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Abstract 11 

To assess the impact of potentially harmful elements in soil/dust on the health of children that use urban recreational 12 

areas to play outdoors, an urban survey of Lisbon, the largest city in Portugal was carried out, collecting soils and 13 

dusts from public gardens, parks, playgrounds and schoolyards. An exposure and risk assessment study for the 14 

incidental soil/dust ingestion of lead was carried out based on US EPA guidelines using a sub-set of 19 topsoil and 8 15 

outdoor dusts, out of a total of 51 samples, incorporating oral bioaccessibility measurements using the Unified 16 

BARGE Method developed by the Bioaccessibility Research Group of Europe. The objectives are: (i) interpretation 17 

of soil and dust oral bioaccessibility measurements; (ii) assessment of site-specific exposure and non-carcinogenic 18 

risk posed by lead; (iii) hazard assessment for urban soil and dust with respect to children playing in outdoor 19 

recreational areas. The results show that significant fractions of Pb occur in bioaccessible forms, 24-100% in soils 20 

and 35-100% in dusts and the associated risk is greater for dust ingestion than for soil ingestion in Lisbon city 21 

recreational areas. . 22 
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1. Introduction 25 

Due to their physiological and behavioural characteristics, children are exposed to some environmental 26 

contaminants to a greater extent than adults. Toxic chemicals in the environment can cause 27 

neurodevelopmental disabilities, and the developing brain can be particularly sensitive to environmental 28 

contaminants (US EPA, 2009). For example, elevated blood lead (Pb) levels and prenatal exposures to 29 

relatively low levels of Pb (e.g. geometric mean value of 80 mg kg-1 (Johnson and Bretsch 2002)) in soil 30 

can result in behavioural disorders and reductions of intellectual function in children (Lanphear et al., 31 

2005; Landrigan et al., 2005). 32 

Over the last decade a number of studies have investigated the exposure of children to urban particulate 33 

materials since the exposure of children to potentially harmful elements (PHE) in recreational areas is 34 

particularly high (during games at school breaks and in public playgrounds after school), with some 35 

researchers concentrating their efforts on the chemical and mineralogical composition of playground soil 36 

and dust (Ottesen et al., 2008; Okorie et al., 2011; Costa et al., 2012). The ingestion of soil and dust is an 37 

important exposure pathway to environmental chemicals and children, in particular, may ingest soil and 38 

dust through deliberate hand-to-mouth movements, or unintentionally by eating food that has dropped on 39 

the floor (US EPA, 2011; Bacigalupo and Hale, 2012). For example, soil ingestion is referred to in a 40 

number of case studies as a probable source of Pb exposure in children with elevated blood Pb levels in 41 

some areas (Johnson and Bretsch, 2002; Laidlaw and Filippelli, 2008; Morrison et al., 2012). High 42 

concentrations of Pb in urban soils and dusts have become a potential source of risk to children because 43 

Pb has become widely dispersed in the urban environment (Charlesworth et al., 2003; Li and Huang, 44 

2007; Morton-Bermea et al., 2008; Laidlaw and Taylor, 2011). 45 

Understanding soil and dust ingestion patterns is an important part of estimating overall exposures to 46 

PHE. As such, investigations of soil and dust ingestion rates among young children have led to numerous 47 

studies and recommendations with respect to point-estimate values for soil and dust ingestion (Moya et 48 

al., 2004; US EPA, 2009; Okorie et al., 2012). The Child-Specific Exposure Factors Handbook (US EPA, 49 
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2009) recommends an ingestion rate among young children (2 to 11 years) of 50 mg day-1 for soil and 60 50 

mg day-1 for dust. Usually, the toxicity of an ingested PHE depends, in part, on the degree to which it is 51 

absorbed from the gastrointestinal (GI) tract into the body, i.e. on its oral bioavailability. In this study the 52 

term bioavailability refers to the relative bioavailability (US EPA, 2007). Different degrees of absorption 53 

result from the fact that a PHE in the solid-phase can exist in a variety of physicochemical forms, and not 54 

all forms of a given PHE are solubilised in the GI tract (are bioaccessible) and consequently absorbed to 55 

the same extent. Because oral reference doses (RfDs) and cancer slope factors (CSFs) are generally 56 

expressed in terms of ingested dose (rather than absorbed dose), accounting for potential differences in 57 

absorption between different exposure media can be important to site specific risk assessments (US EPA, 58 

2007). Even a relatively small adjustment in oral bioavailability (i.e. absorption) can have significant 59 

impacts on estimated risks. Any estimation of the oral bioavailability of soil-bound PHE assumes that the 60 

absorption of such PHE depends on its release in the GI tract (Ruby et al., 1999; Oomen et al., 2002). If 61 

the soluble fraction is the maximum concentration of contaminant that can reach systemic circulation then 62 

bioaccessibility is a key factor limiting bioavailability and can be used as a conservative measure of 63 

bioavailability for risk assessment purposes. 64 

If the bioavailability (i.e. absorption) of a contaminant depends on the physicochemical properties of the 65 

solid-phase (soil or dust), the solubility also depends on its solid-phase distribution (partitioning of an 66 

element in specific physic-chemical phases of the exposure media) (Wragg et al., 2007; Beauchemin et 67 

al., 2011; Patinha et al., 2012; Reis et al., 2012). Reliable site-specific data, if available, may be used 68 

instead of non-site specific exposure and toxicity factors (US EPA, 2007) and in this sense 69 

bioaccessibility is considered to be a site specific parameter. 70 

This paper assesses the impact of Pb in urban soil/dust on the health of children as part of a larger urban 71 

survey of Lisbon, the largest city in Portugal, to assess the impact of potentially harmful elements in 72 

urban soil/dust on the health of children who use urban recreational areas to play outdoors.  Sampling 73 

locations include public gardens, parks and playgrounds and schoolyards, which are considered as urban 74 

recreational areas for potential exposure through soil and dust ingestion.  Although the dermal absorption 75 
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pathway is acknowledged, only ingestion was considered in this study because, at this time, chemical 76 

specific dermal toxicity factors (or dermal absorption values (ABSd) were not available. Frequent users of 77 

the spaces who are considered as sensitive receptors are children under the age of 12. The main objectives 78 

are: (i) interpretation of soil and dust oral bioaccessibility measurements; (ii) assessment of site-specific 79 

exposure and non-carcinogenic risk posed by Pb via the ingestion exposure pathway; (iii) hazard 80 

assessment for urban soil and dust with respect to children playing outdoors in recreational areas.  81 

 82 

2.1 The study area 83 

The city of Lisbon is the capital of Portugal, has an area of 284 km2, is divided into 53 districts (Fig. 1) 84 

and has about half a million inhabitants (http://www.cm-lisboa.pt). The smaller districts are located near 85 

the Tagus River and also have a higher population density. Such districts represent the older part of the 86 

city and are characterized by a high housing density, predominance of old buildings, narrow and steep 87 

roads, and a high traffic density. The majority of small public gardens and playgrounds under study are 88 

located in this area (Fig. 1). 89 

The altitude of the city varies between the 3 meters along the Tagus River and 226 meters (above sea 90 

level) at the Monsanto forest park. This park occupies an area of approximately 10 km2 and is one of the 91 

largest urban parks in Europe. The topography of the city consists in a series of hills that are probably 92 

relics of ancient volcanic cones. 93 

The land-use is mostly built environment (90 % of housing, pavements, commercial land, etc) with minor 94 

uses as green-land (9%) and agricultural land (1%, mostly private household backyards, some of which 95 

are used to grow vegetables). The climate in the city is Continental Maritime, with rainy winters and dry, 96 

mild summers. During the last three years, the predominant wind direction has been N-NW (Costa et al., 97 

2012). 98 

 99 
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 100 

Fig.1 Map A: approximate location of Lisbon city; map of Lisbon showing the location of the 51 101 

sampling sites and the type of recreational area at each site; grey lines outline the 53 districts of the city 102 

and larger lines represent higher population density; the black line identifies the old city. Map B: location 103 

of 21 soil samples (black squares) and 8 dust samples (black circumferences) used in bioaccessibility 104 

testing 105 

As in most cities over the world (De Miguel et al., 2007; Ottesen et al., 2008), the urban soils of Lisbon 106 

are a mixture of original mineral soils, transported soils, organic materials, building materials (bricks, 107 

paint, concrete, metal), waste, ash and slag. However, soils from the Monsanto Park, located in the 108 

Volcanic Complex of Lisbon, show distinct characteristics. The geochemical and mineralogical 109 

compositions of these soils are consistent with the underlying geology (Costa et al., 2012). Therefore, 110 

samples collected at sites 9, 11, 12, 13, 14, 15 and 44 are classified as residual and in situ soils (Fig. 1). 111 

The origin and time in situ of soils collected outside the Monsanto Park is unknown. 112 

In this study, outdoor dusts are considered to be solid particles that accumulate on outdoor ground 113 

surfaces in urban areas. The four main sources identified for ground-level dust are deposited airborne 114 
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particles, displaced urban soil particles, pavement debris and anthropogenic materials, which were also 115 

reported by other authors (Hu et al., 2011, Okorie et al., 2012). In some samples, the amount of traffic 116 

related materials is significant and quite evident through the presence large asphalt particles. 117 

Industrial activity in Lisbon is almost insignificant and the city is mainly characterized by economic 118 

activities and public services. Present active sources of contaminants to the urban environment are 119 

probably traffic related, the Lisnave shipyard (near site 47) and the Portela international airport (sites 19, 120 

20 and 23), which is located in the youngest part of the city where the main land-use is housing. 121 

 122 

2.2 Sampling and sample preparation 123 

Soil and dust samples were collected from locations distributed across the city, depending on the location 124 

of urban recreational areas such as public parks, public gardens, playgrounds and schools frequently used 125 

by children (Fig. 1). The exception was the international airport of Lisbon, which was chosen as it is 126 

located within the city perimeter, and it was assessed as a potentially important source of metals to the 127 

surrounding soils and dusts. The sampling sites were selected in as regular pattern as possible across a 128 

study area of approximately 84 km2.  In total, 51 samples were collected for the wider study of PHE in 129 

urban areas and 19 soils and 8 dusts selected from these for this study of Pb (see section 2.3). 130 

At every location, a composite sample was collected which comprised of 3 samples collected from the 131 

upper 5 cm of the soil layer at the apexes of a triangle, at an approximate distance of 1 m from each other 132 

and mixed to minimize local heterogeneity. Duplicate samples were collected to estimate the sampling 133 

error and the lateral variability. 134 

Dust samples were collected from ground-level, and as close as possible to recreational structures such as 135 

swings or football goals. The dust was collected using a small brush and a plastic shovel. 136 

In the laboratory, soil samples were air dried in a fan assisted oven at <40 °C and sieved to provide the 137 

<250 µm fraction, which is the fraction of interest for oral bioaccessibility studies (Calabrese et al., 1996). 138 
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Dusts were sieved to provide the <150 µm size fraction that adheres more readily to the hands 139 

(Sheppard and Evenden, 1994). 140 

 141 

2.3 Analyses 142 

Soil pH was determined as pH(CaCl2) according to the ISO10390:1994 protocol. Organic matter content 143 

(OM) of the soil was determined by loss-on-ignition (LOI), at 430ºC for about 16 h (Schumacher, 2002). 144 

Cation exchange capacity (CEC) and the exchangeable cations were measured according to the 145 

ISO13536-1995 protocol.  146 

Soil and dust samples were digested using Aqua Regia at 95ºC and near-total elemental concentrations 147 

were determined by ICP-MS at ACME Analytical Laboratories LTD., Canada (for soils) and by ICP-MS 148 

at ACTLABS Analytical Laboratory, Canada (for dusts). Precision of the results was determined through 149 

the analysis of laboratory replicates, sample duplicates and certified soil reference materials (Soil S1, 150 

Laboratory of Radiometric Analysis, Krakow, Poland; 7002, Analytika Co. Ltd, Czech Republic; 151 

NCSZC73004, China National Analysis Centre for iron and steel, China). The results show values for 152 

precision (expressed as RSD %) as < 10 %, for all elements. The recoveries obtained for Pb in the 153 

certified soil reference materials vary between 81 and 107%, within acceptable ranges. 154 

The semi-quantitative mineralogical analysis of a sub-set of samples (26 soil samples in total) was carried 155 

out by X-ray diffraction. 156 

In order to determine exposure to Pb by the ingestion of urban soils and dusts, Pb bioaccessibility was 157 

determined by subjecting both soil and dust samples to the Unified BARGE Method (UBM), developed 158 

by the Bioaccessibility Research Group of Europe (BARGE).  The UBM simulates the leaching of a solid 159 

matrix in the human GI tract (Wragg et al., 2011) and is a two stage in vitro simulation that represents 160 

residence times and physicochemical conditions associated with the gastric tract (G phase) and the gastro-161 

intestinal tract (GI phase).  The methodology has been validated against a swine model for arsenic (As), 162 

cadmium (Cd) and Pb in soils (Denys et al., 2012).  163 



8 
 

The bioaccessible concentrations of Pb were determined on a selected set of 19 soils and 8 dusts (27 164 

samples in total), from the total collected in full study (51 samples). The selection was based on several 165 

conditions: (i) location and spatial distribution as it was important to avoid a biased sampling; (ii) 166 

inclusion of samples with both high and low total concentrations; and, (iii) proximity of identified 167 

probable metal sources (e.g. old petrol stations). 168 

The bioaccessible concentrations of Pb were determined on a selected set of 19 soils and 8 dusts (27 169 

samples in total), from the total collected in full study (51 samples). The selection was based on several 170 

conditions: (i) location and spatial distribution as it was important to avoid a biased sampling; (ii) 171 

inclusion of samples with both high and low total concentrations; and, (iii) proximity of identified 172 

probable metal sources (e.g. old petrol stations). 173 

The bioaccessible extracts were analysed by ICP-MS at the University of Aveiro Laboratory and by ICP-174 

AES at the British Geological Survey (BGS) laboratory. Duplicate samples, blanks, the bioaccessibility 175 

guidance material BGS 102 and the standard reference material NIST2711a were extracted with every 176 

batch of UBM bioaccessibility extractions for quality control. The blanks always returned results that 177 

were below the detection limit. For BGS 102 the Pb recovery was 98% and for NIST2711a 101%. Mean 178 

repeatability (expressed as RSD %) was 5.6% for the G phase data and 8.8% for the GI phase data, for 179 

soils. For dusts, the mean repeatability was 6.5% for the G phase and 37.7% for the GI phase. 180 

Bioaccessible concentrations of Pb in dusts for the GI-phase were not reproducible, but, in this study the 181 

concentrations used are those reported to the G-phase as this phase is considered to provide a more 182 

conservative estimate of risk (Farmer et al., 2011). 183 

The bioaccessible fraction (%) of Pb in the solid-phase (soil and outdoor dust) is calculated as follows: 184 

 [1] 185 

 186 

2.4 Exposure and risk assessment 187 

% 100 
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In this study, exposure was calculated according to a scenario evaluation approach that uses data on 188 

chemical concentration, frequency and duration of exposure as well as information on the behaviors and 189 

characteristics of the exposed receptor at a given life stage (US EPA, 2011). The considered scenario is 190 

urban recreational areas used by children to play outdoors. Since the sensitive receptors are children under 191 

12 years of age, the exposure and risk assessment study has been carried out for 3 separate age groups: 2< 192 

3 years old, 3< 6 years old and 6< 12 years old, based on the guidelines proposed by the US EPA (2009).  193 

 194 

2.4.1 Exposure assessment 195 

For many non-cancer effects the potential exposure to contaminated soil/outdoor dust is expressed in the 196 

form of the Average Daily Intake (ADI) according to the following equation:  197 

  [2] 198 

Where, 199 

ADI = Average Daily Intake (mg kg-1 day-1) 200 

C = Lead Concentration (mg kg-1) 201 

IR = Intake Rate (mg day-1) 202 

ED = Exposure Duration (years) 203 

EF = Exposure frequency (days year-1) 204 

Averaging Time= ED×365 days 205 

According to USEPA (1992), C in Eq. [2] is best expressed as an estimate of the arithmetic mean 206 

regardless of the distribution of the data. In this study C is the total concentration of Pb at each site. This 207 

approach is used to address the following considerations: (i) the number of samples under study is small 208 

and might not be representative of the entire data population (the selection of sites was not random, it was 209 

/  
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dependent on criteria such as the total concentrations of PHE and the geographical location); (ii) the main 210 

objective is to assess exposure and risk at each recreational area; and, (iii) it allows identification of 211 

differences in bioaccessibility measurements and relationships with the physicochemical properties of the 212 

soil. The ED considered is the median age for each age group. For non-carcinogenic effects, the time 213 

period used for the averaging time is the actual period of exposure (US EPA, 2009). The EF considered is 214 

based on the Recommended Exposure Factors for Children (US EPA, 2009) and corresponds to the mean 215 

amount of time playing on grass (day year-1), which is the highest value for outdoor activities and was 216 

selected as a conservative measure. The IR used is 50 mg day-1 of soil and outdoor dust (US EPA, 2009). 217 

Separate ADIs were calculated for each age group considered and the potential chronic exposure through 218 

childhood was then calculated by summing across each life-stage-specific ADI (US EPA, 2009). 219 

 220 

2.4.1 Non carcinogenic risk assessment 221 

The potential non-carcinogenic risk from Pb in soils and dusts is expressed as a Hazard Quotient (HQ), as 222 

suggested  by the US EPA guidelines when a reliable site-specific bioaccessible (bioaccessible fraction of 223 

the element of concern in the solid-phase) value is available (US EPA 2007). Therefore, the exposure 224 

estimate (i.e., ingested dose) is adjusted when calculating the hazard quotient (HQ): 225 

 226 

Where ADI is the average daily intake (mg kg-1 day-1), Bf is the bioaccessible fraction of Pb or the % of 227 

the total amount of Pb that is accessible in the GI tract and RfD is the oral reference dose.  However, the 228 

US EPA has not established an RfD for Pb and the FAO/WHO PTWI of 25 µg/kg bw per day, established 229 

for infants and children (JECFA, 1993), has been associated with a decrease of at least 3 IQ points in 230 

children and an increase in systolic blood pressure of approximately 3 mmHg (0.4 kPa) in adults.   It has 231 

therefore been concluded that the PTWI can no longer be considered health protective and it has since 232 

3  
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been withdrawn. In the last report from the Joint FAO/WHO Expert Committee on Food Additives 233 

(JEFCA) the Committee states that the health impact associated to a mean dietary exposure estimate of 234 

0.03 μg/kg bw per day is considered negligible (JEFCA, 2011). Therefore, the RfD used in this study  is 235 

0.03×10-3 mg kg-1 day-1. 236 

 237 

3. Results and discussion 238 

3.1. Near total concentration and oral bioaccessibility of Pb in soils and dusts 239 

The results presented in this section report to the sub-set of 19 soils and 8 dust samples selected from the 240 

larger PHE study of Lisbon. 241 

In general, the soils have a neutral or near neutral pH (median value of 6.8), organic matter content 242 

typical of garden soils (median value of 7.3%) and an average CEC (median value of 21.3 cmol kg-1). 243 

Sample 14, has both a high content in OM (40.8 %) and high CEC (48.3 cmol kg-1), and is clearly an odd 244 

sample in the data set under study. 245 

The soils under study are sandy in texture with a grain-size distribution that is not correlated to land use 246 

or geology of the study area (Costa et al., 2012). The lack of correlation is an expectable result since only 247 

sample 14 that is located inside the natural park of Monsanto can be classified as a natural and in situ soil. 248 

The origin of most urban soils under study is unknown. 249 

Figure 2 shows the box & whisker plot of total and bioaccessible Pb concentrations in the soils. The 250 

results show that total concentrations range from 6-441 mg kg-1 with a median concentration of 108 mg 251 

kg-1; bioaccessible concentrations (G-phase) range from 6-260 mg kg-1 and a median concentration of 65 252 

mg kg-1; there is a significant decrease in bioaccessible Pb from the G phase to the GI phase that has a 253 

range of 0.4-77 mg kg-1 and a median concentration of 16 mg kg-1. Such decrease is referred in a number 254 

of studies on Pb bioaccessibility (Rodriguez et al., 1999; Wragg et al., 2011; Zia et al., 2011). The higher 255 

pH and increased concentration of a number of enzymes used to simulate intestinal phase of 256 

bioaccessibility tests probably lead to the complexation and precipitation of Pb from solution (Grøn and 257 
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Andersen, 2003), resulting in lower bioaccessibility values and poorer reproducibility of results (Wragg et 258 

al. 2011). 259 

Figure 3 shows the box & whisker plot of total and bioaccessible Pb concentrations in the dusts. Total Pb 260 

concentrations have a median value of 152 mg kg-1, which is higher than that of soils. Bioaccessible 261 

concentrations of the element in the gastric phase have a median value of 105 mg kg-1 that is also higher 262 

than that of soils. As for soil samples, there is an important decrease in the concentrations of bioaccessible 263 

Pb from the G-phase to the GI-phase, which has a median value of 11 mg kg-1.  264 

 265 

Fig.2 Box & whisker plot of total and bioaccessible Pb concentrations in soils 266 

Maps with the spatial distribution (for the set of 19 soil samples under study) of bioaccessible Pb in the 267 

G-phase and the corresponding Bf for soil samples are presented in figure 4. The Bf varies between 24 and 268 

100%, and has a median value of 45%. This variability for Bf values is probably due to the physic-269 

chemical properties of the Pb species present in the solid-phase. Soils with higher concentrations of 270 

bioaccessible Pb are mainly those in the old city. However, the samples soils with the highest Bf (samples 271 

5 – playground and 27 – schoolyard) do not correspond to the samples with the highest bioaccessible 272 

concentration. Particularly, the bioaccessible concentration in soil 27 is only 70 mg kg-1, which is an 273 
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average value (Fig. 2) in the set of samples under study. Yet, the Bf is 100% meaning that all Pb in the 274 

soil is available for absorption and this has implications in terms of risk assessment. 275 

Figure 5 shows maps with the spatial distribution (for the set of 8 dust samples under study) of 276 

bioaccessible Pb in the G-phase and the corresponding Bf for dust samples. The Bf ranges from 35 to 277 

100% and has a median value of 85%. The median value clearly indicates that in the outdoor dusts Pb is 278 

more bioaccessible than in the soils. In general, samples with higher concentrations of bioaccessible Pb 279 

are those with a higher Bf. Considering the set of dusts under study, sample 15 that corresponds to a dust 280 

collected in a playground inside de Monsanto Park has low values for both bioaccessible concentration 281 

(15 mg kg-1) and Bf (35%). Dusts collected at sites 1 and 18 (playgrounds) have relatively low 282 

bioaccessible concentrations (44 mg kg-1 and 88 mg kg-1, respectively) but a correspondent Bf of 89% and 283 

99%, indicating the presence of mobile Pb. For the other samples, increasing concentrations of 284 

bioaccessible Pb correspond to increasing Bfs. 285 

 286 
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 287 

Fig.3 Box & whisker plot of total and bioaccessible Pb concentrations in dusts 288 

Comparing the results of soils and dusts it is evident that, for the relatively small set of samples under 289 

study, dusts have larger fractions of Pb in bioaccessible forms than soils. Oral bioaccessibility is 290 

controlled by a number of solid phase physical properties, including the particle size. According to 291 

several authors, the oral bioaccessibility of PHEs increases with decreasing grain-size (Girouard and 292 

Zagury, 2009; Juhasz et al., 2011; Meunier et al., 2011), as bigger surface areas increase dissolution. In 293 

this study, the size fraction is finer for dust samples and it is probably the reason for a higher 294 

bioaccessibility of Pb.   295 
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 296 

Fig.4 Maps with the spatial distribution of bioaccessible concentrations in the G phase and Bf% of Pb for 297 

soils; the black line identifies the old city and the dashed line enhances sites with extremely high values 298 

for the Bf% 299 

 300 

 301 
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 302 

Fig.5 Maps with the spatial distribution of bioaccessible concentrations in the G phase and Bf% of Pb for 303 

dusts; the black line identifies the old city 304 

Figure 6 shows XY graphs for total concentrations of Pb versus amount of carbonate minerals in the soil 305 

(graph I), bioaccessible Pb in the G-phase versus amount of carbonate minerals in the soil (graph II) and 306 

Pb Bf versus amount of carbonate minerals in the soil (graph III).These scatterplots show that there is no 307 

relationship between the amount of carbonate minerals and the total (graph I) and bioaccessible (graph II) 308 

concentrations of Pb in the soils. However, for soil samples with more than 20% of carbonate minerals 309 
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there is a negative correlation between the Pb Bf and the amount of carbonate minerals of the soil. In this 310 

sense, the carbonates content of the initial soil seems to be a controlling factor on the bioaccessibility of 311 

Pb. It is likely that the dissolution of important amounts of carbonates by the acidic G-fluids can result in 312 

an important increase of hydroxy carbonate anions available in solution. Under such conditions, perhaps 313 

Pb forms insoluble compounds with the hydroxy carbonate anions. It is also likely that the presence of 314 

such an amount of carbonates neutralise the acidic pH of the UBM G-compartment making it less 315 

aggressive. However, further studies are necessary to support these hypotheses. 316 

 317 
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Fig.6 XY graphs for total concentrations versus % carbonate minerals (graph I), bioaccessible 318 

concentrations in the G-phase versus % carbonate minerals (graph II) and Bf versus %carbonate minerals 319 

(graph III) 320 

Although direct comparisons with results from other studies are to be carried out with caution due to the 321 

disparity in sampling and analytical methodologies, some general comments can be made. Such 322 

comparison can be useful to give some insight about the data obtained in the present study. Lung et al. 323 

(2007) found lower near total (26.5 – 71.2 mg kg-1) and bioaccessible (0.21 – 4.08 µg g-1) concentrations 324 

of Pb in playground soils from Uppsala, Sweden; Okorie et al. (2011, 2012) reported higher near total 325 

(mean values of 11134 and 992 mg kg-1, respectively) and bioaccessible (median values of 1811 and 33 326 

mg kg-1, respectively) concentrations of Pb and lower Bf (maximum= 53% and 33%, respectively) for 327 

urban soils and dusts from Newcastle upon Tyne, NE England; and,  Hu et al. (2011) reported lower near 328 

total concentration (mean value of 103 mg kg-1) and lower Bf (maximum= 59%) for urban dusts from 329 

Nanjing, China. Zia et al. (2011) indicate values for fractional bioaccessibility of Pb in the 5-10% range 330 

of total Pb concentration. In a study of topsoil data from Glasgow, London, Northampton and Glasgow in 331 

the UK, Appleton et al. (2012) found median Pb bioaccessibilities between 38 and 68%. The 332 

bioaccessibility of Pb in urban soils and dusts of Lisbon appears to be slightly higher than that reported in 333 

the literature. There is no apparent relation between total metal concentrations and the metal fraction that 334 

is available for intestinal absorption and, thus it is concluded that soil metal concentrations do not yield an 335 

accurate prediction of the health risk associated to the ingestion of contaminated soil/outdoor dust. 336 

 337 

3.2 Exposure assessment and health risk assessment 338 

In this study exposure and risk are assessed for each sampled site since one of the aims is to evaluate the 339 

hazardousness of soils and dusts from several urban recreational areas to the health of the children. 340 

For each group the ADI (reasonable maximum exposure) was obtained using equation [2]. Potential 341 

chronic exposure through childhood is expressed as the sum of the ADIs for the 3 age groups. 342 
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The exposure factors for children recommended by the (US EPA 2009) and sensitive receptor 343 

characteristics used to carry out the exposure assessment are listed in table 1.  344 

The potential non-carcinogenic risk for Pb in soils and dusts is calculated according to equation [3]. 345 

The HQs calculated, at each site, for each age group and for potential chronic exposure through childhood 346 

are presented in table 2 for soil and in table 3 for dust samples. 347 

Table 1. Recommended exposure factors for children (US EPA 2009). 348 

Reference Values 2 - <3 3 - <6 6 - <12 

IR (mg soil/outdoor dust day-1) 

ED (years) 

EF (days year-1) 

AT (days) 

Body Weight (kg) 

50 

1 

19 

365 

13.8 

50 

3 

27 

1095 

18.6 

50 

5 

33 

1825 

31.8 

IR: ingestion rate; ED: exposure duration; EF: exposure frequency; AT: averaging time 349 

Although Pb in soils of some urban sites show a HQ above the safety level, on average the recreational 350 

areas under study can be considered safe for children. However, considering a potential chronic exposure 351 

through childhood, most sites have an estimated HQ that is above the safety level. From the sub-set of 352 

samples under study, sites inside the natural park of Monsanto have the lowest estimated HQ values. The 353 

HQ is above the safety level (HQ< 1) for sites 33 and 39. Site 33 is a small urban garden in a square that 354 

is only 20 m away from a petrol station and site 39 is a playground in a small square surrounded by 355 

buildings where the soil was collected at a 20 m distance from a bus stop. At these sites, the source of 356 

environmental Pb seems to be traffic related. The age group 3-6 years old is more vulnerable to soil 357 

contamination as it has the highest HQs. 358 

For dusts, HQs above 1 occur at site 47, a small garden in the old city that is adjacent to a major road of 359 

intense traffic and close to the naval shipyard. At this site, the sources of environmental Pb may be 360 

vehicular traffic and steel production. Several studies in urban environments (Farmer et al., 2011; Laidlaw 361 

& Taylor, 2011; Yuen et al., 2012) indicate that the wide spread use of unleaded fuels has reduced but not 362 
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eliminated the anthropogenic sources of Pb related with motoring activities (e.g. additives in lubricants, 363 

wear of vehicle components). Considering a potential chronic exposure through childhood, only sites 1 364 

and 15 (Monsanto Park) have an estimated HQ that is below the threshold. Data from this type of 365 

assessment indicates the potential health risks from the direct ingestion of dust borne Pb to children from 366 

recreational areas in Lisbon.  These results point out differences in risk estimates between exposure from 367 

Pb in soil and outdoor dust.  For soils and outdoor dusts of Lisbon the risk assessment study indicates that 368 

(i) on average (i.e., a global HQ estimated for the area based on the average of the concentrations), the 369 

estimated HQs are more elevated for dusts; (ii) for individual assessments such as urban recreational areas 370 

used by children, using soil or outdoor dust as exposure media results in different risk assessments (e.g. 371 

dust at site 39 does not represent a health risk but soil raises some concern. Due to their different 372 

characteristics both materials (soil and outdoor dusts) should probably be routinely included in surveys 373 

that aim to assess exposure and health risk associated to the ingestion route. 374 

A risk assessment study would ideally include all potential routes of exposure. However, in this study, 375 

ingestion of soils/outdoor dusts is the only route considered since, at this time, chemical specific dermal 376 

toxicity factors are not available although the EPA makes oral-to-dermal extrapolations for systemic 377 

effects (US EPA, 2004). Other sources such as food and water ingestion were not considered as this is a 378 

scenario-evaluation approach specific for children playing in outdoor recreational areas. 379 

 380 

 381 

 382 

 383 

 384 

 385 

 386 

 387 

 388 
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Table2. Hazard Quotient (HQ) calculated for each age group and for the sum of the ADIs (represents potential 389 

chronic exposure through childhood); some summary statistics (n=19 soil samples); data in bold indicates values 390 

above the safety level. 391 

 HQ (age groups in years) HQchronic 

 1 - <3 3 - <6 6 - <12 Sum 

1 

5 

6 

8 

11 

14 

15 

16 

18 

27 

30 

31 

33 

39 

40 

42 

43 

44 

47 

Median 

Mean 

0.32 

0.92 

0.30 

0.29 

0.05 

0.31 

0.04 

0.36 

0.62 

0.46 

0.32 

0.66 

1.12 

1.64 

0.95 

0.73 

0.76 

0.23 

1.03 

0.46 

0.59 

0.34 

0.97 

0.31 

0.31 

0.05 

0.33 

0.04 

0.38 

0.66 

0.49 

0.34 

0.70 

1.18 

1.73 

1.01 

0.77 

0.80 

0.24 

1.09 

0.49 

0.62 

0.24 

0.69 

0.22 

0.22 

0.04 

0.24 

0.03 

0.27 

0.47 

0.35 

0.24 

0.50 

0.85 

1.23 

0.72 

0.55 

0.57 

0.17 

0.78 

0.35 

0.44 

0.90 

2.58 

0.84 

0.83 

0.14 

0.88 

0.11 

1.01 

1.75 

1.29 

0.90 

1.86 

3.15 

4.59 

2.68 

2.04 

2.13 

0.65 

2.89 

1.29 

1.64 

 392 

 393 
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Table3. Hazard Quotient (HQ) calculated for each age group and for the sum of the ADIs (potential chronic 394 

exposure through childhood); some summary statistics (n=8 dust samples); data in bold indicates values above the 395 

safety level. 396 

 HQ (age groups in years) HQchronic 

 1 - <3 3 - <6 6 - <12 Sum 

1 

5 

15 

18 

30 

33 

39 

47 

Median 

Mean 

0.28 

0.59 

0.09 

0.53 

0.99 

0.75 

0.74 

1.15 

0.66 

0.64 

0.29 

0.62 

0.10 

0.56 

1.05 

0.80 

0.78 

1.21 

0.70 

0.67 

0.21 

0.44 

0.07 

0.40 

0.75 

0.57 

0.56 

0.86 

0.50 

0.48 

0.78 

1.65 

0.26 

1.48 

2.79 

2.12 

2.07 

3.22 

1.86 

1.80 

 397 

4. Conclusions 398 

The first study of Pb bioaccessibility in recreational areas of Lisbon, Portugal, assessing the risk from 399 

dust and soil has identified the differences between the total and bioaccessible Pb concentrations and 400 

hence the impacts on calculated HQs for the two host materials. Total and bioaccessible concentrations of 401 

Pb are higher for outdoor dusts than for soils. Major fractions of Pb are in bioaccessible forms and the 402 

values of Bf are higher compared to data reported in recent studies. The Bf of Pb in dusts is generally 403 

higher than in soils, probably due to the finer grain size used for the dust samples. A negative correlation 404 

between the Bf of Pb and the amount of carbonate minerals was found for soil samples with more than 405 

20% of carbonate minerals. The amount of carbonates in the initial soil appears to be one factor 406 

controlling the bioaccessibility of Pb, although others not investigated in this study may also have an 407 
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influence. Further studies are necessary to confirm and fully understand this mineralogical control on the 408 

bioaccessibility of Pb. 409 

In this study, exposure and health risk were assessed according to a scenario-evaluation approach specific 410 

for children playing in outdoor recreational areas. For the soil/outdoor ingestion route, in general the 411 

recreational areas of Lisbon can be considered safe for the health of the children. However, some 412 

playgrounds show values above the safety level for all the studied age groups. However, it is important to 413 

point out that the values of the hazard quotient (HQ) were obtained with an RfD for Pb (0.03 µg/kg bw 414 

per day) that is much more protective of human health than the value of 25 µg/kg bw per day that was 415 

withdraw in 2010. 416 

It is clear that the sites inside the Monsanto Park, the biggest green area of the city, are associated with the 417 

lowest HQs and do not represent a health risk for children that are frequent users. All of the results, taken 418 

in the context of the local geography and closeness to roads and traffic input suggest that the motor 419 

vehicle traffic in the city of Lisbon may be a factor on the quality of the urban soils. 420 
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