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ABSTRACT. The purpose of this note is to establish a connection between the

notion of (n-2)-tightness in the sense of N.H. Kuiper and T.F. Banchoff and

the total absolute curvature of compact submanifolds-with-boundary of even

dimension in Euclidean space. The argument used is a certain geometric in-

equality similar to that of S.S. Chern and R.K. Lashof where equality charac-

terizes (n-2)-tightness.
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i. INTRODUCTION.

Let M be a compact n-dimensional smooth manifold with or without boundary-

where the boundary is assumed to be smooth and let

f M E
n+k

be a smooth immersion of M into the (n+k)-dimensional euclidean space. This

leads to the notion of total absolute curvature

TA(f)
i I IKI *i

Cn+k-
N

where K denotes the Lipschitz-Killing curvature of f in each normal direction,

N the unit normal bundle (with only the ’oute normals at points of 3M), and c
m

denotes the volume of the unit sphere sm Em+l. For detailed definitions, in

particular in the case of manifolds with boundary, see[5] or [6].

Let us state the following equation [6], 2.2)

TA(f) TA(flM\3M) + 1/2TA(fI M) (i.i)

The famous result of S.S. Chern and R.F. Lashof gives a connection between

total absolute curvature and the number of critical points of so-called height

functions

zf M------+

defined by (zf)(p) < z, f(p) > z E S
n+k-I

Extending this result to the case of manifolds with boundary we can write

TA(f) Ei (i(zf) + (zf)) *I (1.2)
Cn+k- i +k-z(i i

where 9. (zf) denotes the number of critical points of zf of index i in
1

+M\ M, and .(zf) denotes the number of (+)-critical points of zf of
1

index i in 3M. Here a point pM is called (+)-critical if p is critical
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for zf[Mp and grad f is a nonvanishing inner vector on M (for details, see
P

[2], [4] or [6] ).

The i-th curvature r. introduced by N.H. Kuiper (cf. [7] can be expressed
1

by

Y.(f) 1
(i(zf) + +(zf)) *i

i Cn+k- i t-
i

z S
n

(cf. [6], lemma 4.2 or [9], lemma 3.1). So we get

TA(f) .(f).

The Morse-relations give the following connections between the curvatures and

some topological invariants of M:

.(f) > b (M)

TA(f) > b(m): . b. (M)

E(-l)i. i(f) x(M) E. (-i)
i
i(M)

(1.3)

where b (M) denotes the i-th Betti-number of homology with coefficients in a

suitable field. (cf. [7]).

f is called k-tight if for all k’ k and for almost all z { S
n+k-I

and

all real numbers c the inclusion map

j: (zf) := {pM/ (zf)(p)< c} M
c

induces a monomorphism in the k’-th homology

,(j) ,((Zf)c > ,(M)

As usual we write shortly ’tight’ instead of ’n-tight’.

Then the results of N.H. Kuiper show

TA(f) b(M) if and only if f is tight,
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k(f) bk(M) if and only if

for almost all z, all c (cf. [7] ).

(j) and _i (j) are monomorphisms

Results on tightness are collected in the survey article [i0] by T.J. Willmore,

for results on k-tightness we refer in addition to the notes [i] by T. Banchoff

and [9] by L. Rodriguez, who has shown that in some sense (n-2)-tightness is

closely related to convexity.

2. RESULTS

As mentioned above there is a relation between tightness on one hand and

total absolute curvature and the sum of the Betti-numbers on the other hand.

The following results give certain connections between (n-2)-tightness on one

hand and usual curvature terms and the sum of the Betti-numbers on the other

hand. Note that in case M by duality arguments tightness is equivalent

n
to k-tightness for k - if n is even and for kz

n-I
if n is odd.

But in case 8M # there are examples of (n-2)-tight immersions which are not

tight (for example: consider the round hemi-sphere).

THEOREM A Let Mn be an even-dimensional manifold with non-void boundary

and f M--En+k be an immersion. Let NO
be the unit normal bundle of

fMM and denote by N, = N
O the open set of unit normals where the second

fundamental form of f is positive or negative definite.

Then there holds the following inequality

J IKI *i > b(m) (2.1)1/2TA (f M) +
Cn+k_ 1

NON N,

where equality characterizes (n-2)-tightness of f

In case of hypersurfaces (k I) (2.1) becomes

1/2TA(fM + TA(flMM,\M => b(M) (2.2)
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where M, denotes the set of points in M \)M with positive or negative definite

second fundamental form.

In case n 2 M, is just the set of points with positive Gaussian curvature,

so we get

COROLLARY A i. Assume n 2 and k 1-. Then there holds the following

inequality

2- IKI do + II ds .> b(M) -> 2- (M) (2.3)
K<0 M

where equality characterizes 0-tightness of f Here 11 denotes the usual

curvature of fM considered as a space curve. For part of this result see

[8] Prop. 9.

COROLLARY A 2. Assume b(M) 2 b(M) Then (n-2)-tightness of f implies

that flM is tight and that the second fundamental form of f has either non-

maximal rank of is positive or negative definite.

This is shown in [9] Prop. 5.2 under the assumption that Mn can be

embedded in En. This condition implies b(M) 2 b(M) by Alexander duality.

Under the additional assumption that M consists of a certain number of

(n-l)-spheres L. Rodriguez has shown that (n-l)-tightness is equivalent to

convexity (cf. [9] Theorem 2). This is not true in general, (See Corollary

B 2 below).

En+1
THEOREM B. Let n be even and f Mn + be (n-2)-tight (if M # )

or tight (if M ), and let M M\M be a compact submanifold of dimension n

which is contained in some coordinate neighborhood in M As above M, denotes

the set of points in M\M with positive or negative definite second fundamental

form. Then there holds the-following inequality
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(2.4)

where equality characterizes (n-2)-tightness of flM\(\8
REMARK. If M contains only points of vanishing curvature or definite

second fundamental form, then \M, and (2.4) reduces to the inequality of

S.S Chern and R.K. Lashof for otherwise (2.4) is sharper and reflects the

additional condition that M lies inside of some given M For example in

case n 2 and M being a disk we get

I ds > 2 + I ,KI do (2.5)
M Mn{K<0}

COROLLARY B i. Let f be as in Theorem B and assume moreover that there is

an open region U M which is embedded by f in a hyperplane of En+l which

implies KIU 0 Let n be an embedded compact submanifold of E
n

and assume

by changing the scale M f(U)

Then \f-l(\) is (n-2)-tight if and only if M is tightly embedded in E
n

Note that for n E
n

tightness of M and tightness of M are equivalent:

this can be obtained easily using the equations TA() 1/2TA() and

b() 1/2b()

Roughly spoken Corollary B 1 says: (n-2)-tight minus tight gives (n-2)-tight.

In particular we get the following

COROLLARY B 2. In each even dimension there exist (n-2)-tight hypersurfaces

which are not tight and not convex in the sense of [9] in particular where

f(;M) is not contained in the boundary of the convex hull of f(M)

3. PROOFS.

In all proofs the immersion f is fixed and so we may write TA(M) instead
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of TA(fIM and so on.

PROOF OF THEOREM A.

From

and

TA(M) I .(M)
i i

we get

x(M) Z (_l)ii(M)
TA(M) + x(M) 2Z (M)

i 2i

On the other hand by definition (M) is the average of the number of

critical points of zf of index n which are precisely the strict local maxima

in MkM But a point is a strict local extremum of so height function zf

if and only if the second fundamental form in the direction of z is positive

or negative definite. Hence we get

2 (M) I J IKI *n Cn+k- i
N,

leading to

TA(M) 1

Cn+k- 1
N,

2 (r0(M) + 2(M) +...+ n-2(M)) x(M)

> 2 (b0(M) + b2(M) +...+ bn_2(M)) x(M)

b (M)

where we have used the assumption that n is even and M # which implies

b (M) 0.
n

The case of equality is equivalent to the following equations:
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o(M) bo(M) z
(M) b2(M) n-2(M) bn_2(M) (2.6)

But the equality i(M) bi(M) is equivalent to injectivity of Hi(j) and

+ M so (2.6) is equivalent toHi_ l(j) for all inclusions j (Zf)c
(n-2)-tightness of f

The assertion of the theorem then follows from the inequality above using

the equation (I. I)

TA (M) TA (M\ M) + 1/2TA (M)

PROOF of Corollary A 2. By theorem A (n-2)-tightness of f implies

b(M) 1/2TA(M) +
Cn+k- 1 NO\ N,

> 1/2TA(SM) > 1/2b(SM) b(M)

which implies tightness of f18M and moreover the vanishing of the integral of

KI over N \N, hence K 0 on N\N,.o o

PROOF of Theorem B. By assumption and by theorem A we have

TA(MM,\M) + 1/2TA(SM) b(M) if 8M # (2.7)

or TA(M) b(M) if 8M

which last equality is equivalent to

TA(M\M,) b(M) 2

For \(\) theoremA yields

TA(M\\M,\ M\) + 1/2TA(M) + 1/2TA(8) _> b(M\)

where equality characterizes (n-2)-tightness of flM (\)"
Subtracting (2.9) from (2.7) or (2.8) respectively we get

(2.8)

(2.9)
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TA(M\M,\$M) 1/2TA(M) <__ b(M) b(M\) (2.10)

TA(M\M,\) 1/2TA() < b(M) b(M\) 2 (2.11)

respectively.

Now the assertion follows directly from the following lemma

LEMMA. Let M M be n-dimensional dompact connected manifolds with

M MM and assume that M is contained in some coordinate neighborhood of M

Then

or

b(M\) b(M) 1/2b() if M #

b(M\) b(M) 1/2b() 2 if M

PROOF. Let B be an open coordinate neighborhood in M such that B is

topologically a closed n-ball We can assume M B B M\M To compute

the Betti-numbers of M\M in terms of that of M and M we apply the Mayer-

Vitoris sequence to the following three decompostions

Io M (M\ B) (J B

(M\B) m S
n-I

(\(\)) f3 M 8M

III. M\ (M\ M) (MkB) kJ (B\(M\))
(M\B) (\(\M)) 8B =- S

n-I

The first decomposition leads to

b(M) b(M\B) 1 if M # (2.12)

b(M) b(M\B) + I if M (2.13)
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the second one to

b(B\M) + b() b() + i (2.14)

the third one to

b(M\) b(M\B) + b(\) 2 (2.15)

At last we have the equation

b() 2 b() (2.16)

because by assumption M can be embedded in B E
n (cf. [9] Prop. 5.1).

Now the lemma follows directly from (2.12) (2.16)

PROOF of Corollary B 2 Consider for example an embedding of S
k

xS
n-k

in E
n+l

(k > 1 arbitrary) as a tight hypersurface of rotation (like the

standard-torus in E3) and change this embedding a little bit such that there

is an open region U contained in some hyperplane of En+l. Now define M by

removing a small tight ’solid torus’ of type S
TM B

n-m
from U (m i)

By Corollary B M is (n-2)-tight but of course it is not tight. By suitable

sn-kchoice of the embedding of sk X we started from we can assume that U

lies not in the boundary of the convex hull M So we can obtain an example

where M lies not in the boundary of M

EMARK. In the examples of corollary B 2 the boundaryM was always tightly

embedded in En+l. The natural question whether there exist in higher dimensions

(n-2)-tight inersions with non-tight boundary seems to be open. For n 2

an example is due to L. Rodriguaz.
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