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Using the geometrical thermodynamic approach, we study phase transition of Brans–Dicke Born–Infeld black holes. We apply
introduced methods and describe their shortcomings. We also use the recently proposed newmethod and compare its results with
those of canonical ensemble. By considering the new method, we find that its Ricci scalar diverges in the places of phase transition
and bound points. We also show that the bound point can be distinguished from the phase transition points through the sign of
thermodynamical Ricci scalar around its divergencies.

1. Introduction

General relativity is accepted as a standard theory of grav-
itation and is able to pass more observational tests [1].
Although this theory is successful in various domains, it
cannot describe some experimental evidences such as the
accelerating expansion of the Universe [2–4]. Moreover,
the general relativity theory is not consistent with Mach’s
principle nor Dirac’s large number hypothesis [5, 6]. In
addition, one needs further accurate observations to fully
confirm (or disprove) the validity of general relativity in the
high curvature regime such as black hole systems and other
massive objects. Therefore, in recent years, more attentions
have been focused on alternative theories of gravity.Themost
considerable alternative theories of gravity are the scalar-
tensor theories. One of the good examples of these theories
is Brans–Dicke (BD) theory which was introduced in 1961
to combine Mach’s principle with Einstein’s theory of gravity
[7]. It is worthwhile to mention that BD theory is one of
the modified theories of general relativity which can be
used for several cosmological problems like inflation, cosmic
acceleration, and dark energy modeling [8–10]. Also, it has a
customizable parameter (𝜔) which indicates the strength of
coupling between the matter and scalar fields. The action of
4-dimensional BD theory can be written as

𝑆 = 116𝜋 ∫𝑑4𝑥√−𝑔(Φ𝑅 − 𝜔Φ (∇Φ)2) , (1)

where 𝑅 and Φ are, respectively, the Ricci scalar and self-
gravitating scalar field. It is interesting to note that 4-
dimensional stationary vacuum BD solution is just the Kerr
solution with a trivial scalar field [11]. In addition, Cai and
Myung proved that 4-dimensional solution of BD-Maxwell
theory reduces to the Reissner–Nordström solution with a
constant scalar field [12–15]. However, the solutions of BD-
Maxwell gravity in higher dimensions will be reduced to the
Reissner–Nordström solutions with a nontrivial scalar field
because of the fact that higher dimensional stress energy
tensor of Maxwell field is not traceless (conformally invari-
ant). One of the most prominent problems which makes BD
theory nonstraightforward is the fact that the field equations
of this theory are highly nonlinear. To deal with this issue, one
could apply conformal transformation on known solutions
of other modified theories like dilaton gravity [16]. For
instance, nonlinearly charged dilatonic black hole solutions
and their BD counterpart in an energy dependent space-time
have been obtained by applying a conformal transformation
[17].

The first attempt for modifying the Maxwell theory to a
consistent theory for describing point charges was made in
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1912 by Mie [18, 19]. After that, Born and Infeld introduced
a gauge-invariant nonlinear electrodynamic model to find
a classical theory of point-like charges with finite energy
density [20]. Born–Infeld (BI) theory was more interesting
since it was obtained by using loop correction analysis of
Quantum Field Theory. Recently, Tseytlin has shown that
BI theory can be derived as an effective theory of some
string theory models [21–26]. Nowadays, the effects of BI
electrodynamics coupled to various gravity theories have
been considered bymany authors in the context of black holes
[27–51], rotating black branes [14, 52–57], wormholes [58–
61], superconductors [62–67], and other aspects of physics
[68, 69].

On the other side, black hole thermodynamics became an
interesting topic after the works of Hawking and Bekenstein
[70–75]. Besides, based on the AdS/CFT correspondence,
black hole thermodynamics was considered as the first step
for constructing quantum gravity. In recent years, phase
transition and critical behavior of the black holes have
attracted more attention among physicists. Generally, at the
critical point where phase transition occurs, one may find a
discontinuity of state space variable such as heat capacity [76].
In addition to heat capacity, there are various approaches for
studying phase transition. One of such interesting methods
is based on geometrical technique. Geometrical thermo-
dynamic method was started by Gibbs and Caratheodory
[77]. Regarding this method, one could build a phase space
by employing thermodynamical potential and its corre-
sponding extensive parameter. Meanwhile, divergence points
of Ricci scalar of thermodynamical metric provide infor-
mation about phase transition points of thermodynamical
systems.

For the first time, Weinhold introduced a new metric
on the equilibrium thermodynamical phase space [78, 79]
and after that another thermodynamical metric was defined
by Ruppeiner from a different point of view [80, 81]. It is
worthwhile to mention that there is a conformal relation
between Ruppeiner and Weinhold metrics with the inverse
of temperature as a conformal factor [82]. None of Wein-
hold and Ruppeiner metrics were invariant under Legen-
dre transformation. Recently, Quevedo [83, 84] removed
some problems of Weinhold and Ruppeiner methods by
proposing a Legendre invariant thermodynamical metric.
Although Quevedo could solve some problems which pre-
vious metrics were involved with, it has been confronted
with another problems in some specific systems. To solve
these problems, a new method was proposed in [85–87]
which is known as HPEM metric. It was shown that HPEM
metric is completely consistent with the results of the heat
capacity in canonical ensemble in different gravitational
systems.

In this paper, we are going to consider black hole solutions
of BD-BI aswell as Einstein-BI-dilaton gravity and study their
phase transition based on geometrical thermodynamicmeth-
ods. We compare our results with those of other methods
such as extended phase space thermodynamics.

2. Field Equation and
Conformal Transformations

The (𝑛 + 1)-dimensional BD-BI theory action containing
a scalar field Φ and a self-interacting potential 𝑉(Φ) is as
follows:

𝐼BD-BI = − 116𝜋 ∫
𝑀
𝑑𝑛+1𝑥

⋅ √−𝑔(Φ𝑅 − 𝜔Φ (∇Φ)2 − 𝑉 (Φ) +L (F)) , (2)

where 𝜔 is a coupling constant and L(F) is the BI theory
Lagrangian

L (F) = 4𝛽2(1 − √1 + F2𝛽2) , (3)

in which 𝛽 and F = 𝐹𝜇]𝐹𝜇] are BI parameter and Maxwell
invariant, respectively. It is worthmentioning thatL(F)will
be reduced to the standard Maxwell form L(F) = −F as𝛽 → ∞. The field equations of gravitational, scalar, and
electromagnetic fields can be obtained by varying the action
(2):

𝐺𝜇] = 𝜔Φ2 (∇𝜇Φ∇]Φ − 12𝑔𝜇] (∇Φ)2) − 𝑉 (Φ)2Φ 𝑔𝜇]
+ 1Φ (∇𝜇∇]Φ − 𝑔𝜇]∇2Φ) + 2Φ ( 𝐹𝜇𝜆𝐹]𝜆√1 +F/2𝛽2
+ 14𝑔𝜇]L (F)) ,

(4)

∇2Φ = 12 [(𝑛 − 1) 𝜔 + 𝑛] ((𝑛 − 1)Φ𝑑𝑉 (Φ)𝑑Φ
− (𝑛 + 1)𝑉 (Φ) + (𝑛 + 1)L (F) + 4F√1 +F/2𝛽2),

(5)

∇𝜇( 𝐹𝜇]√1 +F/2𝛽2) = 0. (6)

It is not easy to solve (4)–(6) because there exists second
order of scalar field in the denominator of field equation (4).
In order to overcome such a problem, we can use a suitable
conformal transformation and convert the BD-BI theory
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to the Einstein-BI-dilaton gravity. The suitable conformal
transformation is as follows:

𝑔𝜇] = Φ2/(𝑛−1)𝑔𝜇],
Φ = 𝑛 − 34𝛼 lnΦ,
𝛼 = (𝑛 − 3)√4 (𝑛 − 1) 𝜔 + 4𝑛 .

(7)

The Einstein-BI-dilaton gravity action and its related field
equations can be obtained from the BD-BI action and its
related field equations by applying the mentioned conformal
transformation [17]:

𝐼𝐺 = − 116𝜋 ∫
M

𝑑𝑛+1𝑥
⋅ √−𝑔{R − 4𝑛 − 1 (∇Φ)2 − 𝑉 (Φ) + 𝐿 (F, Φ)} , (8)

R𝜇] = 4𝑛 − 1 (∇𝜇Φ∇]Φ + 14𝑉 (Φ) 𝑔𝜇]) − 1𝑛 − 1⋅ 𝐿 (F, Φ) 𝑔𝜇]
+ 2𝑒−4𝛼Φ/(𝑛−1)√1 + 𝑌 (𝐹𝜇𝜂𝐹𝜂] − F𝑛 − 1𝑔𝜇]) ,

(9)

∇2Φ = 𝑛 − 18 𝜕𝑉 (Φ)𝜕Φ
+ 𝛼2 (𝑛 − 3) ((𝑛 + 1) 𝐿 (F, Φ) + 4𝑒−4𝛼Φ/(𝑛−1)F√1 + 𝑌 ) , (10)

∇𝜇(𝑒−4𝛼Φ/(𝑛−1)√1 + 𝑌 𝐹𝜇]) = 0, (11)

where ∇ is the covariant differentiation with respect to the
metric 𝑔𝜇] and R is its Ricci scalar. The potential 𝑉(Φ) and
the Lagrangian 𝐿(𝐹,Φ) will take the following forms [17]:

𝑉(Φ) = Φ−(𝑛+1)/(𝑛−1)𝑉 (Φ) , (12)

𝐿 (F, Φ) = 4𝛽2𝑒−4𝛼(𝑛+1)Φ/[(𝑛−1)(𝑛−3)](1
− √1 + 𝑒16𝛼Φ/[(𝑛−1)(𝑛−3)]F2𝛽2 ).

(13)

In the limits of 𝛽 → ∞ and 𝛽 → 0, the Lagrangian will be𝐿(F, Φ) = −𝑒−4𝛼Φ/(𝑛−1)F and 𝐿(F, Φ) → 0, respectively, as

expected. In previous equations, we have used the following
notations:𝐿 (F, Φ) = 4𝛽2𝑒−4𝛼(𝑛+1)Φ/[(𝑛−1)(𝑛−3)]𝐿 (𝑌) ,

𝐿 (𝑌) = 1 − √1 + 𝑌,
𝑌 = 𝑒16𝛼Φ/[(𝑛−1)(𝑛−3)]F2𝛽2 .

(14)

By considering the conformal relation between these two
theories, it can be understood that if (𝑔𝜇], 𝐹𝜇], Φ) are the
solutions to the field equations of Einstein-BI-dilaton gravity
(9)–(11), then the solutions of BD-BI theory could be obtained
by the following form:

[𝑔𝜇], 𝐹𝜇], Φ]
= [exp(− 8𝛼Φ(𝑛 − 1) (𝑛 − 3))𝑔𝜇], 𝐹𝜇], exp( 4𝛼Φ𝑛 − 3)] . (15)

2.1. Black Hole Solutions in Einstein-BI-Dilaton Gravity
and BD-BI Theory

2.1.1. Einstein Frame. In this section, we briefly obtain the
Einstein-BI-dilaton gravity solutions and then by using the
conformal transformation, we calculate the solutions of BD-
BI theory [88]. We assume the following metric with various
horizon topology:

𝑑𝑠2 = −𝑍 (𝑟) 𝑑𝑡2 + 𝑑𝑟2𝑍 (𝑟) + 𝑟2𝑅2 (𝑟) 𝑑Ω2𝑘, (16)

where 𝑑Ω2𝑘 is an (𝑛 − 1)-dimensional hypersurface of
Euclidean metric with constant curvature (𝑛 − 1)(𝑛 − 2)𝑘 and
volume 𝜛𝑛−1 with the following explicit form:

𝑑Ω2𝑘

=
{{{{{{{{{{{{{{{{{{{{{

𝑑𝜃21 + 𝑛−1∑
𝑖=2

𝑖−1∏
𝑗=1

sin2𝜃𝑗𝑑𝜃2𝑖 𝑘 = 1
𝑑𝜃21 + sinh2𝜃1𝑑𝜃22 + sinh2𝜃1𝑛−1∑

𝑖=3

𝑖−1∏
𝑗=2

sin2𝜃𝑗𝑑𝜃2𝑖 𝑘 = −1
𝑛−1∑
𝑖=1

𝑑𝜙2𝑖 𝑘 = 0.
(17)

In order to obtain consistent solutions, we should con-
sider a suitable functional form for the potential,V(Φ). It was
shown that the proper potential is a Liouville-type one with
both topological and BI correction terms, as [17]

V (Φ) = 2Λ exp( 4𝛼Φ𝑛 − 1)
+ 𝑘 (𝑛 − 1) (𝑛 − 2) 𝛼2𝑏2 (𝛼2 − 1) exp( 4Φ(𝑛 − 1) 𝛼)
+ 𝑊(𝑟)𝛽2 .

(18)
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It is notable to mention that, in the limit of 𝛼 → 0
(absence of dilaton field) and 𝛽 → ∞, V(Φ) reduces to2Λ, as expected [13]. Now, regarding the field equations
(9)–(11), metric (16), and the potential V(Φ), it is a matter of
calculation to show that𝐹𝑡𝑟 = 𝐸 (𝑟)

= 𝑞𝑒(4𝛼Φ(𝑟)/(𝑛−1))[𝑟𝑅 (𝑟)](𝑛−1)√1 + 𝑒(8𝛼Φ(𝑟)/(𝑛−3))𝑞2 [𝑟𝑅 (𝑟)]−2(𝑛−1) /𝛽2 ,
Φ = (𝑛 − 1) 𝛼2 (1 + 𝛼2) ln(𝑏𝑟) ,
𝑊 (𝑟) = 4𝑞 (𝑛 − 1) 𝛽2𝑅 (𝑟)(1 + 𝛼2) 𝑟𝛾𝑏𝑛𝛾 ∫ 𝐸 (𝑟)𝑟𝑛(1−𝛾)−𝛾 𝑑𝑟

+ 4𝛽4𝑅 (𝑟)2(𝑛+1)/(𝑛−3) (1 − 𝐸 (𝑟) 𝑅 (𝑟)(𝑛−3)𝑞𝑟1−𝑛 )
− 4𝑞𝛽2𝐸 (𝑟)𝑟𝑛−1 (𝑟𝑏)𝛾(𝑛−1) ,

𝑍 (𝑟) = −𝑘 (𝑛 − 2) (𝛼2 + 1)2 (𝑟/𝑏)2𝛾(𝛼2 + 𝑛 − 2) (𝛼2 − 1) + ((1 + 𝛼2)2 𝑟2(𝑛 − 1) )
⋅ 2Λ (𝑟/𝑏)−2𝛾(𝛼2 − 𝑛) − 𝑚𝑟(𝑛−1)(1−𝛾)−1
− 4 (1 + 𝛼2)2 𝑞2 (𝑟/𝑏)2𝛾(𝑛−2)(𝑛 − 𝛼2) 𝑟2(𝑛−2) ( 12 (𝑛 − 1)ϝ1 (𝜂)
− 1𝛼2 + 𝑛 − 2ϝ2 (𝜂)) ,

𝑅 (𝑟) = exp( 2𝛼Φ𝑛 − 1) = (𝑏𝑟)𝛾 ,

(19)

where 𝑚 is an integration constant related to mass and 𝑏 is
another constant related to scalar field, andϝ1 (𝜂)

= 2𝐹1 ([12 , (𝑛 − 3) Υ𝛼2 + 𝑛 − 2] , [1 + (𝑛 − 3) Υ𝛼2 + 𝑛 − 2] , −𝜂) ,ϝ2 (𝜂)
= 2𝐹1 ([12 , (𝑛 − 3) Υ2 (𝑛 − 1) ] , [1 + (𝑛 − 3) Υ2 (𝑛 − 1) ] , −𝜂) ,

Υ = 𝛼2 + 𝑛 − 22𝛼2 + 𝑛 − 3 ,
𝜂 = 𝑞2 (𝑟/𝑏)2𝛾(𝑛−1)(𝑛−5)/(𝑛−3)𝛽2𝑟2(𝑛−1) ,
𝛾 = 𝛼21 + 𝛼2 .

(20)

It is worthwhile to mention that the dilatonic Maxwell
solutions [89] can be achieved from the obtained solutions in

the limit of 𝛽 → ∞. The divergencies of scalar curvatures at
the origin guarantee the existence of singularity. We interpret
such a singularity as black hole since it is covered by an event
horizon [17].

2.1.2. Jordan Frame. To obtain the black hole solutions of BD-
BI theory, first, by using the conformal transformation (12),
V(Φ) would be

V (Φ) = 2ΛΦ2
+ 𝑘 (𝑛 − 1) (𝑛 − 2) 𝛼2𝑏2 (𝛼2 − 1) Φ[(𝑛+1)(1+𝛼2)−4]/[(𝑛−1)𝛼2]
+ Φ(𝑛+1)/(𝑛−1)𝑊(𝑟)𝛽2 .

(21)

Also, by considering the following (𝑛 + 1)-dimensional
metric,

𝑑𝑠2 = −𝐴 (𝑟) 𝑑𝑡2 + 𝑑𝑟2𝐵 (𝑟) + 𝑟2𝐻2 (𝑟) 𝑑Ω2𝑘, (22)

one can find the following solutions through conformal
transformation:

𝐴 (𝑟) = ( 𝑟𝑏)4𝛾/(𝑛−3) 𝑍 (𝑟) ,
𝐵 (𝑟) = ( 𝑟𝑏)−4𝛾/(𝑛−3) 𝑍 (𝑟) ,
𝐻 (𝑟) = ( 𝑟𝑏)−𝛾((𝑛−5)/(𝑛−3)) ,
Φ (𝑟) = ( 𝑟𝑏)−2𝛾(𝑛−1)/(𝑛−3) .

(23)

It is notable that, like Einstein frame, these solutions can
be interpreted as black holes which are covered by event
horizon.

3. Thermodynamic Properties: Dilatonic-BI
versus BD-BI Black Holes

3.1. Thermodynamic Quantities. In the following, we give a
brief review regarding thermodynamic quantities of the black
hole solutions in both frames. The Hawking temperature of
the black hole can be obtained by using the surface gravity
interpretation (𝜅) through the following relation:

𝑇 = 𝜅2𝜋 = 12𝜋√−12 (∇𝜇𝜒]) (∇𝜇𝜒])

= {{{{{{{{{{{

𝑍 (𝑟+)4𝜋 , dilatonic BI

14𝜋√ 𝐵 (𝑟)𝐴 (𝑟)𝐴 (𝑟+) , BD-BI,

(24)
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in which 𝜒 = 𝜕/𝜕𝑡 is the time like null Killing vector. It is
easy to show that the Hawking temperature in both frames is
uniform as

𝑇 = (𝛼2 + 1)2𝜋 (𝑛 − 1) [−𝑘 (𝑛 − 2) (𝑛 − 1)2 (𝛼2 − 1) 𝑟+ ( 𝑏𝑟+)
−2𝛾

− Λ𝑟+ ( 𝑏𝑟+)
2𝛾 + Γ+] , dilatonic BI & BD-BI, (25)

where

Γ+ = −(𝛼2 + 1)2 𝑞22𝜋 (𝑛 − 1) (𝑟+𝑏 )2𝛾(𝑛−2) 𝑟3−2𝑛+ ϝ1 (𝜂+) . (26)

Following [12, 17], the finitemass and entropy of the black
hole in both Einstein and Jordan frames are

𝑀 = 𝜛𝑛−1𝑏(𝑛−1)𝛾16𝜋 ( 𝑛 − 11 + 𝛼2 )𝑚,
𝑆 = 𝜛𝑛−1𝑏(𝑛−1)𝛾4 𝑟(𝑛−1)(1−𝛾)+ . (27)

In addition, the electric charge𝑄 of the black holes can be
obtained via Gauss’s law

𝑄 = 𝑞4𝜋 . (28)

Also, one can obtain the electric potential as

𝑈 = (𝑟+𝑏 )4𝛾+1 𝑏𝛽 (𝛼
2 + 1)(5𝛼2 + 1) 2𝐹1 ([12 , 5𝛼2 + 16 (2𝛼2 + 1)] ,

[ 17𝛼2 + 76 (2𝛼2 + 1)] , 𝛽2𝑏6𝑞2 (𝑟+𝑏 )6𝛾+6) .
(29)

It is straightforward to show that the mentioned con-
served and thermodynamical quantities satisfy the first law
of thermodynamics as

𝑑𝑀 = 𝑇𝑑𝑆 + 𝑈𝑑𝑄. (30)

3.2. Heat Capacity and Thermal Stability. Here, we want
to investigate thermal stability of the black holes. Due to
the set of state functions and thermodynamic variables of
a system, one may study the thermodynamic stability from
different points of view through various ensembles. One of
the common methods to study phase transition is regarding
the canonical ensemble. In this ensemble, thermal stability of
a systemwill be ensured by positivity of the heat capacity. One
can obtain the heat capacity relation with fixed charge as

𝐶𝑄 = (𝜕𝑀/𝜕𝑆)𝑄(𝜕2𝑀/𝜕𝑆2)𝑄 = 𝑀𝑆𝑀𝑆𝑆 = 𝑇( 𝜕𝑆𝜕𝑇)𝑄 , (31)

where𝑀𝑆 = 𝜕𝑀/𝜕𝑆 and𝑀𝑆𝑆 = 𝜕2𝑀/𝜕𝑆2.
From the nominator of heat capacity, it is evident that

the temperature (𝑀𝑆) has crucial role on the sign of 𝐶𝑄. In

addition, divergence points of heat capacity are indicating
second-order phase transition. Hence, these divergencies are
utilized for calculating critical values and investigating the
critical behavior of the black hole. Now, for studying phase
transition, we introduce various geometrical thermodynamic
methods and compare their results with those arisen from the
heat capacity.

3.3. Geometrical Study of the Phase Transition. One of the
basic motivations for considering the geometrical thermo-
dynamics comes from the fact that this formalism helps
us to describe in an invariant way the thermodynamic
properties of a given thermodynamical system in terms of
geometric structures. Also, thismethod is a strongmachinery
for describing phase transition of the black holes. Another
motivation is to give an independent picture regarding ther-
modynamical aspects of a system. In addition to some useful
information about bound points, phase transitions, and ther-
mal stability conditions, this method contains information
regarding molecular interaction around phase transitions for
thermodynamical systems. In other words, by studying the
sign of thermodynamical Ricci scalar around phase transition
points, one can extract information whether interaction is
repulsive or attractive. Based on such motivations, it will be
interesting to investigate black hole phase transition in the
context of geometrical thermodynamics, as an independent
approach.

In order to study the phase transition, one can employ
thermodynamical quantities to build geometrical space-time.
There are several metrics in the context of geometrical
thermodynamics which one can use to study phase transition
and critical behavior.Thewell-known thermodynamicalmet-
rics are Weinhold, Ruppeiner, Quevedo, and HPEM as the
recently proposedmethod.Aswementioned, in some specific
types of systems, the Weinhold, Ruppeiner, and Quevedo
metrics are not applicable and they will face some problems.
Here, we want to discuss these thermodynamical metrics and
their possible mismatched problems.

Thermodynamical metric was first introduced by Wein-
hold [78, 79]. This thermodynamical metric is given by

𝑑𝑆2𝑊 = 𝑔𝑊𝑎𝑏𝑑𝑋𝑎𝑑𝑋𝑏, (32)

where 𝑔𝑊𝑎𝑏 = 𝜕2𝑀(𝑋𝑐)/𝜕𝑋𝑎𝜕𝑋𝑏, 𝑋𝑎 ≡ 𝑋𝑎(𝑆,𝑁𝑖), and 𝑁𝑖
denotes other extensive variables of the system. By calculating𝑀 as a function of extensive quantities (such as entropy and
electric charge) and usingWeinholdmetric (32), one can find
the Ricci scalar. It is expected that the singular points of the
Weinhold Ricci scalar match the root or divergence points of
the heat capacity, to indicate the bound point or the phase
transition ones.We plot Figure 1 to investigate the mentioned
behavior.

After that, Ruppeiner [80, 81] has defined another ther-
modynamical metric with the following form:

𝑑𝑆2𝑅 = 𝑔𝑅𝑎𝑏𝑑𝑋𝑎𝑑𝑋𝑏, (33)

where 𝑔𝑅𝑎𝑏 = −𝜕2𝑆(𝑋𝑐)/𝜕𝑋𝑎𝜕𝑋𝑏 and𝑋𝑎 ≡ 𝑋𝑎(𝑀,𝑁𝑖).
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In the Ruppeiner metric, thermodynamical potential is
entropy. It is worthwhile mentioning that these two metrics
are conformally related to each other [82]. We plot Figure 2
to show that the Ruppeiner Ricci scalar divergencies are not
matched with those of heat capacity.

As we have shown, calculating thermodynamical Ricci
scalar of these two thermodynamical metrics indicates that
the results were not completely consistent with the results of
heat capacity in the canonical ensemble. In order to remove
some failures of the Weinhold and Ruppeiner metrics,
recently, anothermetric which is Legendre invariant has been
introduced by Quevedo [83, 84].TheQuevedometric has the
following form:

𝑑𝑠2𝑄 = Ω(−𝑀𝑆𝑆𝑑𝑆2 +𝑀𝑄𝑄𝑑𝑄2) , (34)

where the conformal coefficient Ω isΩ = (𝑆𝑀𝑆 + 𝑄𝑀𝑄) . (35)

Considering Figures 1–3, we find that, by using these three
well-known metrics, there is at least a mismatch between
heat capacity divergencies and thermodynamical Ricci scalar
divergencies (of these threemetrics).Therefore, thesemetrics
are not appropriate tools for investigation of our black hole
phase transitions and related critical behavior. In otherwords,
the method of geometrical thermodynamics which has been
reported in [90] is not an applicablemethod in the scalar field
theory.

Very recently, a new metric was proposed by Hendi et
al. (HPEM metric) to solve this problem. This method is
applied for various gravitating systems and it is shown that
the root and divergence points of the heat capacity coincide
with the divergence points of the HPEM Ricci scalar (see
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Figures 4–6, for more details).The generalized HPEMmetric
with 𝑛 extensive variables (𝑛 ≥ 2) has the following form [85–
87]:

𝑑𝑠2HPEM = 𝑆𝑀𝑆(∏𝑛𝑖=2 (𝜕2𝑀/𝜕𝜒2𝑖 ))3 (−𝑀𝑆𝑆𝑑𝑆2
+ 𝑛∑
𝑖=2

(𝜕2𝑀𝜕𝜒2𝑖 )𝑑𝜒2𝑖 ) , (36)

where 𝜒𝑖’s (𝜒𝑖 ̸= 𝑆) are extensive parameters. It is notable
that HPEM metric is the same as that presented by Quevedo
(with the same “−, +, +, . . .” signature), but with different con-
formal factor, and therefore it is expected to enjoy Legendre
invariance. In what follows, we will investigate the stability
and phase transition of the physical BD-BI black holes in the
context of the heat capacity and geometrical thermodynamics
by using HPEMmetric.

As the first significant point which must be taken into
deep consideration, one should regard the sign of the
temperature. The positivity of the temperature denotes a
physical black hole, whereas the negativity of 𝑇 represents
a nonphysical system. The temperature behavior has been
shown in the figures, too. As we can see, there is a lower
bound for the horizon radius (𝑟0), in which for 𝑟+ < 𝑟0, we
encounter a nonphysical black hole, owing to negative sign of
temperature. In contrast, in the case of 𝑟+ > 𝑟0, we confront
a physical system due to the positivity of the temperature.
In other words, the horizon radius of physical black holes is
located in this region.

Figure 4 shows that, for the special values of the electric
charge, nonlinearity parameter, and BD-coupling coefficient,
we can obtain three characteristic points. One of them
refers to the root of heat capacity (or temperature) which
is known as 𝑟0 and others are related to the divergence
points of heat capacity which are denoted as 𝑟𝑑

1

and 𝑟𝑑
2

(𝑟𝑑
1

< 𝑟𝑑
2

). We also find that all divergence points of the

Table 1: Critical points of BD-BI theory for 𝑞 = 0.1,Λ = −1,𝜔 = 10,𝑏 = 1, and 𝛽 = 1.5.
𝑛 𝑟0 𝑟𝑑1 𝑟𝑑2
5 0.2052 0.3820 2.5814
6 0.2842 0.4772 3.5605
7 0.3422 0.5390 4.7619

Ricci scalar (for HPEM metric) coincide with these three
points. Here, we use some tables to study the influences
of different parameters (dimensions, nonlinearity parameter,
andBD-coupling coefficient) on thementioned characteristic
points.

These tables provide information regarding the lower
bound of horizon radius, two points of phase transition (for
the case of BD-BI), and their dependencies to the variation
of dimensions, nonlinearity parameter, and coupling coef-
ficient. Regarding the tables and Figures 4–7, it is evident
that one root and two divergence points for the heat capacity
are almost observed. It is worthwhile to mention that the
region of 𝑟0 < 𝑟+ < 𝑟𝑑

1

(positive sign of heat capacity)
shows the stability of the system. In contrast, one can find
that, for the region of 𝑟𝑑

1

< 𝑟+ < 𝑟𝑑
2

, the heat capacity has
negative signwhich indicates instability. In addition, at region𝑟+ > 𝑟𝑑

2

, the system is in the stable state due to the positive
sign of heat capacity (see Figures 4–6 for more details).
According to Table 1, one can conclude that the lower bound
radius and two divergence points are increasing functions
of the dimensions. Also, according to Table 2, the lower
bound of horizon radius and the first divergence point (𝑟𝑑

1

)
will increase by increasing 𝛽 (the nonlinearity parameter),
whereas the second point of divergency remains steady over
this change. Considering figures andTable 2, it is obvious that,
by increasing 𝛽, root and the first divergence point of heat
capacity will increase up to a point and then any increment in
this parameter would have negligible effect on these values.
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Figure 4: HPEM metric.R (continuous line), 𝐶𝑄 (dotted line), and 𝑇 (dot dashed) versus 𝑟+ for Λ = −1, 𝑛 = 4, 𝑞 = 0.1, 𝑏 = 1, and 𝜔 = 10.𝛽 = 1 (a) and 𝛽 = 5 (b). “Note: both panels in the same line are plotted with the same parameters, but different regions and scales.”

To put in other words, it can be interpreted that, in large𝛽, we will face the Brans-Dicke-Maxwell behavior [91]. For
large 𝛽, the obtained values for lower bound horizon radius
and divergence point are the same as the obtained values
for the Brans-Dicke-Maxwell case [91]. It is notable that the
unstable region (between two divergencies, where the heat
capacity is negative) is larger in small 𝛽 than the large one
(Brans-Dicke-Maxwell case) as it would be expected, which
is due to the nature of nonlinearity that would cause the
instability of system to increase. Meanwhile, 𝑟0 and 𝑟𝑑

1

have
ascending functions and 𝑟𝑑

2

will be declined by increasing 𝜔
(see Table 3). Generally, fromwhat has been discussed above,
dimensionality 𝑛 and BD-coupling coefficient 𝜔 are playing
the main role in changes of the location of larger divergence
point.

Table 2: Critical points of BD-BI theory for 𝑞 = 0.1,Λ = −1,𝜔 = 10,𝑏 = 1, and 𝑛 = 4.𝛽 𝑟0 𝑟𝑑1 𝑟𝑑2
0.1 0.0056 0.0112 1.7512
1.0 0.0604 0.1251 1.7512
1.5 0.0902 0.1996 1.7512
5.0 0.2056 0.3523 1.7512
100.0 0.2400 0.3600 1.7512
200.0 0.2400 0.3600 1.7512

4. Conclusion

In this paper, the main goal was studying thermodynamical
behavior of the BD-BI and Einstein-BI-dilaton black hole
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Figure 5: HPEM metric.R (continuous line), 𝐶𝑄 (dotted line), and 𝑇 (dot dashed) versus 𝑟+ for Λ = −1, 𝑛 = 4, 𝑞 = 0.1, 𝑏 = 1, and 𝛽 = 1.5.𝜔 = 0.2 (a) and 𝜔 = 200 (b). “Note: both panels in the same line are plotted with the same parameters, but different regions.”

Table 3: Critical points of BD-BI theory for 𝑞 = 0.1, Λ = −1, 𝑛 = 4,𝑏 = 1, and 𝛽 = 1.5.
𝜔 𝑟0 𝑟𝑑1 𝑟𝑑2
0.2 0.0482 0.1132 1.9022
2 0.0742 0.1658 1.8038
200 0.0974 0.2128 1.7318

solutions. Since both of these solutions had very similar
thermodynamical behavior in the context of geometrical
thermodynamics, we have just considered the BD-BI ones.
We have investigated the stability and phase transition in
the canonical ensemble through the use of heat capacity. We
have found that, for having a physical black hole (positive
temperature), there should be a restriction on the value of

the horizon radius, which leads to a physical limitation point.
This point was a border between nonphysical and physical
black hole horizon radius. Moreover, investigating the phase
transition of the black holes exhibited that there exist second-
order phase transition points. In other words, the heat
capacity had one real positive root and two divergence points.
It was shown that these points (the root and divergence
points of heat capacity) were affected by variation of the
BI parameter, BD-coupling constant, and dimensions. From
the presented tables and figures, we have found that the
effect of dimensions on the larger divergence point was more
than other factors and in contrast, the BI parameter had
no sensible effect on this value. The effect of BD-coupling
constant on these three points was so small in a way that, by
applying a dramatic change in this constant, we observed a
small change in the value of such characteristic points.
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It was illustrated that in the context of thermal stability
there exist four regions, specified by the root and two
divergence points of the heat capacity. The root of heat
capacity was referred to as the lower bound of horizon
radius that separated the nonphysical black holes from the
physical ones. Between the two divergencies, we encountered
an unstable state and after the second divergence point black
hole obtained a stable state. It is notable that, for small 𝛽,
because of the nonlinearity effect, the unstable region is larger
than the Maxwell case (large 𝛽) [91].

Eventually, we employed the geometrical thermodynamic
method to study the phase transition. We have shown that
Weinhold, Ruppeiner, and Quevedo metrics failed to provide
a consistent result with the heat capacity’s result. In other
words, their thermodynamical Ricci scalar’s divergencies did
not match the root and divergencies of the heat capacity,
exactly. In some of these methods, we encountered extra
divergency which did not coincide with any of the phase
transition points.

At last, using the HPEM metric, we achieved desirable
results. It was shown that all the divergence points of the

Ricci scalar of thementionedmetric covered the divergencies
and root of the heat capacity. It is worth mentioning that
the behavior of the curvature scalar was different near its
divergence points. In other words, the divergence points of
the Ricci scalar related to root of the heat capacity could
be distinguished from the divergencies related to phase
transition points based on the curvature scalar behavior.

Regarding the used method of this paper, it is interesting
to extend obtained results to an energy dependent space-time
anddiscuss the role of gravity’s rainbow [92–95].We leave this
issue for future work.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

Theauthors acknowledgeM.Momennia and S. Panahiyan for
reading themanuscript.They wish to thank Shiraz University



Advances in High Energy Physics 11

Research Council. This work has been supported financially
by the Research Institute for Astronomy and Astrophysics of
Maragha (RIAAM), Iran.

References
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of Möbius infinities and derivative corrections to Born-Infeld
Lagrangian,” Nuclear Physics. B. Theoretical, Phenomenological,
and Experimental High Energy Physics. Quantum Field Theory
and Statistical Systems, vol. 311, no. 1, pp. 205–252, 1988/89.

[26] R. Leigh, “Dirac-born-infeld action from dirichlet 𝜎-model,”
Modern Physics Letters A, vol. 4, no. 28, article 2767, 1989.

[27] M. H. Dehghani, N. Alinejadi, and S. H. Hendi, “Topological
black holes in Lovelock-Born-Infeld gravity,” Physical Review
D. Particles, Fields, Gravitation, and Cosmology, vol. 77, no. 10,
Article ID 104025, 104025, 8 pages, 2008.

[28] M. H. Dehghani and S. H. Hendi, “Taub-NUT/bolt black holes
in Gauss-Bonnet-Maxwell gravity,” Physical Review. D. Third
Series, vol. 73, no. 8, 084021, 11 pages, 2006.

[29] M. Allaverdizadeh, S. H. Hendi, J. P. Lemos, and A. Sheykhi,
“Extremal Myers-Perry black holes coupled to Born-Infeld
electrodynamics in odd dimensions,” International Journal of
Modern Physics. D. Gravitation, Astrophysics, Cosmology, vol.
23, no. 4, Article ID 1450032, 1450032, 13 pages, 2014.

[30] D. C. Zou, S. J. Zhang, and B.Wang, “Critical behavior of Born-
Infeld AdS black holes in the extended phase space thermody-
namics,” Physical Review D, vol. 89, Article ID 044002, 2014.

[31] R. Banerjee and D. Roychowdhury, “Critical behavior of Born-
Infeld AdS black holes in higher dimensions,” Physical Review
D, vol. 85, Article ID 104043, 2012.

[32] A. Lala and D. Roychowdhury, “Ehrenfest’s scheme and ther-
modynamic geometry in Born-Infeld AdS black holes,” Physical
Review D—Particles, Fields, Gravitation and Cosmology, vol. 86,
no. 8, Article ID 084027, 2012.

[33] R. Banerjee and D. Roychowdhury, “Critical phenomena in
born-infeld AdS black holes,” Physical Review D, vol. 85, Article
ID 044040, 2012.

[34] P. Li, R.-H. Yue, and D.-C. Zou, “Thermodynamics of third
order Lovelock-Born-Infeld black holes,” Communications in
Theoretical Physics, vol. 56, no. 5, pp. 845–850, 2011.

[35] D. Zou, Z. Yang, R. Yue, and P. Li, “Thermodynamics of Gauss-
Bonnet-BORn-Infeld black holes in AdS space,”Modern Physics
Letters A. Particles and Fields, Gravitation, Cosmology, Nuclear
Physics, vol. 26, no. 7, pp. 515–529, 2011.

[36] A. Ghodsi and D. M. Yekta, “Black holes in Born-Infeld
extended new massive gravity,” Physical Review D - Particles,



12 Advances in High Energy Physics

Fields, Gravitation and Cosmology, vol. 83, no. 10, Article ID
104004, 2011.

[37] R. G. Cai and Y. W. Sun, “Shear viscosity from AdS Born-Infeld
black holes,” Journal of High Energy Physics, vol. 9, article 115,
2008.

[38] S. H. Mazharimousavi, M. Halilsoy, and Z. Amirabi, “New non-
abelian black hole solutions in Born-Infeld gravity,” Physical
Review D. Particles, Fields, Gravitation, and Cosmology, vol. 78,
no. 6, Article ID 064050, 064050, 10 pages, 2008.

[39] W. A. Chemissany, M. de Roo, and S. Panda, “Thermodynamics
of Born-Infeld black holes,”Classical and QuantumGravity, vol.
25, no. 22, Article ID 225009, 225009, 11 pages, 2008.

[40] Y. S. Myung, Y.-W. Kim, and Y.-J. Park, “Thermodynamics and
phase transitions in the Born-Infeld-anti-de Sitter black holes,”
Physical Review D, vol. 78, no. 8, Article ID 084002, 2008.

[41] Y. S. Myung, Y.-W. Kim, and Y.-J. Park, “Thermodynamics of
Einstein-Born-Infeld black holes in three dimensions,” Physical
Review D. Particles, Fields, Gravitation, and Cosmology, vol. 78,
no. 4, 044020, 8 pages, 2008.
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