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The calculation of eigenpair derivatives plays an important role in vibroengineering.This paper presents an improved algorithm for
the eigenvector derivative of the damped systems by dividing it into a particular solution and general solution of the corresponding
homogeneous equation. Compared with the existing methods, the proposed algorithm can significantly reduce the condition
number of the equation for particular solution. Therefore, the relative errors of the calculated solutions are notably cut down.
The results on two numerical examples show that such strategy is effective in reducing the condition numbers for both distinct and
repeated eigenvalues.

1. Introduction

It is well-known that eigenvalues and eigenvectors of a struc-
ture represent the dynamic characteristics of the structure.
The eigenvalues are the natural frequencies of vibration, and
the eigenvectors are the shapes of these vibrational modes.
According to different vibrational models, eigenvalues prob-
lems can be divided into four categories.

Definition 1 (standard eigenvalue problem). Let A ∈ C𝑛×𝑛;
the standard eigenvalue problem is to find scalars 𝜆 and
nonzero vectors x ∈ C𝑛 satisfying

Ax = 𝜆x. (1)𝜆 is called the eigenvalue of A and x is the eigenvectors
corresponding to the eigenvalue 𝜆 of A, the set of the
eigenvalues of A.

Definition 2 (generalized eigenvalue problem). Let A,B ∈
C𝑛×𝑛, and the generalized eigenvalue problem is to find
scalars 𝜆 and nonzero vectors x ∈ C𝑛 satisfying

Ax = 𝜆Bx. (2)

𝜆 is called the eigenvalue of matrix pencil (A,B) and x is the
eigenvectors corresponding to the eigenvalue of (A,B).
Definition 3 (quadratic eigenvalue problem). Let M,C,K ∈
C𝑛×𝑛, and the quadratic eigenvalue problem is to find scalars𝜆 and nonzero vectors u ∈ C𝑛 satisfying(𝜆2M + 𝜆C + K) u = 0. (3)𝜆 is called the eigenvalue of (M,C,K) and u is the eigenvec-
tors corresponding to the eigenvalue 𝜆 of (M,C,K).
Definition 4 (nonlinear eigenvalue problem). Let D(𝜆) ∈
C𝑛×𝑛 is a matrix function with parameter 𝜆; the nonlinear
eigenvalue problem is to find scalars 𝜆 and nonzero vectors
x ∈ C𝑛 satisfying

D (𝜆) x = 0. (4)𝜆 is called the eigenvalue of D(𝜆) a nd x is the eigenvectors
corresponding to the eigenvalue 𝜆 ofD(𝜆).

In particular, when D(𝜆) = A − 𝜆I,D(𝜆) = A − 𝜆B and
D(𝜆) = 𝜆2M + 𝜆C + K, nonlinear eigenvalue problem (4)

Hindawi
Mathematical Problems in Engineering
Volume 2018, Article ID 8050132, 8 pages
https://doi.org/10.1155/2018/8050132

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/205387553?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orcid.org/0000-0002-1290-6112
https://doi.org/10.1155/2018/8050132


2 Mathematical Problems in Engineering

degenerates into standard problem (1), generalized eigenvalue
problem (2), and quadratic eigenvalue (3) respectively.

Eigensensitivity analysis of eigenvalue and eigenvector
plays an important role in a variety of problems, such as
structural optimal design [1, 2], finite model updating [3],
structural damage detection [4], and system identification
[5]. One of the main tasks of eigensensitivity analysis is to
compute the eigenpair derivatives with respect to structural
design parameters. Methods for computing the derivatives
of eigenvalues and eigenvectors have been studied by many
researchers over the past four decades. Although calcu-
lating eigenvalue derivative is straightforward, determining
eigenvector sensitivity raises several challenges, due in part
to the singularity of the coefficient matrix of the linear
equation of the eigenvector derivatives. Different numerical
methods have been developed for computing derivatives of
eigenvectors. Most of the methods for computing eigenpair
derivatives of standard eigenvalues, generalized eigenvalues,
and quadratic eigenvalue can be divided into five categories:
modal method [6–12], algebraic method [6, 13–24], finite dif-
ference method [25], iterative method [26–28], and Nelson’s
method [6, 29–39]. As for nonlinear eigenvalue problem,
Mehrmann and Voss [40, 41] summarize the numerical
solution of the general nonlinear eigenvalue problem, which
can be divided into Newtonmethod based onmatrix decom-
position [42–44], Newton method based on nonlinear equa-
tions [45], successive approximation method [46], subspace
projection method [47–49], perimeter integration method
[50–52], and so on.

Damped system arises frequently in many areas such as
appliedmechanics, electrical oscillation, vibroacoustics, fluid
dynamics, and signal processing. The equation of motion for
the free vibration of a linear damped discrete system with 𝑛
degrees of freedom can be expressed by

M (𝑝) q̈ (𝑡) + C (𝑝) q̇ (𝑡) + K (𝑝) q (𝑡) = 0, (5)

where 𝑝 is a design parameter and matricesM(𝑝),C(𝑝), and
K(𝑝) ∈ C𝑛×𝑛 are symmetric, respectively, mass, damping,
and stiffness matrices which are analytically dependent on
parameter 𝑝. Suppose that q(𝑡) = u(𝑝)𝑒𝜆(𝑝)𝑡 (u(𝑝) does not
depend on time 𝑡) is a solution of (5). Substituting it into (5)
will lead to the following quadratic eigenvalue problem:(𝜆2 (𝑝)M (𝑝) + 𝜆 (𝑝)C (𝑝) + K (𝑝))u (𝑝) = 0. (6)

If 𝜆(𝑝) and nonzero vectors u(𝑝) satisfy (6), 𝜆(𝑝) is called the
eigenvalue and u(𝑝) is the eigenvectors corresponding to the
eigenvalue 𝜆(𝑝).

Some numerical methods for computing eigenpair
derivatives of quadratic eigenvalue problem are presented
in [17–24]. Recently, Wang and Dai [39] extended Nelson’s
method to compute the eigenvector derivatives of damped
system by expressing the eigenvector derivatives as addition
of particular solutions and homogeneous solutions. However,
when we solve a set of linear equations, we hope the
corresponding coefficient matrix has small condition
number [34, 53]. The equations of finding particular
solutions in [39] are in different levels in their values and it

thus has large condition number. In order to overcome this
problem, we present an improved algorithm for computing
the derivatives of eigenvectors.

The remainder of this paper is arranged as follows.
In Section 2, we derive the derivatives of eigenvalues and
review some related methods for computing the derivatives
eigenvectors. In Section 3, we focus on dealing with the
derivatives of eigenvectors and proposed an algorithm which
can significantly reduce the condition number of the equation
for particular solution. In Section 4, two numerical examples
are performed by our proposed method. Finally, we make
some concluding remarks in Section 5.

Throughout this paper, we use the following notation.
C𝑚×𝑛 denotes the set of complex 𝑚 × 𝑛 matrices, C𝑛 =
C𝑛×1, C = C1. I𝑛 is the identity matrix of order 𝑛.
diag(𝑎1, . . . , 𝑎𝑛) stands for the diagonal matrix with diagonal
elements 𝑎1, . . . , 𝑎𝑛. A𝑇 denotes the transpose of a matrix 𝐴.
2. Methods for Sensitivity Analysis of
Damped System

We assume that 𝜆𝑖(𝑝) is the 𝑖th eigenvalue of (6) and u𝑖(𝑝) is
the eigenvector corresponding to 𝜆𝑖(𝑝); that is,(𝜆2𝑖 (𝑝)M (𝑝) + 𝜆𝑖 (𝑝)C (𝑝) + K (𝑝)) u𝑖 (𝑝) = 0. (7)

In this paper, we consider eigenpair derivatives of damped
system with distinct or repeated eigenvalues. Without loss
of generality, we suppose that 𝜆1(𝑝0) = 𝜆2(𝑝0) = ⋅ ⋅ ⋅ =𝜆𝑟(𝑝0) are a semisimple eigenvalue with multiplicity 𝑟 > 1
of (6). Note that the case of 𝑟 = 1 corresponds to a distinct
eigenvalue and the following results are also applicable.

Sun [54] has pointed out that the derivatives of repeated
eigenvalues are only directionally differentiable and the
eigenvectors associated with multiple eigenvalues are not
necessarily continuous functions of the design parameters
and are generally not derivable. In order to ensure the
existence of derivatives, we assume that 𝜆𝑖(𝑝) and u𝑖(𝑝) are
sufficiently differentiable at 𝑝 = 𝑝0 and eigenvalues are
distinct in the neighborhood of 𝑝0. Under these assumptions,
the eigenvectors of the quadratic eigenvalue problem (6)
are uniquely determined, to within a normalizing condition,
for all 𝑝 ̸= 𝑝0 in the neighborhood of 𝑝0. Often the
following normalization is adopted to ensure uniqueness of
eigenvectors for simple eigenvalues:

u𝑇𝑖 (𝑝) (2𝜆𝑖 (𝑝)M (𝑝) + C (𝑝)) u𝑖 (𝑝) = 1. (8)

As for repeated eigenvalues 𝜆1(𝑝0), we impose another
normalization:

U𝑇 (𝑝0) (2𝜆1 (𝑝0)M (𝑝0) + C (𝑝0))U (𝑝0) = I𝑟, (9)

where U(𝑝0) = [u1(𝑝0), . . . , u𝑟(𝑝0)].
When an eigenvalue is repeated, the associated eigen-

vectors are only defined up to a subspace with dimension
equal to the geometric multiplicity of the eigenvalue. The
computed eigenvalues of (6) at 𝑝 = 𝑝0 are 𝜆1(𝑝0) = 𝜆2(𝑝0) =⋅ ⋅ ⋅ = 𝜆𝑟(𝑝0), while the corresponding eigenvectors may not
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be u1(𝑝0), u2(𝑝0), . . . , u𝑟(𝑝0) described as above. To simplify
notation, here and henceforth, “𝑝0” is omitted for variables
evaluated at 𝑝 = 𝑝0. Let the computed linearly independent
eigenvectors corresponding to 𝜆1 be the columns of the 𝑛 × 𝑟
matrix X. It is natural that the eigenvector matrix X satisfies
(7) and the normalizing condition (9) at 𝑝 = 𝑝0 too.Then the
adjacent eigenvectors U = (u1, u2, . . . , u𝑟) can be expressed
in terms of X as follows:

U = XΓ, (10)

where Γ = [𝛾1, . . . , 𝛾r] ∈ C𝑟×𝑟 is a transformation matrix to
be determined and should satisfy Γ𝑇Γ = I𝑟.

For convenience, the following notation is adopted in this
study. (∙)𝑝 ≡ 𝜕(∙)/𝜕𝑝,D = 𝜆21M + 𝜆1C + K,D𝑝 = 𝜆21M𝑝 +𝜆1C𝑝 +K𝑝,H = 2𝜆1M+C. Differentiating (7) with respect to
design parameter 𝑝 and letting 𝑝 = 𝑝0 yield

Du𝑖𝑝 = −𝜆𝑖𝑝Hu𝑖 −D𝑝u𝑖. (11)

Set 𝑖 = 1, 2, . . . , 𝑟 in (11) and assemble them into a linear
system of algebraic equations:

DU𝑝 = −HUΛ𝑝 −D𝑝U, (12)

where Λ𝑝 = diag(𝜆1𝑝, . . . , 𝜆𝑟𝑝). Premultiplying each side of
(12) by U𝑇, the eigenvalue derivatives can be obtained by

Λ𝑝 = −U𝑇D𝑝U. (13)

Substituting (10) into (13) will derive a following eigenvalue
problem:

ΞΓ = ΓΛ𝑝, (14)

where Ξ = −X𝑇D𝑝X. Equation (14) shows that diagonal
elements of matrixΛ𝑝 are 𝑛 eigenvalues ofΞ andmatrix Γ are
corresponding to right eigenvectors matrix. Hence, solving
eigenproblem ΞΓ = ΓΛ𝑝, yields eigenvalues derivative Λ𝑝
and matrix Γ.

The derivatives of the eigenvectors cannot be solved
directly by (11) since the coefficient matrix is singular.
There are many different methods to address the singularity
problem such as modal method, algebraic method, Nelson’s
method, iterative method, and finite difference method. Here
we briefly introduce modal method, algebraic method, and
Nelson’s method.

2.1. Modal Method. The basic idea of modal method is to
express each eigenvector derivative as a linear combination
of all the eigenvectors:

u𝑖𝑝 = 2𝑁∑
𝑘=1

𝑐𝑖𝑘u𝑘, (15)

where u𝑘 are the complete eigenvalues space and 𝑐𝑖𝑘 are sets
of complex constants which are given by

𝑐𝑖𝑘 = {{{{{
1𝜆𝑘 − 𝜆𝑖 u𝑇𝑖 (𝜆2𝑖M𝑝 + 𝜆𝑖C𝑝 + K𝑝) u𝑖 𝑘 ̸= 𝑖−0.5u𝑇𝑖 (2𝜆𝑖M𝑝 + C𝑝) u𝑖 𝑘 = 𝑖. (16)

However, it is difficult to obtain all eigenvectors, in
practice, especially for those large and complex engineering
structures. So we can only use a part of the low-order
modal as the basis vector and ignore the contribution of
those unknown high-order modes, which is the so-called
truncated modal method. The corrections to the problem
of modal truncation error for damped system have been
studied by several authors [14, 15]. However, most of the
existing methods obtain the derivatives of complex mode
shapes of viscously damped systems by considering the state-
space forms which linearize the quadratic eigenvalue prob-
lem to standard or generalized eigenvalue problem. These
procedures will complicate the derivations and the practical
computations since the size of the problem is doubled.

2.2. Algebraic Method. In algebraic method, the eigenvector
derivatives are calculated by assembling the derivatives of
eigenproblems and the additional constraints obtained from
the derivative of normalization condition into a linear system
of algebraic equations. In this subsection, we briefly introduce
the process of algebraic method for distinct eigenvalue [6].

Suppose that 𝜆𝑖(𝑝) is a distinct eigenvalue of (6) and u𝑖(𝑝)
is the eigenvector corresponding to 𝜆𝑖(𝑝). Differentiating (8)
with respect to 𝑝 yields

u𝑇𝑖 Hu𝑖𝑝 = −𝜆1u𝑇𝑖 M𝑝u𝑖 − u𝑇𝑖 Mu𝑖Λ 𝑝 − 0.5u𝑇𝑖 C𝑝u𝑖. (17)

Assembling (17) and the derivatives of (6) into a linear system
of algebraic equation,

[ D Hu𝑖
u𝑇𝑖 H 0

][u𝑖𝑝
0
]

= [ −Hu𝑖Λ 𝑝 −D𝑝u𝑖−𝜆1u𝑇𝑖 M𝑝u𝑖 − u𝑇𝑖 Mu𝑖Λ 𝑝 − 0.5u𝑇𝑖 C𝑝u𝑖] ,
(18)

where the order of coefficient matrix on the left side of
(18) is (𝑁 + 1) × (𝑁 + 1) and the matrix on the right
side is (𝑁 + 1) × 1. The derivatives u𝑖𝑝 can be found by
solving (18). The coefficient matrix can be decomposed into
upper and lower triangular forms and then a forward and
backward substitution scheme may be used to compute u𝑖𝑝.
This method has been extended to repeated eigenvalue of
symmetric systems with viscous damping by [13]. However,
Wu et al. [34] pointed out that there was a mistake in Lee’s
extension. Later, Xu et al. [19] extended the algebraic method
to compute the eigensolution sensitivities of asymmetric
viscously damped systems. Li et al. [20, 21] extended the
algebraic method to the more general nonviscous damped
systems.

2.3. Nelson’s Method. By expressing the eigenvector deriva-
tives as a particular solution and a homogeneous solution,
Nelson [29] proposed an efficient method for computing
the eigenpair derivatives for undamped systems, where
only eigenpair under consideration is required. Friswell and
Adhikari [31] extended Nelson’s method to symmetric and
asymmetric systems with viscous damping by expressing the
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derivative of each eigenvector as a particular solution and a
homogeneous solution of the singularity problem. Recently,
Wang and Dai [39] extended Nelson’s method to compute
the eigenvector derivatives of damped system with repeated
eigenvalues. In [39], the solution of (12) can be expressed by

U󸀠 = V + UA, (19)

where U is the general solution of the corresponding homo-
geneous equations. A = (𝑎𝑖𝑗) ∈ 𝐶𝑟×𝑟 is a constant matrix. V is
a particular solution of (12), that is,

DV = −HUΛ𝑝 −D𝑝U. (20)

The particular solution V may be required to be H-
orthogonal with respect to U, that is,

U𝑇HV = 0. (21)

The particular solutionV can be obtained by combining (20)
and (21): [ D HU

U𝑇H 0
][V

0
] = [−HUΛ 𝑝 −D𝑝U

0
] . (22)

Using nonsingularity of the coefficient matrix in (22), we
may solve (22) to achieve the particular solution V to (12).
The computation of the constant matrix A in (19) employs
the second-order differential information of (7). The method
is an exact method and only requires the eigenvector of
interest. Similar to algebraic method, Nelson’s method also
needs matrix decomposition to obtain the particular solution
for each eigensolution and calculate the particular solution by
forward and backward substitutions.

3. The Proposed Algorithm for
Eigenvector Derivatives

The algorithm presented in [39] gives a simple method for
computing the eigenvector derivatives of damped system
with repeated eigenvalues. As we know, we hope that the
calculated solution is a close representation of the true
solution when we solve a set of linear equations.This requires
that the corresponding coefficient matrix has small condition
number [34, 53]. However, elements in the coefficient matrix
of (22) are in different levels in their values and it thus has
large condition number. In order to overcome this problem,
we will propose an improved method to reduce condition
number of the coefficient matrix in this section.

Note that the coefficientmatrixD in (11) is of rank𝑁−𝑟; it
cannot be inverted.We assume that the eigenvector derivative
u𝑖𝑝 have the following form:

u𝑖𝑝 = k𝑖 + Uc𝑖, (23)

where U is the general solution of the corresponding homo-
geneous equations and k𝑖 is a particular solution of (11); that
is, k𝑖 satisfies

Dk𝑖 = −𝜆𝑖𝑝Hu𝑖 −D𝑝u𝑖. (24)

Particular solutions k𝑖 may be required to be H-orthogonal
with respect to u𝑗 (𝑗 = 1, . . . , 𝑟); that is,

u𝑗
𝑇Hk𝑖 = 0, (𝑗 = 1, . . . , 𝑟) . (25)

Combining (24) and (25), we obtain the following linear
system:

[[[[[[[[[[[

D Hu1 Hu2 ⋅ ⋅ ⋅ Hu𝑟
u1𝑇H 0 0 ⋅ ⋅ ⋅ 0

u2𝑇H 0 0 ⋅ ⋅ ⋅ 0... ... ... d
...

u𝑟𝑇H 0 0 ⋅ ⋅ ⋅ 0

]]]]]]]]]]]
[[[[[[[[[[

k𝑖
0
0...
0

]]]]]]]]]]
= [[[[[[[[[[

−𝜆𝑖𝑝Hu𝑖 −D𝑝u𝑖
0
0...
0

]]]]]]]]]]
.

(26)

The nonsingularity of the coefficient matrix in (26) has
been proved in [39]. From above discussions, we know that
the part k𝑖 of the solution to (26) is the particular solution
to (11). Using nonsingularity of the coefficient matrix in (26),
we can obtain the particular solution k𝑖. When we solve a
set of linear equations, we hope that the calculated solution
is a close representation of the true solution. This requires
that the corresponding coefficient matrix has small condition
number [34, 53]. However, elements in the coefficient matrix
of (26) are in different levels in their values and it thus has
large condition number. In order to overcome this problem,
we revise (26) into the following form:

[[[[[[[[[[[

D 𝑙1Hu1 𝑙2Hu2 ⋅ ⋅ ⋅ 𝑙𝑟Hu𝑟𝑙1u1𝑇H 0 0 ⋅ ⋅ ⋅ 0𝑙2u2𝑇H 0 0 ⋅ ⋅ ⋅ 0... ... ... d
...𝑙𝑟u𝑟𝑇H 0 0 ⋅ ⋅ ⋅ 0

]]]]]]]]]]]
[[[[[[[[[[

k𝑖
0
0...
0

]]]]]]]]]]
= [[[[[[[[[[

−𝜆𝑖𝑝Hu𝑖 −D𝑝u𝑖
0
0...
0

]]]]]]]]]]
,

(27)

where 𝑙𝑖 = max1≤𝑗≤𝑁(ℎ𝑗𝑗)/‖Hu𝑖‖∞, ℎ𝑗𝑗 is the 𝑗th diagonal
element ofH.

It is easy to show that (26) and (27) have the same solution
and k𝑖 given by that solution is the particular solution of (11).
However, coefficient matrices in (26) and (27) have different
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condition numbers. We will show that condition number of
(27) is much smaller than that of (26) in numerical examples
in Section 4.

Once the particular solution k𝑖 is obtained, coefficient 𝑐𝑖
can be determined by the following [39]:

𝑐𝑖𝑖 = −0.5u𝑇𝑖 H𝑝u𝑖 − 𝜆𝑖𝑝u𝑇𝑖 Mu𝑖,𝑐𝑖𝑗 = 𝑔𝑖𝑗𝜆𝑗𝑝 − 𝜆𝑖𝑝 , 𝑖 ̸= 𝑗, 𝑗 = 1, . . . , 𝑟, (28)

where 𝑔𝑖𝑗 = −0.5u𝑇𝑖 D𝑝𝑝uj − 𝜆𝑗𝑝u𝑇𝑖 H𝑝uj − 𝜆𝑗𝑝2u𝑇𝑖 Muj −
u𝑇𝑖 D𝑝kj,D𝑝𝑝 = 𝜆21M𝑝𝑝 + 𝜆1C𝑝𝑝 + K𝑝𝑝,H𝑝 = 2𝜆1M𝑝 +
C𝑝, (∙)𝑝𝑝 ≡ 𝜕2(∙)/𝜕𝑝2.
4. Numerical Examples

In order to test the effectiveness of the proposed method,
two numerical examples are employed in this section. The
first one is a three-degree-of-freedom damped system with
distinct eigenvalues and the second one is four-degree-of-
freedommass-spring-damper systemwith repeated eigenval-
ues.Weusemaximumrow summatrix norm ‖⋅‖∞ to compute
the condition numbers of (26) and (27). All codes are run in
Matlab R2016a with machine precision 10−16 on a personal
computer.

Example 1. Consider a three-degree-of-freedomdamped sys-
tem shown in Figure 1. From Figure 1, we have the mass,
stiffness, and damping matrices as

M = (𝑚1 0 00 𝑚2 00 0 𝑚3),
C = (𝑐 + 𝑐2 + 𝑐3 −𝑐 −𝑐2−𝑐 2𝑐 + 𝑐1 −𝑐−𝑐2 −𝑐 2𝑐 + 𝑐2),
K = (𝑘1 + 𝑘2 −𝑘2 0−𝑘2 𝑘2 + 𝑘3 + 𝑘5 −𝑘30 −𝑘3 𝑘3 + 𝑘4).

(29)

Set 𝑚1 = 𝑚2 = 𝑚3 = 1 kg, 𝑘1 = 𝑘4 = 𝑘5 =1000N/m, 𝑘2 = 𝑘3 = 0N/m, 𝑐1 = 10Ns/m, 𝑐2 = 𝑐3 =5Ns/m and 𝑐 is chosen as the parameter. The system has
six distinct eigenvalues at 𝑐 = 0Ns/m, which are −2.5000 ±31.5238𝑖, −1.4645±31.5888𝑖 and −8.5355±30.4491𝑖 and the
corresponding normalized eigenvectors are

𝑢1 = ( 00.0891 + 0.0891𝑖0 ) ,

k k k k

k

q

q

q

m1

m2

m3

c c c

c1

c2

c3

Figure 1: A three-degree-of-freedom damped system.

m1 m2 m3 m4

c1 c2 c3 c4

k1 k2 k3 k4

f4

x

Figure 2: A four-degree-of-freedom mass-spring-damper system.

𝑢2 = (0.0340 + 0.0340𝑖00.0822 + 0.0822𝑖) ,
𝑢3 = ( 0.0837 + 0.0837𝑖0−0.0347 − 0.0347𝑖) .

(30)

Substituting the above eigenvectors to (26) and (27), respec-
tively, we compute the condition numbers of (26) and (27)
and list the results in Table 1.

From Table 1, we can see that the condition numbers
of (27) are considerably reduced. Therefore, the relative
errors of the calculated solutions in the proposed method
are notably cut down. Example 1 shows that the proposed
algorithm is effective when the eigenvalues of damped are
distinct. Next, we will give another example with repeated
eigenvalues.

Example 2. Figure 2 shows a four-degree-of-freedom mass-
spring-damper system, which is an example of [39]. We
recalculate the example by using our proposed method and
compare condition number of (27) with the result of (26).
Let 𝑚1 = 𝑚2 = 𝑚3 = 𝑚4 = 1 kg, 𝑘1 = 𝑘3 =0, 𝑘2 = 𝑘4 = 103N/m, 𝑐1 = 𝑐3 = 0Ns/m, 𝑐2 =1Ns/m. The damping 𝑐4 is chosen as the parameter. It is
easy to verify that the system has two 2-repeated eigenvalues:−1.0000 + 44.7102𝑖, −1.0000 − 44.7102𝑖 and one 4-repeated
eigenvalue: 0 at 𝑐4 = 1Ns/m. We do not consider eigenvalue0 because it is defective in this problem. For the eigenvalues
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Table 1: Condition numbers of coefficient matrices in (26) and (27).

Eigenvalue Condition number of (26) Condition number of (27)−2.5000 − 31.5238𝑖 59.7389 9.6172−2.5000 + 31.5238𝑖 59.7389 9.6172−1.4645 − 31.5888𝑖 89.2379 11.2299−1.4645 + 31.5888𝑖 89.2379 11.2299−8.5355 − 30.4491𝑖 90.8835 2.5304−8.5355 + 30.4491𝑖 90.8835 2.5304

Table 2: Condition numbers of coefficient matrices in (26) and (27).

Eigenvalue Condition number of (26) Condition number of (27)−1.0000 + 44.7102𝑖 223.3214 22.3665−1.0000 − 44.7102𝑖 223.3214 22.3665

−1.0000+44.7102𝑖 and−1.0000−44.7102𝑖, the corresponding
normalized eigenvectors are

U =( 0.0529 − 0.0529𝑖 0−0.0529 + 0.0529𝑖 00 0.0529 − 0.0529𝑖0 −0.0529 + 0.0529𝑖) . (31)

Substituting the above eigenvectors to (26) and (27), we
can get the condition numbers of coefficient matrices as in
Table 2.

From Table 2, we can see that the condition numbers of
coefficient matrices in (27) decrease significantly. Example 2
shows that our proposed method is effective in reducing the
condition numbers for repeated eigenvalues.

5. Concluding Remarks

This paper has outlined a numerical method for computing
the derivatives of eigenvalues and corresponding eigenvec-
tors of symmetric damped system by dividing eigenvector
derivatives into a particular solution and general solution
of the corresponding homogeneous equation. The proposed
algorithm requires only the information of those eigenvectors
corresponding to the repeated eigenvalues to extend the gov-
erning equations of particular solutions. Compared with the
existing methods, the proposed algorithm can significantly
reduce the condition number of the governing equations of
particular solutions. Therefore, the relative errors of the cal-
culated solutions are notably cut down. Numerical examples
have demonstrated the validity of the proposed method for
distinct eigenvalues and repeated eigenvalues. The present
study is the first step for the research of eigensensitivity.
The high-order derivatives of eigenvalues and eigenvectors
are specially interesting topic that remains to be further
investigated.
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