CHARACTERIZATION OF THE AUTOMORPHISMS HAVING THE LIFTING PROPERTY IN THE CATEGORY OF ABELIAN *p*-GROUPS

S. ABDELALIM and H. ESSANNOUNI

Received 23 October 2002

Let *p* be a prime. It is shown that an automorphism α of an abelian *p*-group *A* lifts to any abelian *p*-group of which *A* is a homomorphic image if and only if $\alpha = \pi \operatorname{id}_A$, with π an invertible *p*-adic integer. It is also shown that if *A* is a torsion group or torsion-free *p*-divisible group, then id_A and $-\operatorname{id}_A$ are the only automorphisms of *A* which possess the lifting property in the category of abelian groups.

2000 Mathematics Subject Classification: 20K30.

1. Introduction. Every inner automorphism of a group *G* has the property that it extends to an automorphism of any group containing *G* as subgroup. Schupp [4] showed that this extension property characterizes inner automorphisms in the category of groups. Pettet [3] gave an easier proof of Schupp's result and proved at the same time that the inner automorphisms of a group *G* are also characterized by the lifting property in the category of groups. In [1], we characterized the automorphisms of abelian *p*-groups having the extension property in the category of abelian *p*-groups, as well as those having the extension property in the category of all abelian groups.

Let \mathscr{C} be a full subcategory of the category of abelian groups. An automorphism α of $A \in \mathscr{C}$ has the lifting property in \mathscr{C} if, for all $B \in \mathscr{C}$ and any epimorphism $s : B \to A$, there exists $\tilde{\alpha} \in \operatorname{Aut}(B)$ such that $s \circ \tilde{\alpha} = \alpha \circ s$, in other words, the diagram

$$\begin{array}{cccc}
B & \xrightarrow{s} & A \\
& & & & \\ & & & \alpha \\
& & & & \\
B & \xrightarrow{s} & A
\end{array}$$
(1.1)

commutes. In this note, we show that an automorphism α of a *p*-group *A* (with *p* being a prime number) has the lifting property in the category of abelian *p*-groups if and only if $\alpha = \pi \operatorname{id}_A$, with π an invertible *p*-adic number. We also determine the automorphisms of an abelian group *A* having the lifting property in the category of all abelian groups, when *A* is either torsion or *p*-divisible torsion-free. In both cases they are id_A and $-\operatorname{id}_A$.

We will use the notation introduced in [2].

2. The lifting property in the category of the *p*-groups. Let *p* be a prime number.

LEMMA 2.1. Let α be an automorphism of a *p*-group *A* having the lifting property in the category of abelian *p*-groups. If *C* is subgroup of *A* with $\alpha(C) = C$, then the restriction of α to *C* also has the lifting property in the category of abelian *p*-groups.

PROOF. Let μ : $B \rightarrow C \rightarrow 0$ be an exact sequence. It follows from [2, page 108] that we have a commutative diagram with exact rows:

where *i* and *j* are the canonical injections. It is easy to show that *F* is again a *p*-group, then there exists $\tilde{\alpha} \in \operatorname{Aut}(F)$ such that $\gamma \tilde{\alpha} = \alpha \gamma$. If we put, for any $b \in B$, $\tilde{\alpha}(\sigma(b)) = \sigma(\gamma(b))$, then $\gamma \in \operatorname{Aut}(B)$ and $\mu \gamma = \alpha_0 \mu$, with α_0 the restriction of α to *C*.

LEMMA 2.2. Let *A* be a torsion group and $n \in \mathbb{N}^*$. Then there exists an abelian group *B* and an epimorphism $\mu : B \to A$ such that $B[n] \subseteq \text{Ker } \mu$, where $B[n] = \{b \in B \mid nb = 0\}$.

PROOF. For $a \in A$, we put $B_a = \langle x_a \rangle$, where $o(x_a) = o(a)$ and $\mu_a : B_a \to A$ is defined by $\mu_a(x_a) = a$. If we put $B = \bigoplus_{a \in A} B_a$ and $\mu : B \to A$, where $\mu(x_a) = \mu_a(x_a)$, for all $a \in A$, then μ is an epimorphism and $B[n] \subseteq \text{Ker}\mu$.

THEOREM 2.3. Let *A* be an abelian *p*-group and an automorphism α of *A* has the lifting property in the category of abelian *p*-groups if and only if $\alpha = \pi \operatorname{id}_A$, where π is an invertible *p*-adic number.

PROOF. One implication is clear. Assume that α has the lifting property in the category of abelian *p*-groups. The proof of the fact that $\alpha = \pi \operatorname{id}_A$ goes in three steps.

STEP 1. We suppose that *A* is reduced. Let $x \in A$ be such that $\langle x \rangle$ is a direct summand of *A*. We prove that $\alpha(x) \in \langle x \rangle$.

Put $\langle x \rangle \bigoplus A' = A$ and let E(A') be the injective envelope of A'. We put

$$A'' = \{ y \in E(A') \mid p^n y \in A' \},$$
(2.2)

where $o(x) = p^n$. We consider the group $B = \langle x \rangle \bigoplus A''$; the map $s : B \to A$ defined by

$$s(mx+y) = mx + p^n y, \tag{2.3}$$

for all $m \in \mathbb{Z}$ and $\gamma \in A''$, is an epimorphism. Therefore, there exists $\tilde{\alpha} \in Aut(B)$ such that $s\tilde{\alpha} = \alpha s$. We can write $\tilde{\alpha}(x) = kx + a''$, with $k \in \mathbb{Z}$ and $a'' \in A''$. Now

$$s\widetilde{\alpha}(x) = kx + p^n a^{\prime\prime} = kx = \alpha s(x) = \alpha(x)$$
(2.4)

because $p^n a'' = 0$, thus $\alpha(x) \in \langle x \rangle$. Let *B* be a basic subgroup of *A*, $B = \bigoplus_{n \ge 1} B_n$, and, for any $n \ge 1$, $B_n = 0$ or B_n is a direct sum of torsion cyclic groups of order p^n . We suppose $B_n \ne 0$ for $n \ge 1$, so $B_n = \bigoplus_{i \in I} \langle x_i \rangle$ such that $o(x_i) = p^n$, for all $i \in I$, since B_n is a direct summand of *A* (see [2, page 138]). With $m_i \in \mathbb{Z}$, $\alpha(x_i) = m_i x_i$. Let $(i, j) \in I^2$ with $i \ne j$. We can write $A = \langle x_i \rangle \bigoplus A_i$ with $x_j \in A_i$. It is easy to see that $\langle x_i + x_j \rangle \bigoplus A_i = A$, so $\alpha(x_i + x_j) = m(x_i + x_j)$, hence $p^n \mid (m_i - m_j)$. Then there is $k_n \in \mathbb{Z}$ such that $\alpha(b) = k_n b$, for all $b \in B_n$. For $(m, n) \in \mathbb{N}^2$ where $1 \le m < n$, $B_m \bigoplus B_n$ is a direct summand of *A* [2, page 138] and it is easy to see that $p^m \mid (k_n - k_m)$.

Let π be the *p*-adic number defined by $(k_n)_{n\geq 0}$ (with $k_0 = 0$ and $k_n = k_{n-1}$ if $B_n = 0$). Then $\alpha(b) = \pi b$, for all $b \in B$. Since *A* is reduced, it follows that $\alpha = \pi \operatorname{id}_A$ (see [2, page 145]).

STEP 2. We suppose that *A* is divisible. Therefore, $A = \bigoplus_{i \in I} A_i$ with $A_i \cong \mathbb{Z}(p^{\infty})$, for all $i \in I$ (see [2, page 104]). We consider the direct product $E = \prod_{n \ge 1} \langle x_n \rangle$, where $o(x_n) = p^n$, for all $n \ge 1$. For all $n \ge 1$, let $e_n \in E$ be defined by

$$f_m(e_n) = \begin{cases} 0 & \text{if } m < n, \\ p^{m-n} x_m & \text{if } m \ge n, \end{cases}$$
(2.5)

where $f_m : E \to \langle x_m \rangle$ is the canonical projection. Let *C* be the following subgroup of *E*:

$$C = \left(\bigoplus_{n \ge 1} \langle x_n \rangle\right) + \left\langle \{e_n \mid n \ge 1\} \right\rangle.$$
(2.6)

It is easy to see that $C/(\bigoplus_{n\geq 1} \langle x_n \rangle) \cong \mathbb{Z}(p^{\infty})$.

We choose $i \in I$ and $a_i \in A_i$. We want to show that $\alpha(a_i) \in A_i$. Let $j \in I$ with $j \neq i$. We put $A' = \bigoplus_{k \in I - \{j\}} A_k$ and we have $A = A_j \bigoplus A'$. Let $\gamma : C \to A_j$ be an epimorphism. If we suppose that $B = C \bigoplus A'$ and consider $s : B \to A$ which is defined by $s(c + a') = \gamma(c) + a'$ ($c \in C$, $a' \in A'$), then s is an epimorphism. Therefore, there exists $\tilde{\alpha} \in \operatorname{Aut}(B)$ such that $s\tilde{\alpha} = \alpha s$. Since A' is a maximal divisible subgroup of B, $\tilde{\alpha}(a') = a'$. Since $a_i \in A'$, then $\tilde{\alpha}(a_i) = \alpha(a_i) \in A'$. Thus for all $j \neq i$, $\alpha(a_i) \in \bigoplus_{k \neq j} A_k$, and therefore, $\alpha(a_i) \in A_i$. Then there is a p-adic number π_i such that $\alpha(a_i) = \pi_i a_i$, for all $a_i \in A_i$ (see [2, page 181]). For each $i \in I$, we put $A_i = \langle \{y_{i,n} \mid n \geq 1\} \rangle$ with $p y_{i,1} = 0$ and $p y_{i,n+1} = y_{i,n}$, for all $n \geq 1$. Let $(i, j) \in I^2$ with $i \neq j$. If we suppose that $z_n = y_{i,n} + y_{j,n}$ and $H = \langle \{z_n \mid n \geq 1\} \rangle$, then $H \cong \mathbb{Z}(p^{\infty})$ and $A_i \bigoplus A_j = A_i \oplus H$. By the preceding

arguments, there exists a *p*-adic number π such that $\alpha(h) = \pi h$, $\alpha h \in H$. Then we deduce that $\pi_i = \pi_j = \pi$.

STEP 3. We suppose that *A* is an arbitrary abelian *p*-group. We can write $A = C \bigoplus D$ with *C* reduced and *D* divisible. We can also suppose that $C \neq 0$ and $D \neq 0$. We have $\alpha(D) = D$, and the restriction α_1 of α to *D* has the lifting property in the category of *p*-groups, by Lemma 2.1. Then there is a *p*-adic number π such that $\alpha(d) = \pi d$, for all $d \in D$.

Let $c_0 \in C$ with $o(c_0) = p^{n_0}$. we define the map $s : A \to A$ by

$$s(c+d) = c + p^{n_0}d,$$
 (2.7)

for $(c,d) \in C \times D$. Then *s* is an epimorphism, and therefore, there exists $\tilde{\alpha} \in Aut(A)$ such that $s\tilde{\alpha} = \alpha s$. Put $\tilde{\alpha}(c_0) = c_1 + d_1$. Then

$$s\widetilde{\alpha}(c_0) = c_1 + p^{n_0}d_1 = c_1 = \alpha s(c_0) = \alpha(c_0), \qquad (2.8)$$

and it follows that $\alpha(c_0) \in C$ and $\alpha(C) = C$. We show that $\alpha(c) = \pi c$, for all $c \in C$. To this end, take $\bigoplus_{i \in I} \langle c_i \rangle$ as a basic subgroup of *C*. We choose $i \in I$; $\langle c_i \rangle$ is a direct summand of *C*. Put $p^{n_i} = o(c_i)$ and $\bigoplus C_i = C$. Let $d_i \in D$ such that $o(d_i) = p^{n_i}$. We have

$$A = \langle c_i + d_i \rangle \bigoplus C_i \bigoplus D.$$
(2.9)

Then there exist a group *G* and an epimorphism $\eta : G \to C_i \bigoplus D$ such that $G[p^{n_i}] \subseteq \ker \eta$, by Lemma 2.2. We suppose that $B = \langle c_i + d_i \rangle \bigoplus G$, and we define $\mu : B \to G$ by $\mu(m(c_i + d_i) + g) = m(c_i + d_i) + \eta(g)$. Then μ is an epimorphism. Let $\tilde{\alpha} \in \operatorname{Aut}(B)$ be such that $\alpha \mu = \mu \tilde{\alpha}$. We have

$$\alpha\mu(c_i+d_i) = \alpha(c_i+d_i) = \alpha(c_i) + \pi d_i.$$
(2.10)

We put $\widetilde{\alpha}(c_i + d_i) = k(c_i + d_i) + g_0$, then $\mu \widetilde{\alpha}(c_i + d_i) = k(c_i + d_i)$ (because $\eta(g_0) = 0$). Thus $\alpha(c_i) + \pi d_i = kc_i + kd_i$, so $\alpha(c_i) = \pi c_i$, and therefore, $\alpha(c) = \pi c_i$, for all $c \in C$, by [2, page 145].

3. The lifting property in the category of abelian groups. In this section, we show that, for a torsion or *p*-divisible torsion-free group *A* (*p* is a prime number), id_A and $-id_A$ are the only automorphisms of *A* having the lifting property in the category of abelian groups.

PROPOSITION 3.1. Let *A* be an abelian torsion group. Then an automorphism α of *A* has the lifting property in the category of abelian groups if and only if $\alpha = id_a$ or $\alpha = -id_a$.

PROOF. One implication is obvious. Assume that α has the lifting property in the category of abelian groups and consider the exact sequence

$$E: 0 \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Q} \longrightarrow \mathbb{Q}/\mathbb{Z} \longrightarrow 0, \tag{3.1}$$

4514

then, by the Cartan-Eilenberg theorem (see [2, page 218]), the sequence

$$0 = \operatorname{Hom}(A, \mathbb{Q}) \longrightarrow \operatorname{Hom}(A, \mathbb{Q}/\mathbb{Z}) \xrightarrow{E_*} \operatorname{Ext}(A, \mathbb{Z}) \longrightarrow \operatorname{Ext}(A, \mathbb{Q}) = 0$$
(3.2)

is exact, where E_* is the map associating to $\xi \in \text{Hom}(A, \mathbb{Q}/\mathbb{Z})$ with the class extension $E\xi$.

Let $E_1: 0 \to \mathbb{Z} \xrightarrow{\lambda} B \xrightarrow{\mu} A \to 0$ be an extension of \mathbb{Z} by A. Then there exists $\sigma \in \operatorname{Aut}(\mathbb{Z})$ such that the following diagram is commutative:

If $\sigma = id_{\mathbb{Z}}$, then $E_1 \equiv E_1 \alpha$, and if $\sigma = -id_{\mathbb{Z}}$, then $E_1 \equiv E_1(-\alpha)$. Therefore, for all $\xi \in \text{Hom}(A, \mathbb{Q}/\mathbb{Z})$, $E_*(\xi \alpha - \xi) = 0$ or $E_*(\xi \alpha + \xi) = 0$. Thus $\xi(\alpha - id) = 0$ or $\xi(\alpha + id) = 0$, for all $\xi \in \text{Hom}(A, \mathbb{Q}/\mathbb{Z})$.

From the fact that \mathbb{Q}/\mathbb{Z} is divisible, it follows that $\alpha = id$ or $\alpha = -id$.

PROPOSITION 3.2. Let *p* be a prime number and *A* a *p*-divisible torsion-free group. Then an automorphism α of *A* has the lifting property in the category of abelian groups if and only if $\alpha = id_a$ or $\alpha = -id_a$.

PROOF. One implication is obvious. Suppose that α has the required lifting property, and consider the pure exact sequence

$$E: 0 \longrightarrow \mathbb{Z} \longrightarrow J_p \longrightarrow J_p / \mathbb{Z} \longrightarrow 0, \tag{3.4}$$

where J_p is the additive group of *p*-adic integers. By the theorem of Harrisson (see [2, page 231]), the sequence

$$\operatorname{Hom}(A, J_p) \longrightarrow \operatorname{Hom}(A, J_p / \mathbb{Z}) \xrightarrow{E_*} \operatorname{Pext}(A, \mathbb{Z}) \longrightarrow \operatorname{Pext}(A, J_p)$$
(3.5)

is exact. Hom $(A, j_p) = 0$ because J_p contains no nonzero p-divisible subgroup and Pext $(A, j_p) = 0$ because J_p is algebraically compact. Thus E_* is an isomorphism, and, as in the proof of Proposition 3.1, we find that $\alpha = id$ or $\alpha = -id$.

REFERENCES

- S. Abdelalim and H. Essannouni, *Caractérisation des automorphismes d'un groupe* abélien ayant la propriété de l'extension, Portugal. Math. 59 (2002), no. 3, 325-333 (French).
- [2] L. Fuchs, *Infinite Abelian Groups. Vol. I*, Pure and Applied Mathematics, vol. 36, Academic Press, New York, 1970.

- [3] M. R. Pettet, *On inner automorphisms of finite groups*, Proc. Amer. Math. Soc. **106** (1989), no. 1, 87-90.
- [4] P. E. Schupp, A characterization of inner automorphisms, Proc. Amer. Math. Soc. 101 (1987), no. 2, 226–228.

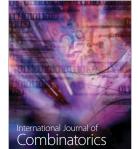
S. Abdelalim: Department of Mathematics and Computer Science, Faculty of Sciences, Mohammed V University, B.P.1014 Rabat, Morocco *E-mail address*: seddikabd@hotmail.com

H. Essannouni: Department of Mathematics and Computer Science, Faculty of Sciences, Mohammed V University, B.P.1014 Rabat, Morocco *E-mail address*: esanouni@fsr.ac.ma

4516

Advances in **Operations Research**

The Scientific World Journal



Hindawi

Submit your manuscripts at http://www.hindawi.com

Algebra

Journal of Probability and Statistics

International Journal of Differential Equations

Complex Analysis

International Journal of

Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Abstract and Applied Analysis

Discrete Dynamics in Nature and Society

Function Spaces

International Journal of Stochastic Analysis

