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To solve the problems of low loading precision, slow response speed, and poor adaptive ability of a mobile dynamometer in a
tractor traction test, a PID control strategy based on a radial basis function neural network with self-learning and adaptive ability
is proposed. The mathematical model of the loading system is established, the algorithm of adaptive control is described, and the
loading control method is simulated with MATLAB software. The system, which uses the NN-PID (neural network PID) control
strategy, is used to test a YTO-MF554 tractor.Then, the proposed control strategy is validated. Results show that when the traction
increases from 0 to 10 kN, the response time of the test system is 1.5 s, the average traction force in the stability range is 10.13 kN,
and the maximum relative error of traction force is 2.2%. This control strategy can improve the response speed and steady-state
accuracy and enhance the adaptive ability of the mobile dynamometer vehicle loading system. This study provides a reference for
designing the adaptive controller of the mobile dynamometer vehicle loading system.

1. Introduction

The loading process of mobile dynamometer vehicles pre-
sents many uncertainties in the tractor traction test. Fre-
quently tuning the parameters is necessary for traditional
control methods, thus disrupting the test. Moreover, the
traditional system has low efficiency and accuracy. A consid-
erable number of theories and practices have shown that the
application of self-adaptable control technology to the test
system will improve the efficiency and accuracy of the test
system [1–4].

The adaptive control algorithm and its application have
been studied by many local and international researchers.
Locally, Wang et al. proposed the fuzzy adaptive PID control
for the nonlinear and time-variant mobile dynamometer of
an automobile [5]. He et al. expounded the output prediction
of complex nonlinear systems based on the radial basis
function (RBF) neural network and obtained well-predicted
results [6]. Xia and Wang proposed a new method that
combined the RBF neural network and single neuron PID.
This method was applied to the speed control of a switched
reluctance motor with good control effect [7]. Wang et al.
applied RBF-PID to improve the temperature control of a
thermal power plant [8]. Internationally, Anwar optimized

PID controller parameters based on a genetic algorithm and
achieved accurate real-time control for retarder loading [9].
Dash et al. expounded the application of the RBF neural
network PID in controlling an electrical power unit [10]. D.
L. Yu and D. W. Yu investigated the adaptive adjustment
algorithm of RBF neural networks [11]. However, there are
few studies on the adaptive control of loading for a mobile
dynamometer vehicle in the tractor traction test.

In this study, theRBFneural network PID control strategy
is used for the load control of the mobile dynamometer
vehicle.The system output traction has a good follow effect in
comparison with input load. And the output load for power
wagon random loading system can reproduce the tractive
load for tested tractor reasonably. This control strategy can
improve loading precision and response speed and enhance
the self-adaptive ability of the control system. This method
can also provide a reference for the investigation of mobile
dynamometer vehicle loading control.

2. Mathematical Model of the Mobile
Dynamometer Vehicle Loading System

The mobile dynamometer vehicle is modified with a YTO-
1304 tractor. The tractor power take-off is connected to
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an electric eddy current retarder, which brakes the mobile
dynamometer vehicle by loading the transmission system.

2.1. Model of the Eddy Current Retarder. The eddy current
retarder is mainly composed of front and rear rotor disks and
eight excitation coils with an iron core between the disks.The
following simplifications and assumptions aremadewhen the
loading torque of the retarder is calculated: the rotor disks
are simplified as annular plates; the magnetic field that is
produced by the coil is only distributed in the circular region
andmagnetic flux leakage is ignored; the relative permeability
of the rotor disk is considered constant; and hysteresis losses
and magnetic saturation are ignored. A detailed deduction is
presented in [12], wherein the loading torque is denoted by
the following:

𝑇𝑑
= 90√2𝑁𝑝 (𝜌𝜇0)3/2 (𝑁𝐼)2 𝜋3𝑑4√𝜔
√𝜇𝑟 arcsin (𝑑/2𝑅𝑙) (16𝜋𝜌𝑙𝑔 + √2𝑘𝑒𝜇0√2𝜌/𝜔𝜇0𝜇𝑟 (𝜋𝑑2/4) 𝜔)2 ,

(1)

where 𝑇𝑑 is loading torque, N⋅m; 𝑁𝑝 is the number of
magnetic pole pairs; 𝜌 is the resistivity of rotor disk, Ω⋅m; 𝜇0
is the permeability of the vacuum, 4𝜋 × 10−7N⋅A−2;𝑁 is the
number of turns of excitation coils; 𝐼 is the excitation current,
A; 𝑑 is the magnetic core diameter of the excitation coil, m;𝜔 is the angular velocity of the magnetic field changes, rad/s;𝜇𝑟 is the relative magnetic permeability of the rotor disk; 𝑅𝑙 is
the distance between the center of the magnetic pole and the
center of the rotor disk, m; 𝑙𝑔 is the width of air gap m; and 𝑘𝑒
is the conversion rate (𝑘𝑒 usually takes 1.5).

Given that 𝜔 = 2𝜋𝑁𝑝𝑛/60, the loading torque is
simplified as follows:

𝑇𝑑 = 𝑘1𝐼2√𝑛(𝑘2 + 𝑘3√𝑛)2 , (2)

where 𝑘1, 𝑘2, and 𝑘3 are parameters that are related to the
structure and material of the eddy current retarder.

A simplified derivation of the retarder transfer function is
as follows: the excitation coil of the eddy current retarder can
be simplified as the resistance and inductance in series [13].
Therefore, the transfer function of the excitation voltage and
current is as follows: 𝐼 (𝑠)𝑈 (𝑠) = 1𝐿𝑠 + 𝑅, (3)

where 𝐿 is the coil inductance of the eddy current retarder,
H; 𝑅 is the coil resistance of the retarder, Ω; and 𝑈 is the
excitation voltage, V.

A simplifiedmethod for establishing the transfer function
of the DC dynamometer is based on [14]. The eddy current
retarder with nonlinear properties can be simplified as a
linear element with the assumption that the change rate of
the excitation current is approximately constant when the
excitation voltage changes. Combining (2) and (3) yields the
transfer function of the retarder:

𝑇𝑑 (𝑠)𝑈 (𝑠) = 2𝑘󸀠𝑠 (𝐿𝑠 + 𝑅)𝑒−𝜏𝑠. (4)

Retarder

Td Tgd

Figure 1: Variable symbols of the retarder.
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Figure 2: Variable symbols of gear pairs.

In the formula, 𝑘󸀠 is a variable, which is related to the
structure, material, and current change rate of the eddy
current retarder.

2.2. Model of Loading Transmission System

2.2.1. Eddy Current Retarder. The moment of inertia of the
rotor disk is considered in establishing the transfer function
of the retarder. The retarder is a brake component, which is
an external drive that provides power. The dynamic variables
of the retarder are shown in Figure 1.

𝐽𝑑 d2𝜃𝑑d𝑡2 + 𝑇𝑑 = 𝑇𝑔, (5)

where 𝐽𝑑 is the moment of inertia of the retarder rotor disk;
kg⋅m2; 𝜃𝑑 is the rotation angle of the retarder rotor disk rad;𝑇𝑔 is the input torque of the retarder N⋅m; and 𝑇𝑑 is the
loading torque of the retarder N⋅m.

2.2.2. Gear Pairs. The system variables of the gear pairs are
shown in Figure 2.

𝑇𝑓 = 𝐽𝑔 d2𝜃𝑔d𝑡2 + 𝐵𝑔 d𝜃𝑔d𝑡 + 𝑇𝑔𝑖𝑔
𝜃𝑔𝑖𝑔 = 𝜃𝑑,

(6)

where 𝐽𝑔 is the moment of inertia of gear pairs, kg⋅m2; 𝐵𝑔 is
the damping coefficient of the friction torque, N⋅m⋅s⋅rad−1; 𝜃𝑔
is the rotation angle of the transmission output shaft, rad; 𝑖𝑔
is the transmission ratio of the gear pair; and 𝑇𝑓 is the torque
of the transmission output shaft, N⋅m.
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2.2.3. Final Drive. The system variables of the final drive are
shown in Figure 3.

𝑇𝑤 = 𝑇𝑓𝑖𝑓 + 𝐵𝑓 d𝜃𝑓d𝑡 + 𝐽𝑓 d
2𝜃𝑓
d𝑡2

𝜃𝑓𝑖𝑓 = 𝜃𝑔,
(7)

where 𝐽𝑓 is themoment of inertia of the final drive, kg⋅m2; 𝐵𝑓
is the damping coefficient of the final drive friction torque,
N⋅m⋅s⋅rad−1; 𝑖𝑓 is the final drive ratio; 𝑇𝑤 is the torque of
wheels N⋅m; and 𝜃𝑓 is the rotation angle of the final drive
output shaft rad.

2.2.4. Wheels. The slip ratio of mobile dynamometer vehicle
is ignored and the wheels are purely rolling. The transient
dynamic analysis is performed on the entire system when the
test tractor is loaded. Then, the following conclusions can be
obtained:

𝑇𝑤 + 𝐽𝑤 d2𝜃𝑤d𝑡2 + 𝐵𝑤 d𝜃𝑤d𝑡 + 𝛿𝑡𝑀𝑡𝑟𝑡2 d
2𝜃𝑤
d𝑡2

= (𝐹𝑇 − 𝐹𝑓𝑡) 𝑟𝑡
(8)

𝐹𝑡 − 𝐹𝑓𝑏 − 𝐹𝑇 = 𝛿𝑏𝑀𝑏𝑟𝑡 d2𝜃𝑤d𝑡2 , (9)

where 𝐽𝑤 is the moment of inertia of the wheels, kg⋅m2;𝐵𝑤 is the damping coefficient of the friction torque of the
wheels, N⋅m⋅s⋅rad−1; 𝐹𝑇 is the traction of the system, N;𝐹𝑓𝑡 is the rolling resistance of the mobile dynamometer, N;𝑟𝑡 is the rolling radius of the driving wheels of the mobile
dynamometer vehicle, m; 𝐹𝑡 is the driving force of the testing
tractor, N; 𝐹𝑓𝑏 is the rolling resistance of the tested tractor,
N; 𝜃𝑤 is the rotation angle of the driving wheels of the
mobile dynamometer vehicle, rad; 𝑀𝑡 is the quality of the
mobile dynamometer vehicle, kg; 𝑀𝑏 is the quality of the
tested tractor, kg; 𝛿𝑏 is the conversion factor of tested tractor’s
revolving mass, 𝛿𝑏 > 1; and 𝛿𝑡 is the conversion factor of
mobile dynamometer vehicle’s revolving mass, 𝛿𝑡 > 1.

Based on the preceding summary, the following conclu-
sions can be obtained:

𝐽𝑑𝑖2𝑔𝑖2𝑓 d2𝜃𝑤d𝑡2 + 𝑇𝑑𝑖𝑔𝑖𝑓 + 𝐽𝑔𝑖2𝑓 d
2𝜃𝑤
d𝑡2 + 𝐵𝑔𝑖2𝑓 d𝜃𝑤d𝑡

+ 𝐽𝑓 d2𝜃𝑤d𝑡2 + 𝐵𝑓 d𝜃𝑤d𝑡 + 𝐽𝑤 d
2𝜃𝑤
d𝑡2 + 𝐵𝑤 d𝜃𝑤d𝑡

+ 𝛿𝑡𝑀𝑡𝑟𝑡2 d2𝜃𝑤d𝑡2 = (𝐹𝑇 − 𝐹𝑓𝑡) 𝑟𝑡.
(10)

If we assume that 𝐽eq = 𝐽𝑑𝑖2𝑔𝑖2𝑓 + 𝐽𝑔𝑖2𝑓 + 𝐽𝑓 + 𝐽𝑤, 𝐵eq = 𝐵𝑔𝑖2𝑓 +𝐵𝑓 + 𝐵𝑤, then
𝐽eq d2𝜃𝑤d𝑡2 + 𝐵eq d𝜃𝑤d𝑡 + 𝑇𝑑𝑖𝑔𝑖𝑓 + 𝛿𝑡𝑀𝑡𝑟𝑡2 d

2𝜃𝑤
d𝑡2

= (𝐹𝑇 − 𝐹𝑓𝑡) 𝑟𝑡,
(11)
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Figure 3: Variable symbols of the final drive.

where 𝐽eq is the equivalent moment of inertia, kg⋅m2, and𝐵eq is the equivalent damping coefficient of friction torque,
N⋅m⋅s⋅rad−1.

Assuming that the initial value of the system is zero, the
rolling resistance is very small and can be ignored. Laplace
transform is conducted for formulas (9) and (11), 𝜃𝑤 can be
removed, and the result is as follows:

𝐹𝑇 (𝑠)𝑇𝑑 (𝑠) =
𝑖𝑔𝑖𝑓𝛿𝑏𝑀𝑏𝑟𝑡𝑠[(𝛿𝑏𝑀𝑏 + 𝛿𝑡𝑀𝑡) 𝑟𝑡2 + 𝐽eq] 𝑠 + 𝐵eq . (12)

Based on the preceding summary, the transfer function of
the entire system is shown as follows:

𝐹𝑇 (𝑠)𝑈 (𝑠) = 2𝑘󸀠𝑖𝑔𝑖𝑓𝛿𝑏𝑀𝑏𝑟𝑡[(𝛿𝑏𝑀𝑏 + 𝛿𝑡𝑀𝑡) 𝑟𝑡2 + 𝐽eq] 𝑠 + 𝐵eq
⋅ 1𝐿𝑠 + 𝑅𝑒−𝜏𝑠.

(13)

3. Design of the Neural Network
PID Controller

Frequently tuning the parameters is necessary if the non-
linearity, hysteresis, time-variation, and model uncertainty
of the system are controlled by a traditional PID controller.
The neural network control technology does not need the
accurate mathematical model of the object and has fine self-
learning and self-adaptation abilities. The parameters of the
RBF-PID controller can be automatically corrected based
on the changing conditions; therefore, control precision and
response speed are improved [15, 16].

3.1. The RBF Neural Network Model. The RBF neural net-
work function solves nonlinear problems, which change into
linear ones, by mapping the low-dimension original space
to the high-dimension feature space and approximating any
continuous function with the weighted sum of multiple basis
functions [17, 18].TheRBF neural network structure is shown
in Figure 4.

In the network structure, 𝑋 = [𝑥1, 𝑥2, . . . , 𝑥𝑛]T, is the
input,𝐻 = [ℎ1, ℎ2, . . . , ℎ𝑚]T is the vector of radial basis, andℎ𝑗 is usually the Gauss function:

ℎ𝑗 = exp(−
󵄩󵄩󵄩󵄩󵄩𝑋 − 𝐶𝑗󵄩󵄩󵄩󵄩󵄩22𝑏2𝑗 ) (𝑗 = 1, 2, . . . , 𝑚) , (14)
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Figure 4: RBF neural network structure.

where 𝐶𝑗 = [𝑐𝑗1, 𝑐𝑗2, . . . , 𝑐𝑗𝑛]T is the center vector of the 𝑛th
node and 𝐵 = [𝑏1, 𝑏2, . . . , 𝑏𝑚]T is the width of the basis vector.𝑊 = [𝑤1, 𝑤2, . . . , 𝑤𝑚]T is the weight vector of the
network, and the output of the network is shown as follows:

𝑦𝑚 (𝑘) = 𝑤1ℎ1 + 𝑤2ℎ2 + ⋅ ⋅ ⋅ + 𝑤𝑚ℎ𝑚. (15)

The optimization objective function of the identifier is shown
as follows:

𝐽 = 12 (𝑦out (𝑘) − 𝑦𝑚 (𝑘))2 . (16)

According to the gradient descent method, the iteration
algorithms of the network parameters are as follows:

𝑤𝑗 (𝑘) = 𝑤𝑗 (𝑘 − 1) + 𝜂 (𝑦out (𝑘) − 𝑦𝑚 (𝑘)) ℎ𝑗
+ 𝛼 (𝑤𝑗 (𝑘 − 1) − 𝑤𝑗 (𝑘 − 2))

Δ𝑏𝑗 = (𝑦out (𝑘) − 𝑦𝑚 (𝑘)) 𝑤𝑗ℎ𝑗
󵄩󵄩󵄩󵄩󵄩𝑋 − 𝐶𝑗󵄩󵄩󵄩󵄩󵄩2𝑏3𝑗

𝑏𝑗 (𝑘) = 𝑏𝑗 (𝑘 − 1) + 𝜂Δ𝑏𝑗 + 𝛼 (𝑏𝑗 (𝑘 − 1) − 𝑏𝑗 (𝑘 − 2))
Δ𝑐𝑗𝑖 = (𝑦out (𝑘) − 𝑦𝑚 (𝑘)) 𝑤𝑗 𝑥𝑗 − 𝑐𝑗𝑖𝑏2𝑗
𝑐𝑗𝑖 (𝑘) = 𝑐𝑗𝑖 (𝑘 − 1) + 𝜂Δ𝑐𝑗𝑖

+ 𝛼 (𝑐𝑗𝑖 (𝑘 − 1) − 𝑐𝑗𝑖 (𝑘 − 2)) ,

(17)

where 𝜂 is the learning rate and 𝛼 is the momentum factor.
The Jacobin matrix indicates that, with regard to the

sensitivity of the output to input changes, the algorithm is as
follows:

𝜕𝑦 (𝑘)𝜕Δ𝑢 (𝑘) ≈ 𝜕𝑦𝑚 (𝑘)𝜕Δ𝑢 (𝑘) =
𝑚∑
𝑗=1

𝑤𝑗ℎ𝑗 𝑐𝑗𝑖 − 𝑥1𝑏2𝑗 , (18)

where 𝑥1 = Δ𝑢(𝑘).
3.2. Control Principle of RBF-PID. The control principle of
the loading system is shown in Figure 5. According to the
experimental system proposed in this paper, the input is the
desired traction; the output is the actual loading force, which
is measured by drawing the force transducer; and the control
object is the loading system.The RBF neural network realizes

u

+
+

−

−

error PID

Gradient descent
algorithm

Loading
system

Drawing force
transducer

RBF neural network
Jacobian identification information

rＣＨ
yＩＯＮ

ymＩＯＮ

Figure 5: RBF-PID control principle.

online identification. The parameters of the PID controller
are dynamically tuned in accordance with the identification
information and optimization index.

The control algorithmuses the increasing type of PID.The
error is shown as follows:

error (𝑘) = 𝑟in (𝑘) − 𝑦out (𝑘) . (19)

The algorithm is described as

𝑢 (𝑘) = 𝑢 (𝑘 − 1) + Δ𝑢 (𝑘)
Δ𝑢 (𝑘)
= 𝑘𝑝 (error (𝑘) − error (𝑘 − 1)) + 𝑘𝑖error (𝑘)
+ 𝑘𝑑 (error (𝑘) − 2error (𝑘 − 1) + error (𝑘 − 2)) .

(20)

The optimization index of the neural network is

𝐸 (𝑘) = 12error (𝑘)2 . (21)

𝑘𝑝, 𝑘𝑖, and 𝑘𝑑 are tuned according to the gradient descent
method.

Δ𝑘𝑝 = −𝜂𝑝 𝜕𝐸𝜕𝑘𝑝 = −𝜂𝑝 𝜕𝐸𝜕𝑦 𝜕𝑦𝜕Δ𝑢 𝜕Δ𝑢𝜕𝑘𝑝
= −𝜂𝑝error (𝑘) 𝜕𝑦𝜕Δ𝑢 [error (𝑘) − error (𝑘 − 1)]
Δ𝑘𝑖 = −𝜂𝑖 𝜕𝐸𝜕𝑘𝑖 = −𝜂𝑖 𝜕𝐸𝜕𝑦 𝜕𝑦𝜕Δ𝑢 𝜕Δ𝑢𝜕𝑘𝑖 = −𝜂𝑖error (𝑘) 𝜕𝑦𝜕Δ𝑢error (𝑘)
Δ𝑘𝑑 = −𝜂𝑑 𝜕𝐸𝜕𝑘𝑑 = −𝜂𝑑 𝜕𝐸𝜕𝑦 𝜕𝑦𝜕Δ𝑢 𝜕Δ𝑢𝜕𝑘𝑑
= −𝜂𝑑error (𝑘) 𝜕𝑦𝜕Δ𝑢 [error (𝑘) − 2error (𝑘 − 1) + error (𝑘 − 2)] ,

(22)

where 𝜕𝑦/𝜕Δ𝑢 is the Jacobin information of the controlled
object, which can be calculated by the neural network; 𝜂𝑝 is
the learning rate of the proportional unit; 𝜂𝑖 is the learning
rate of the integral unit; and 𝜂𝑑 is the learning rate of the
differential unit.

4. Simulation Analysis of Loading
Control System

The structure of the RBF neural network is 3-6-1, whereinΔ𝑢(𝑘),𝑦out(𝑘), and𝑦out(𝑘−1) are inputs. After simulation and
tests, the initialization parameters are determined as 𝜂 = 0.25,
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Table 1: Main parameters of the instruments.

Name Type
specification Main characteristics

Wheel speed sensor ZKE4006 Output waveform is square wave; the number of pulses is 1024; the maximum rotor
speed is 6000 rpm.

Fuel consumption
meter YH-DP2006 The measurement range is 0.5–120 L/h; the maximum relative error is 0.5%; the

maximum pressure of output is 800 kpa.
Engine revolution
speed sensor CZ400 The measurement range is 0–120000 rpm; the output signal is square wave; the

range of installation gap is 0.5–3mm.
Drawing force
transducer BLR-1/10000 The measurement range is 0–10000 kg; the allowable overload value is 20% RL.

Data collection
instrument VDM-BS/TL The instrument is carried on a secondary development according to the

requirement.
GPS vehicle speed
sensor DR-168SF Tracking capability is −159 dBm; the capture ability is −148 dBm.

Wireless transmission
module YL-500IW The communication speed is 57600 bps; the transmission distance is longer than

3 km.

𝛼 = 0.04, 𝑘𝑝 = 15, 𝑘𝑖 =0.1, 𝑘𝑑 =0.1, 𝜂𝑝 =0.68, 𝜂𝑖 =0.68, and 𝜂𝑑 =
0.35. The initial value of the weight vector, the node center,
and thewidth value of the basis function are shown as follows:

𝑊
= [−0.5132, −0.9216, 0.2853, 0.6059, −0.2210, −0.3275]T ;
C

= [[[
0.5862, 0.6302, −0.8965, −2.0365, −2.1796, 1.5864−0.9973, −0.3059, 0.9928, 0.5626, 2.4058, 0.5031−2.1451, −0.2095, 1.6534, 2.7786, 1.0592, 2.1782

]]]
T

;
𝐵 = [1.5039, 0.3736, 2.6521, 2.4361, 02505, 1.5362]T .

(23)

A detailed simulation was conducted with MATLAB
software. According to the characteristics of progressive
loading, the traction is loaded from 0 to 10 kN.The response
curves of two control strategies are shown in Figure 6. The
RBF neural network PID, compared with traditional PID,
effectively inhibits severe oscillation and realizes steady-state,
error-free tracking.

5. Verification of the Control Strategy by
Vehicle Test

All the selected instruments in the testing system are shown
in Table 1.

The loading test of the YTO-MF554 tractor was con-
ducted based on the designed testing system.The test picture
is shown in Figure 7. The test pavement is concrete, the
temperature is 20∘C, the pressure is 100.1 kPa, and the relative
humidity is 65%. The height of the traction point is 580mm
and the front and rear tire pressures are both 100 kPa.

The output traction data is acquired when the traction
is loaded from 0 to 10 kN, drawing the target value and the
actual output value curve shown in Figure 8. The traction
error in the stability interval (1.5–10 s) is shown in Figure 9.As
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Figure 6: Comparison of response curves of two control strategies.

shown in Figures 8 and 9, the response time of the complete
loading process is 1.5 s, no obvious overshoot exists, themaxi-
mum traction error is 0.22 kN, and the tractionmean value is
10.13 kN in the stability interval. The parameters of the RBF-
PID controller are self-adjusted; therefore, the response speed
is improved and the loading process is more stable.Moreover,
the severe oscillation of the test system is avoided,which helps
improve the test accuracy of each testing parameter.

6. Conclusion

(1) A RBF neural network for the PID control strategy of the
mobile dynamometer vehicle loading system is designed.The
structure and initial parameters of the RBF neural network
are determined by a method that combined simulations and
tests. RBF-PID can optimize PID parameters in real time.
The simulation result shows that RBF-PIDprevents the severe
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Mobile dynamometer
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Figure 7: Traction test of YTO-MF554.
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Figure 8: The change of system input, output, and retarder input
voltage.
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Figure 9: Traction error.

oscillation of the test system by improving the speed of
dynamic response and steady-state precision of the system.(2) Based on the RBF-PID controller design, the loading
test of the YTO-MF554 tractor was conducted according to
the regulations of the tractor traction performance test. In
the test, the mobile dynamometer vehicle is loaded from

0 to 10 kN and the loading time is 10 s. The response time is
1.5 s and no obvious overshoot occurred during the loading
process. The maximum traction error is 0.22 kN and the
mean traction value is 10.13 kN in the stability interval. Test
efficiency and precision are obviously improved. Frequently
tuning the parameters of the controller is no longer necessary.
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