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In this work a methodology for detecting drivers’ stress and fatigue and predicting driving performance is presented. The
proposed methodology exploits a set of features obtained from three different sources: (i) physiological signals from the driver
(ECG, EDA, and respiration), (ii) video recordings from the driver’s face, and (iii) environmental information. The extracted
features are examined in terms of their contribution to the classification of the states under investigation. The most significant
indicators are selected and used for classification using various classifiers. The approach has been validated on an annotated
dataset collected during real-world driving. The results obtained from the combination of physiological signals, video features,
and driving environment parameters indicate high classification accuracy (88% using three fatigue scales and 86% using two stress
scales). A series of experiments on a simulation environment confirms the association of fatigue states with driving performance.

1. Introduction

Real-life car driving requires accurate and fast decisions by
the driver, given only incomplete information in real time.
A large number of fatalities occurring during car driving
could be avoided if behaviors such as driver inattention,
stress, fatigue, and drowsiness were detected and appropriate
countermeasures were produced. The determination of the
driver status in a vehicle is an active topic for the scientific
community. However, the detection of stress and fatigue
level in drivers is a complex task, which requires expertise in
biosignal processing, computer vision, human factors, and so
forth.

Stress could be defined as the awareness of not being able
to cope with the demands of one’s environment, when this
realization is of concern to the person and associated with a
negative emotional response, while fatigue as the temporary
inability, or decrease in ability, or strong disinclination, to
respond to a situation, because of previous overactivity,
either mental, emotional, or physical [1]. The estimation of
fatigue is well studied in the literature [2—18]. The majority
of relative works is based on in-lab experiments, mainly
focusing on face monitoring and blink detection to calculate

eye activation [2], while the vehicular experiments serve for
indirect fatigue recognition through its impact on driving
issues (speed maintenance, steering control). These methods,
however, are suitable for the recognition of rather late stages
of the fatigue (drowsiness) when the effects on driver’s face
are quite noticeable and performance change has already
become critical. In the road environment, even earlier
fatigue stages can affect driving performance. This is because
even lower fatigue levels still cause declines in physiological
vigilance/arousal, slow sensorimotor functions (i.e., slower
perception and reaction times), and information processing
impairments, which in turn diminish driver’s ability to
respond to unexpected and emergency situations [3]. There-
fore, the impact of fatigue on the driver’s performance should
not be estimated using only driving measures, but additional
parameters, associated with the driving performance, are
needed (such as perceptual, motor, and cognitive skills) [4].
According to Crawford [5], physiological measures are the
most appropriate indicators of driver fatigue. This has been
confirmed by numerous studies, which followed similar
approaches for driver fatigue estimation, making use of bio-
signals obtained from the driver [6-9].



Bittner et al. [6] presented an approach for the detection
of fatigue based on biosignals acquired from the driver elec-
troencephalogram (EEG), electrocardiogram (ECG), elec-
trooculogram (EOG), and video monitoring. They examined
different features that might be correlated with fatigue,
such as the spectrum of the EEG, the percentage of eye
closure (PERCLOS), and the fractal properties of heart rate
variability (HRV). They concluded that the first two are
more correlated with instant fatigue levels of the driver,
while the last is most suitable for the detection of the
permanent state of the driver. Li [7] addressed the estimation
of driver’s mental fatigue using HRV spectrum analysis using
a simulator for data collection. The features obtained from
HRV indicated high correlation with the mental fatigue
of the driver. Yang et al. [8] used heterogeneous infor-
mation sources to detect driver’s fatigue. The information
sources included fitness, sleep deprivation, environmental
information (traffic, road condition, etc.), physiological
signals (ECG, EEG), and video monitoring parameters (head
movement, blink rate, and facial expressions). In order to
combine all the above-mentioned information they used the
Dempster-Shafer theory and rules for determining whether
the driver is in fatigue state or not. Qiang et al. [9] pro-
posed a probabilistic framework for modelling and real-
time inferencing of human fatigue by integrating data from
various sources and certain relevant contextual information.
They used a Dynamic Bayesian Network which encapsulates
the time-dependent development of fatigue symptoms. The
estimation is based on visual cues and behavioural variables.
As research in the field progresses, a variety of physiological
signals has been used for fatigue detection. The most
informative measures in terms of fatigue recognition are
those extracted from the EEG signal, which have been used
for the quantification of task-specific performance changes
[10-18]. However, the idea of near future vehicles, capable of
acquiring drivers’ EEG, is quite optimistic. Indicators coming
from measurements taken in a less obtrusive manner should
be exploited in a real life system.

Physiological measurements are also good indicators of
the driver’s stress. Several works in the literature focus on
driver stress recognition based on biosignal processing.
ECG, electromyogram (EMG), respiration, skin conductiv-
ity, blood pressure, and body temperature are the most
common signals collected from the driver in order to
estimate the workload and the levels of stress he/she expe-
riences. Healey [10] presented a real-time method for data
collection and analysis in real driving conditions to detect
the driver stress status. According to them, there is a strong
correlation between driver status and selected physiological
signals (EMG, ECG, skin conductivity, and respiration
effort). In another study, Healey and Picard [11] specified
an experimental protocol for data collection. Four stress level
categories were created according to the results of the subjects
self-report questionnaires. A linear discriminant function
was used to rank each feature individually based on the
recognition performance and a sequential forward floating
selection (SFES) algorithm was used to find an optimal set
of features to recognize driver stress. Healey and Picard
[12] proposed a slightly different protocol, while the results
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showed that for most drivers, the skin conductivity and the
heart rate are most closely correlated to driver stress level.
Zhai and Barreto [13] developed a system for stress detection
using blood volume pressure, skin temperature variation,
electrodermal activity, and pupil diameter. Rani et al. [14]
presented a real-time method for driver’s stress detection
based on the heart rate variability using Fourier and Wavelet
analysis. Liao et al. [15] presented a probabilistic model
for driver’s stress detection based on probabilistic inference
using features extracted from multiple sensors.

The well-established literature in stress and fatigue
detection problems has revealed a number of features, highly
correlated to the one or the other state. However, according
to our knowledge, all studies focus only on one specific
driver affective state (either fatigue or stress), although in
practice they both influence the physiology of the driver
and hence his physiological responses. Putting such systems
in practice could make the estimation of drivers state less
effective compared to experimental settings, as in real driving
simultaneous presence of both fatigue and stress could occur
making discrimination of different possible states more
difficult.

Having this in mind, we developed a driver status recog-
nition methodology for simultaneous stress and fatigue de-
tection. Our methodology employs features coming from (i)
a set of driver’s biosignal recordings (ECG, electrodermal
activity, respiration), (ii) video recordings from driver’s
face, and (iii) environmental conditions (weather, visibility,
and traffic). In our work we select the features with
higher contribution to the classification of the states under
investigation. Furthermore, we evaluate the contribution of
different groups of features (biosignals, video, and environ-
mental features), in order to investigate which group is more
associated to a specific driver’s state (fatigue and stress).
Using the selected features, we examine the performance of
four different classifiers (namely, the SVMs, the Decision
Trees, the Naive Bayes and General Bayesian classifier) on the
driver state recognition accuracy. The proposed methodol-
ogy allows for simultaneous estimation of stress and fatigue
levels using the minimum set of physiological signals in the
less obtrusive manner. Applying our methodology, changes
in driver’s state are estimated at an early stage before they
critically affect driving performance.

Having developed a sound methodology for driver’s state
estimation we also study whether the estimated changes of
driver’s state affect driving performance. To perform this
study, we have developed a driving simulation environment,
which allows us to monitor a set of driving performance
measures (steering, braking, lane keeping, and reaction time)
and examine their association with the subject’s physiological
state. A series of laboratory experiments are conducted
around the driver simulator. As drivers are not easily stressed
when using a simulator, our study focuses only on the
association of the estimated fatigue and the deterioration of
driving performance.

In the following sections we first describe the proposed
methodology (Section 2). The dataset obtained in real driv-
ing conditions is then presented (Section 3). In Section 4
the obtained results are presented. In Section 5 we shortly
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present our study of fatigue impact on driving performance.
A discussion on the methodology and the results follows
(Section 6). A concluding section summarizes our work
(Section 7).

2. Methodology

The methodology consists of three main steps (depicted in
Figure 1):

(i) preprocessing and feature extraction which is decom-
posed in three streams: (I-a) signal acquisition,
preprocessing, and feature extraction, (I-b) video
acquisition processing and feature extraction, and (I-
¢) environment information extraction,

(ii) feature selection,

(iii) classification.

These steps are described in details in what follows.

2.1. Step I(a): Signal Acquisition/Preprocessing and Feature
Extraction. The physiological signals which are reported in
the literature as the most significant indicators of subjects’
fatigue and stress, are, blood pressure, EEG, EOG, ECG, heart
rate variability, skin conductivity and respiration [13, 16, 17].
However, in order to set up a real-time system for driver
stress and fatigue monitoring in real driving conditions,
the sensors for the physiological signal acquisition should
be minimally obtrusive. Taking this into consideration, the
recorded physiological signals in our work are limited to
the following signals: (i) Electrocardiogram (ECG) through
a g.ECG sensor which is placed on the subject’s chest,
(ii) Electrodermal Activity (EDA) through two Ag/Ag-Cl
electrodermal activity sensors attached on the subject’s
middle, and index fingers of the right hand, and (iii) the
respiration rate using a g.RESP Piezoelectric Respiration
Sensor which is placed around the subject’s thorax. The
Biopac MP-100 system is used for signal acquisition. The
ECG signal is acquired at sampling frequency 300 Hz while
the EDA and the respiration signal are acquired at 50 Hz. The
resolution is set to 12-bit for all signals.

2.1.1. ECG Signal.

(1) The Biopac system has an option of acquiring only
the R-waves of ECG signals, which are more robust
to noise. The output signal is a positive peak only
when an R-wave is detected. This function is useful
for heart rate calculations when a well-defined peak
is desired as it tends to remove any components of
the waveform that might be mistaken for peaks. This
option is used in the real driving conditions, since the
noise from the subject’s movement introduces high
noise in the ECG signal. In order to obtain useful
indicators of the subject’s states under investigation
(fatigue and stress) we first perform some necessary
preprocessing steps on the raw signals. The features
are extracted in time windows of 5 minutes, that
is, a reasonable compromise between the need of

sufficient sample size in order to have reliable statistic
properties and the need of small window to capture
the changes in the psycho-physiology of the driver
[18]. In order to extract the RRV signal from the
ECG, an accurate estimation of R peaks is needed.
Initially, a lowpass ButterWorth Filter is applied to the
ECG signal to remove the baseline wonder. Then the
R peaks are detected, using the procedure described
in [19]. Furthermore, since the errors in the RR
interval estimation and in RRV extraction can have
serious impact in the spectrum estimation and thus
in the features calculated from the spectrum, we
also visually correct the initial R estimation of the
algorithm through a specifically built application.
After ECG preprocessing and R peak detection, the
R-R intervals are estimated as the time differences
between successive R peaks. Those R-R intervals con-
stitute the RR variability signal (RRV). The next step
is the interpolation of the RRV series in 4 Hz samples
and downsampling to 1Hz. This is an important
step if ordinary spectrum estimation methods are
to be applied (FFT, Autoregressive methods). After
interpolation the low frequency (0.01 Hz) trend of
the signal is removed using a ButterWorth filter. The
FFT transform H( f), of the signal (calculated at 1024
samples) is extracted and the spectrum of the signal
is obtained as P(f) = |H(f)H(f)"|. The following
features are calculated from the spectrum:

(i) the ratio of the very low frequency (VLF) (0.01-
0.05 Hz) energy to the total signal energy,

(ii) the ratio of the low frequency (LF) (0.05-
0.2 Hz) energy to the total signal energy minus
the VLF energy,

(iii) the ratio of the high frequency (HF) (0.2—
0.4 Hz) energy to the total signal energy minus
the VLF energy,

(iv) the ratio of the LF to the HF components.

We also calculate the Spectrum Entropy (SE) of the signal,

P(f)
P S ey
(1)
SE = > p(f)logp(f).
f

The SE can be considered as a measure of the deterministic
behavior of the RRV. The Detrended Fluctuation Analysis
(DFA) [20-22], Approximate Entropy [23, 24], and Lya-
punov exponent analysis [25] are applied on our 5min
intervals of the RRV recordings.

2.1.2. EDA Signal. The EDA signal is downsampled to 1 Hz.
A smoothing filter is applied since in many cases noise
is evident in the signal; then the low frequency 0.01 Hz
of the signal is removed which is considered as the skin
conductance level (SCL). The first absolute difference (FAD)



of the remaining signal is calculated, giving a measure of the
skin conductance response (SCR):

FAD=Z|yi+1—yi|. (2)

2.1.3. Respiration Signal. The respiration signals have high
signal to noise ratio and only in cases with subject’s sudden
movements, noise exists. The signal is downsampled to
10 Hz and the wonder is removed. The power spectrum of
the signal, using FFT transform, is extracted. A smoothing
of the power spectrum follows, and the maximum energy
frequency between 0.1Hz and 1.5Hz is selected as the
dominant respiration frequency (DRF). Furthermore, we
extract another feature which is the ratio of the heart rate to
the respiration rate. As respiration is a main modulator of the
cardiac function, the hypothesis is that for normal/relaxed
conditions the ratio of heart to respiration rate is constant
and changes are observed only in abnormal conditions, such
as stress and fatigue. Given the mean RR intervals and the
dominant respiration frequency the ratio of the heart rate to
the respiration rate is calculated as

Heart Rate ~ 60/(Mean RR)
Respiration Rate 60 - D.R.F.
X 3)

~ (Mean RR)(D.R.F.)’

2.2. Step I(b): Video Acquisition/Processing and Feature
Extraction. The video of the face of the driver is processed
following the approach described in [26, 27]. The first step
is the detection of the face and the second is the detection
of eyes. The information of interest is (i) the movement of
the head, which could be an indicator for both stress and
fatigue and (ii) the mean level of eye opening as an indicator
of fatigue. We also calculate an estimation of PERCLOS,
considering eye closure when the confidence of eye presence
is less than zero. As a measure of head movement, the
standard deviation of the face position in the video frame is
used, and as a measure of eye opening we use the confidence
of eye detection (provided in [26]). If the eyes are wide open
this confidence is high, while for near close eyes it is quite
low. As video is not available for all sessions (e.g., due to low
quality recordings) the sessions without video recordings,
can be treated as missing values. The K-NN algorithm is used
for replacing the missing data in the combined data for video
and physiological features for all sessions. K is set to 3 and
the weighted Euclidean distance is employed.

2.3. Step I(c): Environment Information Extraction. In our
methodology we introduce driving environmental infor-
mation. For this purpose, a forward looking camera for
road monitoring is employed. From road monitoring video,
useful information about driving environment conditions
during each session is manually extracted. This information
concerns weather, road visibility, and traffic conditions. Bad
weather and low visibility are reported as important stress
factors [28]. Another important stress factor is traffic density
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[29, 30]. Using the video recordings of the road scenery,
we manually extracted a metric of the traffic load of the
road during the 5 min interval. All environmental variables
are categorized in two states (good/bad weather, low/good
visibility and low/high traffic density).

2.4. Step 1I: Feature Selection. The majority of the features
extracted in Step I are the most common features used
in similar studies. However, a classifier using all those
features would lack robustness. For this reason we employ
feature selection. Such an approach is a prerequisite in cases
where the ratio of data to features is low. Furthermore,
introducing redundant features or features highly correlated
can deteriorate the classification performance. Therefore,
to build a robust classifier for stress and fatigue detection,
we have to evaluate the contribution of each feature as
an indicator of these states. For a two-class classification
problem, we define as DAUC of a feature, the difference
in the area under curve (AUC) of a classifier based on the
specific feature and a random classifier. The DAUC is used as
a metric of discrimination power of a feature. The DAUC of
the optimal classifier is 0.5, thus features with DAUC near
0.5 are considered to be optimal. The area of the optimal
classifier is 1 and the area of a random classifier 0.5, thus
the difference of an optimal from a random classifier is
also 0.5. In order to select the optimal feature set for more
than one classification problems, the average DAUC of each
feature is calculated. Then features are sorted according to
their average DAUC, obtaining a feature ranking. Correlation
analysis can be further implied to investigate relationships
between features and exclude duplicate information. The
number of features finally selected is experimentally derived.

2.5. Step III: Classification. The third step of our method-
ology is classification. The performance of four different
classifiers is examined. In this section we briefly describe the
classifiers used for fatigue and stress classification.

2.5.1. Support Vector Machines (SVM). Each instance in the
training set contains one “target value” (class labels) and
several “attributes”. The goal of the SVM is to produce a
model which predicts the target value of data instances in
the testing set in which only the attributes are given. Let a
training set of instance-label pairs be (x;, i), where x; € R
is the training vector, belonging to one of the classes gen-
erating the data, N is the number of the extracted features
in the training set, and y; indicates the class of x;. The
support vector machine requires the solution of the following
optimization problem:

N
(1 7
minf —-w'w+¢ il 4
W’M(z Zf) )

subject to

i (WTSb(xi) + b) =1-&,
(5)
& =0,
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where b is the bias term, w is a vector perpendicular to
the hyperplane separating the classes, & is the factor of
classification error, and ¢ > 0 is the penalty parameter of the
error term. The training vectors x; are mapped into a higher
dimensional space F by the function ¢ : R* — F.SVM finds
a separating hyperplane with the maximal geometric margin
and minimal empirical risk Remp in the higher-dimensional
space. Remp is defined as

LN
Remp = El; lyi — f(xi,a) ], (6)

where f is the decision function defined as

N
f(x) = > yiaiK(xi,x) + b, (7)

i=1

where K(x;,xj) = ¢(xi)T¢(xj) is the kernel function, a; are
weighting factors, and b is the bias term. In our case the
kernel is a radial basis function (RBF) which is defined as

K(xi,xj) = exp(fny,- - xsz), y >0, (8)

where y = 1/20? is the standard deviation. The RBF kernel,
which is used in our experiments, nonlinearly maps samples
into a higher dimensional space, thus, it can handle the
case when the relation between class labels and attributes is
nonlinear. In our case y = 1 and ¢ = 10. In the case of more
than two classes classification, the one-against-all strategy is
followed.

2.5.2. Decision Trees. To construct the decision tree we use
the C4.5 inductive algorithm [31].

Prior to the information gain definition, we specify a
measure called entropy, defined as the degree of complexity
of the input samples. In the case of having C classes in a set
S, the entropy of S, H(S), is defined as

c
H(S) = - > pilog pi )

i=1

where p; is the ratio of class i in set S. Considering
the previous equation, the information gain expresses the
reduction of entropy. The information gain for an attribute
X, Gain(S, X) is obtained as

Gain($,X) = H(S) - > 'fé‘||H(su), (10)

u€ Values(X)

where Values(X) represents the range of feature X and S, isa
subset of S having u as a result of feature X. In our problem,
the extracted features are continuous valued. Therefore, they
can be incorporated into the decision tree by partitioning
them into a set of discrete intervals. For each continuous
feature x, a new Boolean feature is created:

1, x<t,

0, otherwise.

The selection of the threshold ¢ is conducted through a
process of generation of a set of candidate thresholds which
produce a high information gain. Those candidate thresholds
are evaluated and the one that produces the maximum
information gain is finally chosen. The algorithm of [31] has
the advantage of solving the overfitting problem by using a
postpruning method.

2.5.3. Naive Bayes Classifier. The Naive Bayes classifier is
based on the Bayes Theorem and the assumption of in-
dependence among variables. Despite the fact that the in-
dependence assumption is considered as poor in general, this
classifier works well even in complex situations. Let again a
set of instance-label pairs (x;, y;) where x; € Rand y; € Y
the class producing x;. The probability model for a classifier
is abstractly a conditional model:

Applying the Bayes’ Theorem:
_ p(y)p(xb---:xN ‘ y)
Py | xt,..xn) = IO B (13)

The denominator of the fraction is effectively constant. Thus,
in practice we are only interested in the numerator of that
fraction, which is equivalent to the joint probability model:

Py X155 XN). (14)
Using the conditional independence assumptions we can

write the joint probability as

N

xn) =p)] [p(xil y). (15)

i=1

p(ysx1s. ..

Then, under the aforementioned independence assumptions,
the conditional distribution can be expressed as

N
Pyl x,...ox) = %p(y)l_lp(xz' | ¥)s (16)
i=1

where Z is a scaling factor. This is a more manageable form,
requiring (C — 1) + NRC parameters where R is the number
of parameters for the p(x;) model and C is the number of
classes.

2.5.4. General Bayesian Classifier. This classifier is based
on the same philosophy as the Naive Bayes, without the
hypothesis of feature independence. For example, in cases of
continuous features following a Gaussian Distribution, in the
Naive bayes case the covariance matrix is diagonal while in
the General Bayes classifier the covariance is a full positive
definite matrix.

3. Dataset

The dataset collection was performed driving conditions,
which helps to recognize and understand the true physiology
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FIGURE 1: The steps of the methodology for driver stress and fatigue
classification.

of the driving task and measure the subject’s reactions to
common driving conditions, such as bad weather and traffic
congestion. The subject under investigation is a 28-year-old,
healthy male, with two years of driving experience. Next, the
experimental settings and protocols for the data collection is
described.

The equipment that was used in order to acquire the
needed information included (i) a Biopac MP-100 for signal
acquisition of the driver (ECG, EDA and Respiration). This
equipment was installed on the back seat of the vehicle
and the sensors were attached to the driver as depicted in
Figure 2. (ii) A camera monitoring the road is used only for
annotation reasons, (iii) a camera monitoring driver’s face.
Before the beginning of the annotated sessions, the subject
conducted a number of long-lasting sessions in order to
familiarize with the equipment. The duration of the data
collection in real conditions was approximately 18 months
and a sufficient number of driving events under different
conditions was encountered. The total number of tours (37
experiments), average duration of each tour and encountered
conditions in all tours are shown in Table 1. Sessions are
covering the whole day duration (07.00-24.00) so as to
capture different fatigue levels (Figure 3).

The driver annotation was performed at the end of each
session, by self-annotating his state. A scale of three fatigue
levels (normal, low fatigue, high fatigue) and a scale of two
stress levels (normal, stress) are used, following a human
factors expert’s suggestion. In our experiments subject was
tutored to annotate high fatigue as a state close to drowsiness
symptoms and low fatigue as a lower level, between alertness
and drowsiness.

4. Results

The first step of our methodology is the preprocessing and
feature extraction described in Sections 2.1 and 2.2. The
features extracted are summarized in Table 2.
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TABLE 1: Description of the dataset for real driving conditions.

. Number of tours 37
Tour info .
Average duration .
50 min.
of each tour
Condition States Number of tours
Stress No 13
Yes 24
Normal 9
Fatigue Medium 15
High/Drowsiness 13
No rain 26
Rain
Environmental Heavy rain
conditions Normal visibility 29
Medium visibility 6
(late evening)
Low visibility 5
(fog/night)

TaBLE 2: The features used in this study and the code name assigned
to each feature.

Source Feature Code
Mean RR F1
Std of detrended RR F2
Proportion of RRV energy on very low 3
frequency band (VLF)
Proportion of RRV energy on low Fa
frequency band (LF)

. . Proportion of RRV energy on high Fs

Physiological  frequency band (HF)

signals LE/HF F6
Mean EDA level F7
First absolute differences F8
Mean Respiration Rate F9
RRV Detrended Fluctuation Analysis F10
(DFA)
RRV Approximate Entropy F11
Respiration Spectrum Entropy F12
RRV Lyapunov Mean exponent F13
RRV Lyapunov Max exponent F14
HR (bpm)/Resp. Rate (bpm) F15
Mean Eye Activation V1

Face Video Std of Eye Activation V2
Std of Head Position V3
PERCLOS V4
Weather conditions S1

Environment  Visibility S2
Traffic conditions S3

We then performed feature selection. In Section 2.4 we
describe the feature selection for a two-class classification
problem. For stress classification the application of the
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22:00-23:00

Time of day

F1GURE 3: The distribution of the sessions during the day.

described method is straightforward since two classes exist.
For fatigue classification, which is a three-class classification
problem, the problem is decomposed in four two-class
subproblems (normal versus low fatigue, normal versus high
fatigue and low fatigue versus high fatigue). The DAUC of
each feature for all abovementioned classification problems
is given in Figure 4(a). To build more robust classifiers, we

also investigate features discriminating fatigue and stress
states. In Figure 4(b) we present the DAUC of features for
the classification of low fatigue versus stress and high fatigue
versus stress. Figures 4(a) and 4(b) have a similar pattern.
Sorting the features according to their average DAUC we
obtain a ranking of the features.

The physiological features with higher average DAUC
are mean RR (F1), std of RR (F2), LF/HF ratio (F6), mean
EDA level (F7), first absolute differences of EDA (F8), mean
respiration rate (F9), and HR (bpm)/Resp. Rate (bpm) (F15).
From the video features, std of eye activation (V2) and
PERCLOS (V4) are better indicators for fatigue, whereas std
of head positions (V3) is a better indicator of stress. Finally
from environmental conditions, the weather conditions (S1)
seem to be the most important. In Table 3, we present
the correlation among physiological and video features.
Correlation analysis shows that the indicators F1-F2, F1-
F6, F1-F9, and F7-F8 are rather correlated. Finally, all these
features were kept, as removal of any of them did not increase
the performance of the selected classifiers; instead it tended
to decrease the accuracy.

The third step of our methodology is classification. The
classifiers tested are described in Section 2.5. As indicated in
Table 1 our dataset is not balanced. To address this problem,
the following procedure is used.

(i) 50 balanced datasets from the original one were
extracted. Let K be the number of samples for the
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F1GURE 4: The DAUC of physiological, video, and environmental features for (a) normal versus high fatigue, normal versus low fatigue, low
fatigue versus high fatigue, and normal versus stress and for (b) low fatigue versus stress and high fatigue versus stress.

class containing the fewer samples. K random sam-
ples are selected from all other classes and are com-
bined in one dataset having K x C samples, where C
is the number of classes.

(ii) For each of the 50 datasets we perform stratified
10-cross validation using the classifiers described in
Section 2.5 and we obtain the confusion matrix.

(iii) The mean of each entry of the confusion matrix is
calculated.

The measures used to evaluate the performance of the
different classifiers are the following.

(i) Confusion Matrix: A C x C matrix, where C is the
number of classes. The element ¢;; corresponds to the
instances of the class i which are classified as class
j. The diagonal elements ¢;; are the correct classified
instances.

(ii) Sensitivity per class: the fraction of correctly classified
instances of a class to the total number of instances
belonging to that class.

(iii) Specificity per class: the fraction of the correctly
classified instances for a class to the total number of
instances classified as the specific class.

(iv) Overall accuracy: the fraction of the total number of
correctly classified instances to the total number of
instances.

In Tables 4 and 5, we present the results for fatigue
and stress classification using three sets of features: (i) only
physiological features, (ii) physiological and video features,
and (iii) physiological, video, and environmental features.
In these tables the sensitivity and specificity per class, as
well as the total accuracy for all classifiers and feature sets

are given. For the two-class stress problem the information
provided is sufficient to evaluate the performance of the
classification. However for the three-class fatigue problem
a better insight is given through the confusion matrix of
the classification. From Tables 4 and 5, we observe that
SVM had the best performance in all feature sets for
classification of both states, whereas Naive Bayes classifier
had the worst (up to 12% lower accuracy compared to
SVM in some cases). In Table 4 we observe that the highest
accuracy for fatigue classification was obtained using the
full feature set (88% with SVM). When limited feature
sets are employed the difference is rather small (85% with
physiological features and 87% with physiological and video
features, both obtained using SVM). In Table 6 detailed
classification results (containing also the confusion matrix)
are given using the full set of features. It can be noticed that
the main source of misclassification is in the low fatigue class.
From Table 5, we observe that for stress classification the
incorporation of additional features, in contrast to fatigue
detection, significantly increased the obtained accuracy. The
78% accuracy obtained by physiological features climbs to
86% using physiological, video, and environment features.
In our analysis we also study the contribution of the
features to the classification results. As already described the
features used in our experiments come from physiological
signals, video monitoring of driver’s face, and environmental
information. As features are extracted from signals obtained
from different sensors, features can be grouped into five
groups each of them related to a specific sensor of the
experimental setting. Such an analysis can give a significant
insight for the importance of each sensor when building
a system for driver state monitoring. Physiological features
are grouped in features coming from RRYV, features coming
from EDA, and features coming from respiration. The other
two groups are the features from video and environmental
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Ficure 5: The percentage of accuracy reduction after removing
groups of features from the original feature set. RRV denotes
features that are extracted from the RRV signal, EDA features that
are extracted from the EDA signal, RESP features that are extracted
from respiration, and VIDEO features from video processing and
Environment for features indicating environmental conditions.

features, respectively. We then evaluate the contribution of
each group of features in the classification performance, with
the following procedure: (i) we perform the classification
with the whole feature set, (ii) we remove each group
of features and we measure the decrement in accuracy.
Removing a group of features, a reduction in accuracy is
expected, taking into account that the initial feature set is
considered as the optimal one. In Figure 5 the percentage of
accuracy reduction is given. In fatigue classification, a large
decrease in accuracy is observed removing RRV features,
whereas in stress classification no group has such a significant
impact in classification accuracy.

5. Study on the Impact of Fatigue on
Driving Performance

Our proposed methodology showed good performance even
in the detection of early stages of fatigue (low fatigue state).
In order to investigate whether these early fatigue stages are
worth recognizing, we performed a study to examine the
impact of driver’s fatigue levels on driving performance. The
goal of our study was to verify that the detected fatigue levels
are associated with the deterioration of driving performance.
A simulation environment was developed to measure driving
performance in terms of subject’s sensorimotor functions
(i.e., perception and reaction times). The simulation driving
world was based on the Microsoft XNA framework as it is
shown in Figure 6. The vehicle is controlled by the Logitech’s
Momo racing wheel. The subject was asked to focus on the
driving task, that is, keep the vehicle within the road lane and
avoid crashes with pedestrians which appeared unexpectedly

on the road, by pressing the brake pedal and stopping the
vehicle. From this primary task, measurements of steering
control and reaction times are monitored. In addition to
the primary driving task, a secondary task request is used
following the well-established PDT (Peripheral Detection
Task) technique [32]. During the experiments apart from
pedestrians, other objects (animals) randomly appeared
outside the roadway. Once the objects perceived, the subject
responded by pressing one of the control buttons of the
steering wheel, and the respective reaction time is measured.

The physiological signals monitored in the laboratory
experiments are similar to the ones measured during real-
world experiments (ECG, EDA, and respiration). The same
off-the-shelf equipment (Biopac MP-100) is used in this type
of experiments. In the laboratory testing, a single camera
is used to take video recordings from the driver’s face. The
same annotation method based on self-reporting, described
in Section 3, is followed. Furthermore, subjects were asked to
report the time they got awake and the hours of sleep.

The total number of sessions gathered is 24 and each
session duration is 12 minutes. From those sessions, 12
subjects were in normal state, 7 in low fatigue, and 6 in high
fatigue. Each session is split in two 5 intervals (the first and
the last minute are not taken into account).

The 12-minute duration of the experiments, does not
suffice to increase the fatigue level of a subject. Therefore,
the experiments were performed at different hours of day (or
night), ensuring that subjects experienced different fatigue
levels, based on their previous work effort and hours of sleep.
Furthermore, the environment, was quite calming in order
to reduce any potential work-related stress. Some useful
measures for driving performance are extracted, based on
the task involved in the experimental protocol. The first
category of measures involves the reaction time of the driver
both on primary and secondary tasks. The reaction time is
a good measure of subject’s alertness. In order to evaluate
the reaction time, the time passed from the moment that
the object appeared on the screen until the subject presses
the brake pedal (for the primary task) or the button (for
the secondary task) is measured. The association of the
fatigue levels with driving performance, is evaluated using
the following measures: mean and standard deviation of
reaction time on primary task, mean and standard deviation
of reaction time in secondary task, and standard deviation of
the vehicle position from the center of the lane. In Table 7,
the mean + standard deviation of the driving performance
measures, for normal, low, and high fatigue states are given,
as those are self-reported by the subject. The P value using
the hypothesis that driving performance is not better in
the normal state is also given. When the subject is in low
fatigue state, a significant decrease in driving performance
is observed, expressed in average reaction times for both
primary and secondary tasks. In the high fatigue state all
performance measures are significantly worse, as expected.
Our analysis verifies that changes in driver’s state that are
detected by our methodology do correspond to driving
performance changes.
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TaBLE 3: The correlation among features.
Physiological features Video features

F2 F3 F4 F5 Fo F7 F8 F9 F10  F11 F12 F13 Fl14 F15 V1 V2 V3 V4
F1 07 00 -04 05 -06 -06 -04 -0.7 -02 04 0.1 0.3 0.1 -02 00 -04 02 0.1
F2 00 -05 0.1 -04 -05 -04 -0.6 -03 0.0 0.0 0.0 00 -01 -01 =02 0.0 0.2
F3 0.3 0.1 0.0 0.0 0.0 00 -02 -02 -01 -01 -0.1 0.0 0.1 0.0 0.0 0.2
F4 -0.1 0.6 0.3 0.1 0.4 06 01 0.1 0.0 0.0 0.0 0.0 04 -0.1 0.0
F5 -07 -04 -02 -04 0.0 03 -01 04 0.1 0.0 01 -04 02 0.0
F6 0.5 0.2 0.5 03 -04 01 -03 -01 -0 0.0 07 -02 -0.1
F7 0.8 0.7 0r -02 -01 -01 00 -02 0.0 03 =01 -0.1
F8 0.4 00 -01 -01 =01 0.0 00 -01 01 =02 0.0
F9 0r -03 -01 -02 =01 =05 0.0 03 =02 0.0
F10 0.0 0.1 0.1 0.0 0.1 0.0 0.2 0.0 0.0
F11 -0.1 0.3 0.1 0.0 00 =02 0.1 0.0
F12 -0.1 0.0 0.1 -01 0.1 -01 0.0
F13 03 -01 01 -01 02 0.0
F14 0.0 0.1 0.0 0.0 0.1
F15 0.1 0.0 01 0.1
V1 0.2 05 -0.7
V2 0.0 0.2
V3 —-0.6

TaBLE 4: Results for the fatigue classification problem using three feature sets. For each classifier, the sensitivity (Sens.) and the specificity

(Spec.) per class are given as well as the total accuracy (Acc.).

Normal Low fatigue High fatigue

Sens. Spec. Sens. Spec. Sens. Spec. Acc.

SVM 0.87 0.82 0.71 0.81 0.96 0.90 0.85

. . Decision Trees 0.76 0.76 0.73 0.72 0.94 0.95 0.81

Physiological features

Naive Bayes 0.81 0.74 0.49 0.67 0.92 0.79 0.74

Bayes Classifier 0.88 0.74 0.50 0.74 0.94 0.83 0.77

Sens. Spec. Sens. Spec. Sens. Spec. Acc.

SVM 0.85 0.85 0.76 0.82 0.99 0.92 0.87

. . . Decision Trees 0.74 0.74 0.70 0.70 0.94 0.95 0.79
Physiological + video features )

Naive Bayes 0.70 0.83 0.63 0.64 0.92 0.78 0.75

Bayes Classifier 0.79 0.79 0.64 0.70 0.92 0.85 0.78

Sens. Spec. Sens. Spec. Sens. Spec. Acc.

SVM 0.89 0.87 0.79 0.84 0.96 0.92 0.88

. . . . Decision Trees 0.74 0.74 0.71 0.70 0.94 0.95 0.80
Physiological + video + environmental features )

Naive Bayes 0.70 0.86 0.65 0.64 0.92 0.79 0.76

Bayes Classifier 0.76 0.83 0.73 0.71 0.93 0.88 0.81

6. Discussion

In this work we presented a methodology for simultaneous
fatigue and stress detection in realistic driving conditions.
Our methodology follows three steps for the identification
of drivers state: (i) preprocessing and feature extraction, (ii)
feature selection, and (iii) classification. The information
used in our methodology comes from physiological signals,
video monitoring of the driver’s face, and environmental
conditions. From the large set of biosignals used in similar
studies, we have chosen to exploit only a small subset of
them (ECG, EDA, and respiration), having in mind that

the unobtrusive monitoring of the selected biosignals could
be feasible in professional or even commercial vehicles of
the near future. A large number of features was initially
extracted. Features are evaluated with respect to their
discrimination power of fatigue and stress states. The
best indicators of fatigue and stress are selected. Four
classifiers are used in order to evaluate the accuracy of the
proposed methodology using three different feature sets: (i)
physiological features, (ii) physiological and video features,
and (iii) physiological, video and environmental features.
Furthermore the contribution of each sensor on both stress
and fatigue classification is evaluated.
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F1GURE 6: The developed simulation environment.
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TaBLE 5: Results for the stress classification problem using three feature sets. For each classifier, the sensitivity (Sens.) and the specificity
(Spec.) per class are given as well as the total accuracy (Acc.).

Normal Stress

Sens. Spec. Sens. Spec. Acc.

SVM 0.79 0.78 0.78 0.79 0.78

. . Decision Trees 0.78 0.76 0.75 0.77 0.76
Physiological features )

Naive Bayes 0.79 0.63 0.54 0.72 0.66

Bayes Classifier 0.85 0.63 0.49 0.77 0.67

Sens. Spec. Sens. Spec. Acc.

SVM 0.80 0.90 0.91 0.82 0.86

Physiological + video features Dec1.510n Trees 0.80 0.81 0.81 0.80 0.81

Naive Bayes 0.82 0.71 0.66 0.79 0.74

Bayes Classifier 0.85 0.71 0.65 0.82 0.75

Sens. Spec. Sens. Spec. Acc.

SVM 0.88 0.85 0.84 0.88 0.86

. . . . Decision Trees 0.82 0.81 0.80 0.81 0.81
Physiological + video + environmental features )

Naive Bayes 0.85 0.76 0.74 0.83 0.79

Bayes Classifier 0.86 0.76 0.73 0.83 0.79
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TasLE 6: Confusion Matrix, Sensitivity (Sens.), and specificity (Spec.) for each class for the classification of normal (N), low fatigue (LF) and
high fatigue (HF) classes for the four classifiers and use of physiological, video, and environment features.

SVM Decision tree
N LF HF N LF HF

N 89.12 12.82 0.08 N 74.14 25.12 1.60
LF 10.88 78.90 3.86 LF 25.76 70.54 4.56
HF 0.00 8.28 96.06 HF 0.74 0.71 93.84
Acc. 0.88 Acc. 0.80

Class Sens. Spec. Class Sens. Spec.

N 0.89 0.87 N 0.74 0.74

LF 0.79 0.84 LF 0.71 0.70

HF 0.96 0.92 HF 0.94 0.95

Naive Bayes Bayes
N LF HF N L.F HF

N 69.54 11.40 0.00 N 75.84 15.06 0.00
LF 28.84 65.12 8.04 LF 23.24 72.86 7.20
HF 1.62 23.48 91.96 HF 0.92 12.08 92.80
Acc. 0.76 Acc. 0.81

Class Sens. Spec. Class Sens. Spec.

N 0.70 0.86 N 0.76 0.83

LF 0.65 0.64 LF 0.73 0.71

HF 0.92 0.79 HF 0.94 0.81

TaBLE 7: The mean =+ std of driving performance measures for normal, low and high fatigue states. The fourth and sixth columns are the P
values using the hypothesis that performance measures are significantly better (i.e., lower mean and std of reaction times) in normal state,

compared to low and high fatigue states, respectively.

Reaction time Normal (N = 22) Low fatigue (N = 14) P value High fatigue (N = 12) P value
Primary task mean RT 0.90 = 0.15 1.03 £0.18 0.0353 1.19 £ 0.24 0.0002
Secondary task mean RT 0.52 = 0.05 0.72 £ 0.23 0.0005 0.79 = 0.10 0.0000
Primary task std RT 0.12 £ 0.07 0.15 £ 0.11 0.3047 0.32£0.17 0.0000
Secondary task std RT 0.12 = 0.06 0.24 = 0.16 0.0019 0.25 = 0.07 0.0000
Std of position 0.62 = 0.11 0.70 = 0.14 0.0575 0.78 = 0.10 0.0003

Performing real-time monitoring of drivers physiological
activity is still quite difficult, since this requires special
sensor equipment attached to the driver, which in a real-
car application would raise a number of safety-related issues
concerning the obtrusive driver monitoring procedure. Some
research projects [33] addressed the implementation of
the unobtrusive driver monitoring paradigm, by collecting
biosignals from sensors embedded on the steering wheel or
adjusted on the driver’s seat. Although many approaches
on affective state recognition (either stress or fatigue) have
presented promising results in the field of biomedical and/or
other special applications, still they are not considered
suitable for an automotive application. In our work, from
the large group of biosignals used in similar studies,
we have chosen to exploit only a limited set of them
(ECG, EDA, respiration) and achieved comparable results
by incorporating additional information from driver’s face
video as well as the driving environment. However, direct
comparison with other methods is not feasible mainly for
two reasons. First because other methods focus merely on
the estimation of a single psycho-physiological state and

secondly because most relevant studies were performed on
a simulation environment. In our approach we followed a
quite different experimental protocol allowing us to address
(i) the simultaneous estimation of driver’s stress and fatigue
levels and (ii) the driver monitoring on real-life conditions.
Furthermore, we demonstrated, using a simulation environ-
ment, that detection of even earlier stages of fatigue, is of high
importance, since a significant deterioration in performance
is observed.

Concerning the performance of the employed classifiers,
SVM is the one presenting the best results in all classification
problems, followed by Decision trees and Bayesian classifier.
Naive Bayes had the worst accuracy. The reason for this,
as depicted in Table 3, is that the assumption of feature
independence does not hold, thus making Naive Bayes
classifier weak for all classification problems examined.

Classification using physiological features shows very
good performance (the highest accuracy 85% is obtained
using the SVM classifier). The incorporation of additional
features merely improves the initial results. In contrast,
removing RRV-related features, a 15.5% decrease in accuracy
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is observed (Figure 5). Using SVM classifier and physio-
logical and video features a 99% accuracy in high fatigue
classification is achieved. Considering that this state is more
related to driving performance and accident provocation
than the others, we consider that the success in the accurate
detection is crucial. We also notice that the main source
of misclassification is between the low fatigue class and the
other two classes (normal and high fatigue). This is expected
since the discrimination of fatigue in discrete levels is quite
abstract, given that fatigue is commonly considered as a
continuous variable. The discrimination of fatigue in classes
might cause errors due to annotation errors from the subject
who could misjudge his state. This problem is enhanced
considering the long duration of the experiments and thus
the probability of variation of the fatigue criteria as those are
defined by the subjects.

Stress classification was expected to be more difficult,
since no features, proved to sufficiently discriminate stress
levels. Using only physiological signals, a 78% accuracy is
obtained with SVM classifier. The incorporation of addi-
tional information, increases significantly the accuracy of all
classifiers (the highest accuracy of 86% is obtained using the
SVM classifier). Furthermore, we observe in Figure 5 that no
group of variables has a very good discrimination power, thus
concluding that a reliable system for stress detection must be
based on the fusion of several information sources.

As a great number of features can be extracted from
physiological signals, an important step in our methodology
is feature selection. In Figure 4, we observe that the mean
RR (F1) and the std of RR (F2) are very good discrimina-
tors for fatigue levels, while more complex RRV features
(DFA, approximate entropy and Lyapunov exponents) lack
discrimination power. However, those features are more
used in medical applications, extracted from long recordings
and are related to problematic heart function [34, 35]. For
within individual variations, simple RRV characteristics have
proved to be rather informative [11]. Respiration rate which
is highly correlated with heart rate, as well as EDA features
are also good indicators of fatigue. From video features,
std of eye activation (V2) and PERCLOS (V4) are the best
fatigue indicators, especially in discriminating high fatigue.
The relation of PERCLOS with late stages of fatigue is well
established in the literature. Regarding stress, mean RR (F1),
LF/HF ratio (F6) and the ratio of heart rate to respiration
rate (F15) are the best indicators among the physiological
features, but still their discrimination power is not so high. A
possible explanation for this, may be the low impact of stress
on the physiological signals compared to that of circadian
rhythm. From video features, the standard deviation of
head movement (V3) was the best stress indicator. Still,
since the head movement is a behavioural parameter, the
correlation of this feature with stress is expected to vary
significantly between individuals. Environmental conditions
were expected to be rather correlated with stress levels. From
the examined driving environment variables, only weather
conditions did have a contribution to stress classification.

It should be noted that in this work a single subject is
monitored during ordinary work days, without any restric-
tions related to sleep hours or external stimuli. The driver
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experiences a number of different conditions, both from the
physiological aspect as well as from the environmental point
of view. We therefore consider that this study truly depicts the
actual physiological status of the particular subject during
driving. This work indicated also that the estimation of
low fatigue, as a predecessor of higher fatigue levels (e.g.,
drowsiness) is plausible. A future work could focus on the
identification of even earlier stages, which can hardly be self-
recognized. In such a case the presence of external human
factor experts and/or accurate performance measures are a
prerequisite for annotation purposes.

7. Conclusions

We presented a methodology for simultaneous detection of
driver’s fatigue and stress levels. Our methodology employs
three types of information: (i) physiological features, (ii)
video features from driver’s face monitoring, and (iii) driving
environment information. Our methodology proved to
provide very good results (i.e., accuracy 88% for fatigue and
86% for stress). Fatigue can be estimated with high accuracy
(85%) using only physiological features. This is not the case
for stress, where the incorporation of additional information
increases the accuracy by 8%. Especially in high fatigue
detection, which is more related to driving impairment, the
obtained sensitivity is 99% and the specificity 92%, which
indicate very good identification. A study on the impact of
fatigue on driving performance confirms that the detection
of driver state achieved with our methodology can contribute
to early detection of driving impairment.
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