this delamination along the thicknesswise
direction is shown in Fig. 3; however, this position can be altered to other interfaces with no restriction.

The fundamental frequencies of the free mode and constrained mode considering Poisson’s effect are presented
in Table 1. It should be mentioned that by ignoring Poisson’s effect, the obtained results using presented model
become exactly the same as those given in [7], hence for brevity they are not listed in this table. A close inspection
on listed results in this table indicates that very good agreement between the frequencies predicted by the present
solution and the other reported data in the literatures is seen.



M.H. Kargarnovin et al. / Forced vibration of delaminated Timoshenko beams under the moving oscillatory mass 89

(a) (b)

Fig. 4. a) Variation of DMF vs. T for different vertical locations of delamination, b) Variation of wm vs. xf for different vertical locations of
delamination at oscillator critical velocity (L1 = 0.3, Ld = 0.4).

3.2. Dynamic response of a composite Timoshenko beam due to a moving oscillator

Let’s define the dynamic magnification factor (DMF) as the ratio of the maximum magnitude of the dynamic
deflection at the midpoint of the beam to the corresponding static values of the intact beam. Moreover, let’s
indicate the wm as the dynamic deflection of the beam’s midspan at the oscillator critical velocity and xf is the
non-dimensional time i.e.

(
t
τ

)
or oscillator non-dimensional horizontal position

(
vt
�

)
in which τ represents the

traveling time of the moving oscillator from the left end of the beam to the right end
(
τ = �

v

)
Note that, the critical

velocity is the velocity in which the maximum DMF occurs [16].
Based on the self-developed computer programs related to Eqs (6) and (25), following specified geometry, material

properties, oscillator parameters and velocity, different results are obtained.
The material properties for the lamina are [23,31]:

E11 = 144.8GPa, E22 = 9.65GPa, G12 = 4.14GPa, G13 = 4.14 GPa

G23 = 4.14GPa, υ12 = 0.3, ρ = 1389.23 kg/m3

The beam geometries and delamination parameters are:

� = 10 m, b = 1 m, h = 0.8 m, �1 = 3 m, �d = 4 m

Unless mentioned otherwise, the delamination is located at the interface 1 and at the midspan of the beam with
the stacking sequence [0/90]2s. Also, the magnitude of the oscillating mass, i.e. m, is taken to be 0.1 kg. Finally
to present results in a standard way, we use the following non-dimensional parameters L1, Ld which represent the
delamination spanwise location and length, respectively:

L1 =
�1
�
, Ld =

�d
�

The following results are presented for a simply supported beam. Nonetheless, similar analyses can be done with
no difficulties for other types of boundary conditions. From the static analysis related to the equilibrium condition
of a simply supported intact beam, the maximum static deflection under the concentrated mass m is mg�3

48 D1
. In the

following, in-depth descriptions and discussions will be presented.

3.2.1. Intact composite beam
For the intact beam (solid line in Figs 4(a), 5(a) and 6(a)), one could see that DMF increases up to T (= Tf

τ ) = 0.3
and then reaches to a minimum value at T = 0.4. As T increases, the maximum value of DMF for the intact beam
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Table 2
Critical velocity (m/sec) of angle-ply beams with and without considering the Poisson’s effect

θ◦ 0 15 30 45 60 75 90

With considering the Poisson’s effect 388.12 376.71 233.84 144.91 118.25 116.46 116.22
Without considering the Poisson’s effect 388.12 388.48 342.96 233.73 160.21 123.98 121

(a) (b)

Fig. 5. a) Variation of DMF vs. T for different delamination lengths, b) Variation of wm vs. xf for different delamination lengths at oscillator
critical velocity (L1 = 0.3, located at interface 1).

occurs at T = 1.2 (corresponding critical velocity for the numerical case; vc = 345.68 m/sec). Note that in these
figures, the symbol Tf denotes the fundamental period of the intact beam. This type of behavior is also reported in
the literature for the moving constant force problem [15,16] and moving oscillatory mass [23,24]. Figures 4(b), 5(b)
and 6(b) illustrate the time history of wm corresponding to the critical velocity obtained from Figs 4(a), 5(a) and
6(a), respectively. It is shown that the maximum deflection at the beam center occurs when the moving oscillator
passes the position of 0.74 of the beam length.

3.2.2. Delaminated composite beam
Consider a delamination with length of Ld = 0.4 located at the position of L1 = 0.3 along the beam length.

Figure 4(a) shows the variation of DMF versusT for different thicknesswise location of the delamination. For brevity
of notations, we denote int. for interface in Fig. 4. The maximum DMF occurs at T = 1.2(vc = 345.68 m/sec), no
matter in which interface the delamination is located (see Fig. 3).

It is shown in Fig. 4(b) that the maximum deflection at the beam center occurs when the moving oscillator passes
the position of 0.75 of beam length when the delamination located at the interface 3 or 4 However, this will yield to
0.78 of the beam length when the delamination located at the interface 1 or 2.

Figure 5 displays the effect of delamination length on the beam response while the delamination position within
the beam height is kept unchanged i.e. along the interface 1 at L1 = 0.3. Referred to Fig. 5a, it is shown that for the
delamination lengths ofLd = 0.2 and 0.4 (vc= 322.64 m/sec) the maximum DMF occurs at T = 1.12 while for the
delamination length of Ld = 0.6 (vc = 253.50 m/sec), this maximum occurs at T = 0.88. This means that for the
delamination length more than half of the beam’s length, significant change is seen in the oscillator critical velocity.
In addition, it is clearly seen that the existence of any single delamination with length of for instance Ld = 0.6 can
increase the maximum value of DMF up to 42%.

Figure 5(b) shows the time history of wm at the oscillator critical velocity vs. oscillator non-dimensional horizon-
tal position related to the Fig. 5(a). As it is seen from this figure, the maximum deflection at the beam center occurs
when the moving oscillator just passes the:

a) 0.72 of the beam length if the delamination length is Ld = 0.2,
b) 0.78 of the beam length if the delamination length is Ld = 0.4 and
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(a) (b)

Fig. 6. a) Variation of DMF vs. T for different delamination spanwise location, b) Variation of wm vs. xf for different delamination spanwise
location at oscillator critical velocity (Ld = 0.4, located at interface 1).

c) 0.66 of the beam length if the delamination length is increased to Ld = 0.6.

Now, consider a delamination with the length of Ld = 0.4 along the interface 1. The influence of delamination
spanwise location along this interface on the beam’s dynamic response is shown in Fig. 6.

Referred to Fig. 6(a) the maximum DMF occurs at different values of T = 1 and 1.04 for cases where the
L1 = 0.1 (vc = 288.07 m/sec) and 0.2 (vc= 299.59 m/sec), respectively, while this maximum occurs at T = 1.2
when L1 = 0.3 (vc= 345.68 m/sec). This means that as the delamination gets closer to the left end of the beam, its
corresponding critical velocity will decrease accordingly.

As it can be seen from Fig. 6(b) for L1 = 0.1, 0.2 and 0.3, the DMF critical speed occurs when the moving
oscillator travels 0.72, 0.71 and 0.78 of the beam length, respectively.

As can be seen from Figs 4–6, the dynamic deflection of the delaminated beam (DMF) is larger than the
corresponding ones of the intact beam at critical velocity.

The effect of shear deformation on the DMF of the cross-ply beam ([0/90]2s) is shown in Fig. 7. For this case, the
length of delamination is Ld = 0.4, and it is located along the interface 1 at position of L1 = 0.3 . It is clear that for
small slenderness ratios i.e. �/h, based on the first shear deformation theory the results tend to deviate from those
obtained through the classical lamination theory. But, for large �/h ratios, deformation due to shear are negligible as
compared to deformations due to flexure and the classical theory suffices to accurately predict the dynamic response
of the beam.

The overall observation of Figs 7(a)–(7d) indicates that for the �/h = 12.5 this maximum occurs at T = 1.2 and
for �/h ratios of the 25, 50 and 100 the maximum DMF occurs at the same value of T = 1.12, no matter what kind
of theory is used.

The influence of the Poisson’s effect on the DMF vs. T for the angle-ply beam with stacking sequence of
[θ/− θ/θ/− θ]s is shown in Fig. 8 for two cases i.e. beam by considering and beam by ignoring the Poisson’s
effect. The angle of orientation is changed from zero (0◦) to ninety (90◦). As one can see from this figure and can
be expected, the Poisson’s effect inclusion makes no significant outcome on the DMF for the unidirectional (θ = 0◦)
or cross-ply (θ = 90◦) laminated beams. However, the DMF for an angle-ply beam deviates significantly from the
exact value when one ignores the Poisson’s effect. The maximum difference occurs at (θ = 45◦) in which 65.8%
decrease between the results is seen with respect to the case where the Poisson’s effect is included. It should be
noted that this huge amount of difference is referred to the time when the travelling force is marching with the critical
speed. This phenomenon is also reported in [6,30] for the free vibration analysis. Moreover, the corresponding
critical velocities of all abovementioned angle-ply beams are calculated and listed in Table 2. It can be concluded
from Table 2 that the critical velocities decrease as the fiber orientation increases in both cases i.e. considering and
ignoring the Poisson’s effect.

Figures 9–11 depict the variation of non-dimensionalized contact force (Fc = Fi(x, t)/mg) vs. xf at different
delamination parameters. In these figures, the oscillator parameters are taken as:
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Fig. 7. Effect of shear deformation on the DMF vs. T for different slenderness ratio (—— FSDT; – – – – CLT)

m = 0.1 kg, v = 5
m

sec
, k = 109 N/m

It should be mentioned that the separation of the oscillator occurs when the contact force becomes negative. It
should be emphasized that when such a separation occurs, the equations of motion are no longer valid to describe
the ensuing motion and more complicated analysis needed to be done which is outside of the scope of this study.

Figure 9 displays the effect of delamination thicknesswise location on the normalized contact force. As can be
seen, the separation of the oscillator from the beam is found to occur at the value of xf approximately equal to 0.796
for the intact beam and at 0.299, 0.388, 0.407 and 0.496 when the delamination is located at interface 1, 2, 3 and 4,
respectively. It is concluded that as the delamination location shifts towards the mid-plane of the beam, the location
of the separation point occurs earlier along the beam length. This type of behavior is similar to the results of the
oscillator separation from the delaminated Euler-Bernoulli beam [29].

The influence of delamination length on the normalized contact force is shown in Fig. 10. It is found that, the
separation of the oscillator from the beam occurs at the value of xf approximately equal to 0.392, 0.299 and 0.284
for delamination lengthLd equal to 0.2, 0.4 and 0.6, respectively. In this figure it can be seen that as the delamination



M.H. Kargarnovin et al. / Forced vibration of delaminated Timoshenko beams under the moving oscillatory mass 93

(a) (b)

(d)(c)

(e) (f)

(g)

Fig. 8. Influence of the Poisson’s effect on the DMF vs. T for symmetric angle-ply beam (—— With considering the Poisson’s effect; – – – –
Without considering the Poisson’s effect)
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Fig. 9. Effects of thicknesswise location of the delamination on the
oscillator separation from the beam

(
L1 = 0.3, Ld = 0.4

)
.

Fig. 10. Effects of delamination length on the oscillator separation
from the beam

(
L1 = 0.3, interface 1

)
.

Fig. 11. Effects of spanwise location of the delamination on the oscillator separation from the beam
(
Ld = 0.4, interface 1

)
.

length is increased, the oscillator separates earlier along the beam length. Note that the results for the intact beam
shown in Figs 10 and 11 are the same as those represented in Fig. 9.

The variation of the normalized contact force versus oscillator position for different spanwise location of the
delamination is depicted in Fig. 11. One could see that the oscillator separation takes place at 0.284, 0.294 and 0.299
of the beam length when the L1 = 0.1, 0.2 and 0.3, respectively. It can be concluded that the oscillator separation
from the delaminated beam occurs earlier as the delamination moves towards the beam boundary.

4. Conclusions

The governing differential equations of motion have been derived for a composite Timoshenko beam with a single
delamination acted upon by a moving oscillator with a constant speed. By utilizing the modal analysis and Ritz
method, we have obtained a set of second order ordinary differential equations Numerical results are presented in
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the present paper for a simply supported beam with a constant oscillator travelling with various prescribed constant
speeds. Based on derived results followings are concluded:

1 It is found that the dynamic deflection of the delaminated beam (DMF) is larger than the corresponding ones
of the intact beam at critical velocity.

2 For a delaminated beam, when the delamination shifts towards the midplane of the beam, the DMF at the
critical velocity occurs as the force position gets closer to the beam’s right end.

3 It is found that the dynamic deflection is sensitive to the depth, length and spanwise location of the delamination.
The existence of any single delamination and its location can increase the maximum value of DMF for example
in some cases up to 42%.

4 For the delamination length more than half of the beam’s length, significant change is seen in the force critical
velocity.

5 The critical velocity decreases as the delamination gets closer to the beam’s left end.
6 The transverse shear deformation effect is pronounced for the thick laminated composite beams.
7 Neglecting the Poisson’s effect decreases significantly the DMF for an angle-ply beam.
8 It is shown that the critical velocity has its highest value at ply angle of 0◦, and will decrease as the ply angle

increases.
9 As the delamination location shifts towards the mid-plane of the beam, the location of the separation point

occurs earlier along the beam length.
10 As the delamination length is increased, the oscillator separation from the beam takes place sooner along the

beam length.
11 The oscillator separation from the delaminated beam occurs earlier as the delamination moves towards the

beam boundary.
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