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Movement of gravity-driven systems on passivemargins is fuelled by the loss of gravitational potential energy. Two
end-membermodes (gravity spreading and gravity gliding) are defined bywhether the potential energy loss is due
to deformation andmovement towards the base of the system (spreading), or bymovement parallel to the base of
the system (gliding); most natural systems consist of a mixture of the two processes.
Hitherto, use of these concepts has been limited or equivocal due to lack of a quantitative measure. In some cases,
characterisation of gliding vs. spreading systems based on secondary attributes has resulted in controversy, because
there is a lack of consensus as to which of these are truly diagnostic. This paper presents a new, simple quantitative
method based on vector analysis, providing a numerical measure of the relative contribution of spreading vs. glid-
ing. The method is applied to synthetic examples, where deformation can be tracked, and to natural examples
where a valid palinspastic reconstruction is available. The results confirm that most natural examples exhibit
mixed-mode behaviour, and that some have been mischaracterized; much of the Angola margin is dominated by
spreading. The method can also provide an estimate of the absolute amount of gravitational potential energy re-
leased in the movement, and the energy contribution made by gliding vs. spreading. Determining the dominant
process has implications for predicting the development of seafloor topography and stratal architecture.

© 2014 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).
1. Introduction

Deformation of sedimentary sequences by gravity-driven tectonics
occurs in most of the world's passive margins (Morley et al., 2011;
Rowan et al., 2004) and also in other planets (Montgomery et al.,
2009). Gravity-driven deformation commonly consists of thin-skinned
linked systems, in which a body of sediments is translated basinwards,
accommodated by extension in its updip portion, and contraction in the
downdip region. This can occur on a range of scales, from small failures
effecting a few metres of sediment (e.g. Alsop and Marco, 2013) to
giant systems affecting bodies 10s of km thick and 100s of km long in
the transport direction (e.g. Peel et al., 1995). These systems are econom-
ically important: they create structures containing substantial hydrocar-
bon resources (e.g. Moore, 2010). In some ways we now understand
these systems very well; modern seismic data reveals their architecture;
well penetrations constrain the lithology and age of the sediment
sequences; sequential structural restorations reveal how the geometries
we see today evolved through time. We know how the systems are
powered, in a general sense: the energy source is the gravitational
potential of the sediments. Energy is released as the sediments move
. This is an open access article under
downwards, and this powers the lateral movement and deformation. A
gravitationally driven linked system from the Orange Basin margin of
South Africa (Fig. 1) illustrates this principle, showing a clear separation
of the updip extensional region from the downdip contractional portion.
It is obvious that material has moved downwards, providing the energy
that fuels the system. It is also clear that the “engine” which converts
this energy into movement is complex; downward movement of sedi-
ments is achieved both bymovement on the basal slip surface and by in-
ternal deformation within the body of the linked system. These two
components correspond to the processes known as gravity gliding and
gravity spreading, respectively (Ramberg, 1967, 1977, 1981a,b).

Distinguishing the relative contribution of gliding vs. spreading
could contribute significantly to our understanding of gravity-driven
systems. For example, this may determine the extent to which move-
ment is related to sediment input to the margin, and thus whether the
movement is continuous or episodic. It may determine what the rate-
limiting factors are, and thus control the rate of movement. It has
been suggested that both the location and the direction of propagation
of the contractional toe region may be different in gliding vs. spreading
systems (Brun and Fort, 2011). Rowan et al. (2000, 2004) proposed that
the transition from early systems dominated by gravity gliding to youn-
ger systems dominated by gravity spreadingmay be an important com-
ponent of the evolution of margins such us the northern Gulf of Mexico.
the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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Fig. 1. A gravity-driven linked system in Upper Cretaceous sediments of the Orange Basin, South Africa, interpreted by the author. Section is in depth with 5:1 vertical exaggeration.
Interpretation is based on 2D seismic reflection data; the horizons shown are correlated seismic horizons, whose precise age is not known. The gross stratigraphic correlation follows
that of Brown et al. (1995) and de Vera et al. (2010).
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However, inmany real-world examples it canbe difficult to character-
ize deformation as gliding-dominated or spreading-dominated using
qualitativemethods (Schultz-Ela, 2001), and thus our ability to character-
ize passive-margin deformation in these terms is limited and potentially
confused, and their use has fallen out of favour.

This paper sets out a new and simple quantitative method for esti-
mating the relative contribution of gliding vs. spreading, based on a re-
turn to the original definition of the terms. This method uses simple
geometric analysis of the net movement vectors, obtained by compar-
ing a present-day cross section with structural restorations, to deter-
mine where the energy driving the system comes from, and this alone
is sufficient to characterize the amount of gliding vs. spreading. The
method is generally applicable, since it is concerned only with the
gross kinematics of the system and is irrespective of the lithology, rhe-
ology, fluid pressure or any of the many other factors that control the
form and detailed expression of the final structure.

The method is applicable to large-scale (N1 km thickness), slow-
moving systems in which kinetic energy is negligible, and is not de-
signed for fast, catastrophic systems in which kinetic energy is
significant.

2. The definition of gravity spreading and gravity gliding

2.1. The original definitions of gravity spreading and gravity gliding in
mountain belts

The concepts of gravity tectonics were developed to provide a
mechanism for large-scale lateral movement seen in mountain
belts (e.g. Bucher, 1956; Elliott, 1976; Kehle, 1970; van Bemmelen,
1960, 1965) and the coexistence of extension and contraction in oro-
genic complexes (Platt, 1986).

De Jong and Scholten (1973) and Ramberg (1967, 1977, 1981a,b)
defined two distinct modes of gravity-driven deformation: gravity
gliding (a.k.a. gravity sliding) and gravity spreading. Ramberg (1981a)
explicitly defined these terms based on the manner in which gravita-
tional potential energy is decreased by the movement. The key words
from this defining paper are reproduced here to emphasize the signifi-
cance of energy to the definition: “Within most orogens… three types
of structures can be distinguished;… diapirs,…nappes spread plastically
over their substratum and… rockmasses which have slid down inclined
surfaces. These are phenomenawhose immediate cause— that is, imme-
diate driving energy — is found in the orogenic architecture itself. The
structuresmentioned are the results of the dissipation of gravity potential
on a regional or local scale.... the energy behind the vertical sagging and
complementary horizontal spreading recorded in some nappes is also a
decreasing energy potential.When a nappe thins, its centre of gravity de-
scends. That is equivalent to saying that the gravity potential of the nappe
decreases as it moves. In contrast to a plastically collapsing nappe, a rock-
mass sliding down an inclined surfacemay exhibit no… internal sagging
or plastic collapse. The rock may move as a rigid unit. Again, it is evident
that the gravity potential decreases during the slide”. This ismade clear in
the original illustrations (Fig. 2a–b).

Wemay restate this more simply: in gravity spreading, the energy is
released by lowering of the centre of gravity due to thinning of the ma-
terial. In gravity gliding, the energy is released by lowering of the centre
of gravity due to movement along an inclined surface. This consider-
ation alone is sufficient to define the terms in a manner entirely consis-
tent with the original intention.

This return to the original intention also clarifies two other potential
sources of confusion. Gliding vs. spreading are not defined either by ri-
gidity, or bywhether there is blockmovement. In pure gliding, themov-
ing unit may act as a rigid block, but it may equally well experience
significant internal shearing (Brun andMerle, 1985), and viscous mate-
rialmay also be described as gliding (Kehle, 1970), as long asmovement
is parallel to the base of the unit, and the base is dipping. Conversely, a
spreading system may consist of multiple rigid blocks (Schultz-Ela,
2001). Of necessity, there is a component of movement parallel to the
base of the unit in both gliding and spreading modes, as clearly shown
in Fig. 2a–b. It is not whether there is base-parallel movement that mat-
ters, but whether that movement releases energy. In Fig. 2a, the move-
ment parallel to the base releases gravitational potential energy; in
Fig. 2b, movement parallel to the base does not release energy.
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a, b: redrawn from Ramberg (1981a); c, d: after Rey et al. (2001), Platt, 1986; e, f: after Morley et al. (2011).
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This definition of gravity spreading vs. gravity gliding depends on the
source of the energy, specificallywhether it is released bymovement par-
allel to the base (gliding) or by movement perpendicular to the base
(spreading). The definition does not specify the lithology of the unit, nor
its rheology (ductile, brittle, viscous, or plastic — except that gravity
spreading requires deformation of some sort and therefore it cannot be
a single rigid block), nor the angle of dip of the top of the unit, nor wheth-
er the unit is deforming by homogeneous or inhomogeneous strain, nor
whether the deformation is distributed vs. localized (e.g. by faulting).
There is a common association of some of these factors with spreading
or sliding modes, but it is important to note that the definition does not
depend on them.

The definition of gliding vs. spreading depends specifically on the
manner in which gravitational potential energy is released, and therefore
is determined by examining only the part of the system that releases en-
ergy (generally the extensional heel/updip portion of a linked system).
While it is also worthwhile considering the energy balance of the entire
system, because this reveals much about how the systemworks, this arti-
cle is focussed on the specific issue of quantifying gliding vs. spreading,
and its implications. As a result the analyses presented here are focussed
on the energy-releasing part of the system (e.g. the right hand portion of
Fig. 1).
1 The following definitions from the landslide literature illustrate themixture of process
and associated observations. “Spreading is defined as an extension of a cohesive soil or
rock mass combined with a general subsidence of the fracturedmass of cohesive material
into softer underlying material.” (Cruden and Varnes, 1996); “in spreading, the dominant
mode of movement is lateral extension accommodated by shear or tensile fractures”
(Varnes, 1978), “sliding is downslope movement of a soil or rock mass occurring domi-
nantly on the surface of rupture or on relatively thin zones of intense shear strain.” (Cru-
den and Varnes, 1996).
2.2. Application to other tectonic settings

The original concepts of gravity tectonics in orogenic belts were creat-
ed to explain the significant lateral movement seen in mountain belts.
However, their perceived importance in that setting has diminished as
the dominant role of lateral contraction driven by plate convergence has
been recognized. Regions within mountain belts formerly interpreted as
classic examples of gravity gliding tectonics, such as the Subalpine Chains
of south-eastern France (Fallot and Faure-Muret, 1949) have been
reinterpreted as thin-skinned thrust systems rooting into large-scale
basement contraction (e.g. Bellahsen et al., 2012; Butler, 1986, 2013;
Deville and Chauvière, 2000; Phillippe et al., 1998). Platt (1986) devel-
oped a hybrid model for orogenic belts in which gravity spreading is
seen as a process which modifies an orogeny created by plate conver-
gence (Fig. 2d).

However, although written with orogenic deformation in mind, the
definitions of gravity tectonics apply in any tectonic setting (Rey et al.,
2001), and are especially appropriate to the deformation of passive
margins (Fig. 2e, f), where all movements are gravity-driven because
there is no component of basement contraction.
2.3. Alternate definitions, terminology and attempts at diagnostic analysis

There is partial overlap of the definitions of gravity gliding and grav-
ity spreading originating from consideration of orogenic processes on
the large scale (as described above) with a similar suite of terms
which have developed somewhat independently in the literature relat-
ed to landslides. Cruden and Varnes (1996) and Varnes (1978) defined
the terms “lateral spreading” and “sliding” for landslides, which are sim-
ilar but not identical to the definition of gravity spreading and gravity
gliding established for orogens by Ramberg (1967, 1977, 1981a,b).
Their definitions1 mix the geometric description (which is similar to
that of Ramberg, 1967, 1977, 1981a,b) with associated observations
(which depend on the specific rheology or lithology of materials com-
monly seen in landslides).

This paper follows the stricter definition and terminology of
Ramberg (1967, 1977, 1981a,b).

Prior to this publication, there has been no quantitative method for
distinguishing the contribution of spreading vs. gliding, and in lieu of
this, a set of associated observations are commonly used to define
which is the dominant process. Characterisation based on qualitative
considerations alone appears to be equivocal, such that a well-studied
margin such as the Northern Gulf of Mexico during the Cenozoic is de-
scribed by some workers as a gravity-spreading-dominated system
(Rowan et al., 2012; Worrall and Snelson, 1989) and by others as a
gravity-gliding dominatedmargin (Brun and Fort, 2011). This confusion
arises in part from a lack of consensus on the associated observations
taken to be diagnostic of either mode.

Several authors have suggested lists of secondary structural observa-
tions which might be diagnostic of spreading or gliding (e.g. Brun and
Fort, 2011; Schack Pedersen, 1987); but these lists are not consistent,
nor are they universally accepted (Rowan et al., 2012). This paper
takes no position on these proposed diagnostic associations, instead es-
tablishing an alternate method for defining spreading vs. gliding based
on the source of the energy. Agreement on a common suite of associated
diagnostic observations can be better achieved once we can specify
which natural examples fall into which category.
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The principal cause of confusion appears to stem from the fact that
very few natural examples fall neatly into either end-member category:
most examples exhibit mixed-mode behaviour, for which there is no
established diagnostic method based on associated observations.
Rowan et al. (2004) showed, as illustrated in Fig. 3, that the gliding
and spreadingmodes represent end-member cases on a spectrum. Nat-
urally occurring systems are commonly amixture of the two. Pure grav-
ity gliding (Fig. 3a) is a special case, only achievable if the translating
block experiences no stretching and all movement is parallel to the
base; this is rarely seen in nature. Pure spreading (Fig. 3b) is another
special case, only achievable when the base of the system is perfectly
horizontal, so that no energy is gained or lost by lateral movement:
again this is rarely (if ever) seen. Note that if the basal decollement
dips upwards in the transport direction, there will be an energy effect
of the gliding component, but this will be negative (energy absorbed
as stored potential energy). Almost all natural examples are a mixture,
involving some spreading and some gliding component (Fig. 3c).

A secondary potential cause of confusion is that some systems may
change in character with time. On the large scale, the Mississippi Fan
Fold Belt of the Gulf of Mexico may have begun life as the toe of a
gliding-dominant system, later transitioning to a spreading-dominant
system (see Fig. 6 of Rowan et al., 2004). On the small scale, landslides
which propagate by spreading-dominant processes may transition
into gliding-dominant systems.

3. A quantitative method for determining the relative contribution
of gliding vs. spreading

3.1. Quantifying the relative energy release for an idealized system

In pure gravity gliding (Fig. 4a), net movement is parallel to the base
of the moving unit. All gravitational potential energy release results
from the vertical component of this movement. Pure gliding permits,
but does not require, shape change, as long as the net movement is
parallel to the base of the unit.

The energy released by this movement (i.e. the change in gravita-
tional potential energy, ΔP), is

ΔP ¼ WnsinΘ
a) gravity gliding

b) gravity spreading

c) mixed-mode deformation

Fig. 3. End-member deformationmodes for gravity gliding (a), gravity spreading (b) and a
mixed mode case (c). Arrows show particle paths (Ramberg, 1975): successive positions
of the body are shown by ghost lines.
Modified from Rowan et al. (2004).
where W is the effective weight of the block, corrected to account for
any buoyancy effect,2 n is the net movement of the centre of mass,
and Θ is the angle of downwards dip of the basal slip surface in the
transport direction.

Gravity spreading (Fig. 4b) relates to shape change of the unit. In
gravity spreading, the movement that releases gravitational potential
energy is the motion of the centre of gravity of the unit relative to its
base, accommodated by deformation of the unit. All gravity spreading
systems (even pure spreading systems) have a component of move-
ment parallel to the basal surface.

In a pure spreading system, the base is horizontal, and the energy
released by the movement is

ΔP ¼ WnsinΦ

where n is the net movement of the centre of mass, and Φ is the angle
between the movement of the centre of mass and the base of the sys-
tem. Note that although there is a component of movement parallel to
the base, this results in no verticalmovement and hence itmakes no en-
ergy contribution.

In amixed-mode case (Fig. 4c), the base is inclined and there is inter-
nal deformation, and both components result in the release of potential
energy. This can be resolved into ΔPE(spread), the potential energy re-
leased by the spreading component (ΔPE(spread) = Wn sinΦ cosΘ)
and ΔPE(glide), the energy released by the gliding component (ΔPE(glide)
=Wn cosΦ sinΘ). Following the original definitions of Ramberg (1967,
1977, 1981a,b), which are keyed to the source of the energy, we can use
this simple analysis to characterizewhere amixed-mode system falls on
the spectrum between gliding and spreading on the basis of the relative
contribution of these to the energy supply.

We can derive two simple measures of the relative contribution of
spreading vs. gliding by combining these two functions:

The ratio of the energy supplied by spreading vs. gliding,
ΔPE(spread)/ΔPE(glide) = tanΦ/tanΘ; and
α = Proportion of total energy contributed by spreading =
1/(1 + tanΦ/tanΘ).

These measures, which are sufficient to define where a system lies
on the spectrum of spreading vs. gliding, depend only on the two angles
Φ and Θ.

3.2. Variation of driving force with distance moved

Why is it important to understand the power supply of gravity fail-
ure in these terms? One important consequence is illustrated in Fig. 5.
Movement in either a spreading or a gliding system decreases the grav-
itational potential energy, but in a gliding system the energy released
per unit distance of displacement may remain constant (Fig. 5c), as
long as it is moving down a uniform slope. By contrast, in a spreading-
dominant system, the energy released per unit of displacement neces-
sarily diminishes as displacement increases (Fig. 5d), unless the system
is refuelled by the addition of more materials.

The total energy release is equivalent to the driving force multi-
plied by the distance of offset. We can therefore simply derive the
total gross lateral driving force from the energy release and the later-
al displacement. This is true regardless of how the energy is dissipat-
ed; the mechanisms of energy dissipation may be different in the
gliding vs. spreading cases.

In consequence, the driving force of a gliding system in which the
basal slope is constant should not change with increasing offset. By
contrast, the driving force for a spreading system will progressively
decrease with offset unless the engine of deformation is refuelled:
in this case, the fuel is the gravitational potential of the sediments,
2 For extraterrestrial examples, the weight is also adjusted to account for local gravity.
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and the most effective way to resupply is by deposition of new sedi-
ments on the updip part of the system. Without energy resupply by
new sedimentation, energy considerations alone indicate that a
spreading system has the most driving force at the beginning of
translation, and as the driving force wanes it should slow down
and eventually stop. This is dealt with in more detail in Section 6.1.
n
displacement
vector

by spreading
WΔz(spread)

released
by gliding
WΔz(glide)

Fig. 6. Vector resolution of the finite displacement vector of a unit cube within the larger
system, defining the energy contribution due to spreading and gliding. Key: n= displace-
ment of the unit cube, Δz = change of elevation, W = effective weight of the unit cube.
3.3. Quantifying the relative energy release in complex systems

In order to use the geometric analysis proposed here, we need to
know the direction of movement of the centre of mass of the system
as shown in Fig. 4. Because few natural examples are as simple as the
schematic examples of Fig. 5, a systematic method was developed to
provide an estimate of the magnitude and direction of movement of
the centre of mass. This method can be applied to any complex system
where we can define the displacement of every point (for example, in
numerical forward models, or in experimental models with particle
tracking) and in any real-world section for which there is a valid and
reasonable palinspastic restoration (reconstruction to geometry at
past times) which define the finite displacements for a large number
of representative points. A simple graphical method is developed
which provides an effective short cut for this process.

The full solution is to calculate the energy contributions from gliding
and spreading of every unit cube, and then to sum these over the whole
body. The approach, shown in Fig. 6, is essentially the same as that set
out in Fig. 4. The displacement vector n is resolved first into the compo-
nents ofmovement parallel to, and perpendicular to, the base. These are
then resolved again to obtain the vertical movement resulting from
motion parallel to the base, Δz(glide), and the vertical movement
resulting from motion perpendicular to the base, Δz(spread). Multi-
plying these by the effective weight of the unit cube defines the en-
ergy contribution from gliding and spreading of the unit cube. The
gravity gliding component of energy release due to motion of the
unit cube = WΔz(glide) = t3(ρ(sed) − ρ(fluid)) ∗ g ∗ Δz(glide).

The gravity spreading component of energy release due to motion of
the unit cube = WΔz(spread) = t3(ρ(sed)− ρ(fluid)) ∗ g ∗ Δz(spread),
where W is the effective weight of the unit cube, accounting for
buoyancy, g is the acceleration due to gravity, t is the dimension of
the unit cube, ρ(sed) is the density of the sediment, and ρ(fluid) is
the density of the overlying fluid3. Summing the energy contribu-
tions from every unit cube over the relevant area of the section
(the region over which movement releases potential energy, as
shown in Fig. 1) defines the total energy contribution of spreading
vs. gliding per unit width of section.

The full solution method takes into consideration variations in
sediment density across the system, but it is a cumbersome and
complicated process. However, if the density is relatively uniform,
or a less exact solution which assumes uniform density is sufficient,
the analysis can be greatly simplified. In this case, we obtain the
same solution if instead of calculating the energy contribution of
each unit cube separately; we can instead calculate the average
movement vector and apply this to the whole of the relevant area.
The vector sum of the individual cell vectors is calculated (Fig. 7),
then as before this is resolved into the base-parallel and base-
perpendicular components, and the vertical component of these is
calculated (ΣΔz(glide) and ΣΔz(spread), respectively). Finally the
mean values Δz glideð Þ and Δz spreadð Þ are calculated, representing
the vertical movement of the average point due to gliding and
spreading.
3 For gravity failures in different settings, use appropriate densities for the overlying flu-
id: seawater, fresh water or air, as appropriate (other fluids may be used in planetary
settings).
From this we can calculate the energy contribution of the two com-
ponents across the whole section:

Energy release per unit thickness along strikeð Þ of the whole section due to gliding
¼ WΔz glideð Þ ¼ Atg ρ sedð Þ−ρ fluidð Þð ÞΔz glideð Þ

Energy release per unit thickness along strikeð Þ due to spreading
¼ WΔz spreadð Þ ¼ Atg ρ sedð Þ−ρ fluidð Þð ÞΔz spreadð Þ:

If we are interested in the relative contribution made by gliding and
spreading, rather than the absolute energy release, the analysis becomes
simplified further still. A dimensionless number, α, expresses the pro-
portion of total energy contributed by spreading, which defines where
the system lies on the spreading/gliding spectrum.

α ¼ Proportion of total energy contributed by spreading
¼ Δz spreadð Þ=Δz spreadð Þ þ Δz glideð Þ:

An α value of 1 corresponds to pure spreading, with no energy
contribution from gliding. α value of 0 corresponds to pure gliding,
with no energy contribution from spreading.

4. Quantification of gravity spreading and gravity gliding in
synthetic, forward-modelled sections

4.1. A simple gliding/spreading nappe

FROGGGS (forward realisation of gravity gliding/gravity spreading)
is a forward-modelling application written by the author to create and
analyse simple systems of gravity-driven deformation. An initial 3-
layer stratigraphy, which can be uniform or non-uniform, is deformed
and translated using a user-defined deformation scheme. Nodes on
the model are tracked, and a displacement vector field is calculated. In
the example shown in Fig. 8, a uniform layered stratigraphy, tilted at
5°, deforms by uniform plane strain. This style is similar to the experi-
mental gliding–spreading nappe model analysed by Brun and Merle
(1985).

If the 60 cells of this model are scaled as 1 km × 1 km blocks, com-
prising an initial stratigraphy 3 km deep by 20 km long, with an average
sediment density of 2100 kg/m3 for the sediment, the potential energy
released by the movement is 0.35 PJ/m (PetaJoules per metre of
along-strike width of the model, where 1 PJ = 1015 J), consisting of
0.24 PJ/m contributed by spreading and 0.12 PJ/m from gliding. The
spreading/gliding factor for this model, α, has the value 0.68, indicating
a spreading-dominant system with some contribution from gliding.

4.2. Forward-modelled raft tectonics with varying basal dip angles

The FROGGGS application can model any user-defined deformation
pattern. The geometry shown in Fig. 8 is a simple one to illustrate the
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process; this style of deformation resembles that of a pure salt body on a
slope, but it is not a full characterisation of that scenario.

The advantage of this forward-modelling approach is that it allows
the effect of changing one variable alone to be investigated. This is
shown in a more geologically reasonable model, shown in Fig. 9. This
model, designed tomimic the scale and style seen in some passivemar-
gin settings, consists of a series of raft blocks above a basal detachment.
The model consists of 180 nodes, and it corresponds to a system 60 km
long by 3 km thick.

The effect on the energy budget of changing the dip angle of the
basal decollement was investigated, for dips ranging from 20° down-
wards to 4° upwards in the movement direction. The results, shown in
Fig. 9, show that for basal dips less than 8°, the energy budget of this ge-
ometry is spreading-dominant, and above 8° its energy budget is gliding
dominant. This result is quite surprising: most geologists would intui-
tively describe this geometry as being characteristic of gravity gliding.
However, the decollement dips seen on real-world continental margins
are typically in the range of 0–5°, and within that range the model re-
sults fall squarely into the spreading-dominant category. In the top ex-
ample, the basal decollement dips upwards in the direction of
transport, so that the gliding component results in net absorption of
energy.

An important conclusion of this exercise is that the angle of dip of the
basal decollement is not, by itself, sufficient to diagnose gliding-dominant
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the vector summation plot result from the order in which data points are sampled, which takes
and relative amounts of energy released by gliding and by spreading.
vs. spreading-dominant systems: if the base is horizontal or upwards-
dipping we can be sure that spreading is the dominant component, but
if the base dips in the transport direction, we need to carry out an energy
calculation to determine which component is dominant.

Cross plotting the relative contribution of gliding vs. spreading, as
shown in Fig. 10, emphasizes the point that for this geometry it is im-
possible to achieve an α value of 0, corresponding to pure gliding, and
that for most geologically reasonable dips this model is spreading-
dominated.
5. Quantification of gravity spreading and gravity gliding in
natural examples

5.1. Defining displacement vectors

This approach can be applied to real-world systems using a
present-day depth section (e.g. Fig. 11a) and a valid palinspastic
restoration, or suite of restorations to different times in the past
(e.g. Fig. 11b). The depth sectionmay be created from any appropri-
ate data source (seismic reflection data, well data, outcrop informa-
tion, etc.). Points that can be identified on both the present day and
restored sections are used to define the displacement vector
(Fig. 11c).
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The simplest type of point to match is the intersection of a strati-
graphic horizon with a fault. If the restoration is to a continuous
unfaulted bed, as shown in Fig. 11b, then a single point X on the restored
section matches two points (X′ and X″) on the deformed section.

The displacement vectors can also be determined for synkinematic
sediments; for these the vector links the point where the particle was
deposited with its current location, and for this a sequential restoration
series may be required.

The method described above in can be used to define themovement
vectors by comparison of the present day and restored sections, or in
principle between two palinspastic sections representing the geometry
at different times. The displacement vectors represent the netmovement
between the time represented by the two sections, and the energy calcu-
lations will represent the net behaviour of the system between those
times. The restored section to which the comparison is made does not
have to be to a fully prekinematic state. However, if we are interested
in measuring the total energy contributions of gliding vs. spreading
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Fig. 10. Energy budget analysis for themodel shown in Fig. 9 shows how the relative con-
tribution of gliding vs. spreading varies with dip, based on the analysis of 15 models.
over the lifetime of the system, the initial restored section should be to
a pre-kinematic geometry. The contribution of synkinematic sediments
is defined by identifying the position of a point in those sediments at
the present day and its position at the time that it was deposited. To do
this may require analysis of a suite of sequential restorations.

5.2. A natural example from the Orange Basin margin, South Africa

The Orange Basin example of Fig. 1 was analysed in this way
(Fig. 12). The gravity tectonic system is a good candidate for themethod
because the whole of the system is moderately well imaged on seismic
data (de Vera et al., 2010) and the restorations are well-constrained
(the horizons can be correlatedwith confidence, and there is no compli-
cating factor such as salt). Points identified on the present-day depth
section (Fig. 12a) and a set of palinspastic restorations created by the
author (Fig. 12b–d) were used to define the movement vectors
(Fig. 12e), of which 52 vectors lie within the main extensional region.
The vectors were summed (Fig. 12f) to derive the average displacement
of a particle within the body of the extensional system (a displacement
of 8.0 km with a dip angle of 3.1°). This was resolved in the usual way
into components parallel to and normal to the base of the system
(which dips at 2.06°), and then finding the vertical component of these.

The vertical descent of the average particle is 433 m, which breaks
down as 145mdescent due to gravity spreading and 288mdue to grav-
ity gliding. Assuming a mean sediment density of 2100 kg m−3 this
gives an energy contribution of 80 TJ/m of strikewidth due to spreading
and 160 TJ/m due to gliding.

The spreading/gliding factor for this model, α, has the value 0.32,
and so this is a gliding-dominated system with a lesser contribution
from spreading.

5.3. Application to the Lower Kwanza Basin, Angola

Application of themethod to a margin involving detachment on salt
was tested on a section from the Lower Kwanza Basin of Angola, modi-
fied fromPeel et al. (1998), shown in Fig. 13. This was chosen because of
the availability of high-definition versions of the present day and re-
stored sections.

The Angola Kwanza margin is dominated by thin-skinned detach-
ment of the Late Aptian to Recent section on Aptian salt. Large-scale
basinward movement has separated the carbonate sequence which
lies immediately above the salt into raft blocks separated by younger
siliciclastic sediments (Burollet, 1975; Duval et al., 1992; Lundin,
1992; Mauduit et al., 1997). The base-salt surface dips overall towards
WSW, but this dip is far from uniform: the base-salt surface is offset
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by a steep region, the Atlantic Hinge Zone with an average dip of 4°,
separating regions of much lower dips (0.7°) to the east, here labelled
the shelf/upper slope zone, and to the west (1.25°), here labelled the
lower slope zone (Hudec and Jackson, 2002, 2004; Jackson and Hudec,
2005; Marton et al. 1998; Peel et al., 1998; Rowan et al., 2004).

As the cover sequence moves over the steep zone, a ramp syncline
basin (Benedicto et al., 1999; Ellis andMcClay, 1988) is formed and pro-
gressively filled with sediments. The distinctive stratal architecture of
this basin indicates where each sequence lay relative to the ramp edge
at the time of deposition, allowing a relatively precise sequential resto-
ration to be made (Hudec and Jackson, 2004; Jackson and Hudec, 2005;
Marton et al., 1998; Peel et al., 1998; Rowan et al., 2004). The upward
transition from carbonate-dominated sediment to a sequence dominat-
ed by clastic sediment andmarl is a distinctive and unequivocally corre-
latable seismic horizon,marking the boundary betweenwhat is labelled
here the “post-salt-1” interval (mostly carbonate) and the overlying
“post-salt-2” interval. A restoration to this surface (Fig. 13c) is used as
the reference from which displacements were measured (Fig. 13d).
The initial section and the palinspastic restorations were constructed
using LOCACE® software (Moretti et al., 1990).

The structural style of the Atlantic Hinge Zone and the area updip of
it are dominated by extension and lateral translation: the region
downdip of the Atlantic Hinge Zone is dominated by contraction (here
by folding) and salt diapirism.

Every point that could be identified on both the present and restored
sectionwas identified and used to construct a set of displacement vectors
(Fig. 13c). These were grouped into sets which lie entirely in the lower
slope zone (12 measurements), those which include movement across
the Atlantic Hinge Zone (17 measurements) and those which lie entirely
within the shelf/upper slope zone (35 measurements).



5km

Atlantic Hinge Zone

Shelf/upper slope

lower slope

10km

Atlantic Hinge Zone
4 degree dip

Shelf/upper slope
0.7 degree dip

lower slope
1.25 degree dip v:h = 5:1

displacement vectors  v:h = 5:1

a)

b)

c)

d)

Salt

Pre-salt sediments

Basement?

Post-salt 1

post-salt 1

post-salt 2

WSW ENE

50km

Albian- 
U Aptian

Upper
Cret.
to
Recent

Seismic
Stratigraphy

Pre Salt

Post-
Salt 1

Post-
Salt 2

AptianSalt

v:h = 1:1

50km

mean
vector

mean
vectormean vector

Fig. 13. Restored cross section from the Lower Kwanza Basin, based on depth-converted seismic reflection data, from Peel et al. (1998). Interpretation and section construction/reconstruction
are by the author. a) Present-day depth section with no vertical exaggeration, in which the post-salt stratigraphy is divided into two intervals; b) present day section with 5:1 vertical exag-
geration, showing all interpreted seismic horizons; c) restored cross section to geometry at the end of deposition of “post-salt 1” interval; d) measured displacement vectors.

61%
spreading

39%
glidingα = + 0.61

Atlantic Hinge Zone Shelf/upper slopelower slopea) mean
displacement
vectors

-300

-200

-1001,586
99

1,684
-1000

6%
spreading

94%
gliding

α = + 0.06

331

127

204

19.3km

0.7 degrees4.0 degrees1.25 degrees

24.4km
26km

v:h = 1:1

b) dip of basal
decollement

100%
energy
contribution from gliding;
spreading  component
absorbs energy

107 168
275

energy contribution per m of strike width (TJ/m)

c) relative
contribution
of gliding vs.
spreading

d) energy
budget -400

-200

0

200

50km

spread
glide

total spread

glide total
spread

glide

total

Fig. 14. Vector analysis and energy contribution of the gliding and spreadingmechanisms to the segments of the section shown in Fig. 13. The vectors and the depth section (a) are shown
with no vertical exaggeration. The bar chart (d) shows the estimated absolute energy contribution, permetre of strikewidth, for the different components in TeraJoules permetre of strike
width.

135F.J. Peel / Tectonophysics 633 (2014) 126–142



136 F.J. Peel / Tectonophysics 633 (2014) 126–142
These data were then used to derive the average movement vector
for each of the three zones, and then from this the relative contribution
of gliding and spreading to the energy budget was estimated in the
method described previously. The results, shown in Fig. 14, showa strik-
ing difference between the three regions.

Energy contribution to the shelf/upper slope region is dominated
by spreading (61%) with a lesser contribution from gliding (39%). In
contrast, the Atlantic Hinge Zone region is dominated by the contri-
bution of gliding (94%). The lower slope region is interesting because
the two components act in contrary direction. In this region, the
mean basal slope dips very gently westwards (1.25°) so that west-
ward movement releases potential energy; therefore in this region
gravity gliding is a net positive contributor. However, deformation
in this region is contractional, so that instead of lowering the centre
of mass and thereby releasing energy (normal spreading), the defor-
mation raises the centre of mass and absorbs energy. The positive
contribution of gliding outweighs the energy absorption from defor-
mation, so this region is still a net contributor to the gross energy
budget.

Using the same assumption for bulk sediment density as before, we
can estimate the absolute energy contributions (Fig. 14d) which reveal
that the energy released in the relatively narrow Atlantic Hinge Zone is
greater than the entire rest of the section.

The main lessons to be drawn from this exercise are that:

(i) The method appears to be robust and consistent, and can be ap-
plied with ease to a section for which a valid suite of restorations
exist.

(ii) The shelf/upper slope region of the Kwanzamargin is dominated
by gravity spreading on this section.

(iii) The steep zone around the Atlantic Hinge Zone is dominated by
gravity gliding on this section.

(iv) There are considerable differences in behaviour between dif-
ferent parts of the same line, arising from the great difference
in basal slope angle, and it would be inappropriate to charac-
terize the whole line based on an average dip and an average
behaviour.

These lessons run contrary to the statement “the Angolan margin is
thought by many to be a gravity-gliding system” (Schultz-Ela, 2001,
referencing Mauduit et al., 1997). In order to investigate whether this is
contractional region translation
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a local anomaly, a second line was analysed from a different region of
the same margin.

5.4. Application to the Lower Congo Basin margin, Angola

The Kwanza example described above was facilitated by access to
high-resolution graphics of the present-day and restored sections. To
further test the method it was applied to a cross section from the
Lower Congo Basin of Angola, using only published images.

Marton et al. (2000) presented a section (their transect B) through
the Lower Congo Basin of Angola, showing its present day geometry,
and a suite of palinspastic reconstructions, of which one is shown in
Fig. 15. On this transect, there is no steep region equivalent to that
seen in Fig. 13. The basal decollement has a fairly uniform dip of around
1.3° and therefore there is no need to analyse subareas of the section in
the manner described for Fig. 13.

Bitmap images of the sections from Marton et al. (2000) were
scanned. The graphical approach described above was used to estimate
the relative contribution of gliding and spreading to the energy budget
for this section. The vector analysis was carried out only for the
energy-releasing region, corresponding to the regions of extension
and translation, but not including the contractional region. This focus
is required because the diagnosis of gliding vs. spreading is obtained
from the region of net potential energy release.

The cross section was scanned and stretched to remove vertical ex-
aggeration. The restoration was modified slightly, reducing the thick-
ness of the salt layer in order to correct a problem (salt volume
imbalance) present in the original work. 46 points that could be easily
matched on both the present day and restored section were identified,
and vectors drawn showing the net displacement for each of these
points (Fig. 16a). These vectors were summed as before (Fig. 16b) and
the average vector calculated. For these points, the average displace-
ment was 4.2 km, dipping at an angle of 5.2° from horizontal
(Fig. 16c). For comparison, the average dip of the basal decollement is
1.3°. Resolving this into components as before to obtain the spreading/
gliding factor for this model, α, gives the value 0.75, indicating a
spreading-dominated system with a small contribution from gliding.

This is again contrary to the perception, referenced by Schultz-Ela
(2001), that the Angola margin is a classic example of gravity gliding.
Two reasons may explain why prior perception of the Angolan margin
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differs from the results of this quantitative analysis. Firstly, prior to this
contribution there has been nomethod for directly measuring the rela-
tive contribution; secondly, sections are commonly displayed with ver-
tical exaggeration (Stewart, 2011) which gives a misleading impression
of steepness. The actual average dip on this transect is only 1.3°, illus-
trated to scale on Fig. 16c. Since this is so close to horizontal, even a
large displacement parallel to the base generates very little energy; sys-
temswith very basal dip angles therefore tend to be dominated by grav-
ity spreading, as demonstrated by the FROGGGS modelling (Fig. 9).

We may apply this insight by inspection to other lines through the
same margin. A regional line through the Kwanza margin, from
Rowan et al. (2004) (Fig. 17), clearly consists of three zones: a shelf/
upper slope region in which the basal decollement has very low dip, a
steep zone, and an outboard region of low dip. Visual comparison with
the detailed analyses described above (Figs. 13–16) suggests that this
section probably divides as shown into regions dominated by spreading,
by gliding, and a region of contraction (negative spreading).
4 This analysis is purely geometrical and does not take in to consideration other aspects
of the response of the sediment unit to deposition. For example, rapid sedimentationmay
induce elevated pore fluid pressures throughout the sediment body, resulting in weaken-
ing and failure (Masson et al., 2006).
6. Discussion

6.1. Relationship of deformation to sedimentation

An important difference between spreading-dominant systems and
gliding-dominant systems is that for gravity gliding, the driving force
of may not diminish with distance travelled (Fig. 5c), whereas in a
spreading system, the driving force of necessity diminishes with dis-
tance travelled, given a uniform basal slope, and in the absence of ongo-
ing sedimentation.

This is clearly shown the analysis of a block of sediment deforming
by pure gravity spreading, initially 10 × 10 × 2 km in size (Fig. 18).
The elevation of the centre of mass drops with the inverse of the dis-
placement; the driving force (energy released per unit distance) drops
more rapidly, and the rate of movement (calculated assuming that the
speed is proportional to the force per unit plan view area) more rapidly
still. The same values plotted against elapsed time (Fig. 18c) show
an even more precipitous decline. Applying this decline curve to a
gravity-spreading system fuelled by pulses of sedimentation (Fig. 18d)
shows that movement a spreading-dominated system may be very
strongly linked to deposition, and thereforemay be expressed as phases
of deformation. In contrast, an idealized gliding systemmaymovemore
or less independently of deposition.4

From this simple analysis, it is clear that in a spreading-dominant
system, movement that is long-lived and which occurs at a sustained
rate can only happen if the engine of the system is refuelled (i.e. the
gravitational potential energy supply is renewed). This may result
from progressive tilting of the margin (due to thermal subsidence, iso-
static loading, etc.) or from updip sedimentation.

Thuswe expect to see a strong temporal relationship betweenmajor
depositional episodes andmajor phases of gravity-drivenmovement for
a spreading-dominant system, as shown schematically in Fig. 19. In con-
trast, a gravity-gliding dominant system, such as the section moving
over the Atlantic Hinge Zone in the Lower Kwanza of Angola, is likely
to continue moving more or less continuously, independent of the de-
positional history.

6.2. Topography of the shelf and slope

The predicted difference in behaviour (dependence of major phases
of movement on major phases of updip deposition in a spreading sys-
tem, and relative independence in a gliding system) has important im-
plications for the development of sea floor topography.

If deposition and movement are strongly coupled, as predicted for a
spreading system, we expect that the main episodes of creation of
accommodation space by movement should correspond to the major
phases of sediment input, and in consequence the structurally-
generated accommodation space is likely to be largely filled with
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sediment (as shown in Fig. 20a). This results in relatively suppressed
bathymetric relief and a potentially weak degree of structural control
on bathymetry. During sustained periods of low overall sediment
input, themodel predicts thatmovement of a spreading-dominated sys-
tem will slow down or stop, so that the creation of accommodation
space is inhibited: as a result deep relative topography related to lateral
movement is unlikely to develop.

In a gliding-dominant system, major phases of movement are not
hard-linked to major phases of sediment input. During periods of
major sediment input, the bathymetric response will be similar to that
of a spreading-dominant system (Fig. 20a), but during periods of low
sediment input, continuing structural movement may open up holes
faster than they are filled with sediment, resulting in a different stratal
architecture, and the possibility of deep-water troughs opening up in
the shelf and upper slope (Fig. 20b).
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6.3. Way forward

6.3.1. Future application of the analytical method to other examples
The analyses presented in this paper demonstrate that the method

appears to be simple and robust. Although it has so far been limited to
a few examples, its success in application to margins of different type,
with different dips, different dominant mechanisms, and to salt floored
and salt-free examples, indicates that it is generally applicable.

The method can in principle be applied to any cross section through
a gravity-driven system for which a valid restoration or suite of restora-
tions is available. Because construction of such sections is a common
staple of regional structural analysis,many suitable sections exist in uni-
versity and company archives, which can be readily analysed, and
which could provide a large number of analytical results characterising
margins around the world on the spectrum of gravity spreading vs.
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gravity gliding. The author welcomes the opportunity to collaborate
with other structural geologists to create an open data set of such
analyses.
6.3.2. Recognition of the products and consequences of spreading vs. gliding
It would be useful to compile a list of features and observations that

correlate with the dominant process, which might be used as evidence
where a full energy analysis is not available. Recognition of particular
behaviours, processes or features which are associated with spreading
or sliding will also shed light on the geological processes at work.
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6.3.3. Automation
The natural examples shown in this paper were analysed manually;

particle paths were identified only for points whichwere clearly identi-
fiable in both the present day and restored sections, such as horizon/
fault intersections. However, computer-based structural restoration
software should be capable of defining displacement vectors for any
point within the restored section, allowing automated production of a
greater number of reliable displacement vectors. It is reasonable to
expect that these could be analysed automatically to create a more
thorough and reliable analysis. If material properties of the sedimentary
sequence, including its density structure, are defined for each point, it
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should also be possible to create a full energy analysis without making
the simplifying assumption of uniform density.

6.3.4. From driving mechanisms to the energy balance of the whole system
This study has been focussed on the updip, energy-releasing part of

the systems, because the drivingmechanism is defined by this region. A
similar approach can be applied to the whole of the system, including
the downdip portion where movement stores gravitational potential
energy, rather than releasing it. The centre of mass may be raised by
pushing the sediments bodily up a dipping ramp, or by deformation
which results in shortening and thickening of the sediment mass.
These processes are the mirror image of gliding vs. spreading. As
shown in Fig. 12e, displacement vectorsmay bemeasured in this region,
and a parallel analytical method can be applied there. Quantifying the
total potential energy of the whole system, including both the release
and the storage of gravitational potential energy, is a necessary first
step towards analysing the full energy balance of gravity-driven sys-
tems. The full energy balance of gravity driven systemswill be explored
in companion research. Understanding the energetics of gravity-driven
systems as a whole will contribute towards our understanding and ex-
ploitation of them.

7. Conclusions

Returning to the original definitions of gravity gliding and gravity
spreading of Ramberg (1967, 1977, 1981a,b) allows these to be clearly
distinguished. The critical difference is themechanism bywhich gravity
supplies energy into the system: lowering the centre of mass by move-
ment towards the base of the system (spreading), which requires inter-
nal deformation, or by movement parallel to the base of the system
(gliding),whichdoes not require internal deformation.Most natural ex-
amples are a combination of the two processes.

A simple geometricmethod allows the relative contributions of glid-
ing and spreading to be quantified. This can be applied to a large body
which has experienced complex heterogeneous deformation, by
analysing a large number of small elements and summing the results.

Applying a uniform sediment density to the whole body allows
further simplification. A single vector represents average movement of
the whole entity, from which the spreading/gliding factor, α, can be
calculated.

Forward-modelling of synthetic sections allows us to rapidly analyse
geometries representative of natural gravity-driven systems, and to
investigate the effect of changing single variables, such as the basal
slope angle. This demonstrates that pure spreading or gliding is only
achieved under exceptional circumstances. Most natural systems con-
tain amix of the two components, and real-world geometries are better
represented bymeasuring the spreading/gliding factor,α, which shows
where the system falls on the spreading/gliding spectrum.

Rigorous quantitative analysis of two regional lines from themargin
of Angola demonstrates that large regions of this margin are dominated
by gravity spreading, which contrasts with established wisdom based
on qualitative methods.

Distinguishing the relative contribution of spreading vs. gliding is an
important contribution to the understanding of passive margin defor-
mation. Spreading systems deplete their energy supply (gravitational
potential energy) in a way that is non-linear with respect to distance
moved: hence the driving force diminishes unless the system is
refuelled, most commonly by updip deposition. In consequence, there
is a strong linkage between sediment supply and the movement
of large-scale gravity spreading systems. In contrast, movement of
gliding-dominant systems may be independent of sediment supply
rates.

This has important consequences for the development of topograph-
ic relief above the gravity-driven system, and for the gross stratal
architecture of synkinematic sediments within it. A systematic and
quantitative study of these systems, usingmodern seismic data, is likely
to have applications to hydrocarbon exploration and to studies of
subsurface fluid flow processes in general.
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AppendixA. Constraints on the geometricmethod for distinguishing
the contribution of spreading vs. gliding

A.1. Validity and format of the present-day section and
palinspastic restoration

The geometric method proposed above assumes that the present
day section is structurally appropriate and its restoration is both valid
and reasonable. The sections must be in depth, not two-way time;
they must be complete at least down to the basal decollement of the
system. The vector analysis should be carried out on sections without
vertical exaggeration.

The section should ideally include the whole updip portion of the
linked system, including a point beyond the limit of extension which
can be taken asfixed. This enables the true lateral displacement to be es-
timated through the process of palinspastic restoration.

In some circumstances, it is possible to determine the true lateral
displacement by other means. This is the case in the Kwanza basin of
Angola, where movement over the Atlantic Flexure creates a diagnostic
record of displacement in the stratal patterns of the transportedmateri-
al (Hudec and Jackson, 2004; Peel et al., 1998; Rowan et al., 2004). In
such settings, the method can be used effectively without requiring
the section to be complete to the updip limit of extension.

For sections with a basal salt decollement, it is vitally important to
create a palinspastic restoration in which salt has neither been gained
nor lost, otherwise a systematic error is introduced. This can bemitigat-
ed by ensuring the palinspastic restoration is optimised and that salt
volumes are balanced.
A.2. Reference frame, vertical movement

The reference frame used to compare positions in the present day
and restored sections should be a point on the basal decollement sur-
face. It is normal for the whole margin, including the transported mate-
rial and its basement, to experience subsidence or uplift for a variety of
reasons. This superimposed vertical movement must be removed from
the calculation; choosing a point on the basal decollement in each sec-
tion and measuring position relative to this point should achieve this.
A.3. Reference frame, tilting

The method assumes that the whole system, including the section
below the decollement, has not tilted significantly during movement.
In circumstances where there has been regional tilting, the method
can still be used, but it will provide a range rather than a single value.
The process to use in such cases is to rotate and move the whole re-
stored section so that the sub-decollement section matches present-
day in both dip and elevation. The displacement vectors are measured
in the usual way. Then the spreading/gliding factor,α, can be calculated
with the present dip (as though all the tilting occurred at the start of the
process), for the original dip (as though all the tilting occurred at the
end of the process) and for a mid-way dip. The range of α value repre-
sents the uncertainty.
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Appendix B. Limitations on the method

B.1. Sampling bias due to incomplete stratigraphy in the restored section

If a suite of palinspastic restorations is available formultiple different
times, points in the present-day section can bematched to previous po-
sitions for most of the section. However, if only one restoration is avail-
able, it is not possible to obtain displacement vectors for the upper
layers of the stratigraphy which are absent in the restoration. This
may lead to a systematic error, especially if a substantial synkinematic
section present in large growth-faulted basins is not taken into consid-
eration: omitting this section will tend to underestimate the relative
contribution of spreading relative to gliding. This error can bemitigated
by considering more sequential stages of restoration.

B.2. Bias due to the effect of sediment compaction

Vertical movement of the sediment sequence occurs due to compac-
tion, in response to burial by younger sediment. This vertical movement
does not contribute towards the energy budget of spreading or gliding.
However, in the method set out here, it will appear in the calculation as
an apparent contribution towards spreading. The effect of compaction
will tend to overestimate the relative contribution of spreading, to
some extent countering the sampling bias effect described above. On
way to mitigate this compaction effect is to make the calculation
based primarily on vectors derived for the deeper part of the stratigra-
phy, where the rate of compaction is less. There is no simple way to re-
move this effect entirely.

B.3. The effect of diapirism

Diapirism results in the upward movement of less dense material
and the downward movement of more dense material. This movement
is independent of, and does not contribute towards, the energy supply
for gravity spreading or gliding. As long as a sufficient number of points
are used to define the displacement vectors, and there is no sampling
bias that oversamples either the uplifting or downgoing regions influ-
enced by diapirism, the effect of diapirism should be removed by the av-
eraging process. A good example of this is the downdip region of the
Lower Kwanza section (Fig. 13d) which includes both the uplifted re-
gions and the down dropped region between them.

Appendix C. Mechanism of palinspastic reconstructions used in
this article

The vector analysis is dependent on themethod of restoration or for-
ward modelling and thus a brief discussion of this is justified.

Figs. 8–10: The FROGGGS forwardmodels have a user-defined defor-
mation. This can include pure shear and simple shear with axes parallel
to the basal decollement. Deformation of the hanging wall of the minor
faults in the FROGGGS models is accommodated by simple shear per-
pendicular to the basal decollement.

Figs. 13 and 17: the Lower Kwanza basin lineswere interpreted, cre-
ated and restored by the author. The present-day model is based on 2D
seismic reflection data, interpreted and depth converted by the author.
They were constructed and restored using LOCACE software (Moretti
et al., 1990). Palinspastic restoration was carried out for each block in
turn, in the following stages: (i) rigid translation (block movement
and rotation), to take out fault displacement; (ii) deformation of the
fault block to restore the top (depositional) surface to a reasonable ge-
ometry, based on a full stratigraphic-depositional model; (iii) deforma-
tion of the underlying blocks to remove any fault gaps or overlaps; (iv)
decompaction of the collaged suprasalt blocks using LOCACE standard
compaction curves. In the extensional domain, the primary deformation
mechanism used was inclined simple shear. In the contractional do-
main, the primary deformation mechanism used was flexural slip.
The gap created between the collage of restored suprasalt fault
blocks and the basement was assumed to be filled with salt. The salt
area in each time step was calculated. Gross changes of salt volume
through time were minimized by adjusted by broad warping of the
sea floor and topography and the suprasalt blocks.

Full palinspastic restorationsweremade to 7 consecutive time steps.
Any errors in themodel stages that were revealed by subsequent resto-
rations were corrected in the present-day model and all the intermedi-
ate restorations, so that the model was validated by 7 iterative steps.

Fig. 15: Marton et al. (2000) carried out the restoration of their
Lower Congo Basin line using an unspecified software system. For the
extensional domain, they used vertical slip (variable simple shear) to
restore the fault blocks, and for the contractional domain they used
flexural slip restoration. They did not apply decompaction.

Figs. 1 and 12: the Orange Basin line was constructed by the author
from 2D seismic reflection data. The model was created as vector-
graphic polygons in CorelDraw. Restorationswere carried out in the fol-
lowing stages: (i) translation (rigid blockmovement and rotation) to re-
move fault separation, (ii) deformation of the block to minimize fault
gaps or overlaps. In contrast to the salt-floored system, the restored
blocks were collaged in sequence from the bottom upwards, building
up from the basal decollement. When all blocks are restored in this
way, sea floor topography is obtained by construction. Any unreason-
able irregularity in that topography was deemed to be the product of
model error, and the model was amended to minimize this and re-
restored. This was carried out iteratively until reasonable seafloor to-
pography was obtained. No sediment decompaction was included in
this restoration process.
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