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Named-Entity Recognition is commonly used to identify biological entities such as proteins, genes, and chemical compounds
found in scientific articles. The Human Phenotype Ontology (HPO) is an ontology that provides a standardized vocabulary for
phenotypic abnormalities found in human diseases. This article presents the Identifying Human Phenotypes (IHP) system, tuned
to recognize HPO entities in unstructured text. IHP uses Stanford CoreNLP for text processing and applies Conditional Random
Fields trained with a rich feature set, which includes linguistic, orthographic, morphologic, lexical, and context features created
for the machine learning-based classifier. However, the main novelty of IHP is its validation step based on a set of carefully crafted
manual rules, such as the negative connotation analysis, that combined with a dictionary can filter incorrectly identified entities,
find missed entities, and combine adjacent entities.The performance of IHP was evaluated using the recently published HPOGold
Standardized Corpora (GSC), where the system Bio-LarK CR obtained the best 𝐹-measure of 0.56. IHP achieved an 𝐹-measure of
0.65 on the GSC. Due to inconsistencies found in the GSC, an extended version of the GSC was created, adding 881 entities and
modifying 4 entities. IHP achieved an 𝐹-measure of 0.863 on the new GSC.

1. Introduction

Text mining techniques are essential to deal with the large
amount of biomedical literature published every day [1]. One
of their contributions is the ability to identify terms in liter-
ature that are represented in biomedical ontologies [2]. The
Human Phenotype Ontology (HPO) [3] is an ontology that
provides a standardized vocabulary for phenotypic abnor-
malities found in human diseases. The information on this
ontology can facilitate the understanding of medical texts,
such as electronic health records. However, the recognition
of HPO entities in text is a nontrivial task. HPO entities span
from simple to highly complex and descriptive entities, which
range from 1 to 14 words. Groza et al. [4] provided a study
on the complex nature of HPO entities and released a Gold
Standard Corpora (GSC) to measure the performance of
state-of-the-art Named-Entity Recognition (NER) systems.
The top systemwas Bio-LarK CR that achieved an 𝐹-measure
of 0.56.

This work presents our NER system, dubbed Identify-
ing Human Phenotypes (IHP), which combines machine

learning and validation rules to increase the performance
to a more acceptable level. IHP adopted the framework
provided by IBEnt [5] that uses Stanford CoreNLP [6] for text
processing and applies Conditional Random Fields (CRFs)
for the identification of entities. IHP uses a rich feature
set (linguistic, morphological, orthographic, lexical, context,
and other features) based on previous works in Biomedical
NER, adapted for the identification of HPO entities. It also
applies a validation stage based on manual rules, such as
negative connotation analysis, which in combination with a
dictionary can remove false positives, identify false negatives,
and combine adjacent entities. IHP outperformed Bio-LarK
CR in the GSC by achieving an 𝐹-measure of 0.65. However,
to fully understand why IHP did not achieve a larger
improvement, we manually analyzed the errors produced by
IHP and found some problems in the GSC, mainly missing
entities. Thus, we created an extended version of the GSC
(GSC+) that added 881 entities and modified 4 entities.
Using the GSC+, IHP achieved an 𝐹-measure of 0.86, which
corresponds to a substantial increase (0.30) from the previous
top 𝐹-measure, 0.56. The remainder of this article will detail
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the data and methods used, the results obtained, and their
discussion. Both the GSC+ and IHP source code are available
at https://github.com/lasigeBioTM/IHP.

2. Materials and Methods

2.1. Gold Standard Corpora. In 2015, Groza et al. [4] provided
a unique corpus for HPO, dubbed Gold Standard Corpora
(GSC). It consists of 228 manually annotated abstracts, con-
taining a total of 1933 annotations and covering 460 unique
HPO entities. These 228 abstracts were manually selected to
cover 44 complex dysmorphology syndromes analyzed in a
previous HPO study [7]. The GSC includes a high diversity
of nontrivial matches due to the complexity of the lexical
structure of phenotype expressions. For example, in the text
“no kidney anomalies were found,” the NER system should
be able to recognize the termHP:0000077 (abnormality of the
kidney). For each document file in the GSC (one line without
a title), there is a corresponding annotation file (as many
lines as the number of annotated entities). The annotation is
given by three columns: the exact matching character offset,
the HPO accession number, and the annotation text (e.g.,
“[27::42] HP_0000110 | renal dysplasia”).

Besides releasing the GSC, the authors performed a
comprehensive evaluation of three NER systems: the NCBO
Annotator [8], the OBOAnnotator [9], and the Bio-LarK CR
[4]. Bio-LarK CR, just like IHP, is a recognition system with
the objective of identifying HPO entities, while the NCBO
Annotator and the OBO Annotator identify biomedical
entities from several ontologies. Of these three annotators,
Bio-LarK CR is the only one able to find complex HPO
references, since it was developed with HPO as the main
target.Thus, as expected, Bio-LarKCRwas the top performer
achieving an 𝐹-measure of 0.56, with a recall of 0.49 and a
precision of 0.65. However, the performance of Bio-LarK CR
was not substantially higher than the OBO Annotator that
achieved an 𝐹-measure of 0.54. Given that these values of 𝐹-
measure are still far from being perfect, there is a need for
NER systems that could enhance these levels of performance,
for example, by employing machine learning techniques.

2.2. HPO Benchmark Annotators. In this work, we imple-
mented three HPO annotators in order to test an updated
GSC, the GSC+. We used the OBO Annotator, the NCBO
Annotator, and the Minimal Named-Entity Recognizer
(MER) [10]. The NCBO Annotator is able to annotate text
with relevant ontology concepts from the great number of
ontologies available in BioPortal (https://bioportal.bioontol-
ogy.org/), which is largest repository of biomedical ontolo-
gies. We used the NCBO API (http://data.bioontology.org/
documentation) targeted towards the HPO.The OBO Anno-
tator is a semantic Natural Language Processing tool capable
of combining any number of OBO ontologies from the OBO
foundry to identify their terms in a given text. A particular
HPO-specific version of this tool was used (available at
http://www.usc.es/keam/PhenotypeAnnotation/OBOAnno-
tatorJAR.zip), which specifically targets HPO entities. To
match input text againstHPO terms this tool uses two types of
prebuilt inverted indexes: lexical and contextual. It provides

a graphical interface which allows for an easy annotation of
abstracts. MER is a very simple NER tool that given a lexicon
(text file with terms representing the entities of interest)
and an input text, it returns a list of the annotated entities.
It provides an API (available at http://labs.fc.ul.pt/mer/),
which already includes some particular lexicons, including
the HPO.

To test these annotators, all the abstracts in the GSC were
used as the input. The results obtained from each tool were
formatted into an identical GSC format and compared to
obtain the precision, recall, and 𝐹-measure. We attempted to
execute Bio-LarK CR; however, some of the external links
it uses internally are not available anymore. Bio-LarK CR
source code has not been updated in the last years, and
therefore we were unfortunately unable tomake it functional.
Nonetheless, it is worth remembering that Bio-LarK CR 𝐹-
measure was only 0.02 higher than OBO Annotator and thus
the impact of not using Bio-LarK CR is minimal in our work.

2.3. Identification of Human Phenotypes. IHP relies on Stan-
ford CoreNLP [6] and on an implementation of Conditional
Random Fields (CRFs) provided by CRFSuite [11]. Biomedi-
cal NER systems commonly apply CRFs which are a type of
probabilistic model capable of labeling a sequence of tokens
(sequence of characters with a specific meaning, such as
a word, symbol, or number) and producing an output of
annotated named entities (word phrases that can be classified
in a particular category). CRFs can include a rich feature
set that, given a sequence and the corresponding labels, can
obtain the conditional probability of a state sequence (a
label) given a certain input sequence. In this case, the label
represents the words that are part of a named entity. These
models need to be trained on a training set.The trainedmodel
is able to label sequences of tokens with the most probable
labels, according to that model [12].

CRFSuite was applied with a l2sgd algorithm (Stochastic
Gradient Descent with L2 regularization term).The standard
algorithm settings of this tool were kept, except for an adjust-
ment of the L1 coefficient value due to a slight improvement
in performance and the addition of two Boolean settings
(“feature.possible_states” and “feature.possible_transitions”)
which affect the way features are generated and can improve
the labeling accuracy. The algorithm was used with the
following settings:

(i) L1 Coefficient - “0.9833”
(ii) L2 Coefficient - “1”
(iii) feature.possible_states - “1”
(iv) feature.possible_transitions - “1”

Figure 1 presents the annotation pipeline of IHP. The process
starts by loading GSC into IHP to be divided into a training
and a testing set. The resulting sets are used to create a model
with CRFSuite and a specific feature set. After the annotation
process, there is a validation stage, in which a combination
of a dictionary and manual rules (e.g., negative connotation
analysis) is used to remove false positives, identify missed
entities, and combine adjacent entities. In the evaluation

https://github.com/lasigeBioTM/IHP
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Figure 1: Layout of IHP’s annotation pipeline. IHP requires as input
a Gold Standard Corpora that will serve as a training set for the
CRFSuite and to evaluate IHP performance in the end; a feature set
to use in CRFSuite; and a list of rules a dictionary to solve potential
errors.

stage, the results are calculated, returning the precision and
recall of the annotation process.

IHP uses StanfordCoreNLP and GeniaSS [13] (GENIA
Sentence Splitter) to preprocess the text. GeniaSS was used
with the default parameters. During the training stage,
a model was created using CRFSuite, applying a 10-fold
cross-validation technique on the GSC. For the creation of
the model, a manually crafted feature set (linguistic, ortho-
graphic, morphological, context, lexicon, and other features)
was selected according to the feature performance and
according to the work of previous authors in the area of
Biomedical NER [14–21]. This feature set is available at
GitHub along with the annotator. The entire feature set
includes the following:

(i) Linguistic Features. Lemma and part-of-speech tags of
the current token.

(ii) Orthographic Features. Word case of the current
token and presence of symbols (digits, left bracket,
right bracket, slash, dash, quote, double-quote, left
parenthesis, right parenthesis) in the token.

(iii) Morphological Features. Prefixes (with length from 2
and 3), suffixes (with length from 1 to 4), word shape,
and bigrams of the current token.

(iv) Context Features. Lemma with a window size of 2,
part-of-speech tags with a window size of 4, word
shape with a window size of 2, prefixes (with length
from 1 and 4) with a window size of 1, and suffixes
(with length from 1 and 4) with a window size of 1.

(v) Lexical Features. Stop words with a window size of 4.
(vi) Other Features. Brown cluster representation of cur-

rent token and classification of length class of word.

2.4. Validation. The validation stage uses a combination of
manual rules and a dictionary to remove false positives,
identify missed entities, and combine adjacent entities. The
rules anddictionary are available at https://github.com/lasige-
BioTM/IHP. The dictionary contains all the terms and
synonyms from the HPO database, as well as the training
set annotations. The dictionary was processed to increase
the amount of entity variations (e.g., for “abnormalities of
the kidney” also add “kidney abnormalities” and vice versa).

The manual rules work in combination with the dictionary
and lists of words. The annotations in the testing set are not
used in any of the rules to avoid bias issues. These word
lists contain common HPO words, common part-of-speech
(POS) tags, and stop words. These word lists can be found at
https://github.com/lasigeBioTM/IHP/tree/master/src/other/
word_lists.

The rules were developed specifically avoiding the testing
set, that is, the rules use information from the training set
and the HPO database to create a dictionary, but never from
the testing set. The rules can be divided into two categories:
identification of entities and removal of entities. The rules of
each category will now be described. Further description of
how the rules were developed can be found at the GitHub
repository pointed above.

2.4.1. Identification of Entities

(i) Dictionaries Entities. It identifies dictionary entities
using exact matching.

(ii) Entity Variations. It finds specific entity structures
by considering a set of common HPO nouns (e.g.,
“abnormalities” and “malformations”) and possible
variations of the next tokens in the sentence (e.g., “of,”
“of the,” and “in the”). Using these structures, it then
tries to match nouns (e.g., “abnormalities of the ear”)
or a group of adjectives (e.g., “defects of the outer,
middle, and inner ear”).

(iii) Longer Entities. It works similarly to the previous rule;
however, instead of finding structures in the sentence,
it uses entities from the results set and the dictionary
as the base point. After finding these entities in the
sentence, it tries to expand the entity boundaries (to
the left or to the right) by identifying certain words
and POS tags. For example, if “rib anomalies” was
previously identified, it would identify “spine and rib
anomalies” by expanding to the right, identifying the
word “and” and the noun “spine.”

(iv) Smaller Entities. It checks if an entity can be separated
into more entities by identifying specific words and
POS tags (e.g., identification of the entity “pits of the
palms” inside “pits of the palms and soles”).

(v) Second Validation. A second validation process is per-
formed using the list of previously identified entities.
This list allows the rules to work on a larger number
of entities.

2.4.2. Removal of Entities

(i) General Errors. It removes entities with obvious mis-
takes such as entities formed only by digits, entities
containing only a single quote/parenthesis, entities
smaller than a total character length of 3, and entities
containing more than one specific type of common
noun (e.g., “abnormalities” or “malformations”).

(ii) Incorrect Structure. It checks the POS tags in an entity
and identifies possible errors, removing entities that
end in commas, dots, prepositions, and determiners.

https://github.com/lasigeBioTM/IHP
https://github.com/lasigeBioTM/IHP
https://github.com/lasigeBioTM/IHP/tree/master/src/other/word_lists
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Table 1: Comparative performance of IHP and Bio-LarK CR in the
Gold Standard Corpora.

Precision Recall 𝐹-measure
IHP 0.56 0.79 0.65
Bio-LarK CR 0.65 0.49 0.56

(iii) Negative Connotation Analysis. It is similar to the Nat-
ural Language Processing task of Sentiment Analysis.
HPO entities have a negative connotation because
they refer to diseases and irregularities. This tech-
nique works at a small scale, removing only entities
smaller than a length of 3 words. For example, the
noun “development” occurs always in conjunction
with another word (e.g., “cognitive development”). If
this word is found inside an entity, the entity could
only have a negative connotation with an additional
word (e.g., “cognitive development impairment”).
This rule removes entities that follow two conditions:
entity has 2 tokens and the entity contains a nounwith
a positive connotation.

(iv) Stop Words. It uses two types of stop word lists with
different levels of exclusion. One list contains word
phrases that remove entities using exact matching
and the other list contains word phrases that remove
entities that contain that word phrase in any part of
the entity (partial match).

3. Results

Using the GSC and a 10-fold cross-validation, IHP achieved
an𝐹-measure of 0.65. Table 1 shows that IHP outperforms the
comparative annotator in the GSC (increase of 0.09) due to
the selected features set and the validation process. It is also
important to remember that despite avoiding overfitting IHP
was developed using GSC results as a reference.

3.1. Feature Performance. To study the feature performance,
each feature was tested individually to check its impact. The
feature performance results are divided into six categories:
linguistic, orthographic, morphological, context, lexical, and
others. To minimize the impact of any collinearity issues
that may exist we obtained both the results for individual
performance in each category, as well as the incremental
contribution of each category to the overall performance.
The features were ordered from simple features, such as
Linguistic and Orthographic, which use the basic structure
of a token, to more complex features such as Context and
Lexical, which use a larger number of tokens. Although a
complete study of feature performance would require every
possible combination to be evaluated, we assumed this order
to minimize the running time of our experiments. The
baseline feature corresponds to the results when only the
current token text is considered. Each feature was tested
on a single cross-validation iteration. This greedy approach
may create some sampling bias and overfitting; however, the
objective is to determine which features are more suited

for HPO entities and not to analyze the absolute values of
precision and recall.

Table 2 shows an improvement in 𝐹-measure as the fea-
tures are added to the annotator.This increase in performance
is mainly due to an increase in recall since the precision
stays relatively the same. Context features have the best
performance individually, followed by morphological and
linguistic features, and together, they are responsible formost
of the performance. Lexical and other features show a smaller
effect on the performance.

3.2. Validation Rules Performance. During the validation
stage, a combination of manual rules and a dictionary was
used to correct some of the errors made by the recognition
system. Table 3 shows that although the validation step has
a low impact on the 𝐹-measure, there is a clear increase
in the recall and a decrease in precision. This translates to
more entities in the GSC being correctly identified but also
more word phrases being incorrectly considered as entities.
It is possible to see that the identification validation rules
are responsible for the increase in recall, while the removal
validation rules are responsible for the increase in precision.

3.3. GSC+. It is common that some entities in a document
may not be detected during the manual annotation process,
leaving a gold standard corpus incomplete. This underanno-
tation by the curatorsmay lead to the automatic identification
of many false positive which may in fact be correct annota-
tions that were not identified during the manual annotation
process, as discussed in [21]. We found that there are some
inconsistencies in certain aspects of the GSC, such as the
number of times an entity is annotated and the simultaneous
annotation of superclass and subclass entities. An example of
an inconsistent superclass/subclass entity annotation occurs
with the superclass entity “tumours” and the subclass entities
“tumours of the nervous system” (document 2888021 in the
GSC) and “intracranial tumours” (document 3134615 in the
GSC). In the former case, the GSC annotates “tumours” and
“tumours of the nervous system” as entities; however, in the
latter case, only “intracranial tumours” is annotated.

To understand if there was really an underannotation
problem in the GSC, we conducted a test which filters false
positives from the results, removing the entities that are not
in the GSC test set annotations but that exist in a dictionary
containing HPO entities (created from the HPO database
and GSC annotations). The filtered false positives are word
phrases that should be considered as true positives. Using
the previous example, since the entity “tumours” is not
considered in the GSC but exists in the HPO dictionary,
it would be removed from the results. Table 4 shows an
increase in performance of about 0.17, which is a significant
improvement.

To address these issues, we updated GSC, dubbed GSC+
(https://github.com/lasigeBioTM/IHP/blob/master/GSC+.rar)
taking into account the inconsistencies found. The GSC+
adds new instances of HPO entities that were automatically
identified by IHP. Using the list of identified entities, the
entities were checked by exact matching to see if they exist
either in the HPO database or in the GSC annotations. The

https://github.com/lasigeBioTM/IHP/blob/master/GSC+.rar
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Table 2: The performance of the different types of used features for IHP: linguistic (L), orthographic (O), morphological (M), context (C),
lexical (LE), and others (X). These features were tested in a single cross-validation iteration.

Precision Recall 𝐹-measure
Baseline 0.452 0.594 0.514
L 0.463 0.72 0.564
O 0.452 0.594 0.514
M 0.457 0.766 0.573
C 0.469 0.783 0.587
Le 0.453 0.606 0.518
X 0.428 0.697 0.530
L + O 0.458 0.720 0.560
L + O + M 0.451 0.760 0.566
L + O + M + C 0.478 0.800 0.598
L + O + M + C + Le 0.478 0.805 0.600
L + O + M + C + Le + X 0.482 0.823 0.608

Table 3: Performance of IHP on the Gold Standard Corpora with no validation rules, only identification rules, only removal rules, and all
validation rules.

Precision Recall 𝐹-measure
No Validation Rules 0.672 0.614 0.642
With Identification Rules 0.442 0.797 0.568
With Removal Rules 0.754 0.609 0.674
With Validation Rules 0.549 0.791 0.649

Table 4: Potential performance in the Gold Standard Corpora by
removing false positives found in either the HPO database or GSC.

Precision Recall 𝐹-Measure
No Filter 0.549 0.791 0.649
With Filter 0.845 0.791 0.817

entities that were identified by exact matching were added
to the GSC+. The GSC+ provides the addition of 881 new
entities and the modification 4 entities. The GSC+ was tested
using four different annotators: IHP, OBOAnnotator, NCBO
Annotator, andMER. Table 5 shows the results on the GSC+.
It shows that IHP has the best performance amongst the
annotators, having an 𝐹-measure 0.31 higher than the best
performing annotator.

4. Discussion

4.1. Feature Performance. Table 2 shows the importance of
the selected features and shows that linguistic, morpho-
logical, and context features are responsible for the best
performance individually and that context features show the
best individual performance between the three. The most
likely explanation for this is that these features take the
neighbor tokens into account and therefore gather more
valuable information, allowing the system to perform better
using context features over the other types.

The performance improves steadily with the addition
of features, focusing mainly on an increase in recall. This

increase in recall, but not in precision, means that although
more entities are being correctly identified, there are also
incorrect word phrases being considered entities.

Before the addition of the features, IHP incorrectly iden-
tified word phrases such as “36 schwannomas” (instead of
“schwannomas”) and “jerky movements” (instead of “atactic
jerky movements”). After the addition of the features, it was
able to correct the previous mistakes “schwannomas” and
“atactic jerky movements.” Although it corrected some of the
errors, it also identified some incorrect word phrases such as
“neuroanatomy” and “hippocampus,” probably due to those
words being used in other HPO entities.

4.2. Validation Performance. Thevalidation process is impor-
tant for NER systems. We used a combination of manual
rules and a dictionary to address some issues of the machine
learning classifier.This process removed false positives, iden-
tified missed entities, and combined adjacent entities. The
developed rules prioritize recall, trying to identify as many
entities as possible, according to specific syntactical struc-
tures commonly found in HPO entities. With Identification
Rules leads to an increase of 0.19 in recall in comparison
with No Validation Rules and remains relatively the same
afterWith Removal Rules. Since giving priority to recall leads
to the identification of incorrect entities, a removal process
is applied afterwards to remove the misidentified entities,
improving the precision of the annotator. As seen in the
previous example, many of these incorrect word phrases
are caused by words that are used in HPO entities such as
“hippocampus.” The application of removal rules, such as
the use of stop words with different levels of exclusion, helps
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Table 5: Performance of IHP, OBO Annotator, NCBO Annotator, and MER on the GSC+.

Precision Recall 𝐹-measure
IHP 0.872 0.854 0.863
OBO Annotator 0.769 0.344 0.475
NCBO Annotator 0.688 0.455 0.548
MER 0.649 0.405 0.499

remove these types of entities. For example, if “hippocampus”
is in a stop word list that works with exact matching, it would
eliminate the word phrase “hippocampus” but it would not
remove a word phrase such as “enlarged hippocampus.” The
removal process leads to an increase of 0.08 in precision in
comparison with No Validation Rules and an increase of 0.9
in precision after the use of Identification Rules.

Although the 𝐹-measure remains practically the same
before and after the use of all the validation rules, there
is a clear increase in recall and decrease in precision. The
reason for the low precision values is due to the inconsistent
annotation of the GSC and due to IHP’s attempt to identify as
many HPO entities as possible.

It is important to note that IHP was developed using
the GSC results as a reference for the performance, meaning
that there is a certain degree of bias. However, the manual
rules were developed considering the general HPO entity
structure. These rules also try to identify all instances of
HPO entities in an abstract, which is something that does
not always happen in the GSC. Therefore, we tried to avoid
overfitting for this particular dataset when developing the
rules, so that IHP can have a similar performance in other
contexts.

4.3. GSC Inconsistencies. Theoriginal GSC contains inconsis-
tencies that could bring confusion to the machine learning-
based annotator. By inconsistency we mean similar entity
mentions that were annotated differently in multiple loca-
tions of a given corpus.The inconsistencies found in the GSC
can be divided into four different types: number of annota-
tions, entitymeaning, nested entities, and superclass/subclass
entities. Some examples of these inconsistencies are presented
below.

(i) Number of Annotations. The number of times an
entity is identified in a document is inconsistent.
For example, the entity “preauricular pits” (document
998578 in the GSC) is used three times during the text
and is annotated all three times. In another situation,
the entity “medulloblastoma” (document 19533801 in
the GSC) is also used three times during the text but
it is only annotated twice.

(ii) EntityMeaning. In some situations, annotated entities
do not exactly match their meaning in the ontology,
which can lead to some entities being misiden-
tified. An example is the annotation of “calcium
metabolism” (document 6882181 in the GSC) instead
of “disturbance of calcium metabolism.” The entity
“calcium metabolism” by itself does not have any

meaning in the HPO because it does not correspond
to any abnormality.

(iii) Nested Entities. Nested entities are entities that are
contained within other entities. In the GSC some of
the entities that are nested inside another entity are
annotated while other times they are not. An example
of this occurs in the entity “skin and genital anoma-
lies” (document 12219090 in the GSC) and “spine
and rib anomalies” (document 9096761 in the GSC).
The entity “spine and rib anomalies” is annotated
in the GSC, along with the entity “rib anomalies.”
However, the same is not true for the entity “skin
and genital anomalies.”This entity is annotated in the
GSC (accession number: HP_0000078) but the entity
“genital anomalies,” which exists in the HPO, is not.

(iv) Superclass/Subclass Entities.The final type of inconsis-
tency found has to do with superclass/subclass enti-
ties.This is closely related to nested entities because it
also involves the identification of entities inside other
entities. It is possible that some annotators identify
only the most specific class (the subclass) of a certain
entity, while others try to identify all the possible
classes. However, the GSC is not consistent with the
annotation of these types of entities. An example of
this occurs with the superclass entity “tumours” and
the subclass entities “tumours of the nervous system”
(document 2888021 in the GSC) and “intracranial
tumours” (document 3134615 in the GSC). In the
first case, the GSC annotates both “tumours” and
“tumours of the nervous system” as entities. In the
second case, only “intracranial tumours” is consid-
ered an entity.

4.4. GSC+. IHP tries to identify all instances of HPO entities
(normal, nested, and subclass/superclass entities), indepen-
dently of the number of times they appear in the text. Having
the correct number of times entities appear in a document
can be useful for calculating important values such as the
term frequency, which is used to determine the importance
of a term in a document. Since IHP tries to annotate as many
entities as possible, it will identify a lot of entities that are
not in the GSC. This, of course, will cause a decrease in
precision and therefore in the overall performance. Table 4
presents the results from the conducted test to evaluate the
potential of IHP in case these inconsistencies were not an
issue. Since the test removes from the results all instances of
false positives that exist either in the GSC annotations or in
the HPO database (by exact matching), there is an increase
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in precision. The results show that IHP has the potential
of achieving an 𝐹-measure of about 0.82, corresponding to
an increase of 0.18 in comparison to the achieved results.
This increase suggests that almost a fifth of the annotator’s
performance can be affected by inconsistencies.

In order to determine IHP’s performance in a situation
where these inconsistencies were not an issue, the GSC+ was
developed in order to provide a more consistent annotation
of the abstracts. The development of the GSC+ involves the
addition of automatic annotations from the IHP that were
matched (with exact matching) with word phrases in the
HPO database and GSC annotations.The GSC+ disentangles
some of GSC’s faults since it adds entities that already were
considered HPO entities. Further testing may be conducted
in the future to test the effects of the IHP’s feature sets and
validation step on the GSC+.

The results of IHP in Table 5 were obtained using the
same annotation process as with the original GSC. It achieved
an 𝐹-measure of 0.863, an increase of more than 0.04 to
its potential performance discussed above, due to the fact
that GSC+ includes more improvements than just filtering
false positives. IHP had a higher performance than the other
annotators on the GSC+. The results show that all three
annotators have a lower recall than precision, meaning that
they identify a low number of entities in comparison to the
total entities in the GSC+. While these annotators all use the
HPO as the target ontology to annotate the text, they most
likely use exact matching to identify entities in the text and
therefore are not prepared for the level of syntactical variation
that occurs in HPO entities. Although, IHP is not necessarily
capable of identifying entities as long as 14 words, it tries to
do it by using validation rules that expand the boundaries
of identified entities. Annotators that use exact matching
are not able to identify these types of entities since all the
words in the entity would have to exactly match the string
on the HPOOntology, which is unlikely. We did not evaluate
each validation rule individually as was presented before with
GSC, but we expect their impact to be highly similar in GSC+
since we are using the same corpus and ontology.

Another issue of these annotators is the choice of identi-
fying subclass entities over superclass ones. Some annotators,
like the OBO Annotator, prefer more specific annotations
than more general ones and, therefore, will only identify a
portion of those entities.

The reason IHP had a better performance than the other
annotators on the GSC+ is that it tries to annotate all
instances of HPO entities.We can also see this by comparison
of the results in the GSC and the GSC+. There is an increase
in precision because all the entities that were previously seen
as false positives (and that exist in theHPOdatabase) are now
considered true positives.

5. Conclusion

We presented IHP, an efficient system for identifying HPO
entities in unstructured text, which uses a machine learning-
based approach for the identification of entities coupled with
a validation technique that combines dictionary-based and

manual rules-based methods. IHP outperforms state-of-the-
art HPO annotators like Bio-LarK CR in the GSC. This
work provides a rich feature set (linguistic, morphologic,
orthographic, context, lexical, and other features) for the
identification of biomedical entities created based on the
work of previous authors and a group of validation rules that
are used to fix errors caused by the machine learning-based
annotator.

This work also provides an analysis of the inconsistencies
found in the GSC. With this analysis, an extended version
of GSC, the GSC+, was created which will be left as a
contribution.The new annotations were added automatically
by using IHP, soGSC+may still contain some issues, but since
they have been exactly matched with curated annotations we
believe that there is nomuch room for errors.This new corpus
can be used for further evaluations of HPO annotators and
other applications, such as term frequency analysis.

The GSC+ was used to test IHP and other three anno-
tators to provide a more reliable benchmarking tool for
HPO annotators. IHP outperformed all three annotators with
a substantial performance margin of more than 0.3 in 𝐹-
measure.

In the future, it would be interesting to improve IHP’s
performance by defining a richer feature set that could allow
the identification of more complex entities and by further
evaluating and enhancing each validation rule when applied
to other domains. It is worth pointing out again that GSC+
is not free of potential misannotations caused by IHP errors,
and therefore as future work we aim at conducting a more
thorough extension and validation of GSC+ by having the
direct contributions from HPO annotators. Furthermore, a
larger annotated corpus would allow IHP to deal with a wider
number of real-world scenarios. It would also be interesting
to apply phenotypic similarity to identify potential misan-
notations that are not semantically related to the entities
found in the text [21]. Since electronic health records contain
HPO terms, an exciting challenge would be to assess the
performance of IHP in a multilingual corpus [22] and how it
could help us to represent their knowledge using linked data
technologies [23].
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