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We analyze and review cosmological models in which the dynamics of a single scalar field accounts for a unified description
of the Dark Matter and Dark Energy sectors, dubbed Unified Dark Matter (UDM) models. In this framework, we consider the
general Lagrangian of k-essence, which allows to find solutions around which the scalar field describes the desired mixture of Dark
Matter and Dark Energy. We also discuss static and spherically symmetric solutions of Einstein’s equations for a scalar field with
noncanonical kinetic term, in connection with galactic halo rotation curves.

1. Introduction

In the last few decades a standard cosmological “Big Bang”
model has emerged, based on Einstein’s theory of gravity,
General Relativity. Indeed, observations tell us that—by
and large—the Universe looks the same in all directions,
and it is assumed to be homogeneous on the basis of the
“Cosmological Principle”, that is, a cosmological version of
the Copernican principle. The request for the Universe to
be homogeneous and isotropic translates, in the language
of space-time, in a Robertson-Walker metric. Assuming the
latter, Einstein equations simplify, becoming the Friedmann
equations, and in general the solutions of these equations
are called Friedmann-Lemaitre-Robertson-Walker (FLRW)
models. The cosmological inhomogeneities we observe
on the largest scales as tiny anisotropies of the Cosmic
Microwave Background (CMB) are then well explained by
small relativistic perturbations of these FLRW “background”
models, while on smaller scales the inhomogeneities are
larger and call for nonlinear dynamics, but relativistic
effects are negligible and Newtonian dynamics is sufficient
to explain the formation of the structures we see, that
is, galaxies, groups, and clusters forming the observed
“cosmic web”. In this context, last decade’s observations
of large-scale structure, search for Ia supernovae (SNIa)
[1–4], and measurements of the CMB anisotropies [5, 6]

suggest that two dark components govern the dynamics of
the Universe. They are the dark matter (DM), thought to
be the main responsible for structure formation, and an
additional dark energy (DE) component that is supposed
to drive the measured cosmic acceleration [7, 8]. However,
the DM particles have not yet been detected in the lab,
although there are hints for their existence from cosmic rays
experiments [9–11], and there is no theoretical justification
for the tiny cosmological constant [12] (or more general
DE component [7, 8]) implied by observations (see also
[13]). Therefore, over the last decade, the search for extended
theories of gravity has flourished as a possible alternative
to DE [7, 8]. At the same time, in the context of General
Relativity, it is very interesting to study the possibility of an
interaction between Dark Matter and Dark Energy without
violating current observational constraints [7, 8, 14–19]
(see also [20]). This possibility could alleviate the so-called
“coincidence problem”, namely, why are the energy densities
of the two dark components of the same order of magnitude
today. Another more radical explanation of the observed
cosmic acceleration and structure formation is to assume the
existence of a single dark component: Unified Dark Matter
(UDM) models; see, for example, [21–50] (see also [51–55]
on how to unify DM, DE, and inflation, [56] on unification
of DM and DE in the framework of supersymmetry, [57–
60] on unification of DM and DE from the solution of the
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strong CP-problem, [61, 62] on unification of DM and DE in
connection with chaotic scalar field solutions in Friedmann-
Robertson-Walker cosmologies, [63–65] on how to unify
dark energy and dark matter through a complex scalar
field, and [66–68] on a study of a scalar field, “Cosmos
Dark Matter”, that induces a time-dependent cosmological
constant).

In comparison with the standard DM + DE models
(e.g., even the simplest model, with DM and a cosmological
constant), these models have the advantage that we can
describe the dynamics of the Universe with a single scalar
field which triggers both the accelerated expansion at late
times and the LSS formation at earlier times. Specifically, for
these models, we can use Lagrangians with a noncanonical
kinetic term, namely, a term which is an arbitrary function
of the square of the time derivative of the scalar field, in the
homogeneous and isotropic background.

Originally this method was proposed to have inflation
driven by kinetic energy, called k-inflation [69, 70], to
explain early Universe’s inflation at high energies. Then
this scenario was applied to DE [71–73]. In particular, the
analysis was extended to a more general Lagrangian [74, 75]
and this scenario was called k-essence (see also [71, 73, 76–
86]).

For UDM models, several adiabatic or, equivalently,
purely kinetic models have been investigated in the literature,
for example, the generalised Chaplygin gas [22–24] (see
also [25, 27–29, 87–94]), the Scherrer [30] and generalised
Scherrer solutions [33], the single dark perfect fluid with
“affine” 2-parameter barotropic equation of state (see [37,
39] and the corresponding scalar field models [36]), and
the homogeneous scalar field deduced from the galactic halo
space-time [34, 95]. In general, in order for UDM models to
have a background evolution that fits observations and a very
small speed of sound, a severe fine-tuning of their parameters
is necessary (see, e.g., [25, 27–31, 39, 96]). Finally, one could
also easily reinterpret UDM models based on a scalar field
Lagrangian in terms of generally nonadiabatic fluids [97, 98]
(see also [33, 38]). For these models the effective speed
of sound, which remains defined in the context of linear
perturbation theory, is not the same as the adiabatic speed of
sound (see [70, 99, 100]). In [38] a reconstruction technique
is devised for the Lagrangian, which allows to find models
where the effective speed of sound is small enough, such that
the k-essence scalar field can cluster (see also [41, 46, 48–
50]).

One of the main issues of these UDM models is whether
the single dark fluid is able to cluster and produce the cosmic
structures we observe in the Universe today. In fact, a general
feature of UDM models is the appearance of an effective
sound speed, which may become significantly different from
zero during the evolution of the Universe. In general, this
corresponds to the appearance of a Jeans length (or sound
horizon) below which the dark fluid does not cluster. Thus,
the viability of UDM models strictly depends on the value
of this effective sound speed [70, 99, 100], which has to be
small enough to allow structure formation [27, 31, 32] and
to reproduce the observed pattern of the CMB temperature
anisotropies [25, 32].

In general, in order for UDM models to have a very
small speed of sound and a background evolution that fits
the observations, a severe fine tuning of their parameters
is necessary. In order to avoid this fine tuning, alternative
models with similar goals have been analyzed in the lit-
erature. The work in [44] studied in detail the functional
form of the Jeans scale in adiabatic UDM perturbations
and introduced a class of models with a fast transition
between an early Einstein-de Sitter cold DM-like era and
a later ΛCDM-like phase. If the transition is fast enough,
these models may exhibit satisfactory structure formation
and CMB fluctuations, thus presenting a small Jeans length
even in the case of a nonnegligible sound speed. The work
in [45] explored unification of DM and DE in a theory
containing a scalar field of non-Lagrangian type, obtained by
direct insertion of a kinetic term into the energy-momentum
tensor. Finally, [47] introduced a class of field theories where
it comprises two scalar fields, one of which is a Lagrange
multiplier enforcing a constraint between the other’s field
value and derivative in order to have the sound speed always
identically zero on all backgrounds.

This work is organized as follows. In Section 2, consider-
ing the general Lagrangian of k-essence models, we layout
the basic equations. In Section 3 we present an analytical
study of the Integrated Sachs-Wolfe (ISW) effect within the
framework of UDM. Computing the temperature power
spectrum of the Cosmic Microwave Background anisotropies
one is able to isolate those contributions that can potentially
lead to strong deviations from the usual ISW effect occurring
in a ΛCDM Universe. This helps to highlight the crucial role
played by the sound speed in the unified dark matter models.
Our treatment is completely general in that all the results
depend only on the speed of sound of the dark component
and thus it can be applied to a variety of unified models,
including those which are not described by a scalar field
but relies on a single dark fluid; see also [32]. In Section 4
we study and classify UDM models defined by the purely
kinetic model. We show that these models have only one
late-time attractor with equation of state equal to minus
one (cosmological constant), studying all possible solutions
near the attractor which describes a unified dark matter
fluid; see also [33]. Subsequently, noting that purely kinetic
models can be described as adiabatic single fluid, for these
Lagrangians it is natural to give a graphical description on
pressure—energy density plane (see also [44]). In Section 5,
we present the simplest case of a scalar field with canonical
kinetic term which unavoidably leads to an effective sound
speed equal to the speed of light. In Section 6, making
the stronger assumption that the scalar field Lagrangian is
exactly constant along solutions of the equation of motion,
we find a general class of k-essence models whose classical
trajectories directly describe a unified Dark Matter/Dark
Energy (cosmological constant) fluid. In particular we con-
sider more general models that allow for the possibility that
the speed of sound is small during Einstein-de Sitter CDM-
like era. In Section 7, we investigate the class of UDM models
studied in [38], which designed a reconstruction technique
of the Lagrangian, allowing one to find models where the
effective speed of sound is small enough, and the k-essence
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scalar field can cluster (see also [41, 46, 48, 50]). In particular,
the authors of [38] require that the Lagrangian of the scalar
field is constant along classical trajectories on cosmological
scales, in order to obtain a background identical to the
background of the ΛCDM model. In Section 8, we develop
and generalize the approach studied in [38]. Specifically, we
focus on scalar-field Lagrangians with non-canonical kinetic
term to obtain UDM models that can mimic a fluid of dark
matter and quintessence-like dark energy, with the aim of
studying models where the background does not necessarily
mimic the ΛCDM background; see also [49]. In Section 9,
we investigate the static and spherically symmetric solutions
of Einstein’s equations for a scalar field with non-canonical
kinetic term, assumed to provide both the dark matter and
dark energy components of the Universe; see also [34]. We
show that there exist suitable scalar field Lagrangians that
allow to describe the cosmological background evolution and
the static solutions with a single dark fluid. In Section 10,
we draw our main conclusions. Finally, in the appendix,
for completeness we provide the spherical collapse top-hat
solution for UDM models based on purely kinetic scalar
eld Lagrangians, which allow us to connect the cosmological
solutions to the static configurations.

2. Unified Dark Matter Scalar Field Models

We start recalling the main equations which are useful for the
description of most the UDM models within the framework
of k-essence.

Consider the action

S = SG + Sϕ =
∫
d4x

√−g
[
R

2
+ L

(
ϕ,X

)]
, (1)

where

X = −1
2
∇μϕ∇μϕ, (2)

where the symbol ∇ denotes covariant differentiation. We
adopt 8πG = c2 = 1 units and the (−, +, +, +) signature
for the metric (Greek indices run over spacetime dimensions,
while Latin indices label spatial coordinates).

The stress-energy tensor of the scalar field ϕ has the
following form:

T
ϕ
μν = − 2√−g

δSϕ
δgμν

= ∂L
(
ϕ,X

)
∂X

∇μϕ∇νϕ + L
(
ϕ,X

)
gμν, (3)

and its equation of motion reads

∇μ

⎡
⎣ ∂L

∂
(
∂μϕ

)
⎤
⎦ = ∂L

∂ϕ
. (4)

If X is time like, then Sϕ describes a perfect fluid T
ϕ
μν =

(ρ + p)uμuν + pgμν, where the pressure is

L = p
(
ϕ,X

)
, (5)

and the energy density is

ρ = ρ
(
ϕ,X

) = 2X
∂p
(
ϕ,X

)
∂X

− p
(
ϕ,X

)
. (6)

The four-velocity has the following form:

uμ =
∇μϕ√

2X
. (7)

Assume a flat, homogeneous Friedmann-Lemaı̂tre-Robert-
son-Walker (FLRW) background metric, that is,

ds2 = −dt2 + a(t)2δi jdx
idx j = a

(
η
)2
(
−dη2 + δi jdx

idx j
)

,

(8)

where a(t) is the scale factor, δi j denotes the unit tensor, and
η is the conformal time.

Assuming that the energy density of the radiation is
negligible at the times of interest, and disregarding also
the small baryonic component the background evolution of
the Universe is completely characterised by the following
equations:

H2 = a2H2 = 1
3
a2ρ,

H ′ −H2 = a2Ḣ = −1
2
a2(p + ρ

)
,

(9)

where H = a′/a and H = ȧ/a. (Indeed the density of baryons
relative is about 4.5% today and 16.9% prior to Dark Energy
domination in the standard cosmological model [5, 6].) The
dot denotes differentiation with respect to the cosmic time
t whereas a prime denotes differentiation wrt the conformal
time η.

In the background we have that X = ϕ̇2/2 = ϕ′2/(2a2),
and therefore the equation of motion (4) for the homoge-
neous mode ϕ(t) becomes

(
∂p

∂X
+ 2X

∂2p

∂X2

)
ϕ̈ +

∂p

∂X

(
3Hϕ̇

)
+

∂2p

∂ϕ∂X
ϕ̇2 − ∂p

∂ϕ
= 0. (10)

An important quantity is the Equation of State (EoS)
parameter w ≡ p/ρ, which in our case reads

w = p

2X
(
∂p/∂X

)− p
. (11)

We mainly focus on the other relevant physical quantity,
the speed of sound, which enters in governing the evolution
of the scalar field perturbations. Consider small inhomo-
geneities of the scalar field, that is,

ϕ(t, x) = ϕ0(t) + δϕ(t, x), (12)

and write the perturbed FLRW metric in the longitudinal
gauge as

ds2 = −(1 + 2Φ)dt2 + (1− 2Φ)a(t)2δi jdx
idx j , (13)
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being δT
j
i = 0 for i /= j [101]. The linearised (0−0) and (0−i)

Einstein equations are (see [70, 100])

δTϕ 0
0 = δρ = ∂ρ

∂φ
δφ +

∂ρ

∂X
δX

= p + ρ

c2
s

[(
δϕ

ϕ′0

)′
+ H

δϕ

ϕ′0
−Φ

]
− 3H

(
p + ρ

)δϕ
ϕ′0

,

δTϕ 0
i =

(
p + ρ

)(δϕ
ϕ′0

)
,i

,

(14)

where one defines a “speed of sound” c2
s relative to the

pressure and energy density fluctuation of the kinetic term
[70] as follows:

c2
s ≡

∂p/∂X

∂ρ/∂X
= ∂p/∂X(

∂p/∂X
)

+ 2X
(
∂2p/∂X2

) . (15)

From the above linearized Einstein’s equations one obtains
[70, 100]

∇2Φ = 1
2
a2
(
p + ρ

)
c2

s H

(
H

δϕ

ϕ′0
+ Φ

)′
,

(
a2 Φ

H

)′
= 1

2
a2
(
p + ρ

)
H2

(
H

δϕ

ϕ′0
+ Φ

)
.

(16)

Equation (16) is sufficient to determine the gravitational
potential Φ and the perturbation of the scalar field. It is
useful to write explicitly the perturbed scalar field as a
function of the gravitational potential:

δϕ

ϕ′0
= 2

Φ′ + HΦ

a2
(
p + ρ

) . (17)

Defining two new variables

u ≡ 2
Φ(

p + ρ
)1/2 , (18a)

v ≡ z

(
H

δϕ

ϕ′0
+ Φ

)
, (18b)

where z = a2(p + ρ)1/2/(csH), we can recast (16) in terms of
u and v [100]:

cs∇2u = z
(
v

z

)′
, csv = θ

(
u

θ

)′
, (19)

where θ = 1/(csz) = (1 + p/ρ)−1/2/(
√

3a). Starting from (19)
we arrive at the following second-order differential equations
for u [100]:

u′′ − c2
s∇2u− θ′′

θ
u = 0. (20)

Unfortunately, we do not know the exact solution for a
generic Lagrangian. However, we can consider the asymp-
totic solutions, that is, the long-wavelength and the short-
wavelength perturbations, depending whether c2

s k
2� |θ′′/θ|

or c2
s k

2 � |θ′′/θ|, respectively.

Starting from (20), let us define the squared Jeans wave
number [32]:

k2
J :=

∣∣∣∣∣
θ′′

c2
s θ

∣∣∣∣∣. (21)

Its reciprocal defines the squared Jeans length: λ2
J � a2/k2

J .
There are two regimes of evolution. If k2 � k2

J and the
speed of sound is slowly varying, then the solution of (20) is

u � C√
cs

exp
(
±ik

∫
csdη

)
, (22)

where C is an appropriate integration constant. ( This
solution is exact if the speed of sound satisfies the equation
2c′′s cs − 3(c′s)

2 = 0, which implies cs = 4/(c1 η + c2)2, where
c1 and c2 are generic constants. A particular case is when
c1 = 0, for which the speed of sound is constant.) On
these scales, smaller than the Jeans length, the gravitational
potential oscillates and decays in time, with observable effects
on both the CMB and the matter power spectra [32].

For large scale perturbations, when k2 � k2
J , (20) can be

rewritten as u′′/u � θ′′/θ, with general solution:

u � κ1θ + κ2θ
∫
dη

θ2
. (23)

In this large-scale limit the evolution of the gravitational
potential Φ depends only on the background evolution,
encoded in θ; that is, it is the same for all k modes. The first
term κ1θ is the usual decaying mode, which we are going
to neglect in the following, while κ2 is related to the power
spectrum; see, for example, [100].

A general feature of UDM models is the possible
appearance of an effective sound speed, which may become
significantly different from zero during the Universe evolu-
tion, then corresponding in general to the appearance of a
Jeans length (i.e., a sound horizon) below which the dark
fluid does not cluster (e.g., see [32, 39, 99]). Moreover, the
presence of a nonnegligible speed of sound can modify the
evolution of the gravitational potential, producing a strong
Integrated Sachs Wolfe (ISW) effect [32]. Therefore, in UDM
models it is crucial to study the evolution of the effective
speed of sound and that of the Jeans length. In other words,
one would conclude that any UDM model should satisfy the
condition that k2

J � k2 for all scales of cosmological interest,
in turn giving an evolution for the gravitational potential Φ
as in (23):

Φk � Ak

(
1− H

a

∫
a2dη

)
, (24)

where Ak = Φk(0)Tm(k), Φk(0) is the primordial gravita-
tional potential at large scales, set during inflation, andTm(k)
is the matter transfer function; see, for example, [102].

Therefore the speed of sound plays a major role in the
evolution of the scalar field perturbations and in the growth
of the over-densities. If cs is significantly different from zero,
it can alter the evolution of density of linear and nonlinear
perturbations [99]. When cs becomes large at late times,
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this leads to strong deviations from the usual ISW effect of
ΛCDM models [32].

In the next section we will perform an analytical study
of the Integrated Sachs-Wolfe (ISW) effect within the
framework of Unified Dark Matter models based on a scalar
field which aim at a unified description of dark energy and
dark matter. Computing the angular power spectrum of the
Cosmic Microwave Background temperature anisotropies,
we are able to isolate those contributions that can potentially
lead to strong deviations from the usual ISW effect occurring
in a ΛCDM universe. This helps to highlight the crucial role
played by the sound speed in the unified dark matter models.

3. Analytical Approach to the ISW Effect

In this section we focus on the contribution to the large-
scale CMB anisotropies which is due to the evolution in
time of the gravitational potential from the epoch of last
scattering up to now, the so-called late Integrated Sachs-
Wolfe (ISW) effect [103]. Through an analytical approach we
point out the crucial role of the speed of sound in the unified
dark matter models in determining strong deviations from
the usual standard ISW occurring in the ΛCDM models.
Our treatment is completely general in that all the results
depend only on the speed of sound of the dark component
and thus it can be applied to a variety of models, including
those which are not described by a scalar field, but relies
on a single perfect dark fluid. In the case of ΛCDM models
the ISW is dictated by the background evolution, which
causes the late time decay of the gravitational potential when
the cosmological constant starts to dominate [104]. In the
case of the unified models there is an important aspect to
consider: from the last scattering to the present epoch, the
energy density of the Universe is dominated by a single
dark fluid, and therefore the gravitational potential evolution
is determined by the background and the perturbation
evolution of just such a fluid. As a result the general trend
is the appearance of a sound speed significantly different
from zero at late times corresponding to the appearance of
a Jeans length (or a sound horizon) under which the dark
fluid does not cluster any more, causing a strong evolution in
time of the gravitational potential (which starts to oscillate
and decay) and thus a strong ISW effect. Our results show
explicitly that the CMB temperature power spectrum C�

for the ISW effect contains some terms depending on the
speed of sound which give a high contribution along a wide
range of multipoles �. As the most straightforward way to
avoid these critical terms one can require the sound speed
to be always very close to zero. Moreover we find that such
strong imprints from the ISW effect come primarily from the
evolution of the dark component perturbations, rather than
from the background expansion history.

The ISW contribution to the CMB power spectrum is
given by

2l + 1
4π

CISW
l = 1

2π2

∫∞
0

dk

k
k3

∣∣∣ΘISW
l (η0, k)

∣∣∣2

2l + 1
, (25)

where ΘISW
l is the fractional temperature perturbation due to

ISW effect:

ΘISW
l

(
η0, k

)
2l + 1

= 2
∫ η0

η∗
Φ′(η̃, k

)
jl
[
k
(
η0 − η̃

)]
dη̃, (26)

with η0 and η∗ being the present and the last scattering
conformal times, respectively, and jl are the spherical Bessel
functions. Let us now evaluate analytically the power spec-
trum (25). As a first step, following the same procedure of
[104], we notice that, when the acceleration of the Universe
begins to be important, the expansion time scale η1/2 =
η(w = −1/2) sets a critical wavelength corresponding to
kη1/2 = 1. It is easy to see that if we consider the ΛCDM
model, then η1/2 = ηΛ, that is, when aΛ/a0 = (Ω0/ΩΛ)1/3

[104]. Thus at this critical point we can break the integral
(25) in two parts [104]:

2l + 1
4π

CISW
l = 1

2π2

[
IΘl

(
kη1/2 < 1

)
+ IΘl

(
kη1/2 > 1

)]
, (27)

where

IΘl

(
kη1/2 < 1

) ≡
∫ 1/η1/2

0

dk

k
k3

∣∣∣ΘISW
l (η0, k)

∣∣∣2

2l + 1
, (28)

IΘl

(
kη1/2 > 1

) ≡
∫∞

1/η1/2

dk

k
k3

∣∣∣ΘISW
l (η0, k)

∣∣∣2

2l + 1
. (29)

As explained in [104] the ISW integrals (26) take on different
forms in these two regimes:

Θl ISW
(
η0, k

)
2l + 1

= 2ΔΦk jl
[
k
(
η0 − η1/2

)]
, kη1/2 � 1 (30a)

= 2Φ′
k

(
ηk
)
Il

k
, kη1/2 � 1, (30b)

where ΔΦk is the change in the potential from the matter-
dominated (e.g., at recombination) to the present epoch η0

and ηk � η0 − (l + 1/2)/k is the conformal time when
a given k-mode contributes maximally to the angle that
this scale subtends on the sky, obtained at the peak of the
Bessel function j� . The first limit in (30a) is obtained by
approximating the Bessel function as a constant evaluated
at the critical epoch η1/2. Since it comes from perturbations
of wavelengths longer than the distance, a photon can travel
during the time η1/2, a kick (2ΔΦk) to the photons is the
main result, and it will correspond to very low multipoles,
since η1/2 is very close to the present epoch η0. It thus
appears similar to a Sachs-Wolfe effect (or also to the early
ISW contribution). The second limit in (30b) is achieved by
considering the strong oscillations of the Bessel functions
in this regime, and thus evaluating the time derivative of
the potentials out of the integral at the peak of the Bessel
function, leaving the integral [104]

Il ≡
∫∞

0
jl
(
y
)
dy =

√
π

2
Γ[(l + 1)/2]
Γ[(l + 2)/2]

. (31)
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With this procedure, replacing (30a) in (28) and (30b) in (29)
we can obtain the ISW contribution to the CMB anisotropies
power spectrum (25).

Now we have to calculate, through (22)-(23) and (2.21),
the value of Φ(k,η) for kη1/2 � 1 and kη1/2 � 1. As we will
see that main differences (and the main difficulties) of the
unified dark matter models with respect to the ΛCDM case
will appear from the second regime of (30a)-(30b).

3.1. Derivation of IΘl for Modes kη1/2 < 1. In the UDM
models when kη1/2 � 1, then c2

s k
2 � |θ′′/θ| is always

satisfied. This is due to the fact that before the dark fluid
starts to behave dominantly as a cosmological constant,
for η < η1/2, its sound speed generically is very close to
zero in order to guarantee enough structure formation, and
moreover the limit kη1/2 � 1 involves very large scales
(since η1/2 is very close to the present epoch). For the
standard ΛCDM model the condition is clearly satisfied. In
this situation we can use the relation (23) and Φk can be
expressed as in (24). The integral in (24) may be written as
follows:

∫ η

ηi
a2(η̃)dη̃ = IR +

∫ η

ηR
a2(η̃)dη̃, (32)

where IR = ∫ ηR
ηi a2(η̃)dη̃ and ηR is the conformal time at

recombination. When ηi < η < ηR, the UDM models behave
as dark matter. (In fact the Scherrer [30] and generalized
Scherrer solutions [33] in the very early Universe, much
before the equality epoch, have cs /= 0 and w > 0. However
at these times the dark fluid contribution is subdominant
with respect to the radiation energy density and thus there
is no substantial effect on the following equations.) In this
temporal range the Universe is dominated by a mixture of
“matter” and radiation and IR = η∗aeq[(ξ5

R/5)+ξ4
R+(4ξ3

R/3)],
where aeq is the value of the scalar factor at matter-radiation
equality, ξ = η/η∗ and η∗ = (ρeqa2

eq/24)−1/2 = ηeq/(
√

2− 1).
With these definitions it is easy to see that aR = aeq(ξ2

R +
2ξR). Notice that (24) is obtained in the case of adiabatic
perturbations. Since we are dealing with UDM models based
on a scalar field, there will always be an intrinsic nonadiabatic
pressure (or entropic) perturbation. However for the very
long wavelengths, kη1/2 � 1, under consideration here such
an intrinsic perturbation turns out to be negligible [70]. For
adiabatic perturbations Φk(ηR) ∼= (9/10)Φk(0) [101] and
accounting for the primordial power spectrum, k3|Φk(0)|2 =
Bkn−1, where n is the scalar spectral index, we get from (30a)

IΘl

(
kη1/2 < 1

) ≈ 4(2l + 1)B
∫ 1/η1/2

0

dk

k
kn−1 j2l

[
k
(
η0 − η1/2

)]

×
∣∣∣∣∣

1
10
− H(η0)

a2(η0)

[∫ η0

ηR
a2(η̃)dη̃

]∣∣∣∣∣
2

,

(33)

where we have neglected IR since it gives a negligible
contribution.

A first comment is in order here. There is a vast class
of UDM models that are able to reproduce exactly the same

background expansion history of the Universe as the ΛCDM
model (at least from the recombination epoch on wards). For
such cases it is clear that the low � contribution (33) to the
ISW effect will be the same that is predicted by the ΛCDM
model. This is easily explained considering that for such long
wavelength perturbations the sound speed in fact plays no
role.

3.2. Derivation of IΘl for Modes kη1/2 > 1. As we have already
mentioned in the previous section, in general a viable UDM
must have a sound speed very close to zero for η < η1/2 in
order to behave as dark matter also at the perturbed level to
form the structures we see today, and thus the gravitational
potential will start to change in time for η > η1/2. Therefore
for the modes kη1/2 > 1, in order to evaluate (30b) into (29)
we can impose that ηk > η1/2 which, from the definition of
ηk � η0 − (l + 1/2)/k, moves the lower limit of (29) to (l +
1/2)/(η0 − η1/2). Moreover we have that η1/2 ∼ η0. We can
use this property to estimate any observable at the value of
ηk. Defining χ = η/η1/2, and κ = kη1/2, we have ak = a(ηk) =
a(χk) = a0 + (da/dχ)|χ0δχk = 1 − η1/2H0(l + 1/2)/κ, taking
a0 = 1, and

dΦk

dχ
(χk) = η1

2

Φ′(ηk) = dΦk

dχ

∣∣∣∣∣
χ0

− d2Φk

dχ2

∣∣∣∣∣
χ0

(
l + 1/2

κ

)
,

(34)

where δχk = χk − χ0 = (ηk − η0)/η1/2 = −(l + 1/2)/κ. Notice
that the expansion (34) is fully justified, since as, already
mentioned above, the minimum value of κ in (29) moves to
(l+1/2)/(η0/η1/2−1), making δχk much less than 1. Therefore
we can write

∣∣Θl ISW(η0, k)
∣∣2

(2l + 1)2

= 4

∣∣∣∣∣
Φ′

k(ηk)Il
k

∣∣∣∣∣
2

= 4I2
l

κ2

∣∣∣∣∣
dΦk

dχ
(χk)

∣∣∣∣∣
2

= 4I2
l

κ2

⎡
⎣
∣∣∣∣∣
dΦk

dχ
(χ0)

∣∣∣∣∣
2

− 2
dΦk

dχ
(χ0)

d2Φk

dχ2
(χ0)

×
(
l + 1/2

κ

)∣∣∣∣∣
d2Φk

dχ2
(χ0)

∣∣∣∣∣
2(

l + 1/2
κ

)2
⎤
⎦.

(35)

In this case, during η1/2 < η < η0, there will be perturbation
modes whose wavelength stays bigger than the Jeans length or
smaller than it; that is, we have to consider both possibilities
c2
s k

2 � |θ′′/θ| and c2
s k

2 � |θ′′/θ|. In general the sound
speed can vary with time, and in particular it might become
significantly different from zero at late times. However, just as
a first approximation, we exclude the intermediate situation
because usually η1/2 is very close to η0 (see also [32]).

3.2.1. Perturbation Modes on Scales Bigger than the Jeans
Length. We can see that for n ∼ 1 and for l � 1 the
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contribution to the angular power spectrum from the modes
under consideration is

l(l + 1)
4π

CISW
l = l(l + 1)

IΘl

(
kη1/2 > 1

)
2π2(2l + 1)

∼ 1
l
. (36)

In other words we find a similar slope as found for the
ΛCDM model in [104, 105]. Recalling the results of the
previous section, this means that in UDM models the
contribution to the ISW effect from those perturbations
that are outside the Jeans length is very similar to the one
produced in a ΛCDM model. The main difference on these
scales will be present if the background evolution is different
from the one in the ΛCDM model, but for the models where
the background evolution is the same, as those proposed in
[30, 33, 36, 106, 107] no difference can be observed.

3.2.2. Perturbation Modes on Scales Smaller than the Jeans
Length. When c2

s k
2 � |θ′′/θ|, one must use the solution

(22) and through the relation (18a) the gravitational poten-
tial is given by

Φk
(
η
) = 1

2

[
(p + ρ)/cs

]1/2(
η
)
Ck
(
η1/2

)
cos

(
k
∫ η

η1/2

cs
(
η̃
)
dη̃

)
.

(37)

In (37) Ck(η1/2) = Φk(0)C1/2 is a constant of integration
where

C1/2 = 2

[
1− ((H(

η1/2
))
/
(
a2
(
η1/2

)))(
IR +

∫ η1/2

ηR a2
(
η̃
)
dη̃
)]

[
(p + ρ)/cs

]1/2(
η1/2

) ,

(38)

and it is obtained under the approximation that for η < η1/2

one can use the longwavelength solution (24), since for these
epochs the sound speed must be very close to zero. Notice
that (37) shows clearly that the gravitational potential is

oscillating and decaying in time. Defining C
2 = C2

1/2[(p +
ρ)/cs](η0)/4, we take the time derivative of the gravitational
potential appearing in (30b) by employing the expansion of
(35). We thus find that, for cs ∼ 1, (29) yields the potentially
most dangerous term:

IΘl

(
kη1/2 > 1

)
2l + 1

∼ 4C
2
BI2

l η
n−1
1/2

{
4c4

s

∣∣
χ0

(
l +

1
2

)2

×
[∫∞

(l+1/2)/(χ0−1)

dκ

κ
κn−1cos2(D0κ)

]}
,

(39)

with D0 = ∫ χ0

1 cs(χ̃)dχ̃. Such a term makes the angular
power spectrum l(l + 1)Cl to scale as l3 until l ≈ 25. This
angular scale is obtained by considering the peak of the
Bessel functions in correspondence of the cutoff scale keq,
l ≈ keq(η0 − η1/2). In fact, for smaller scales, l(l + 1)Cl will
decrease as 1/�. This is due to a natural cut-off in the various

integrals which is introduced for those modes that enter the
horizon during the radiation dominated epoch, due to the
Meszaros effect that the matter fluctuations will suffer until
the full matter domination epoch. Such a cut-off will show
up in the gravitational potential and in the various integrals
of (39) as a (keq/k)4 factor, where keq is the wavenumber of
the Hubble radius at the equality epoch.

3.3. Discussion of Some Examples. Most UDM models have
several properties in common. It is easy to see that in (32)
IR is negligible because of the low value of aeq. Moreover in
the various models usually we have that strong differences
with respect to the ISW effect in the ΛCDM case can be
produced from perturbations on those scales that are inside
the Jeans length as the photons pass through them. For these
scales the perturbations of the UDM fluid play the main
role. On larger scales instead we find that they play no role
and ISW signatures different from the ΛCDM case can come
only from the different background expansion histories. We
have found that when k2 � k2

J = c−2
s |θ′′/θ| (see (20)),

one must take care of the term in (39). Indeed this term
grows faster than the other integrals contained in (39) when
l increases up to l ≈ 25. It is responsible for a strong ISW
effect and hence, in the CMB power spectrum l(l+1)Cl/(2π),
it will cause a decrease in the peak to plateau ratio (once
the CMB power spectrum is normalized). In order to avoid
this effect, a sufficient (but not necessary) condition is that
the models have satisfy the condition c2

s k
2 < |θ′′/θ| for

the scales of interest. The maximum constraint is found in
correspondence with the scale at which the contribution (39)
takes its maximum value, that is, k ≈ keq. For example, in
the Generalized Chaplygin Gas model (GCG), that is, when
p = −Λ1/(1+α)/ρα and c2

s = −αw (see Section 4), we deduce
that |α| < 10−4 (see [24, 25, 28]). This is also in agreement
with the finding of [27] which performs an analysis on the
mass power spectrum and gravitational lensing constraints,
thus finding a more stringent constraint.

As far as the generalized Scherrer solution models [33]
are concerned, in these models the pressure of the UDM fluid
is given by p = gn(X−X0)n−Λ, where gn is a suitable constant
and n > 1 (see Section 4). The case n = 2 corresponds to
unified model proposed by Scherrer [30]. In this case we find
that imposing the constraint c2

s k
2 < |θ′′/θ| for the scales of

interest we get ε = (X − X0)/X0 < (n− 1) 10−4.
If we want now to study in greater detail what happens

in the GCG model when c2
s k

2 � |θ′′/θ|, we discover the
following things.

(i) For 10−4 < α ≤ 5 × 10−3, where we are in the
“Intermediate case”. Now c2

s = −αw is very small and
the background of the cosmic expansion history of
the Universe is very similar to the ΛCDM model. In
this situation the pathologies, described before, are
completely negligible.

(ii) For 6 × 10−3 < α ≤ 1 a very strong ISW
effect is produced; one estimates the same order of
magnitude for the decrease of the peak to plateau
ratio in the anisotropy spectrum l(l + 1)Cl/(2π)
(once it is normalized) obtained numerically in [25]
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(having assumed that the production of the peaks
during the acoustic oscillations at recombination is
similar to what happens in a ΛCDM model, since
at recombination the effects of the sound speed are
negligible).

An important observation arises when considering those
UDM models that reproduce the same cosmic expansion
history of the Universe as the ΛCDM model. Among these
models one can impose the condition w = −c2

s which, for
example, is predicted by UDM models with a kinetic term of
Born-Infeld type [26, 33, 106, 107]. In this case, computing
the integral in (39) which gives the main contribution to the
ISW effect one can estimate that the corresponding decrease
of peak to plateau ratio is about one third with respect to
what we have in the GCG when the value of α is equal to
1. The special case α = 1 is called “Chaplygin Gas” (see,
e.g., [23]) and it is characterized by a background equation
of state w which evolves in a different way to the standard
ΛCDM case. From these considerations we deduce that this
specific effect stems only in part from the background of the
cosmic expansion history of the Universe and that the most
relevant contribution to the ISW effect is due to the value of
the speed of sound c2

s .
Let us now make some comments about a particular class

of the generalized Chaplygin gas models where the sound
speed can be larger than the speed of light at late times,
that is, when α > 1 (see, e.g., [94, 96, 108]). In particular,
in [96], the author finds that the new constraint α > 350.
Indeed, for this range of values, the Jeans wavenumber is
sufficiently large that the resulting ISW effect is not strong.
In this case the Chaplygin gas is characterised by a fast
transition [44]. However this particular model is ruled out
because the transition from a pure CDM-like early phase
to a posttransition ΛCDM-like late epoch is nearly today
(z ∼ 0.22). In fact, as discussed in [44] and in Section 4.4,
the fast transition has to take place sufficiently far in the
past. Otherwise, we expect that it would be problematic
to reproduce the current observations related to the UDM
parameter w, for instance, it would be hard to have a good fit
of the CMB and matter power spectra.

4. Purely Kinetic Lagrangians

In this section we focus mainly on Lagrangians L (i.e., the
pressure p) that depend only on X . (This section is largely
based on [33].) Defining p(ρ) = g(X), we have to solve the
equation

ρ
(
g(X)

) = 2X
∂g(X)
∂X

− g(X), (40)

when X is time-like. Then, from (10) we get
(
∂g

∂X
+ 2X

∂2g

∂X2

)
dX

dN
+ 3

(
2X

∂g

∂X

)
= 0, (41)

where N = ln a. We can immediately note that a purely
kinetic Lagrangian, through (40), (see, e.g., [33]), can be
described as a perfect fluid whose pressure p is uniquely

determined by the energy density, since both depend on a
single degree of freedom, the kinetic term X . In this case
c2
s = p′/ρ′ corresponds to the usual adiabatic sound speed.

Obviously if we consider apriori a barotropic or adiabatic
equation of state, p = p(ρ) can be described through a purely
kinetic k-essence Lagrangian, if the inverse function of ρ =
ρ(p) exists. In Section 4.4, we will use the pressure-density
plane to analyze the properties that a general barotropic
UDM model has to fulfil in order to be viable (see also [44]).

Now we want to make a general study of the attractor
solutions in this case. From (10) (see [33]) we obtain the
following nodes:

(1) X = X̂ = 0, (2)
dg

dX

∣∣∣∣∣
X̂

= 0, (42)

with X̂ being a constant. Both cases correspond to w = −1,
as one can read from (11).

In these cases we have either X = 0 or ∂g/∂X = 0 on the
node. We know from (41) that X can only decrease in time
down to its minimum value. This implies that w, from (11),
will tend to −1 for N → ∞.

At this point we can study the general solution of the
differential equation (41). For X /= 0 and ∂g/∂X /= 0 the
solution is [30]

X

(
∂g

∂X

)2

= ka−6 (43)

with k being a positive constant. This solution has been also
derived, although in a different form, in [109]. As N → ∞,
X or dg/dX (or both) must tend to zero, which shows that,
depending on the specific form of the function g(X), each
particular solution will converge toward one of the nodes
above. From (43), for N → ∞, the value of X or ∂g/∂X (or
of both of them) must tend to zero. Then, it is immediate
to conclude that w → −1 is an attractor for N → ∞ and
confirms that each of the above solutions will be an attractor
depending on the specific form of the function g(X).

In what follows we will provide some examples of stable
node solutions of the equation of motion, some of which
have been already studied in the literature. The models below
are classified on the basis of the stable node to which they
asymptotically converge.

4.1. Case 1: Generalized Chaplygin Gas. An example of case 1
is provided by the Generalized Chaplygin (GC) model (see,
e.g., [22–25, 27–29, 110]) whose equation of state has the
following form:

pGC = −ρ∗
(
ρGC

−p∗

)1/γ

, (44)

where now pGC = p and ρGC = ρ and ρ∗ and p∗ are suitable
constants.
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Plugging the equation of state (44) into the the continuity
equation dρGC/dN + 3(ρGC + pGC) = 0, we can write pGC and
ρGC as function of a. Indeed

pGC = −
(−p∗

ρ
γ
∗

)1/(1−γ)[
1 + νa3((1−γ)/γ)

]−1/(1−γ)
,

ρGC =
(−p∗

ρ
γ
∗

)1/(1−γ)[
1 + νa3((1−γ)/γ)

]−γ/(1−γ)
,

(45)

with ν = const. We note that when a is small, we have ρGC ∝
a−3. In other words, this model behaves as DM. Meanwhile,
in the late epoch (i.e., a � 1), it behaves as a cosmological
constant.

Instead, through (40), we can obtain the pressure and the
energy density as functions of X . Then

g(X) = −
(−p∗

ρ
γ
∗

)1/(1−γ)[
1− μX (1−γ)/2

]1/(1−γ)
,

ρGC =
(−p∗

ρ
γ
∗

)1/(1−γ)[
1− μX (1−γ)/2

]γ/(1−γ)
,

(46)

where μ is a constant. To connect μ and ν we have to use (43).
We get

ν = μγ
(

1
4k

)(1−γ)/2γ
(−p∗

ρ
γ
∗

)γ

. (47)

Since c2
s = w/γ, it is necessary for our scopes to consider

the case γ < 0, so that c2
s > 0. Note that γ = −1 corresponds

to the standard “Chaplygin gas” model. Let us obviously
consider μ > 0 and ν > 0.

Let us conclude this section mentioning two more
models that fall into this class of solution. The first was
proposed in [111], in which g = b

√
2X − Λ (with b being

a suitable constant) satisfying the constraint p = −Λ along
the attractor solution X0 = 0. This model, however, is well
known to imply a diverging speed of sound. The second was
proposed in [36, 37, 39, 112] where there was the single dark
perfect fluid with “affine” 2-parameter barotropic equation
of state p = −Λ + αρ which satisfies the constraint that
p = −Λ along the attractor solution X0 = 0. For this model,
we have c2

s = α; that is, the speed of sound is always a
constant. The evolution of ρ leads to ρ(a) = Λ + ρm0a−3(1+α),
where today ρm0 = ρ(a = 1)−Λ. When the pressure and the
energy density are considered as functions of X , we have

g(X) = −Λ + cX (1+α)/2α; ρ = Λ +
c

α
X (1+α)/2α, (48)

where c = ρm0α/X̂ (1+α)/(2α) is the integration constant derived
imposing the value of the fluid energy density at present and
X̂ is X at present time. From the matter power spectrum
constraints [39], it turns out that α � 10−7.

4.2. Case 2: Scherrer Solution. For the solution of case 1 we
want to study the function g around some X = X̂ /= 0. In this
case we can approximate g as a parabola with ∂g/∂X|X̂ = 0:

g = g0 + g2

(
X − X̂

)2
. (49)

with g0 and g2 being suitable constants. This solution, with
g0 < 0 and g2 > 0, coincides with the model studied by
Scherrer in [30] (see also [31, 113]).

It is immediate to see that for X → X̂ /=∞ and N → ∞
the value of dX/dN goes to zero. Replacing this solution into
(43) we obtain

4g2
2X
(
X − X̂

)2 = ka−6, (50)

while the energy density ρ becomes

ρ = −g0 + 4g2X̂
(
X − X̂

)
+ 3g2

(
X − X̂

)2
. (51)

Now if we impose that today X is close to X̂ so that

ε ≡ X − X̂

X̂
� 1, (52)

then (50) reduces to

X = X̂

[
1 +

(
a

a1

)−3
]

(53)

with a1 � a and with (1/a1)−3 = [1/(2g2)](k/X̂3)1/2 for ε�
1. As a consequence, the energy density becomes

ρ = −g0 + 4g2X̂
2
(
a

a1

)−3

. (54)

In order for the density to be positive at late times, we need
to impose g0 < 0. In this case the speed of sound (15) turns
out to be

c2
s =

(
X − X̂

)
(

3X − X̂
) = 1

2

(
a

a1

)−3

. (55)

We notice also that, for (a/a1)−3 � 1, we have c2
s � 1 for

the entire range of validity of this solution. Thus, (54) tells us
that our k-essence behaves like a fluid with very low sound-
speed with a background energy density that can be written
as

ρ = ρΛ + ρDM, (56)

where ρΛ behaves like a “dark energy” component (ρΛ =
const.) and ρDM behaves like a “dark matter” component
(ρDM ∝ a−3). Note that, from (54), X̂ must be different
from zero in order for the matter term to be there. (For this
particular case the Hubble parameter H is a function only of
this fluid H2 = ρ/3.)

If the Lagrangian is strictly quadratic in X , we can obtain
explicit expressions for the pressure p and the speed of sound
cs in terms of ρ, namely,

p = 4
3
g0 +

8
9
g2X̂

2

⎧⎨
⎩1−

[
1 +

3
4

(g0 + ρ)

g2X̂2

]1/2
⎫⎬
⎭ +

1
3
ρ,

c2
s = −

1
3

[
1 +

3
4

(g0 + ρ)

g2X̂2

]−1/2

+
1
3
.

(57)
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Looking at these equations, we observe that in the early
Universe (X � X̂ , i.e., ρ � (−g0)) the k-essence behaves
like radiation. Therefore, the k-essence in this case behaves
like a low sound-speed fluid with an energy density which
evolves like the sum of a “dark matter” (DM) component
with ρ ∝ a−3 and a “dark energy” (DE) component with
ρ = const. The only difference with respect to the standard
ΛCDM model is that in this k-essence model, the dark energy
component has c2

s � 1. Starting from the observational
constraints on ρDM and ρDE, the value of a1 is determined
by the fact that the k-essence must begin to behave like
dark matter prior to the epoch of matter-radiation equality.
Therefore, a1 < aeq, where aeq is the scale factor at the epoch
of equal matter and radiation, given by aeq = 3 × 10−4

(where we have imposed that the value of the scale factor
today is a0 = 1). At the present time, the component of
ρ corresponding to dark energy in (54) must be roughly
twice the component corresponding to dark matter, so−g0 =
8g2X̂2(1/a1)−3. Substituting a1 < aeq into this equation, we
get [30]

ε0 = ε(a0 = 1) = −g0

g2X̂2
< 8a3

eq � 2× 10−10. (58)

In practice, if we assume that g(X) has a local minimum
that can be expanded as a quadratic form and when (52) is
not satisfied (i.e., for a < a1), we cannot say anything about
the evolution of X and ρ. The stronger bound ε0 ≤ 10−18

is obtained by Giannakis and Hu [31], who considered the
small-scale constraint that enough low-mass dark matter
halos are produced to reionize the Universe. On the other
hand the sound speed can be made arbitrarily small during
the epoch of structure formation by decreasing the value of
ε. One should also consider the usual constraint imposed
by primordial nucleosynthesis on extra radiation degrees
of freedom, which however leads to a weaker constraint.
Moreover the Scherrer model differs from ΛCDM in the
structure of dark matter halos both because of the fact that
it behaves as a nearly pressure-less fluid instead of a set
of collisionless particles. Analytically we will discuss this
problem when we will study the static configuration of the
UDM models; see Section 9 or [34]. Practically, we will see
that when X < 0, the energy density of the Scherrer model
is negative. Thus, p and ρ must depend strongly on time. In
other words, this model will behave necessarily like a fluid
and, consequently, there is the strong possibility that it can
lead to shocks in the non-linear regime [31].

4.3. Case 2: Generalized Scherrer Solution. Starting from the
condition that we are near the attractor X = X̂ /= 0, we can
generalize the definition of g, extending the Scherrer model
in the following way:

p = g = g0 + gn
(
X − X̂

)n
(59)

with n ≥ 2 and g0 and gn being suitable constants.
The density reads

ρ = (2n− 1)gn
(
X − X̂

)n
+ 2X̂ngn

(
X − X̂

)n−1 − g0. (60)

If εn = [(X − X̂)/X̂]n � 1, (43) reduces to

X = X̂

[
1 +

(
a

an−1

)−3/(n−1)
]

(61)

(where an−1 � a) and so ρ becomes

ρ � 2nX̂ngn

(
a

an−1

)−3

− g0 (62)

with (1/an−1)−3 = [1/(ngn)](k/X̂2n−1)1/2 for εn � 1. We have
therefore obtained the important result that this attractor
leads exactly to the same terms found in the purely kinetic
model of [30], that is, a cosmological constant and a matter
term. One can therefore extend the constraint of [30] to
this case, obtaining (ε0)n−1 = −g0/(4nX̂ngn) ≤ 10−10. A
stronger constraint would clearly also apply to our model
by considering the small-scale constraint imposed by the
Universe reionization, as in [31]. If we write the general
expressions for w and c2

s , we have

w = −
[

1 +

(
gn
g0

)(
X − X̂

)n]

×
[

1− 2nX̂

(
gn
g0

)(
X − X̂

)n−1

−(2n− 1)

(
gn
g0

)(
X − X̂

)n]−1

c2
s =

(
X − X̂

)

2(n− 1)X̂ + (2n− 1)
(
X − X̂

) .

(63)

For ε� 1 one obtains a result similar to that of [30], namely,

w � −1 + 2n

(
gn∣∣g0
∣∣
)(

a

an−1

)−3

,

c2
s �

1
2(n− 1)

ε.

(64)

On the contrary, when X � X̂ , we obtain

w � c2
s �

1
2n− 1

. (65)

In this case one can impose a bound on n so that at early
times and/or at high density the k-essence evolves like dark
matter. In other words, when n� 1, unlike the purely kinetic
case of [30], the model is well behaved also at high densities.

In the appendix we study spherical collapse for the
generalized Scherrer solution models.

4.4. Studying Purely Kinetic Models in the Pressure-Density
Plane. In this subsection we report some results of [44].
Noting that purely kinetic models can be described as
adiabatic single fluid p = p(ρ), for these Lagrangians it is
natural to give a graphical description on the p−ρ plane; see
Figure 1. Indeed, this plane gives an idea of the cosmological
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Figure 1: The UDM p − ρ plane with the most important areas,
(see [44]). The dashed line represents the p = −ρ line; the dash-
dotted line represents the p = −ρ/3 line, the boundary between
the decelerated expansion phase of the Universe and the accelerated
one; the dotted line p = −ρ/10 represents a fictitious boundary,
above which the CDM-like behaviour of the UDM fluid dominates.
The pressure and the energy density are normalised to ρΛ (where
ρΛ = Λ). The ΛCDM model is represented here by the solid
horizontal line p/ρΛ = −1, while the line p = 0 represents an EdS
model, that is, pure CDM.

evolution of the dark fluid. Indeed, in an expanding Universe
(H > 0) (41) implies ρ̇ < 0 for a fluid satisfying the null
energy condition w > −1 during its evolution; hence there
exists a one-to-one correspondence between (increasing)
time and (decreasing) energy density. Finally, in the adiabatic
case the effective speed of sound we have introduced in (15)
can be written as c2

s = dp/dρ; therefore it has an immediate
geometric meaning on the p − ρ plane as the slope of the
curve describing the EoS p = p(ρ).

For a fluid, it is quite natural to assume c2
s ≥ 0,

which then implies that the function p(ρ) is monotonic,
and as such it reaches the p = −ρ line at some point
Λ. (Obviously, we are assuming that during the evolution
the EoS allows p to become negative, actually violating the
strong energy condition, that is, p < −ρ/3 at least for some
ρ > 0; otherwise the fluid would never be able to produce
an accelerated expansion.) From the point of view of the
dynamics this is a crucial fact, because it implies the existence
of an attracting fixed point (ρ̇ = 0) for the conservation
equation (41) of our UDM fluid; that is, Λ plays the role of
an unavoidable effective cosmological constant. The Universe
necessarily evolves toward an asymptotic de-Sitter phase, a
sort of cosmic no-hair theorem (see [114, 115] and references
therein and [37, 112, 116]).

We now summarise, starting from (9) and (41) and tak-
ing also into account the current observational constraints
and theoretical understanding, a list of the fundamental

properties that an adiabatic UDM model has to satisfy in
order to be viable. We then translate these properties on the
p − ρ plane; see Figure 1.

(1) We assume the UDM to satisfy the weak energy
condition: ρ � 0; therefore, we are only interested in
the positive half plane. In addition, we assume that
the null energy condition is satisfied: ρ + p ≥ 0;
that is, our UDM is a standard (nonphantom) fluid.
Finally, we assume that our UDM models admit a
cosmological constant solution Lambda at late time,
so that an asymptotic equation of state w = −1 is
built in.

(2) We demand a dust-like behaviour back in the past, at
high energies, that is, a negligible pressure p� ρ for
ρ � Λ. (Note that we could have p � −Λ, and yet,
if ρ � Λ, the Universe would still be in a matter-like
era.) In particular, for an adiabatic fluid we require
that at recombination |wrec| � 10−6; see [36, 37, 39,
117].

(3) Let us consider a Taylor expansion of the UDM EoS
p(ρ) about the present energy density ρ0:

p � p0 + α
(
ρ− ρ0

)
, (66)

that is, an “affine” EoS model [36, 37, 39, 112] where
α is the adiabatic speed of sound at the present
time. Clearly, these models would be represented by
straight lines in Figure 1, with α being the slope. The
ΛCDM model, interpreted as UDM, corresponds to
the affine model (66) with α = 0 (see [37, 39, 112])
and thus it is represented in Figure 1 by the horizontal
line p = −Λ. From the matter power spectrum
constraints on affine models [39], it turns out that
α � 10−7. Note therefore that, from the UDM
perspective, today we necessarily have w � −0.7.

Few comments are in order. From the points above, one
could conclude that any adiabatic UDM model, in order
to be viable, necessarily has to degenerate into the ΛCDM
model, as shown in [27] for the generalised Chaplygin gas
and in [39] for the affine adiabatic model. (From the point
of view of the analysis of models in the p − ρ plane of
Figure 1, the constraints found by Sandvik et al. [27] on the
generalised Chaplygin gas UDM models and by [39] on the
affine UDM models simply amount to say that the curves
representing these models are indistinguishable from the
horizontal ΛCDM line.) In other words, one would conclude
that any UDM model should satisfy the condition c2

s � 1
at all times, so that k2

J � k2 for all scales of cosmological
interest, in turn giving an evolution for the gravitational
potential Φ as in (23).

On the other hand, let us write down the explicit form of
the Jeans wave-number:

k2
J =

3
2

ρ

(1 + z)2
(1 + w)

c2
s

×
∣∣∣∣∣

1
2

(
c2

s −w
)− ρ

dc2
s

dρ
+

3
(
c2

s −w
)2 − 2

(
c2

s −w
)

6(1 + w)
+

1
3

∣∣∣∣∣.
(67)



12 Advances in Astronomy

Clearly, we can obtain a large k2
J not only when c2

s → 0,
but also when c2

s changes rapidly, that is, when the above
expression is dominated by the ρdc2

s /dρ term. When this
term is dominating in (67), we may say that the EoS is
characterised by a fast transition.

In [44] the authors investigate observational constraints
on UDM models with fast transition, introducing and
discussing a toy model. In particular, they explore which
values of the parameters of such a toy model fit the observed
CMB and matter power spectra.

5. UDM Scalar Field with
Canonical Kinetic Term

Starting from the barotropic equation of state p = p(ρ)
we can describe the system either through a purely kinetic
k-essence Lagrangian, as we already explained in the last
section, or through a Lagrangian with canonical kinetic term,
as in quintessence-like models (see [33]).

In the second case we have to solve the two differential
equations:

X −V
(
ϕ
) = p

(
ϕ,X

)
,

X + V
(
ϕ
) = ρ

(
ϕ,X

)
,

(68)

where X = ϕ̇2/2 is time-like. In particular, if we assume that
our model describes a unified dark matter/dark energy fluid,
we can proceed as follows: starting from ρ̇ = −3H(p + ρ) =
−√3ρ(p + ρ) and 2X = (p + ρ) = (dϕ/dρ)2ρ̇2 we get

ϕ = ± 1√
3

∫ ρ

ρ0

dρ′/
√
ρ′(

p
(
ρ′
)

+ ρ′
)1/2 , (69)

up to an additive constant which can be dropped without any
loss of generality. Inverting (69), that is, writing ρ = ρ(ϕ) we
are able to get V(ϕ) = [ρ(ϕ) − p(ρ(ϕ))]/2. Now we require
that the fluid has constant pressure p = −Λ, that is, that the
Lagrangian of the scalar field is constant along the classical
trajectory corresponding to perfect fluid behavior. In other
words one arrives at an exact solution with potential

V
(
ϕ
) = Λ

2

[
cosh2

(√
3

2
ϕ

)
+ 1

]
(70)

(see also [106, 107]). For large values of ϕ, V(ϕ) ∝ exp(
√

3ϕ)
(equivalently, for large values of −ϕ, V(ϕ) ∝ exp(−√3ϕ))
and our scalar field behaves just like a pressureless dark
matter fluid. Indeed, this asymptotic form, in the presence
of an extra radiation component, allows to recover one
of the stable nodes obtained in [118] for quintessence
fields with exponential potentials, where the scalar field
mimics a pressureless fluid. Under the latter hypothesis we
immediately obtain

ϕ
(
ρ
) = 2√

3
arccosh

(
ρ

Λ

)1/2

, (71)

which can be inverted to give the scalar field potential of (70)
as V(ϕ) = (ρ(ϕ) + Λ)/2. One then obtains

ϕ̇ = −√Λ sinh

(√
3

2
ϕ

)
, (72)

which can be immediately integrated, to give

ϕ(t) = 2√
3

ln

(
1 + ξ

1− ξ

)
, ξ ≡ exp

[
−
√

3Λ
2

(t − t∗)

]
,

(73)

for t > t∗, with t∗ such that ϕ(t → t∗) → ∞. Replacing
this solution in the expression for the energy density one can
easily solve the Friedmann equation for the scale-factor as a
function of cosmic time:

a(t) = a0
sinh2/3[(√3Λ/2

)
(t − t∗)

]
sinh2/3[(√3Λ/2

)
(t0 − t∗)

] , (74)

which coincides with the standard expression for a flat,
matter plus Lambda model [119], with Ω0Λ/Ω0m =
sinh2[(

√
3Λ/2)(t0−t∗)],Ω0Λ andΩ0m being the cosmological

constant and matter density parameters, respectively.
Using standard criteria (e.g., [8]) it is immediate to

verify that the above trajectory corresponds to a stable
node even in the presence of an extra-fluid (e.g., radiation)
with equation of state wfluid ≡ pfluid/ρfluid > 0, where
pfluid and ρfluid are the fluid pressure and energy density,
respectively. Along the above attractor trajectory our scalar
field behaves precisely like a mixture of pressureless matter
and cosmological constant. Using the expressions for the
energy density and the pressure we immediately find, for the
matter energy density,

ρm = ρ−Λ = Λsinh2

(√
3

2
ϕ

)
∝ a−3. (75)

The peculiarity of this model is that the matter component
appears as a simple consequence of having assumed the
constancy of the Lagrangian.

A closely related solution was found by Salopek and
Stewart [120], using the Hamiltonian formalism.

To conclude this section, let us stress that, like any scalar
field with canonical kinetic term [73, 121], our UDM model
predicts c2

s = 1, as it is clear from (15), which inhibits the
growth of matter inhomogeneities. In summary, we have
obtained a “quartessence” model which behaves exactly like
a mixture of dark matter and dark energy along the attractor
solution, whose matter sector, however, is unable to cluster
on subhorizon scales (at least as long as linear perturbations
are considered).

6. UDM Scalar Field with
Noncanonical Kinetic Term

We can summarize our findings so far by stating that purely
kinetic k-essence cannot produce a model which exactly
describes a unified fluid of dark matter and cosmological
constant, while scalar field models with canonical kinetic
term, while containing such an exact description, unavoid-
ably lead to c2

s = 1, in conflict with cosmological structure
formation. In order to find an exact UDM model with
acceptable speed of sound we consider more general scalar
field Lagrangians (see [33]).
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6.1. Lagrangians of the Type L(ϕ,X) = g(X) − V(ϕ). Let us
consider Lagrangians with non-canonical kinetic term and a
potential term, in the form

L
(
ϕ,X

) = g(X)−V
(
ϕ
)
. (76)

The energy density then reads

ρ = 2X
dg(X)
dX

− g(X) + V
(
ϕ
)
, (77)

while the speed of sound keeps the form of (15). The
equation of motion for the homogeneous mode reads

(
dg

dX
+ 2X

d2g

dX2

)
dX

dN
+ 3

(
2X

dg

dX

)
= −dV

dN
. (78)

One immediately finds

p + ρ = 2X
dg(X)
dX

≡ 2F (X). (79)

One can rewrite the equation of motion (78) in the form

[
2X

dF
dX

−F
]
dX

dN
+ X

(
6F +

dV

dN

)
= 0. (80)

It is easy to see that this equation admits 2 nodes, namely:

(1) dg/dX|X̂ = 0

(2) X̂ = 0.

In all cases, for N → ∞, the potential V should tend to a
constant, while the kinetic term can be written around the
attractor in the form

g(X) =M4

(
X − X̂

M4

)n

, n ≥ 2, (81)

where M is a suitable mass-scale and X̂ a constant. The trivial
case g(X) = X obviously reduces to the one of Section 4.

Following the same procedure adopted in the previous
section we impose the constraint p = −Λ, which yields the
general solution ρm = 2F (X).

This allows to define ϕ = ϕ(ρm) as a solution of the
differential equation:

ρm = 2F

⎡
⎣3

2

(
ρm + Λ

)
ρ2
m

(
dϕ

dρm

)2
⎤
⎦. (82)

As found in the case of k-essence, the most interesting
behavior corresponds to the limit of large n and X̂ = 0 in
(81), for which we obtain

ρm ≈ Λsinh−2

[(
3Λ

8M4

)1/2

ϕ

]
, (83)

leading to V(ϕ) ≈ ρm/2n− Λ, and c2
s = 1/(2n− 1) ≈ 0. The

Lagrangian of this model is similar to that analyzed in [95].

6.2. Lagrangians of the Type L(ϕ,X) = f (ϕ)g(X). Let us now
consider Lagrangians with a non-canonical kinetic term of
the form L(ϕ,X) = f (ϕ)g(X) (see [33]).

Imposing the constraint p = −Λ, one obtains f (ϕ) =
−Λ/g(X), which, inserted in the equation of motion yields
the general solution:

X
d ln

∣∣g∣∣
dX

= − ρm
2Λ

. (84)

The latter equation, together with (82), defines our
general prescription to get UDM models describing both DM
and cosmological constant-like DE.

As an example of the general law in (84) let us consider an
explicit solution. Assuming that the kinetic term is of Born-
Infeld type, as in [26, 106, 107, 122],

g(X) = −
√

1− 2X
M4

, (85)

with M being a suitable mass-scale, which implies ρ =
f (ϕ)/

√
1− 2X/M4, we get

X(a) = M4

2
ka−3

1 + ka−3
, (86)

where k = ρm(a∗)a3∗/Λ and a∗ is the scale-factor at a generic
time t∗. In order to obtain an expression for ϕ(a), we impose
that the Universe is dominated by our UDM fluid, that is,
H2 = ρ/3. This gives

ϕ(a) = 2M2
√

3Λ

{
arctan

[(
ka−3

)−1/2
]
− π

2

}
, (87)

which, replaced in our initial ansatz p = −Λ, allows to obtain
the following expression (see also [106, 107]):

f
(
ϕ
) = Λ∣∣∣cos

[
(3Λ/(4M4))1/2ϕ

]∣∣∣ . (88)

If one expands f (ϕ) around ϕ = 0, and X/M4 � 1, one
gets the approximate Lagrangian

L ≈ Λ

2M4
ϕ̇2 −Λ

[
1 +

3Λ
8M4

ϕ2
]
. (89)

Note that our Lagrangian depends only on the combination
ϕ/M2, so that one is free to reabsorb a change of the mass-
scale in the definition of the filed variable. Without any loss
of generality we can then set M = Λ1/4, so that the kinetic
term takes the canonical form in the limit X � 1. We can
then rewrite our Lagrangian as

L = −Λ
√

1− 2X/Λ∣∣cos
((√

3/2
)
ϕ
)∣∣ . (90)

This model implies that for values of
√

3ϕ ≈ −π and
2X/Λ ≈ 1,

cos

(√
3

2
ϕ

)
∝ a3/2,

√
1− 2X

Λ
∝ a−3/2, (91)
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Figure 2: Evolution of the scalar field density parameter versus
redshift (see [33]). The continuous line shows the UDM density
parameter; the dashed line is the density parameter of the DM +
DE components in a standard ΛCDM model; the dotted line is the
radiation density parameter.
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Figure 3: The redshift evolution of the scalar field equation of state
parameter wUDM (continuous line) is compared with that of the sum
of the DM + DE components in a standard ΛCDM model (dashed
line); see [33].

the scalar field mimics a dark matter fluid. In this regime the
effective speed of sound is c2

s = 1− 2X/Λ ≈ 0, as desired.
To understand whether our scalar field model gives rise

to a cosmologically viable UDM solution, we need to check
if in a Universe filled with a scalar field with Lagrangian
(90), plus a background fluid of, for example, radiation,
the system displays the desired solution where the scalar
field mimics both the DM and DE components. Notice that
the model does not contain any free parameter to specify
the present content of the Universe. This implies that the
relative amounts of DM and DE that characterize the present
Universe are fully determined by the value of ϕ0 ≡ ϕ(t0).
In other words, to reproduce the present Universe, one has
to tune the value of f (ϕ) in the early Universe. However,
a numerical analysis shows that once the initial value of ϕ
is fixed, there is still a large basin of attraction in terms of
the initial value of dϕ/dt, which can take any value such that
2X/Λ� 1.
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Figure 4: Redshift evolution of the scalar field of the scalar field
variables X = ϕ̇2/2 (top) and ϕ (bottom); see [33].

The results of a numerical integration of our system
including scalar field and radiation are shown in Figures 2–4.
Figure 2 shows the density parameter, ΩUDM as a function
of redshift, having chosen the initial value of ϕ so that
today the scalar field reproduces the observed values ΩDM

and ΩDE. Notice that the time evolution of the scalar field
energy density is practically indistinguishable from that of
a standard DM plus Lambda (ΛCDM) model with the
same relative abundances today. Figure 3 shows the evolution
equation of state parameter wUDM; once again the behavior
of our model is almost identical to that of a standard ΛCDM
model for 1 + z < 104. Notice that, since c2

s = −wUDM, the
effective speed of sound of our model is close to zero, as
long as matter dominates, as required. In Figure 4 we finally
show the redshift evolution of the scalar field variables X =
ϕ̇2/2 and ϕ: one can easily check that the evolution of both
quantities is accurately described by the analytical solutions
above, (86) and (87), respectively (the latter being obviously
valid only after the epoch of matter-radiation equality).

However in this model, as discussed in [32], the non-
negligible value of the sound speed today gives a strong
contribution to the ISW effect and produces an incorrect
ratio between the first peak and the plateau of the CMB
anisotropy power-spectrum l(l + 1)Cl/(2π).

7. How the Scalar Field of Unified Dark
Matter Models Can Cluster

The authors of [38] proposed a technique for constructing
UDM models where the scalar field can have a sound speed
small enough to allow for structure formation and to avoid a
strong integrated Sachs-Wolfe effect in the CMB anisotropies
which typically plague UDM models (see also [41, 46]). (This
section is largely based on [38].) In particular, they studied a
class of UDM models where, at all cosmic times, the sound
speed is small enough that cosmic structure can form. To do
so, a possible approach is to consider a scalar field Lagrangian
L of the form

L = p
(
ϕ,X

) = f
(
ϕ
)
g(X)−V

(
ϕ
)
. (92)
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Therefore, by introducing the two potentials f (ϕ) and V(ϕ),
we want to decouple the equation of state parameter w, and
the sound speed cs. This condition does not occur when
we consider either Lagrangians with purely kinetic terms
or Lagrangians like L = g(X) − V(ϕ) or L = f (ϕ)g(X)
(see, e.g., [33] and the previous Sections 6.1 and 6.2). In
the following subsections we will describe how to construct
UDM models based on (92), following the analysis of [38].

7.1. How to Construct UDM Models. Let us consider the
scalar field Lagrangian of (92). The energy density ρ, the
equation of state w and the speed of sound c2

s are

ρ
(
X ,ϕ

) = f
(
ϕ
)[

2X
∂g(X)
∂X

− g(X)

]
−V

(
ϕ
)
, (93)

w
(
X ,ϕ

) = f
(
ϕ
)
g(X)−V

(
ϕ
)

f
(
ϕ
)[

2X
(
∂g(X)/∂X

)− g(X)
]−V

(
ϕ
) , (94)

c2
s (X) =

(
∂g(X)/∂X

)
(
∂g(X)/∂X

)
+ 2X

(
∂2g(X)/∂X2

) , (95)

respectively. The equation of motion (10) becomes
(
∂g

∂X
+ 2X

∂2g

∂X2

)
dX

dN
+ 6X

∂g

∂X

+
d ln f

dN

(
2X

∂g

∂X
− g

)
− 1

f

dV

dN
= 0.

(96)

Unlike in models with a Lagrangian with purely kinetic
terms, here we have one more degree of freedom, the
scalar field configuration itself. This allows to impose a new
condition to the solutions of the equation of motion. In
[33], the scalar field Lagrangian was required to be constant
along the classical trajectories. Specifically, by requiring that
L = −Λ on cosmological scales, the background is identical
to the background of ΛCDM. In general this is always true.
In fact, if we consider (10) or, equivalently, the continuity
equations (dρ/dN) = −3(p + ρ), and if we impose p = −Λ,
we easily get

ρ = ρDM(a = 1)a−3 + Λ = ρDM + ρΛ, (97)

where ρΛ behaves like a cosmological constant “Dark
Energy” component (ρΛ = const.) and ρDM behaves like
a “Dark Matter” component (ρDM ∝ a−3). This result
implies that we can think the stress-energy tensor of our
scalar field as being made of two components: one behaving
like a pressure-less fluid, and the other having negative
pressure. In this way the integration constant ρDM(a = 1)
can be interpreted as the “dark matter” component today;
consequently, Ωm(0) = ρDM(a = 1)/(3H2(a = 1)) and
ΩΛ(0) = Λ/(3H2(a = 1)) are the density parameters of “dark
matter” and “dark energy” today.

Let us now describe the procedure that we will use in
order to find UDM models with a small speed of sound. By
imposing the condition L(X ,ϕ) = −Λ, we constrain the
solution of the equation of motion to live on a particular
manifold MΛ embedded in the four dimensional space-time.

This enables us to define ϕ as a function of X along the
classical trajectories, that is, ϕ = L−1(X ,Λ)|MΛ . Notice that
therefore, by using (96) and imposing the constraint p = −Λ,
that is, V(ϕ) = f (ϕ)g(X) + Λ, we can obtain the following
general solution of the equation of motion on the manifold
MΛ:

2X
∂g(X)
∂X

f
(
ϕ(X)

) = Λνa−3, (98)

where ν ≡ Ωm(0)/ΩΛ(0) . Here we have constrained the
pressure to be p = −Λ. In Section 8 we will describe an even
more general technique to reconstruct UDM models where
the pressure is a free function of the scale factor a.

If we define the function g(X), we immediately know the
functional form of c2

s with respect to X (see (95)). Therefore,
if we have a Lagrangian of the type L = f (ϕ)g(X) or
L = g(X) − V(ϕ), we are unable to decide the evolution
of c2

s (X) along the solutions of the equation of motion [33]
because once g(X) is chosen, the constraint L = −Λ fixes
immediately the value of f (ϕ) or V(ϕ). On the contrary, in
the case of (92), we can do it through the function f (ϕ(X)).
In fact, by properly defining the value of f (ϕ(X)) and using
(96), we are able to fix the slope of X and, consequently,
(through g(X)), the trend of c2

s (X) as a function of the scale
factor a.

Finally, we want to emphasize that this approach is only
a method to reconstruct the explicit form of the Lagrangian
(92), namely, to separate the two variables X and ϕ into the
functions g, f , and V .

Let us now give an example where we apply this
prescription. In particular, in the following subsection, we
assume a kinetic term of Born-Infeld type [26, 106, 107, 122].
Other examples (where we have the kinetic term g(X) of the
Scherrer model [30] or where we consider the generalized
Scherrer solutions [33]) are reported in [38].

7.1.1. Lagrangians with Born-Infeld Type Kinetic Term. Let us
consider the following kinetic term:

g(X) = −
√

1− 2X
M4

, (99)

with M being a suitable mass scale. We get

2X/M4
√

1− 2X/M4
f
(
ϕ(X)

) = Λνa−3,

c2
s (X) = 1− 2X

M4
.

(100)

In the next subsection, we give a Lagrangian where the
sound speed can be small. It is important to emphasize that
the models described here and in the next subsection satisfy
the weak energy conditions ρ ≥ 0 and p + ρ ≥ 0.

7.2. UDM Models with Born-Infeld Type Kinetic Term and
a Low Speed of Sound. Let us consider for f the following
definition:

f
(
ϕ(X)

) = Λ

μ

2X/M4 − h

2X/M4(1− 2X/M4)1/2 , (101)
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where h and μ are appropriate positive constants. Moreover,
we impose that h < 1. Thus we get

X(a) = M4

2
h + μνa−3

1 + μνa−3
or

(
dϕ

dN

)2

= 3M4

Λ

h + μνa−3

(1 + νa−3)
(
1 + μνa−3

) ,

(102)

and, for c2
s , we obtain the following relation:

c2
s (a) = 1− h

1 + μνa−3
. (103)

Therefore, with the definition (101) and using the freedom in
choosing the value of h, we can shift the value of c2

s for a →
∞. Specifically, h = 1 − c2∞ where c∞ = cs(a → ∞). At this
point, by considering the case where h = μ (which makes the
equation analytically integrable), we can immediately obtain
the trajectory ϕ(a), namely,

ϕ(a) =
(

4hM4

3Λ

)1/2

arc sinh
(
νha−3)−1/2

. (104)

Finally, we obtain

f
(
ϕ
)

= Λ(1− h)1/2

h

×
cosh

[(
3Λ

4hM4

)1/2

ϕ

]

(
sinh

[(
3Λ

4hM4

)1/2

ϕ

]{
1 + hsinh2

[(
3Λ

4hM4

)1/2

ϕ

]}) ,

V
(
ϕ
)

= Λ

h

⎛
⎜⎜⎜⎜⎝

{
h2sinh2

[(
3Λ

4hM4

)1/2

ϕ

]
+ 2h− 1

}

1 + h sinh2

[(
3Λ

4hM4

)1/2

ϕ

]

⎞
⎟⎟⎟⎟⎠.

(105)

This result implies that in the early universe
√

3Λ/(4hM4)ϕ
� 1 and 2X/M4 ≈ 1, and we obtain

f
(
ϕ
) ≈

(
4hM4

3Λ

)1/2
Λ
√

1− h

h

1
ϕ
∝ a3/2,

∣∣g(X)
∣∣ =

√
1− 2X

Λ
∝ a−3/2,

∣∣V(ϕ)∣∣ −→
∣∣∣∣Λ(2h− 1)

h

∣∣∣∣

� f
(
ϕ
)(

2X
∂g(X)
∂X

− g(X)

)
∝ a−3.

(106)

In other words, we find, for f (ϕ) and g(X), a behaviour
similar to that we have studied in Section 6.2, as also in [33].
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Figure 5: Sound speed c2
s (a) for different values of c∞2 =

10−6, 10−5, 10−4, 10−3 from bottom to top (see [41]).

When a → ∞, we have ϕ → ∞ and 2X/M4 → h.
Therefore

f
(
ϕ
)
g(X) −→ 0, V

(
ϕ
) −→ Λ, (107)

that is, for a → ∞, the dark fluid of this UDM model will
converge to a Cosmological Constant.

In [38] the authors analytically show that once the initial
value of ϕ is fixed, there is still a large basin of attraction
in terms of the initial value of dϕ/dt, which can take any
value such that 2X/M4 � 1. Moreover, [38] investigates the
kinematic behavior of this UDM fluid during the radiation-
dominated epoch.

We can conclude that once it is constrained to yield
the same background evolution as ΛCDM and we set an
appropriate value of c∞, this UDM model provides a sound
speed small enough that (i) the dark fluid can cluster and
(ii) the Integrated Sachs-Wolfe contribution to the CMB
anisotropies is compatible with observations. Figure 5 shows
an example of the dependence of c2

s on a for different values
of c∞.

In Figure 6 we present some Fourier components Φk(a)
of the gravitational potential, normalized to unity at early
times (see [41]). As we can note from this figure, the possible
appearance of a sound speed significantly different from
zero at late times corresponds to the appearance of a Jeans’
length under which the dark fluid does not cluster any
more, causing a strong evolution in time of the gravitational
potential. By increasing the sound speed, the potential starts
to decay earlier in time, oscillating around zero afterwards.
Moreover, at small scales, if the sound speed is small enough,
UDM reproduces ΛCDM. This reflects the dependence of
the gravitational potential on the effective Jeans’ length λJ(a)
[32].

Finally, in [41] the authors show for this UDM model
the lensing signal in linear theory as produced in ΛCDM and
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UDM; as sources, they consider the CMB and background
galaxies, with different values of the peak and different
shapes of their redshift distribution. For sound speed lower
than c∞ = 10−3, in the window of multipoles l � 10
(Limber’s approximation) and where our ignorance on non-
linear effects due to small scales dynamics becomes relevant,
the power spectra of the cosmic convergence (or shear) in
the flat-sky approximation in UDM and ΛCDM are similar.
When the Jeans’ length λJ(a) increases, the Newtonian
potential starts to decay earlier in time (at a fixed scale), or
at greater scales (at a fixed epoch). This behaviour reflects
on weak lensing by suppressing the convergence power
spectra at high multipoles. They find that, for values of
the sound speed between c∞ = 10−3 and c∞ = 10−2,
UDM models are still comparable with ΛCDM, while for
higher values of c∞ these models are ruled out because of

the inhibition of structure formation. Moreover, they find
that the dependence of the UDM weak lensing signal on
the sound speed c∞ increases with decreasing redshift of the
sources. They also show the errors for the fiducial ΛCDM
signal for wide-field surveys like EUCLID or Pan-STARRS,
and they find that one is in principle able to distinguish
ΛCDM from UDM models when c∞ � 10−2. Moreover, in
[46] the authors calculate the 3D shear matrix Cγγ(k1, k2; �)
in the flat-sky approximation for a large number of values
of c∞. They see that, whilst the agreement with the ΛCDM
model is good for small values of c∞, when one increases
the sound speed parameter, the lensing signal appears
more suppressed at small scales, and the 3D shear matrix
shows bumps related to the oscillations of the gravitational
potential. Moreover, they show that the expected evidence
clearly shows that the survey data would unquestionably
favour UDM models over the standard ΛCDM model, if its
sound speed parameter exceeds 10−4.

7.3. Prescription for UDM Models with a Generic Kinetic Term.
We now describe a general prescription to obtain a collection
of models that reproduce a background similar to ΛCDM
and have a suitable sound speed. Some comments about the
master equation (98) are first necessary. The relation (98)
enables to determine a connection between the scalar factor
a and the kinetic term X on the manifold MΛ and therefore
a mapping between the cosmic time and the manifold MΛ.

Now it is easy to see that the LHS of (98), seen as a single
function of X , must have at least a vertical asymptote and
a zero, and the function must be continuous between the
two. In particular, when X is near the vertical asymptote,
the universe approaches the cosmological constant regime,
whereas when X is close to the zero of the function, the dark
fluid behaves like dark matter. Therefore, if we define

f
(
ϕ(X)

) = F (X)
2X
(
∂g(X)/∂X

) , (108)

where, for example,

F (X) = 1
μ

Xf − X

X − Xi
, (109)

(where μ is an appropriate positive constant), the values of
Xf and Xi are the zero and the asymptote mentioned above;
namely, when a → 0, we have X → Xi, and when a → ∞
we have X → Xf . Moreover, if Xf > Xi, we have dX/dN >
0, whereas if Xf < Xi we have dX/dN < 0. In other words,
according to (98),

X(a) = Xf

1 +
(
Xi/X f

)
Λμνa−3

1 + Λμνa−3
. (110)

Let us emphasize that the values of Xi and Xf are very
important because they automatically set the range of values
that the sound speed can assume at the various cosmic
epochs.

Let us finally make another important comment. One
can use this reconstruction of the UDM model in the oppo-
site way. In fact, by imposing a cosmological background
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identical to ΛCDM, the observed CMB power spectrum, and
the observed evolution of cosmic structures, one can derive
the evolution of the sound speed c2

s versus cosmic time.
In this case, by assuming an appropriate kinetic term g(X)
through (95), we can derive X(a) and, consequently, ϕ(a)
and X(a(ϕ)) = X(ϕ). Therefore, by using the relations (98)
and V(ϕ) = f (ϕ)g(X) +Λ, one can determine the functional
form of f (ϕ) and V(ϕ).

8. Generalized UDM Models

In this section we consider several possible generalizations
of the technique introduced in Section 7.1, with the aim of
studying models where the background does not necessarily
mimic the ΛCDM background (see [38, 49]).

Let us consider a scalar field Lagrangian L of the form

L
(
X ,ϕ

) = p
(
ϕ,X

) = f
(
ϕ
)
g
(
h
(
ϕ
)
X
)−V

(
ϕ
)
. (111)

Note that, introducing the three potentials f (ϕ), h(ϕ) and
V(ϕ), we follow an approach similar to the one studied in
[38] in order to decouple the equation of state parameter
w and the sound speed cs. In order to reconstruct these
potentials we need three dynamical conditions: (a) a choice
for p(N), (b) the continuity equation or, equivalently, the
equation of motion (10), and (c) a choice for c2

s (N) (see
[49]).

Let us obtain the Lagrangian through two different
simple approaches

(1) The first one is by choosing p(N). Indeed we get

dρ

dN
+ 3ρ = −3p(N), i.e.

ρ(N) = e−3N

[
−3

∫ N(
e3N ′

p(N ′)dN ′
)

+ K

]
,

(112)

where K is an integration constant. By imposing the
condition L(X ,ϕ) = p(N) along the classical trajectories,
we obtain ϕ = L−1(X(N), p(N))|Mp(N) . Thus, starting from a
generic Lagrangian L = f (ϕ)g(h(ϕ)X)−V(ϕ) we get

2X(N)

[
∂g
(
h
(
ϕ[X ,N]

)
X
)

∂X

]
(N) f

(
ϕ(X ,N)

)

= p(N) + e−3N

[
−3

∫ N(
e3N ′

p(N ′)dN ′
)

+ K

]
.

(113)

For example, if p = −Λ, K = ρ(a = 1) − Λ. The freedom
provided by the choice ofK is particularly relevant. In fact, by
settingK = 0, we can remove the term ρ ∝ a−3. Alternatively,
whenK /= 0, we always have a term that behaves like pressure-
less matter. We thus show that the single fluid of UDM
models can mimic not only a cosmological constant but also
any quintessence fluid.

Thus, using (113) and following the procedure described
in Section 7.1, one gets the relations X ≡ Gp(N), and
consequently

ϕ ≡ Qp(N) = ϕ0

±
∫ N
{

Gp(N ′)1/2

[
−3e−3N

∫ N(
e3N ′

p(N ′)dN ′
)

+Ke−3N

]−1

dN ′
⎫⎬
⎭.

(114)

Therefore, with the functions Gp(N) and Qp(N), one can
write f (X ,N) = f (Gp(N),N) = f (Gp(Q−1

p (ϕ)), Q−1
p (ϕ)) =

f (ϕ). Thus, by starting from a Lagrangian whose behavior
is given by p(N), the speed of sound is determined by
the appropriate choice of g(h(ϕ)X), where h(X ,N) =
h(Gp(N),N) = h(Gp(Q−1

p (ϕ)), Q−1
p (ϕ)) = h(ϕ).

(2) The second one is by choosing the equation of state
w(N). Indeed

ρ(N) = ρ0e
−3

∫N (w(N ′)+1)dN ′
, (115)

where ρ0 is a positive integration constant, and

p(N) = ρ0w(N)e−3
∫

(w(N ′)+1)dN ′
. (116)

Therefore, still by imposing the condition L(X ,ϕ) =
p[w(N),N] along the classical trajectories, that is, ϕ =
L−1[X(N), p(w(N),N)]|Mw(N) , one gets

2X
∂g
(
h
(
ϕ[X ,N]

)
X
)

∂X
f (X ,N)

= ρ0[w(N) + 1]e−3
∫

(w(N ′)+1)dN ′
.

(117)

Therefore, on the classical trajectory we can impose, by
using w(N), a suitable function p(N) and thus the function
ρ(N). The master equation (117) generalizes (98). Also in
this case, by (117) and by following the argument described
in Section 7.1, one can get the relations X ≡ Gw(N), and
consequently

ϕ ≡ Qw(N)

= ±
∫ N
{

Gw(N ′)1/2
[
ρ0e

−3
∫N′ (w(N ′′)+1)dN ′′

]1/2

dN ′
}

+ ϕ0.

(118)

Thus, with the functions Gw(N) and Qw(N), one can write
f (X ,N) = f (Gw(N),N) = f (Gw(Q−1

w (ϕ)), Q−1
w (ϕ)) = f (ϕ).

Then we can find a Lagrangian whose behavior is determined
by w(N) and whose speed of sound is determined by
the appropriate choice of g(h(ϕ)X), where h(X ,N) =
h(Gp(N),N) = h(Gp(Q−1

p (ϕ)), Q−1
p (ϕ)) = h(ϕ).

Let us conclude that the p(N) constraint on the equation
of motion is actually a weaker condition than the w(N)
constraint. The larger freedom that the p(N) constraint
provides naturally yields an additive term in the energy
density that decays like a−3, that is, like a matter term
in the homogeneous background. Let us emphasize that
this important result is a natural consequence of the p(N)
constraint and is not imposed a priori (see [38, 49]).
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9. Halos of Unified Dark Matter Scalar Field

A complete analysis of UDM models should necessarily
include the study of static solutions of Einstein’s field
equations. This is complementary to the study of cosmo-
logical background solutions and would allow to impose
further constraints to the Lagrangian of UDM models. The
authors of [95, 123] have studied spherically symmetric and
static configuration for k-essence models. In particular, they
studied models where the rotation velocity becomes flat (at
least) at large radii of the halo. In these models the scalar field
pressure is not small compared to the mass-energy density,
similarly to what is found in the study of general fluids in
[124–127], and Einstein’s equations of motion do not reduce
to the equations of Newtonian gravity. Further alternative
models have been considered, even with a canonical kinetic
term in the Lagrangian, that describe dark matter halos in
terms of bosonic scalar fields; see, for example, [21, 63–
68, 128–130].

In this section we assume that our scalar field con-
figurations only depend on the radial direction. Three
main results are achieved. First, we are able to find a
purely kinetic Lagrangian which allows simultaneously to
provide a flat rotation curve and to realize a unified model
of dark matter and dark energy on cosmological scales.
Second, an invariance property of the expression for the
halo rotation curve is found. This allows to obtain purely
kinetic Lagrangians that reproduce the same rotation curves
that are obtained starting from a given density profile within
the standard Cold Dark Matter (CDM) paradigm. Finally,
we consider a more general class of models with nonpurely
kinetic Lagrangians. In this case one can extend to the static
and spherically symmetric spacetime metric, the procedure
used in [33] to find UDM solutions in a cosmological setting.
Such a procedure requires that the Lagrangain is constant
along the classical trajectories; we are thus able to provide
the conditions to obtain reasonable rotation curves within a
UDM model of the type discussed in [33].

9.1. Static Solutions in Unified Dark Matter Models. Let
us consider a scalar field which is static and spatially
inhomogeneous, that is, such that X < 0. In this situation
the energy-momentum tensor is not described by a perfect
fluid and its stress energy-momentum tensor reads

T
ϕ
μν = (p‖ + ρ

)
nμnν − ρgμν, (119)

where

ρ = −p⊥ = −L, (120)

nμ = ∇μϕ/
√−2X , and p‖ = L − 2X∂L/∂X . In particular,

p‖ is the pressure in the direction parallel to nμ whereas p⊥
is the pressure in the direction orthogonal to nμ. It is simpler

to work with a new definition of X . Indeed, defining X = −χ
we have

nμ =
∇μϕ(
2χ
)1/2 , (121)

p‖ = 2χ
∂ρ

∂χ
− ρ. (122)

Let us consider for simplicity the general static spherically
symmetric spacetime metric, that is,

ds2 = − exp(2α(r))dt2 + exp
(
2β(r)

)
dr2 + r2dΩ2, (123)

where dΩ2 = dθ2 + sin2θdφ2 and α and β are two functions
that only depend upon r.

As the authors of [95, 123] have shown, it is easy to see
that the nondiagonal term Trt vanishes. Therefore ϕ could be
either strictly static or depend only on time. In this section we
study the solutions where ϕ depends on the radius only.

In the following we will consider some cases where the
baryonic content is not negligible in the halo. In this case we
will assume that most of the baryons are concentrated within
a radius rb. If we define M∗ as the entire mass of the baryonic
component, then for r > rb we can simply assume that M∗ is
concentrated in the center of the halo.

Considering, therefore, the halo for r > rb, starting from
Einstein’s equations and the covariant conservation of the
stress-energy (or from the equation of motion of the scalar
field (4)), we obtain

1
r2

{
1− [r exp

(−2β
)]′} = ρ ⇐⇒ dM

dr
= 4πρr2, (124)

1
r2

{
exp

[−2
(
α + β

)][
r exp (2α)′

]
− 1

}
= p‖ ⇐⇒ α′

=
(
(M + M∗)/8π + p‖r3/2

)
r2[1− (M + M∗)/4πr]

,

(125)

exp
[−(α + 2β

)]
r

{[
r expα

]′
β′ −

[
r
(
expα

)′]′} = ρ, (126)

dp‖
dR

= −(p‖ + ρ
)

(127)

(which are the 00, rr, and θθ components of Einstein’s
equations and the r component of the continuity equation
resp.) where

exp
(−2β(r)

) = 1− (M + M∗)
(4πr)

,

R = ln
[
r2 exp(α(r))

]
,

(128)

where a prime indicates differentiation with respect to the
radius r.

A first comment is in order here. If (i) β′ = 0 and (ii)
[r(expα)′]′ > 0, then we can immediately see that ρ < 0.
These conditions must therefore be avoided when trying to
find a reasonable rotation curve. For example, neglecting the
baryonic mass, the special case of ρ = A/r2 and exp(α) ∼ rm,



20 Advances in Astronomy

where A and m are constants, falls into this case. One
thus recovers the no-go theorem derived in [95] under the
assumption that the rotation curve vc � 1 is constant for all
r.

The value of the circular velocity vc is determined by the
assumption that a massive test particle is also located at θ =
π/2. We define as massive test particle the object that sends
out a luminous signal to the observer who is considered to be
stationary and far away from the halo.

Considering the motion of a massive test particle, say a
star, in a such a halo, its trajectory is then described by a curve
xμ = (t, r, θ,φ) parameterized by some affine parameter; here
we use its proper time τ. Its four-velocity is then simply
uμ ≡ dxμ/dτ. Due to spherical symmetry, we can assume
without loss of generality that the star’s ecliptic is located in
the θ = π/2 plane. Since the star is a massive particle, its
norm is uμuμ = −1, which becomes the constraint equation:

exp(2α)ṫ2 − exp
(
2β
)
ṙ2 − r2φ̇2 = 1, (129)

where a dot denotes a derivative with respect to proper time
τ. Since the metric does not explicitly depend on θ, the star’s
angular momentum l is conserved:

l = r2φ̇. (130)

Similarly, the metric does not explicitly depend on t, and
there is a conserved energy E:

E = exp(2α)ṫ. (131)

Substituting (131) and (130) into (129), one finds a first
integral of motion for the star:

1
2
ṙ2 + V(r) = 0, (132)

where its effective potential is

V(r) = 1
2

exp
(−2β

)(
1 +

l2

r2

)
− 1

2
E2 exp

[−2
(
α + β

)]
.

(133)

Note that the potential explicitly depends on the energy.
Stationary orbits at radius r exist if V and dV/dr vanish at
that radius. The former condition yields

1 +
l2

r2
= E2 exp[−2α(r)], (134)

whereas the latter gives us

−β′
(

1 +
l2

r2

)
− l2

r3
+ E2(α′ + β′

)
exp[−2α(r)] = 0. (135)

Substituting (134) into (135) and using (124), (125), and (4),
we get the following equation:

l2/r2

1 + l2/r2
= (M + M∗)(r)

8πr
+ r2 p‖(r)

2
, (136)

which directly relates the angular momentum l to the density
profile of the halo.

In this case, through the definition of the star’s angular
momentum l and (136), the value of vc ≡ l/r can be rewritten
as

v2
c =

p‖r2/2 + (M + M∗)/(8πr)
1− [p‖r2/2 + (M + M∗)/(8πr)

] , (137)

but when we consider the weak-field limit condition (M +
M∗)/(8πr) � 1 and since the rotation velocities of the halo
of a spiral galaxy are typically nonrelativistic, vc � 1, (137)
simplifies to [123]

v2
c ≈

M + M∗
8πr

+
p‖r2

2
. (138)

A second comment follows from the fact that the pressure
is not small compared to the mass-energy density. In other
words we do not require that general relativity reduces to
Newtonian gravity (see also [124–127]). Notice also that in
the region where vc ≈ const. � 1 it is easy to see that
in general exp(α) ≈ const. since from (125) and (138) one
obtains rα′ ≈ v2

c .
Finally, let us point out one of the main results (see also

[38]). We can see that the relation (138) is invariant under
the following transformation:

ρ −→ ρ̃ = ρ + σ(r) p‖ −→ p̃‖ = p‖ + q(r) (139)

if

3q(r) + rq(r)′ = −σ(r), (140)

up to a proper choice of some integration constants. Thanks
to this transformation we can consider an ensemble of
solutions that have the same rotation curve. Obviously, these
solutions have to satisfy Einstein’s equations (124), (125),
and (126), and the covariant conservation of the stress-
energy (127). Moreover, we will require the validity of the
weak energy conditions, ρ ≥ 0 and p‖ + ρ ≥ 0, that is,

2
exp

(−2β
)

r

(
α′ + β′

) = 2χ
∂ρ

∂χ
≥ 0. (141)

9.2. Unified Dark Matter Models with Purely Kinetic
Lagrangians. Let us consider a scalar field Lagrangian L with
a non-canonical kinetic term that depends only on X or
χ. Moreover, in this section we assume that M∗ = 0 (or
M�M∗).

First of all we must impose that L is negative whenX < 0,
so that the energy density is positive. Therefore, we define a
new positive function:

gs(χ) ≡ −L(X). (142)

As shown in [123], when the equation of state p‖ = p‖(ρ)
is known, one can write the purely kinetic Lagrangian that
describes this dark fluid with the help of (120) and (122).
Alternatively, using (127), one can connect p‖ and ρ in terms
of r through the variable R. Moreover, it is easy to see that
starting from the field equation of motion (4), there exists
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another relation that connects χ (i.e., X) with r. This relation
is

χ

[
dgs(χ)
dχ

]2

= k[
r2 expα(r)

]2 (143)

with k being a positive constant. If we add an additive
constant to gs(χ), the solution (143) remains unchanged.
One can see this also through (127). Indeed, using (120) and
(122) one immediately finds that (127) is invariant under the
transformation ρ → ρ + K p‖ → p‖ − K . In this way we
can add the cosmological constant K = Λ to the Lagrangian
and we can describe the dark matter and the cosmological
constant-like dark energy as a single dark fluid, that is, as
Unified Dark Matter (UDM).

Let us notice that one can adopt two approaches to find
reasonable rotation curves vc(r). A static solution can be
studied in two possible ways.

(i) The first approach consists simply in adopting
directly a Langrangian that provides a viable cos-
mological UDM model and exploring what are the
conditions under which it can give a static solution
with a rotation curve that is flat at large radii. This
prescription has been already applied, for example,
in [123].

(ii) A second approach consists in exploiting the invari-
ance property of (138), with respect to the transfor-
mation (139) (when the condition (140) is satisfied).
Usually in the literature one reduces the problem
to the Newtonian gravity limit, because one makes
use of a CDM density profile; that is, one assumes
that in (138), p‖ � M/(4πr3). We can therefore
use (139) and (140) to obtain energy density and
pressure profiles ρ(r) and p‖(r) that reproduce the
same rotation curve in a model with nonnegligible
pressure. Next, we find an acceptable equation of state
p‖ = p‖(ρ) such that we can reconstruct, through
(120) and (122), the expression for the Lagrangian
L. Such a procedure establishes a mapping between
UDM and CDM solutions that predict the same halo
rotation curve vc(r). As a starting point we could,
of course, use very different CDM density profiles to
this aim, such as the modified isothermal-law profile
[131], the Burkert profile [132], the Moore profile
[133], the Navarro-Frenk-White profile [134, 135] or
the profile proposed by Salucci et al. (see, e.g., [136–
139]).

As we have already mentioned, the possible solutions
one finds in this way have to satisfy the Einstein
equations (124), (125) and (126), the conservation of
stress-energy (127) and the weak energy conditions.
Moreover, the resulting UDM scalar field Lagrangian
must be able to provide cosmological solutions that
yield an acceptable description of the cosmological
background (see, e.g., [33]) and low effective speed of
sound (see for example [32, 70, 100]) so that cosmic
structure formation successfully takes place and CMB
anisotropies fit the observed pattern [25, 27, 28, 31].

Below, using approach (i), we provide a worked example
of a UDM model with purely kinetic Lagrangian which is
able to describe a flat halo rotation curve and then, using
approach (ii), we give a general systematic procedure to
obtain a possible Lagrangian of UDM model starting from
a given CDM density profile.

9.2.1. Approach (i): The Generalized Scherrer Solution. Let us
consider the generalized Scherrer solution models obtained
in [33] (see also Section 4.3). These models are described by
the following Lagrangian:

L = −Λ + gn
(
X − X̂

)n
(144)

where gn > 0 is a suitable constant and n > 1. The case n = 2
corresponds to the unified model proposed by Scherrer [30].
If we impose that today [(X − X̂)/X̂]n � 1, the background
energy density can be written as

ρ(a(t)) = ρΛ + ρDM, (145)

where ρΛ behaves like a “dark energy” component (ρΛ =
const.) and ρDM behaves like a “dark matter” component,
that is, ρDM ∝ a−3, with a(t) the scale factor.

A static solution for the generalized Scherrer model can
be obtained in two possible ways.

(1) Starting from the analysis of [95], in the case of a
barotropic Lagrangian for the homogeneous field.
The authors of [95] indeed concluded that for n� 1
flat halo rotation curves can be obtained. In particu-
lar they studied spherically symmetric solutions with
the following metric,

ds2 = −
(
r

r�

)b
dt2 + N(r)dr2 + r2dΩ2, (146)

where r� is a suitable length-scale and b = 2v2
c . In the

trivial case where N(r) is constant they find L(X) ∝
X2/b with b � 1. For X � X̂ the Lagrangian L =
−Λ + gn(X − X̂)n takes precisely this form.

(2) In the analysis of [123], solutions where ϕ is only
a function of the radius are considered. When the
Lagrangian has the form L ∝ Xn, with n ∼ 106

the halo rotation curve becomes flat at large radii. In
this case n must be an odd natural number, such that
the energy density is positive. Our model is able to
reproduce this situation when the matter density is
large, that is, when |X| � X̂ .

Alternatively, if we wish to avoid large n (cf. case (2) above),
we can start from the following Lagrangian:

L = −Λ + εXgn
(
|X| − X̂

)n
, (147)

where εX is some differentiable function of X that is 1 when
X ≥ X̂ and −1 when X ≤ −X̂ < 0. In this way when X >

X̂ > 0, we recover the Lagrangian of the generalized Scherrer
solutions. When X < 0 and χ = −X > X̂ , we get

L = −Λ− gn
(
χ − X̂

)n
, (148)
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and, with the help of (120) and (122), we obtain

ρ = −p⊥ = −L,

p‖ = (2n− 1)gn
(
χ − X̂

)n
+ 2ngnX̂

(
χ − X̂

)n−1 −Λ.
(149)

Now, requiring that χ be close to X̂ (i.e., (χ − X̂) � X̂) and

2ngnX̂(χ − X̂)
n−1 � O(Λ), and starting from the relation

(143) that connects χ with r, we get

(
χ − X̂

)n−1 = k1/2

ngnX̂1/2

1
r2 exp(α(r))

. (150)

Consistency with our approximations implies that we have to
consider the following expressions for radial configurations
with r bigger than a minimum radius rmin. In this case p‖
and ρ become

p‖ = A

r2 exp(α(r))
, ρ = B[

r2 exp(α(r))
]n/(n−1) , (151)

where A = 2(kX̂)1/2 and B = gn[k1/2/(ngnX̂1/2)]
n/(n−1)

.
Using (124) and (125), one can calculate the values of the

metric terms exp(α) and exp(β) and thus the value of ρ and
p‖. Alternatively we know that when vc ≈ const.� 1 at large
radii, in a first approximation, we can set exp(α(r)) ≈ C =
const. Therefore for n /= 3, we can write the function M as

M(r) ≈ 4πB
Cn/(n−1)

(
n− 1
n− 3

r(n−3)/(n−1) + D
)

, (152)

where we could also set D = 0 for n > 3. Instead, when 1 <
n < 3, the second term has to be larger than the first one.

In these cases v2
c becomes

v2
c (r) ≈ A

2C
+

B

2 Cn/(n−1)

(
n− 1
n− 3

1
r2/(n−1)

+
D

r

)
. (153)

For n = 3 we have

M(r) ≈ 4πB
C3/2

ln
(
r

r

)
+ M(r), (154)

where r > r and

v2
c ≈

A

2C
+

B

2C3/2

1
r

ln
(
r

r

)
+
M(r)
8πr

. (155)

In other words we see that the circular velocity becomes
approximately constant for sufficiently large r.

However, let us stress that exp(α(r)) cannot be strictly
constant, and that it should be chosen in such a way that the
positivity of (126) is ensured.

This example can be generalized also to M∗ /= 0. Obvi-
ously, in such a case we have to assume that r > rb ≥ rmin. In
this case k, rmin, A, B (through exp(β(r))), and C depend on
M∗.

The spherical top-hat solution for this model, which
provides the link with the cosmological initial conditions, is
described in the appendix.

9.3. Approach (ii): A General Prescription to Obtain UDM
Lagrangians Starting from a Profile of an Energy Density Dis-
tribution of CDM. Defining the energy density distribution
of CDM as ρCDM(r) (with pCDM = 0), the transformation
(139) becomes

ρ(r) = ρCDM(r) + σ(r), p‖(r) = q(r). (156)

Now, starting from a given CDM density profile, through
(124), (125), (127), and (140), we can determine exp(α),
exp(β), ρ and p‖. In a second step we provide the conditions
to ensure that the energy density is positive. (Thanks to this
condition, through Einstein’s (126), we can evade the no-go
theorem derived in [95].) In this case, after some simple but
lengthy calculations, one finds

Q′(r)
(
r
MCDM(r)

4π
− 2rQ(r)

)
− 2Q2(r)

+Q(r)
(

4r + 3
MCDM(r)

4π
+ 4r3ρCDM

)

= rMCDM(r)
4π

(
4 + 3r2ρCDM

)
,

(157)

B(r) = Q(r)− MCDM(r)
4π

, (158)

A(r) = Q(r) + B(r)
2B(r)

, (159)

σ(r) = 1−Q′(r)
r2

, (160)

where Q(r) = r(r2q + 1), B(r) = r exp(−2β), and A(r) =
(rα′ + 1). Here we define MCDM(r) = 4π

∫ r
0 r̃

2ρCDM(r̃)dr̃. At
this point it is easy to see that (157) does not admit a simple
analytical solution for a generic ρCDM. On the other hand we
know that, through ρCDM, all these functions depend on the
velocity rotation curve vc(r). Moreover v2

c (r) � 1. Therefore,
defining vc as the value that vc assumes when the rotation
curve is flat at large radii or the maximum value of vc with a
particular profile of ρCDM, one can expand Q, A, and B as

Q(r) = Q(0)(r) + v2
cQ(1)(r) +

(
v2
c

)2

2!
Q(2)(r) + · · · ,

A(r) =A(0)(r) + v2
cA(1)(r) +

(
v2
c

)2

2!
A(2)(r) + · · · ,

B(r) = B(0)(r) + v2
cB(1)(r) +

(
v2
c

)2

2!
B(2)(r) + · · · .

(161)

Following this procedure one can determine ρ and p‖ in
a perturbation way, that is,

ρ(r) = ρ(0)(r) + v2
c ρ(1)(r) +

(
v2
c

)2

2!
ρ(2)(r) + · · · ,

p‖(r) = p‖(0)(r) + v2
c p‖(1)(r) +

(
v2
c

)2

2!
p‖(2)(r) + · · · .

(162)

Now, looking at the various CDM density profiles which have
been proposed in the literature [131–135, 139], we see that
one can always take ρCDM as

ρCDM(r) = v2
c ρCDM (1)(r), (163)
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then

MCDM(r) = v2
cMCDM (1)(r) = 4πv2

c

∫ r

0
r̃2ρCDM (1)(r̃)dr̃.

(164)

For the zeroth-order terms one immediately obtains

Q(0) = r,

A(0) = 1,

B(0) = r.

(165)

At the first order one gets

Q(1) = 2
r

∫ r

0
r̃3ρCDM (1)(r̃)dr̃,

A(1) = 1
2r

MCDM (1)(r)
4π

,

B(1) = 2
r

∫ r

0
r̃3ρCDM (1)(r̃)dr̃ − MCDM (1)(r)

4π
.

(166)

For completeness we write also the second order for Q:

Q(2) = 1
r

∫ r

0
dř

MCDM (1)(ř)
4π

[
2
ř
Q(1)(ř)− ř2ρCDM (1)(ř)

]
.

(167)

Let us stress that if one considers also terms O(v4
c ), (137)

instead of (138) should be used. In such a case, vc slightly
changes with respect to the velocity rotation curve that one
obtains using a CDM density profile.

For our purposes we can consider only the zeroth- and
the first-order terms. At this point, one can finally calculate
the value of ρ and p‖. One gets

ρ(r) = ρCDM(r) +
1−Q′(r)

r2

= v2
c

(
2
r4

∫ r

0
r̃3ρCDM (1)(r̃)dr̃ − ρCDM (1)(r)

)

p‖(r) = Q(r)− r

r3
= v2

c
2
r4

∫ r

0
r̃3ρCDM (1)(r̃)dr̃.

(168)

As far as the values of the metric terms exp(α) and exp(β) are
concerned, we obtain the following expressions:

exp(2α) = exp(2α(r̂)) exp

[
v2
c

∫ r

r̂

1
r̃2

MCDM (1)(r̃)
4π

dr̃

]
,

exp
(−2β

)=1+
v2
c

r2

(
2
∫ r

0
r̃3ρCDM (1)(r̃)dr̃−rMCDM (1)(r)

4π

)
.

(169)

Now, it is immediate to see that if we want a positive
energy density, we have to impose 2

∫ r
0 r̃

3ρCDM (1)(r̃)dr̃ ≥
r4ρCDM (1)(r). From (124) we know that M(r) =
4π
∫ r
r̂(0)

r̃2ρ(r̃) + M(r̂(0)) and MCDM(r) = 4π
∫ r
r r̃

2ρCDM(r̃)dr̃ +
MCDM(r). Therefore we need to know what is the relation

between r and r̂(0). This condition is easily obtained if we
make use of (138). Indeed, we get

M(1)
(
r̂(0)
)−MCDM (1)(r)

4π
+

2
r̂(0)

∫ r̂(0)

0
r̃3ρCDM (1)(r̃)dr̃

=
∫ r̂(0)

r
r̃2ρCDM (1)(r̃)dr̃,

(170)

which finally guarantees the invariance of the rotation
velocity with respect to the transformation in (139) and
(140).

Let us, to a first approximation, parameterize the various
CDM density profiles, at very large radii (i.e., when we can
completely neglect the baryonic component) as

ρCDM = κv2
c

rn
, (171)

where κ is a proper positive constant which depends on the
particular profile that is chosen [131–135, 139]. For example,
for many of the density profiles the slope is n = 3 for large
radii [132–135, 139].

In this case a positive energy density ρ > 0 requires n ≥
2. At this point let us focus on the case where 2 ≤ n < 4,
since this gives rise to the typical slope of most of the density
profiles studied in the literature. Therefore we obtain for ρ(r)
and p‖(r)

ρ(r) = v2
c κ

n− 2
4− n

1
rn

, p‖(r) = v2
c κ

2
4− n

1
rn
. (172)

In particular, one has the following.

(1) For n = 2, we get

ρ(r) = 0, p‖(r) = ρCDM = v2
c κ

1
r2

, (173)

and for the relation between r̂(0) and r one can
choose, for example, r̂(0) = r = 0. In other words,
for large radii we have that ρ(r) � p‖(r).

(2) Also for 2 < n < 3 one can choose r̂(0) = r = 0.

(3) For n = 3

ρ(r) = ρCDM, p‖(r) = v2
c κ

2
r3

, (174)

and, through (170), we have to impose that

M(1)
(
r̂(0)
)−MCDM (1)(r)

4π
= ln

(
r̂(0)

r

)
− 2. (175)

Notice that the energy density profile is the same as
the CDM one only for large radii so that M(1)(r)
differs from MCDM (1)(r).

(4) In addition, for 3 < n < 4, also through (170), we
have to impose that

M(1)
(
r̂(0)
)−MCDM (1)(r)

4π
= r3−n

n− 3
− (n− 2)

(4− n)(n− 3)
r̂3−n

(0) .

(176)
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Now let us focus where 2 < n < 4. Starting from (172) to
express p‖ = p‖(ρ) we solve (122) to recover the Lagrangian
for the scalar field:

ρ(χ) = −L = kχn/(2(n−2)), p(χ) = 2k
(n− 2)

χn/(2(n−2)),

(177)

where k is a positive integration constant. We can see that,
for this range of n, the exponent is larger than 1; thus there
are no problems with a possible instability of the Lagrangian
(see [77, 78, 123]). Therefore, through the transformation
ρ → ρ + Λ p‖ → p‖ − Λ, this Lagrangian can be extended
to describe a unified model of dark matter and dark energy.
Indeed, starting from the Lagrangian of the type (147), when
|X| � X̂ and if k = gn, L takes precisely the form (177).

Finally, we want to stress that this prescription does not
apply only to the case of an adiabatic fluid, such as the one
provided by scalar field with a purely kinetic Lagrangian, but
it can be also used for more general Lagrangians L(ϕ,X).

10. Conclusions

In this work we explored the possibility that the dynamics
of a single scalar field can account for a unified description
of the Dark Matter and Dark Energy sectors, leading to a
Unified Dark Matter (UDM) model. In comparison with the
standard DM + DE models (e.g., even the simplest model,
with DM and a cosmological constant), in UDM models
there are two simple but important aspects to consider:
first, the fluid which triggers the accelerated expansion at
late times is also the one which has to cluster in order to
produce the structures we see today. Second, from the last
scattering to the present epoch, the energy density of the
Universe is dominated by a single dark fluid, and therefore
the gravitational potential evolution is determined by the
background and perturbation evolution of just such a fluid.
As a result the general trend is that the possible appearance of
a sound speed significantly different from zero at late times
corresponds to the appearance of a Jeans length (or a sound
horizon) under which the dark fluid does not cluster any
more, causing a strong evolution in time of the gravitational
potential (which starts to oscillate and decay). Specifically
in this paper we have explored UDM models defined by
Lagrangian of k-essence models. This allows to find suitable
solutions around which the scalar field describes a mixture
of Dark Matter and Dark Energy. Finally we also investigated
the static and spherically symmetric solutions of Einstein’s
equations for a scalar field with non-canonical kinetic term.

Appendix

Spherical Collapse for Generalized Scherrer
Solution Models

Let us assume a flat, homogeneous Friedmann-Robertson-
Walker background metric. In such a case, the background

evolution of the Universe is characterized completely by the
following equations:

H2 = 1
3
ρ,

Ḣ = −1
2

(
p + ρ

)
,

(A.1)

where the dot denotes differentiation with respect to the
cosmic time t.

Now let us consider a top-hat spherical over-density
with the purely kinetic model with the Lagrangian L =
−Λ + gn(X − X̂)n and with gn > 0. For this particular case
within the over-dense region we have a single dark fluid
undergoing spherical collapse, which is described by the
following equation:

R̈

R
= −1

6

(
ρR + 3pR

)
, (A.2)

where R, ρR and pR, are, respectively, the scale-factor,
pressure, and energy density of the over-dense region; ρR and
pR are defined by the following expressions:

ρR = Λ + 2ngnX̂
(
XR − X̂

)n−1
+ (2n− 1)gn

(
XR − X̂

)n
(A.3)

pR = gR = −Λ + gc
(
XR − X̂

)n
(A.4)

with XR = X(R) being a function of time.
The equation of motion is
(
∂gR
∂XR

+ 2X
∂2gR
∂X2

R

)
dXR

dNR
+ 3

(
2XR

∂gR
∂XR

)
= 0, (A.5)

where dNR = dR/R. The solution of (A.5) (for ∂gR/∂XR,
XR /= 0 ) is

XR

(
∂gR
∂XR

)2

= kRR
−6, (A.6)

where we can choose kR = R6
ta[XR(∂gR/∂XR)2]ta, with Rta

being the value of R at turn around. Replacing (A.4) in (A.6)
we find

XR

[
ngn

(
XR − X̂

)n−1
]2

= kRR
−6. (A.7)

Using now the explicit expressions for ρR and pR we arrive at
the following set of equations:

R̈

R
= −1

3

[
−Λ + ngnX̂

(
XR − X̂

)n−1
+ (n + 1)gn

(
XR − X̂

)n]
,

(
XR − X̂

)2n−1
+ X̂

(
XR − X̂

)2(n−1) = kR
n2g2

n
R−6.

(A.8)

For (XR − X̂)/X̂ � 1 (A.8) becomes

R̈

R
= −1

3

{
−Λ + ngn

∣∣∣XRta − X̂
∣∣∣n−1(

XRta X̂
)1/2

(
R

Rta

)−3
}
.

(A.9)
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We can now write all the equations that describe the
spherical collapse:

(
ȧ

a

)2

= 1
3

(
ρΛ + ρDM

)
, (A.10)

ρΛ = Λ, (A.11)

ρDM = 2ngn
∣∣∣Xta − X̂

∣∣∣n−1(
XtaX̂

)1/2
(

a

ata

)−3

, (A.12)

R̈

R
= −1

6

(
ρRDM − 2ρRΛ

)
, (A.13)

ρRDM = 2ngn
∣∣∣Xta − X̂

∣∣∣n−1(
XRta X̂

)1/2
(

R

Rta

)−3

, (A.14)

where ata = a(tta).
Following now the same procedure of [140] we can define

x and y:

x ≡ a

ata
,

y ≡ R

Rta
.

(A.15)

In this way we can redefine ρDM and ρRDM such that

ρDM = 3H2
taΩDM(x = 1)

x3
,

ρRDM = ζ
3H2

taΩDM(x = 1)
y3

,

(A.16)

where ΩDM is the (k-essence) dark matter density parameter,
and ζ = (ρ/ρDM)|x=1. Then (A.10) and (A.13) become

dx

dτ
= (xΩDM (x)

)−1/2,

d2y

dτ2
= − 1

2y2

[
ζ − 2y3KΛ

]
,

ΩDM (x) =
(

1− 1−ΩDM (x = 1)
ΩDM (x = 1)

x3

)−1

,

(A.17)

where dτ = Hta

√
ΩDM (x = 1) and KΛ = ρΛ /[3H2

taΩDM (x =
1)].

Defining U as the potential energy of the over-density
and using energy conservation between virialization and
turnaround,

[
U +

R

2
∂U

∂R

]
vir
= Uta, (A.18)

we obtain

(
1 + q

)
y − 2qy3 = 1

2
, (A.19)

where

q =
(
ρΛ
ρ

)
y=1

= KΛ

ζ
, (A.20)

in full agreement with [141].
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