(n-2)-TIGHTNESS AND CURVATURE OF SUBMANIFOLDS WITH BOUNDARY

WOLFGANG KÜHNEL
Fachbereich Mathematik
Technische Universität Berlin
Straße des 17. Juni 135
1000 Rerlin 12 (West)
Germany
(Received August 2, 1978)

ABSTRACT. The purpose of this note is to establish a connection between the notion of ($\mathrm{n}-2$)-tightness in the sense of N.H. Kuiper and T.F. Banchoff and the total absolute curvature of compact submanifolds-with-boundary of even dimension in Euclidean space. The argument used is a certain geometric inequality similar to that of S.S. Chern and R.K. Lashof where equality characterizes ($\mathrm{n}-2$)-tightness.

KEY WORDS AND PHRASES. tight manifolds, total absolute curvature.
AMS (MOS) SUBJECT CLASSIFICATION (1970) CODES. Primary 53 C 40,57040 .

W. KÜHNEL

1. INTRODUCTION.

Let M be a compact n-dimensional smooth manifold with or without boundary where the boundary is assumed to be smooth - and let

$$
\mathrm{f}: \mathrm{M} \longrightarrow \mathrm{E}^{\mathrm{n}+\mathrm{k}}
$$

be a smooth immersion of M into the $(n+k)$-dimensional euclidean space. This leads to the notion of total absolute curvature

$$
\operatorname{TA}(\mathrm{f})=\frac{1}{\mathrm{c}_{\mathrm{n}+\mathrm{k}-1}} \int_{\mathrm{N}}|\mathrm{~K}| * 1
$$

where K denotes the Lipschitz-Killing curvature of f in each normal direction, N the unit normal bundle (with only the 'outer' normals at points of $\partial \mathrm{M}$), and c_{m} denotes the volume of the unit sphere $S^{m} \subseteq E^{m+1}$. For detailed definitions, in particular in the case of manifolds with boundary, see[5] or [6]. Let us state the following equation ($[6], 2.2$)

$$
\begin{equation*}
T A(f)=T A\left(\left.f\right|_{M \backslash \partial_{M}}\right)+\frac{1}{2} T A\left(\left.f\right|_{\partial M}\right) \tag{1.1}
\end{equation*}
$$

The famous result of S.S. Chern and R.F. Lashof gives a connection between total absolute curvature and the number of critical points of so-called height functions

$$
\text { zf }: M \longrightarrow \mathbb{R}
$$

defined by $(z f)(p)=<z, f(p)>\quad, \quad z \in S^{n+k-1}$
Extending this result to the case of manifolds with boundary we can write

$$
\begin{equation*}
\operatorname{TA}(f)=\frac{1}{c_{n+k-1}} \quad z \in S^{n+k-1} \sum_{i}^{\sum_{i}\left(\mu_{i}(z f)+\mu_{i}^{+}(z f)\right) * 1} \tag{1.2}
\end{equation*}
$$

where $\mu_{i}(z f)$ denotes the number of critical points of $z f$ of index i in $M \backslash \partial M$, and $\mu_{i}^{+}(z f)$ denotes the number of (+)-critical points of $z f$ of index i in ∂M. Here a point $p \in \partial M$ is called (+)-critical if p is critical
for $\quad z f f_{M}$ and $\operatorname{grad}_{p} f$ is a nonvanishing inner vector on M (for details, see [2], [4] or [6]).

The i-th curvature τ_{i} introduced by N.H. Kuiper (cf. [7]) can be expressed by

$$
\tau_{i}(f)=\frac{1}{c_{n+k-1}} \quad \int_{z \in S^{n+k-1}}\left(\mu_{i}(z f)+\mu_{i}^{+}(z f)\right) *_{1}
$$

(cf. [6], lemma 4.2 or [9], lemma 3.1). So we get

$$
T A(f)=\sum_{i} \tau_{i}(f)
$$

The Morse-relations give the following connections between the curvatures and some topological invariants of M :

$$
\begin{gather*}
\tau_{i}(f) \geqslant b_{i}(M) \tag{1.3}\\
T A(f) \geqslant b(m):=\sum_{i} b_{i}(M) \\
\sum_{i}(-1)^{i} \tau_{i}(f)=\chi(M)=\sum_{i}(-1)^{i} b_{i}(M)
\end{gather*}
$$

where $b_{i}(M)$ denotes the $i-t h$ Betti-number of homology with coefficients in a suitable field. (cf. [7]).
f is called $\underline{k-t i g h t}$ if for $a 11 k^{\prime} \leq k$ and for almost all $z \in S^{n+k-1}$ and all real numbers c the inclusion map

$$
j:(z f)_{c}:=\{p \in M /(z f)(p) \leqq c\} \longrightarrow M
$$

induces a monomorphism in the k^{\prime}-th homology :

$$
\mathrm{H}_{k^{\prime}}(\mathrm{j}): \mathrm{H}_{k^{\prime}}\left((z f)_{c}\right) \longrightarrow \mathrm{H}_{k^{\prime}}(\mathrm{M})
$$

As usual we write shortly 'tight' instead of 'n-tight'.
Then the results of N.H. Kuiper show

$$
T A(f)=b(M) \quad \text { if and only if } \quad f \text { is tight, }
$$

```
    \tau}\mp@subsup{\mp@code{k}}{(f)= b}{k
for almost all z, all c (cf. [7] ).
```

Results on tightness are collected in the survey article [10] by T.J. Willmore, for results on k-tightness we refer in addition to the notes [1] by T. Banchoff and [9] by L. Rodriguez, who has shown that in some sense ($n-2$)-tightness is closely related to convexity.

2. RESULTS

As mentioned above there is a relation between tightness on one hand and total absolute curvature and the sum of the Betti-numbers on the other hand. The following results give certain connections between ($\mathrm{n}-2$)-tightness on one hand and usual curvature terms and the sum of the Betti-numbers on the other hand. Note that in case $\partial M=\phi$ by duality arguments tightness is equivalent to k-tightness for $k=\frac{n}{2}-1$ if n is even and for $k=\frac{n-1}{2}$ if n is odd. But in case $\partial M \neq \phi$ there are examples of ($n-2$)-tight immersions which are not tight (for example: consider the round hemi-sphere).

THEOREM A . Let M^{n} be an even-dimensional manifold with non-void boundary and $f: M \rightarrow E^{n+k}$ be an immersion. Let N_{0} be the unit normal bundle of $f_{M \backslash \partial}$ and denote by $N_{*} C_{=} N_{0}$ the open set of unit normals where the second fundamental form of f is positive or negative definite.

Then there holds the following inequality

$$
\begin{equation*}
\frac{1}{2} T A\left(\left.f\right|_{\partial M}\right)+\frac{1}{c_{n+k-1}} \int_{N_{0} \backslash N_{*}}|k| *_{1} \geq b(m) \tag{2.1}
\end{equation*}
$$

where equality characterizes ($n-2$)-tightness of f.

In case of hypersurfaces $(k=1)$ (2.1) becomes

$$
\begin{equation*}
\frac{1}{2} T A\left(\left.f\right|_{\partial M}\right)+T A\left(\left.f\right|_{M \backslash M_{*} \backslash \partial M}\right) \geq b(M) \tag{2.2}
\end{equation*}
$$

where M_{*} denotes the set of points in $M \backslash 2 M$ with positive or negative definite second fundamental form.

In case $n=2 M_{*}$ is just the set of points with positive Gaussian curvature, so we get

COROLLARY A 1. Assume $n=2$ and $k=1 \ddots$ Then there holds the following inequality

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{K<0}|K| \text { do }+\frac{1}{2 \pi} \int_{\partial M}|x| d s \geqq b(M) \geqq 2-\chi(M) \tag{2.3}
\end{equation*}
$$

where equality characterizes 0 -tightness of f. Here $|\boldsymbol{x}|$ denotes the usual curvature of $f f_{\partial M}$ considered as a space curve. For part of this result see [8] , Prop. 9.

COROLLARY A 2. Assume $b(\partial M)=2 b(M)$. Then ($n-2$)-tightness of f implies that $f_{\partial M}$ is tight and that the second fundamental form of f has either nonmaximal rank of is positive or negative definite.

This is shown in [9], Prop. 5.2 under the assumption that M^{n} can be embedded in E^{n}. This condition implies $b(\partial M)=2 b(M)$ by Alexander duality.

Under the additional assumption that ∂M consists of a certain number of ($\mathrm{n}-1$)-spheres L. Rodriguez has shown that ($\mathrm{n}-1$)-tightness is equivalent to convexity (cf. [9] , Theorem 2). This is not true in general, (See Corollary B 2 below).

THEOREM B. Let n be even and $f: M^{n} \rightarrow E^{n+1}$ be ($n-2$)-tight (if $\partial M \neq \phi$) or tight (if $\partial M=\phi$), and let $\tilde{M} \leqq M \backslash \partial M$ be a compact submanifold of dimension n which is contained in some coordinate neighborhood in M. As above M_{*} denotes the set of points in $M \backslash \partial M$ with positive or negative definite second fundamental form. Then there holds the following inequality

$$
\begin{equation*}
\operatorname{TA}(f \mid \partial \tilde{M}) \geq b(\partial \tilde{M})+2 \operatorname{TA}\left(f_{M \backslash M_{\star} \backslash} \tilde{M}^{\sim}\right) \tag{2.4}
\end{equation*}
$$

where equality characterizes (n-2)-tightness of $\left.f\right|_{M \backslash(\tilde{M} \backslash \partial \tilde{M})}$.
REMARK. If \tilde{M} contains only points of vanishing curvature or definite second fundamental form, then $\tilde{M} M_{*}=\phi$ and (2.4) reduces to the inequality of S.S Chern and R.K. Lashof for $\partial \tilde{M}$, otherwise (2.4) is sharper and reflects the additional condition that \tilde{M} lies inside of some given M. For example in case $n=2$ and \tilde{M} being a disk we get

$$
\begin{equation*}
\int_{\partial \mathcal{M}}|x| d s \geq 2 \pi+\int_{\operatorname{M} \cap\{K<0\}}|K| \text { do } \tag{2.5}
\end{equation*}
$$

COROLLARY B 1. Let f be as in Theorem B and assume moreover that there is an open region $U \subseteq M$ which is embedded by f in a hyperplane of E^{n+1} which implies $\left.K\right|_{U}=0$. Let \tilde{M}^{n} be an embedded compact submanifold of E^{n} and assume by changing the scale $\tilde{M} \cong f(U)$.

Then $f{ }_{M \backslash f}{ }^{-1} \tilde{(M \backslash \partial \tilde{M})}$ is (n-2)-tight if and only if $\partial \tilde{M}$ is tightly embedded in E^{n}.
Note that for $\tilde{M}^{n} \cong E^{n}$ tightness of \tilde{M} and tightness of $\partial \tilde{M}$ are equivalent: this can be obtained easily using the equations $T A(M)=\frac{1}{2} T A(\partial M)$ and $b(\tilde{M})=\frac{1}{2} b(\partial \tilde{M})$.

Roughly spoken Corollary B 1 says: ($n-2$)-tight minus tight gives ($n-2$)-tight. In particular we get the following

COROLLARY B 2. In each even dimension there exist ($n-2$)-tight hypersurfaces which are not tight and not convex in the sense of [9], in particular where $f(\partial M)$ is not contained in the boundary of the convex hull of $f(M)$.
3. PROOFS.

In all proofs the immersion f is fixed and so we may write $T A(\partial M)$ instead
of $T A\left(\left.f\right|_{\partial M}\right)$ and so on.

PROOF OF THEOREM A.
From

$$
T A(M)=\sum_{i} \tau_{i}(M)
$$

and
we get

$$
\begin{gathered}
\chi(M)=\sum_{i}(-1)^{i} \tau_{i}(M) \\
T A(M)+\chi(M)=2 \sum_{i} \tau_{i}(M)
\end{gathered}
$$

On the other hand by definition $\tau_{n}(M)$ is the average of the number of critical points of $z f$ of index n which are precisely the strict local maxima in $M \backslash \partial M$. But a point is a strict local extremum of some height function $z f$ if and only if the second fundamental form in the direction of z is positive or negative definite. Hence we get

$$
2 \tau_{n}(M)=\frac{1}{c_{n+k-1}} \int_{N_{*}}|K| * 1
$$

leading to

$$
\begin{aligned}
T A(M) & -\frac{1}{c_{n+k-1}} \int|K| * 1 \\
& =2\left(\tau_{0}(M)+\tau_{2}(M)+\ldots+\tau_{n-2}(M)\right)-\chi(M) \\
& \geq 2\left(b_{0}(M)+b_{2}(M)+\ldots+b_{n-2}(M)\right)-\chi(M) \\
& =b(M),
\end{aligned}
$$

where we have used the assumption that n is even and $\partial M \neq \phi$ which implies $b_{n}(M)=0$.

The case of equality is equivalent to the following equations:

$$
\begin{equation*}
\tau_{0}(M)=b_{o}(M), \tau_{2}(M)=b_{2}(M), \ldots, \tau_{n-2}(M)=b_{n-2}(M) \tag{2.6}
\end{equation*}
$$

But the equality $\tau_{i}(M)=b_{i}(M)$ is equivalent to injectivity of $H_{i}(j)$ and $H_{i-1}(j)$ for all inclusions $j:(z f)_{c} \rightarrow M$, so (2.6) is equivalent to ($n-2$)-tightness of f.

The assertion of the theorem then follows from the inequality above using the equation (1.1)

$$
T A(M)=T A(M \backslash \partial M)+\frac{1}{2} T A(\partial M)
$$

PROOF of Corollary A 2. By theorem A ($n-2$)-tightness of f implies

$$
\begin{aligned}
b(M) & =\frac{1}{2} T A(\partial M)+\frac{1}{c_{n+k-1}} \int_{N_{0} \backslash N_{*}}|K| * 1 \\
& \geqq \frac{1}{2} T A(\partial M) \geqq \frac{1}{2} b(\partial M)=b(M)
\end{aligned}
$$

which implies tightness of $\left.f\right|_{\partial M}$ and moreover the vanishing of the integral of $|K|$ over $N_{0} \backslash N_{*}$, hence $K=0$ on $N_{0} \backslash N_{*}$.

PROOF of Theorem B. By assumption and by theorem A we have

$$
\begin{array}{r}
T A\left(M \backslash M_{\star} \backslash \partial M\right)+\frac{1}{2} T A(\partial M)=b(M), \text { if } \partial M \neq \phi, \tag{2.7}\\
T A(M)=b(M), \text { if } \partial M=\phi
\end{array}
$$

or
which last equality is equivalent to

$$
\begin{equation*}
T A\left(M \backslash M_{\star}\right)=b(M)-2 \tag{2.8}
\end{equation*}
$$

For $\left.\quad f\right|_{M \backslash(\tilde{M} \backslash \partial \tilde{M})}$ theorem A yields

$$
\begin{equation*}
T A\left(M \backslash \tilde{M} \backslash M_{*} \backslash \partial M \backslash \partial \tilde{M}\right)+\frac{1}{2} T A(\partial M)+\frac{1}{2} T A(\partial \tilde{M}) \geqq b(M \backslash \tilde{M}) \tag{2.9}
\end{equation*}
$$

where equality characterizes (n-2)-tightness of $\left.f\right|_{M \backslash(\tilde{M} \backslash \partial \tilde{M})}$.
Subtracting (2.9) from (2.7) or (2.8) respectively we get

$$
\begin{align*}
& T A\left(\tilde{M} \backslash M_{\star} \backslash \tilde{M}\right)-\frac{1}{2} T A(\partial \tilde{M}) \leqq b(M)-b(M \backslash \tilde{M}) \tag{2.10}\\
& T A\left(\tilde{M} \backslash M_{\star} \backslash \partial \tilde{M}\right)-\frac{1}{2} T A(\partial \tilde{M}) \leqq b(M)-b(M \backslash \tilde{M})-2 \tag{2.11}
\end{align*}
$$

respectively.
Now the assertion follows directly from the following lemma

LEMMA. Let M, \tilde{M} be n-dimensional dompact connected manifolds with $\tilde{M} \leqq$ MlaM and assume that \tilde{M} is contained in some coordinate neighborhood of M Then

$$
\begin{array}{ll}
& b(M \mid \tilde{M})-b(M)=\frac{1}{2} b(\partial \tilde{M}) \text { if } \partial M \neq \phi, \\
\text { or } \quad b(M \mid \tilde{M})-b(M)=\frac{1}{2} b(\partial \tilde{M})-2 \text { if } \partial M=\phi
\end{array}
$$

PROOF. Let B be an open coordinate neighborhood in M such that \bar{B} is topologically a closed n-ball. We can assume $\tilde{M} \leqq B \subseteq \bar{B} \subseteq M \backslash M$. To compute the Betti-numbers of $M \backslash \tilde{M}$ in terms of that of M and \tilde{M} we apply the MayerVietoris sequence to the following three decompostions
I.

$$
\begin{aligned}
M= & (M \backslash B) \cup \bar{B} \\
& (M \backslash B) \cap \bar{B}=\partial \bar{B} \cong S^{n-1},
\end{aligned}
$$

II. $\quad \bar{B}=(\bar{B} \backslash(\tilde{M} \backslash \partial \tilde{M})) \cup \tilde{M}$ $(\bar{B} \backslash(\tilde{M} \backslash \tilde{M})) \cap \tilde{M}=\partial \tilde{M}$,
III.

$$
M \backslash(\tilde{M} \backslash \partial \tilde{M})=(M \backslash B) \bigcup^{\prime}(\bar{B} \backslash(\tilde{M} \backslash \partial \tilde{M}))
$$

$$
(M \backslash B) \cap(\bar{B} \backslash(\tilde{M} \backslash \partial \tilde{M}))=\partial \bar{B} \cong s^{n-1} .
$$

The first decomposition leads to

$$
\begin{array}{ll}
b(M)=b(M \backslash B)-1 & \text { if } \partial M \neq \phi \\
b(M)=b(M \backslash B)+1 & \text { if } \partial M=\phi, \tag{2.13}
\end{array}
$$

the second one to

$$
\begin{equation*}
b(B \backslash \tilde{M})+b(\tilde{M})=b(\partial \tilde{M})+1 \tag{2.14}
\end{equation*}
$$

the third one to

$$
\begin{equation*}
b(M \backslash \tilde{M})=b(M \backslash B)+b(\bar{B} \backslash \tilde{M})-2 \tag{2.15}
\end{equation*}
$$

At last we have the equation

$$
\begin{equation*}
b(\partial \tilde{M})=2 b(\tilde{M}) \tag{2.16}
\end{equation*}
$$

because by assumption \tilde{M} can be embedded in $B \leqq E^{n}$ (cf. [9] Prop. 5.1).
Now the lemma follows directly from (2.12) - (2.16) .
PROOF of Corollary B 2 . Consider for example an embedding of $S^{k} X S^{n-k}$ in $E^{n+1} \quad(k \geq 1$ arbitrary) as a tight hypersurface of rotation (like the standard-torus in E^{3}) and change this embedding a little bit such that there is an open region U contained in some hyperplane of E^{n+1}. Now define M by removing a small tight 'solid torus' of type $S^{m} \times B^{n-m}$ from U ($m \geqq 1$). By Corollary B 1 M is (n-2)-tight but of course it is not tight. By suitable choice of the embedding of $S^{k} X S^{n-k}$ we started from we can assume that U lies not in the boundary of the convex hull X. So we can obtain an example where ∂M lies not in the boundary of x.

REMARK. In the examples of corollary B 2 the boundary ∂M was always tightly embedded in E^{n+1}. The natural question whether there exist in higher dimensions ($\mathrm{n}-2$)-tight immersions with non-tight boundary seems to be open. For $\mathrm{n}=2$ an example is due to L. Rodriguez.

REFERENCES

1. Banchoff, T.F. The two-piece-property and tight n-manifolds-with-boundary in E^{n}, Trans. Amer. Math. Soc. 161 (1971) 259-267.
2. Braess, D. Morse-Theorie für berandete Mannigfaltigkeiten, Math. Ann. 208 (1974) 133-148.
3. Chern, S.S. and R.K. Lashof, On the total curvature of immersed manifolds, I, II, Amer. J. Math. 79 (1957) 306-313, Mich. Math. J. 5 (1958) 5-12.
4. Friedrich, T. m-Funktionen und ihre Anwendung auf die totale Absolutkrümmung, Math. Nachr. 67 (1975) 281-301.
5. Grossman, N. Relative Chern-Lashof theorems, J. Diff. Geom. ㄱ (1972) 607-614.
6. Kưnnel, W. Total curvature of manifolds with boundary in E^{n}, J. London Math Soc. (2) 15 (1977) 173-182.
7. Kuiper, N.H. Morse relations for curvature and tightness, in: Proc. Liverpool Singularities Symp. II (ed.: C.T.C. Wall), 77-89, Springer 1971 (Lecture Notes in Mathematics 209).
8. Rodriguez, L.L. The two-piece-property for surfaces with boundary, J. Diff. Geom. 11 (1976) 235-250.
9. Rodríquez, L. L. Convexity and tightness of manifolds with boundary, in: Geometry and Topology, Proc. of III Latin American School of Mathematics (ed1: J. Palis and M. Do Carmo), 510-541, Springer 1977 (Lecture Notes in Mathematics 597).
10. Willmore, T. J. Tight immersions and total absolute curvature, Bull. London Math, Soc. 3 (1971) 129-151.

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

