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Formation control problems for unmanned aerial vehicle (UAV) swarm systems with directed and switching topologies are
investigated. A general formation control protocol is proposed firstly. Then, by variable transformation, the formation problem
is transformed into a consensus problem, which can be solved by a novel matrix decomposition method. Sufficient conditions
to achieve formation with directed and switching topologies are provided and an explicit expression of the formation reference
function is given. Furthermore, an algorithm to design the gainmatrices of the protocol is presented. Finally, numerical simulations
are provided to illustrate the effectiveness of the theoretical results.

1. Introduction

In the past decades, unmanned aerial vehicles (UAVs) have
been widely used in civilian and military areas, such as
surveillance and reconnaissance [1, 2] and target search and
localization [3]. Since the performance of a team of UAVs
working cooperatively exceeds the performance of individual
UAVs, formation control of UAVs is of importance and has
received a lot of attention.

The formation control of UAVs has been studied with
many different methods, such as leader–follower [4], behav-
ior [5], and virtual structure-based [6] approaches. Recently,
with the development of consensus theory [7–15], some
related methods are also used to deal with the formation
control problems of UAVs. Consensus means that all agents
reach a common state.The results in [16] show that consensus
approaches can be used to deal with formation control prob-
lems, and leader–follower, behavior, and virtual structure-
based formation control approaches are special cases of
consensus-based approaches.

Based on consensus method, Abdessameud and Tayebi
[17] proposed controllers for UAV swarm systems to achieve
formation in the presence of communication delays. A con-
sensus protocol together with an output feedback lineariza-
tionmethod is presented in [18] such that theUAVswarm sys-
tems can achieve partially time-varying formation. Besides,

indoor and outdoor flight experiments for quadrotor swarm
systems to achieve formation by consensus approaches are
carried out in [19] and [20], respectively. Based on consensus
theory, we know that the achievement of formation depends
on not only the individual UAV dynamics but also the struc-
ture of the networks between UAVs which can be modeled
by directed and undirected graphs. However, the interaction
topologies between UAVs in [19, 20] are assumed to be fixed.
In practical applications, the interaction topologies of UAV
swarm systemsmay be switching due to the fact that the com-
munication channel may fail and new channels may be cre-
ated during flight. Time-varying formation control for UAV
swarm systems and high-order LTI systems with switching
interaction topologies are studied by Dong [20, 21], but the
topologies are assumed to be undirected. To the best of our
knowledge, there is still work to do on formation control of
UAV swarm systems with directed and switching topologies.

In this paper, we aim to solve the formation problem of
UAV swarm systems with directed and switching topologies.
Compared with the existing results, the assumptions of the
communication topology are quite general.The remainder of
this paper is organized as follows. In Section 2, some neces-
sary concepts and useful results on graph theory are summa-
rized and the problem formulation is given. Main theoretical
results are proposed in Section 3. In Section 4, a numerical
simulation is presented. Section 5 is the conclusion.
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2. Preliminaries and Problem Description

2.1. Notations and Graph Theory. In this paper, the following
notations will be used. 𝑅𝑛×𝑛 and 𝐶

𝑛×𝑛 denote the set of 𝑛 × 𝑛

real and complex matrices, respectively. For 𝜇 ∈ 𝐶, the real
part is Re(𝜇). ⊗ denotes the Kronecker product. 𝐼

𝑛
is the iden-

titymatrix of order 𝑛. For a squarematrix𝐴, 𝜆(𝐴) denotes the
eigenvalues of matrix 𝐴. 𝐴 > 0 (𝐴 ≥ 0) means that 𝐴 is pos-
itive definite (positive semidefinite). max{𝜆(𝐴)} (min{𝜆(𝐴)})
denotes the largest (smallest) eigenvalue of the matrix 𝐴.

A directed graph 𝐺 = (V,E,A) contains the vertex set
V = {1, 2, . . . , 𝑁}, the directed edges setE ⊆ V×V, and the
adjacency matrix A = [𝑎

𝑖𝑗
]
𝑁×𝑁

with nonnegative elements
𝑎
𝑖𝑗
. 𝑎
𝑖𝑗

= 1 if there is a directed edge from vertex 𝑗 to 𝑖; 𝑎
𝑖𝑗

= 0,
otherwise. The Laplacian matrix of the graph 𝐺 is defined as
𝐿 = [𝐿

𝑖𝑗
]
𝑁×𝑁

, where 𝐿
𝑖𝑖

= ∑
𝑗 ̸=𝑖

𝑎
𝑖𝑗
and 𝐿

𝑖𝑗
= −𝑎
𝑖𝑗
(𝑖 ̸= 𝑗).

Zero is an eigenvalue of 𝐿with the eigenvector 1
𝑁
. A directed

graph is said to have a spanning tree if there is a vertex such
that there is a directed path from this vertex to every other
vertex.

Lemma 1 (see [8]). Zero is a simple eigenvalue of 𝐿 and all the
other nonzero eigenvalues have positive real parts if and only if
the graph has a directed spanning tree.

2.2. ProblemDescription. ConsiderUAV swarm systemswith
𝑁UAVs.The interaction topology of theUAV swarm systems
can be described by a directed graph𝐺, in whichUAV 𝑖 can be
denoted by a vertex and the interaction channel fromUAV 𝑖 to
UAV 𝑗 can be denoted by an edge. Comparedwith the attitude
dynamics, the trajectory dynamics of each UAV have much
larger time constants, which means the attitude controller
and trajectory controller can be designed separately. On the
formation level, only trajectory control needs to be consid-
ered. Therefore, in this brief, the dynamics of each UAV can
be described by the following double integrator [18, 21, 22]:

�̇�
𝑖
(𝑡) = V

𝑖
(𝑡) ,

V̇
𝑖
(𝑡) = 𝑢

𝑖
(𝑡) ,

(1)

where 𝑖 = 1, 2, . . . , 𝑁, 𝑥
𝑖
(𝑡) ∈ 𝑅

𝑛 and V
𝑖
(𝑡) ∈ 𝑅

𝑛 denote
the position and velocity vectors of UAV 𝑖, respectively,
and 𝑢

𝑖
(𝑡) ∈ 𝑅

𝑛 are the control inputs. In the following, for
simplicity of description, it is assumed that 𝑛 = 1, if not
otherwise specified.

Therefore, UAV swarm systems (1) can be rewritten as

�̇�
𝑖
(𝑡) = 𝐴𝜉

𝑖
(𝑡) + 𝐵𝑢

𝑖
(𝑡) , (2)

where 𝜉
𝑖
(𝑡) = [𝑥

𝑖
(𝑡), V
𝑖
(𝑡)]
𝑇, 𝐴 = [

0 1

0 0
], 𝐵 = [

0

1
].

A formation is specified by a vector ℎ(𝑡) = [ℎ
𝑇

1
(𝑡), ℎ
𝑇

2
(𝑡),

. . . , ℎ
𝑇

𝑁
(𝑡)]
𝑇

∈ 𝑅
2𝑁 with ℎ

𝑖
(𝑡) = [ℎ

𝑖𝑥
(𝑡), ℎ
𝑖V(𝑡)]
𝑇 (𝑖 = 1,

2, . . . , 𝑁) continuously differentiable and ℎ
𝑖V(𝑡) being the

derivative of ℎ
𝑖𝑥
(𝑡). Let ℎ

𝑥
(𝑡) = [ℎ

𝑇

𝑥1
(𝑡), ℎ
𝑇

𝑥2
(𝑡), . . . , ℎ

𝑇

𝑥𝑁
(𝑡)]
𝑇

and let ℎV(𝑡) = [ℎ
𝑇

V1(𝑡), ℎ
𝑇

V2(𝑡), . . . , ℎ
𝑇

V𝑁(𝑡)]
𝑇; then one has that

if ℎV(𝑡) are not equal to zeros, the formation is time-varying.

Definition 2 (see [21]). UAV swarm systems (2) are said
to achieve formation ℎ(𝑡) if there exists a function 𝑟(𝑡) =

[𝑟
𝑥
(𝑡), 𝑟V(𝑡)] ∈ 𝑅

2 with 𝑟V(𝑡) being the derivative of 𝑟𝑥(𝑡) such
that

lim
𝑡→∞

(𝜉
𝑖
(𝑡) − ℎ

𝑖
(𝑡) − 𝑟 (𝑡)) = 0, 𝑖 = 1, 2, . . . , 𝑁, (3)

where 𝑟(𝑡) is called a formation center function.

In this paper, the communication topology ismolded by a
directed graph andwe assume that the communication topol-
ogy is time-varying. Let �̂� = {𝐺

1

, 𝐺
2

, . . . , 𝐺
𝑝

}, 𝑝 ≥ 1, be the
set of all possible directed topologies.We define the switching
signal 𝜎(𝑡), where 𝜎(𝑡) : [0, +∞) → P = {1, 2, . . . , 𝑝}.
0 = 𝑡
0
< 𝑡
1
< 𝑡
2
< ⋅ ⋅ ⋅ denote the switching instants of 𝜎(𝑡).

Let 𝐺𝜎(𝑡) ∈ �̂� be the communication topology at time 𝑡. 𝐿𝜎(𝑡)

stands for the corresponding Laplacian matrix of 𝐺𝜎(𝑡).

Assumption 3. Each possible graph 𝐺
𝜎(𝑡)

∈ �̂� is fixed and
contains a directed spanning tree.

Let 𝜆𝜎(𝑡)
𝑖

(𝑖 = 1, 2, . . . , 𝑁) be the eigenvalues of the Lapla-
cian matrix 𝐿

𝜎(𝑡). Without loss of generality, it is assumed
that Re(𝜆𝜎(𝑡)

1
) ≤ Re(𝜆𝜎(𝑡)

2
) ≤ ⋅ ⋅ ⋅ ≤ Re(𝜆𝜎(𝑡)

𝑁
). Furthermore,

from Lemma 1, one can obtain that 𝜆
𝜎(𝑡)

1
= 0 and 0 ≤

Re(𝜆𝜎(𝑡)
2

) ≤ ⋅ ⋅ ⋅ ≤ Re(𝜆𝜎(𝑡)
𝑁

). Let 𝜆min = min{𝜆𝑚
𝑖

(∀𝑚 ∈ P; i =

2, 3, . . . , 𝑁)}.
Consider the following formation protocol:

𝑢
𝑖
(𝑡) = 𝐾

1
(𝜉
𝑖
(𝑡) − ℎ

𝑖
(𝑡))

+ 𝐾
2

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
((𝜉
𝑗
(𝑡) − ℎ

𝑗
(𝑡)) − (𝜉

𝑖
(𝑡) − ℎ

𝑖
(𝑡)))

+ ℎ̇
𝑖V (𝑡) , 𝑖 = 1, 2, . . . , 𝑁,

(4)

where 𝑖 = 1, 2, . . . , 𝑁, 𝐾
1
∈ 𝑅
1×2 and 𝐾

2
∈ 𝑅
1×2 are constant

gain matrices, and 𝑎
𝑖𝑗
is defined as in Section 2.1. Let 𝜉(𝑡) =

[𝜉
𝑇

1
(𝑡), 𝜉
𝑇

2
(𝑡), . . . , 𝜉

𝑇

𝑁
(𝑡)]
𝑇, let ℎ

𝑥
(𝑡) = [ℎ

𝑇

1𝑥
(𝑡), ℎ
𝑇

2𝑥
(𝑡), . . . ,

ℎ
𝑇

𝑁𝑥
(𝑡)]
𝑇, and let ℎV(𝑡) = [ℎ

𝑇

1V(𝑡), ℎ
𝑇

2V(𝑡), . . . , ℎ
𝑇

𝑁V(𝑡)]
𝑇. Under

protocol (4), the UAV swarm systems (2) can be written in a
compact closed-loop form as follows:

�̇� (𝑡) = (𝐼
𝑁

⊗ (𝐴 + 𝐵𝐾
1
) − 𝐿
𝜎(𝑡)

⊗ (𝐵𝐾
2
)) 𝜉 (𝑡)

− (𝐼
𝑁

⊗ 𝐵𝐾
1
− 𝐿
𝜎(𝑡)

⊗ (𝐵𝐾
2
)) ℎ (𝑡)

+ (𝐼
𝑁

⊗ 𝐵) ℎ̇V (𝑡) .

(5)

This brief mainly investigates how to design the gain
matrices in protocol (4) for the UAV swarm systems (5) to
achieve the formation ℎ(𝑡).
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3. Main Results

Let 𝑧
𝑖
(𝑡) = 𝜉

𝑖
(𝑡) − ℎ

𝑖
(𝑡), 𝑧(𝑡) = [𝑧

𝑇

1
(𝑡), 𝑧
𝑇

2
(𝑡), . . . , 𝑧

𝑇

𝑁
(𝑡)]
𝑇. Then

the UAV swarm systems can be rewritten as follows:

�̇� (𝑡) = (𝐼
𝑁

⊗ (𝐴 + 𝐵𝐾
1
) − 𝐿
𝜎(𝑡)

⊗ 𝐵𝐾
2
) 𝑧 (𝑡)

+ (𝐼
𝑁

⊗ 𝐴) ℎ (𝑡) − (𝐼
𝑁

⊗ 𝐼
𝑛
) ℎ̇ (𝑡)

+ (𝐼
𝑁

⊗ 𝐵) ℎ̇V (𝑡) .

(6)

As for ℎ̇
𝑖𝑥
(𝑡) = ℎ

𝑖V(𝑡), one can obtain that

(𝐼
𝑁

⊗ 𝐴) ℎ (𝑡) − (𝐼
𝑁

⊗ 𝐼
𝑛
) ℎ̇ (𝑡) + (𝐼

𝑁
⊗ 𝐵) ℎ̇V (𝑡) = 0. (7)

Thus (6) can be further rewritten as

�̇� (𝑡) = (𝐼
𝑁

⊗ (𝐴 + 𝐵𝐾
1
) − 𝐿
𝜎(𝑡)

⊗ 𝐵𝐾
2
) 𝑧 (𝑡) . (8)

It holds directly that UAV swarm systems (2) with
directed and switching topologies achieve formation ℎ(𝑡) if
and only if system (8) achieves consensus.

Before the consensus analysis of system (8), the following
lemmas and definition are introduced.

Lemma 4 (see [23]). For a Laplacian matrix 𝐿 of graph𝐺 and
a full row rank matrix 𝐸 defined as

𝐸 =

[
[
[
[
[
[

[

1 −1 0 ⋅ ⋅ ⋅ 0

0 1 −1 ⋅ ⋅ ⋅ 0

.

.

.
.
.
. d

.

.

.
.
.
.

0 0 0 1 −1

]
]
]
]
]
]

]

, (9)

there exists a matrix𝑀 such that 𝐿 = 𝑀𝐸. Further, if the graph
has a directed spanning tree, 𝑀 is of full column rank and the
eigenvalues of 𝐸𝑀 are equal to the nonzero eigenvalues of 𝐿.

Lemma 5 (see [24]). Suppose that the eigenvalues of 𝐴 ∈

𝑅
𝑁×𝑁 have positive real parts; then there exists a positive

definite matrix 𝑄 > 0 such that

𝐴
𝑇

𝑄 + 𝑄𝐴 > 0. (10)

Definition 6. For a switching signal 𝜎(𝑡) over time interval
[0, 𝑡), the average dwell time of the switching signal is defined
as 𝜏
𝑎
= 𝑡/(𝑁

𝜎
(𝑡) + 1), where𝑁

𝜎
(𝑡) denotes the number of the

switches.

Remark 7. In [11, 25], the definition of the average dwell time
of a switching signal 𝜎(𝑡) over time interval [0, 𝑡) can be
described as follows. If there exist two positive numbers 𝑁

0

and 𝜏
𝑎
such that 𝑁

𝜎
(𝑡) ≤ 𝑁

0
+ 𝑡/𝜏
𝑎
, where 𝑁

𝜎
(𝑡) denotes the

number of the switches, 𝜏
𝑎
is called the average dwell time.

It is inaccurate to give the definition by an inequality, but,
according to Definition 6, it can be seen that 𝑁

𝜎
(𝑡) ≤ 𝑡/𝜏

𝑎
.

From Lemma 4, one can obtain that, for each 𝐿
(𝑖), 𝑖 ∈

P, there exists a matrix 𝑀
(𝑖) such that 𝐿

(𝑖)

= 𝑀
(𝑖)

𝐸.
Given Assumption 3 and Lemma 1, it can be known that the

eigenvalues of each 𝐸𝑀
(𝑖) (𝑖 ∈ P) have positive real parts.

Based on Lemma 5, one can obtain that there exist positive
definite matrices 𝑄(𝑖) such that

(𝐸𝑀
(𝑖)

− 𝛼𝐼)
𝑇

𝑄
(𝑖)

+ 𝑄
(𝑖)

(𝐸𝑀
(𝑖)

− 𝛼𝐼) > 0, (11)

where 𝛼 < 𝜆min. Further, one can obtain that

(𝐸𝑀
(𝑖)

)
𝑇

𝑄
(𝑖)

+ 𝑄
(𝑖)

𝐸𝑀
(𝑖)

> 2𝛼𝑄
(𝑖)

, 𝑖 ∈ P. (12)

Let 𝜃
𝑖
(𝑡) = 𝑧

𝑖+1
(𝑡) − 𝑧

𝑖
(𝑡), 𝑖 = 1, 2, . . . , 𝑁, and let 𝜃(𝑡) =

[𝜃
𝑇

1
(𝑡), 𝜃
𝑇

2
(𝑡), . . . , 𝜃

𝑇

𝑁
(𝑡)]
𝑇. One can obtain that 𝜃(𝑡) = (𝐸 ⊗

𝐼
𝑛
)𝑧(𝑡), where 𝐸 is defined as in Lemma 4.
Premultiplying both sides of (8) by (𝐸 ⊗ 𝐼

𝑛
) leads to

�̇� (𝑡) = (𝐼
𝑁−1

⊗ (𝐴 + 𝐵𝐾
1
) − 𝐸𝑀

𝜎(𝑡)

⊗ 𝐵𝐾
2
) 𝜃 (𝑡) , (13)

where 𝑀
𝜎(𝑡)

= 𝐿
𝜎(𝑡)

𝐸
𝑇

(𝐸𝐸
𝑇

)
−1.

According to the definition of 𝜃(𝑡), it is obvious that
𝑧
1
(𝑡) = 𝑧

2
(𝑡) = ⋅ ⋅ ⋅ = 𝑧

𝑁
(𝑡) if and only if 𝜃(𝑡) = 0. So if

system (13) converges to zero, system (8) achieves consensus
and UAV swarm systems (2) with directed and switching
topologies achieve formation ℎ(𝑡).

Theorem 8. Suppose that Assumption 3 holds. The formation
problem of UAV swarm systems (2) with directed and switching
topologies can be solved by controller (4) if there exists a positive
definite matrix 𝑃 such that

(𝐴 + 𝐵𝐾
1
)
𝑇

𝑃 + 𝑃 (𝐴 + 𝐵𝐾
1
) − 2𝛼𝑃𝐵𝐵

𝑇

𝑃 + 𝛽𝑃 ≤ 0, (14)
where 𝛼 < 𝜆min, 𝛽 > ln ℎ/𝜏

𝑎
, ℎ = 𝜑

1
/𝜑
2
, 𝜑
1

=

max
𝑖∈P{𝜆(𝑄

(𝑖)

)}, 𝜑
2
= min

𝑖∈P{𝜆(𝑄
(𝑖)

)}, and 𝑄
(𝑖) satisfies (12).

The feedback matrix is designed as 𝐾
2
= 𝐵
𝑇

𝑃.

Proof. Consider the following piecewise Lyapunov candidate
of system (13):

𝑉 (𝑡) = 𝜃 (𝑡)
𝑇

(𝑄
𝜎(𝑡)

⊗ 𝑃) 𝜃 (𝑡) , (15)

where 𝑃 is a solution of inequality (14) and 𝑄
𝜎(𝑡) are feasible

solutions of (12).

Note that the communication topology is fixed for 𝑡 ∈

[𝑡
𝑖
, 𝑡
𝑖+1

), 𝑖 = 0, 1, . . .. Then, the derivation of this Lyapunov
candidate along the trajectory of system (13) within the
interval is

�̇� (𝑡) = 𝜃 (𝑡)
𝑇

(𝐼
𝑁−1

⊗ (𝐴 + 𝐵𝐾
1
) − 𝐸𝑀

𝜎(𝑡)

⊗ 𝐵𝐾
2
)
𝑇

⋅ (𝑄
𝜎(𝑡)

⊗ 𝑃) 𝜃 (𝑡) + 𝜃 (𝑡)
𝑇

(𝑄
𝜎(𝑡)

⊗ 𝑃)

⋅ (𝐼
𝑁−1

⊗ (𝐴 + 𝐵𝐾
1
) − 𝐸𝑀

𝜎(𝑡)

⊗ 𝐵𝐾
2
)

⋅ 𝜃 (𝑡) .

(16)

Substituting 𝐾
2
= 𝐵
𝑇

𝑃 into (16) yields

�̇� (𝑡) = 𝜃 (𝑡)
𝑇

(𝑄
𝜎(𝑡)

⊗ ((𝐴 + 𝐵𝐾
1
)
𝑇

𝑃 + 𝑃 (𝐴 + 𝐵𝐾
1
))

− ((𝐸𝑀
𝜎(𝑡)

)
𝑇

𝑄
𝜎(𝑡)

+ 𝑄
𝜎(𝑡)

𝐸𝑀
𝜎(𝑡)

) ⊗ 𝑃𝐵𝐵
𝑇

𝑃)

⋅ 𝜃 (𝑡) .

(17)
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It then follows from (12) that

�̇� (𝑡) ≤ 𝜃 (𝑡)
𝑇

(𝑄
𝜎(𝑡)

⊗ ((𝐴 + 𝐵𝐾
1
)
𝑇

𝑃 + 𝑃 (𝐴 + 𝐵𝐾
1
) − 2𝛼𝑃𝐵𝐵

𝑇

𝑃))

⋅ 𝜃 (𝑡) .

(18)

Based on (14), one has

�̇� (𝑡) < −𝛽𝜃 (𝑡)
𝑇

(𝑄
𝜎(𝑡)

⊗ 𝑃) 𝜃 (𝑡) . (19)

Thus, from (15), one can obtain that

𝑉 (𝑡) < 𝑒
−𝛽(𝑡−𝑡𝑖)𝑉 (𝑡

𝑖
) . (20)

Note that the communication topology switches at 𝑡 = 𝑡
𝑖
;

then one can get

𝑉 (𝑡
𝑖
) ≤ ℎ𝑉 (𝑡

−

𝑖
) , (21)

where ℎ = 𝜑
1
/𝜑
2
, 𝜑
1

= max
𝑖∈P{𝜆(𝑄

(𝑖)

)}, and 𝜑
2

=

min
𝑖∈P{𝜆(𝑄

(𝑖)

)}.
Thus, when 𝑡 ∈ [𝑡

𝑖
, 𝑡
𝑖+1

), from (20) and (21), one has

𝑉 (𝑡) < 𝑒
−𝛽(𝑡−𝑡𝑖)ℎ𝑉 (𝑡

−

𝑖
) < 𝑒
−𝛽(𝑡−𝑡𝑖)ℎ𝑒

−𝛽(𝑡𝑖−𝑡𝑖−1)𝑉 (𝑡
𝑖−1

)

< 𝑒
−𝛽𝑡

ℎ
𝑖

𝑉 (0) .

(22)

Since 𝑖 ≤ 𝑁
𝜎
(𝑡) ≤ 𝑡/𝜏

𝑎
,

𝑉 (𝑡) < 𝑒
−(𝛽−ln ℎ/𝜏𝑎)𝑡𝑉 (0) . (23)

From (15), one can obtain that

𝑉 (0) ≤ 𝜙
1
‖𝜃 (0)‖

2

,

𝜙
2
‖𝜃 (𝑡)‖

2

≤ 𝑉 (𝑡) ,

(24)

where 𝜙
1
= 𝜑
1
max{𝜆(𝑃)} and 𝜙

2
= 𝜑
2
min{𝜆(𝑃)}.

According to (23) and (24), one has

‖𝜃 (𝑡)‖
2

≤
𝜙
1

𝜙
2

𝑒
−(𝛽−ln ℎ/𝜏𝑎)𝑡

‖𝜃 (0)‖
2

. (25)

Note that 𝛽 > ln ℎ/𝜏
𝑎
; one has 𝜃(𝑡) → 0 as 𝑡 → ∞. This

means that the consensus problem of system (8) is solved.
Furthermore, formation for UAV swarm systems (2) with
directed and switching topologies is achieved.

Corollary 9. If UAV swarm systems (2) achieve formation
ℎ(𝑡), the formation center function 𝑟(𝑡) can be determined as
follows:

𝑟 (𝑡) = 𝑒
(𝐴+𝐵𝐾1)(𝑡−𝑡𝑖) (𝑝

𝜎(𝑡)𝑇

⊗ 𝐼) (𝑥 (𝑡
𝑖
) − ℎ (𝑡

𝑖
)) ,

𝑡 ∈ [𝑡
𝑖
, 𝑡
𝑖+1

) ,

(26)

where 𝑝
𝜎(𝑡) is the left eigenvector of 𝐿

𝜎(𝑡) associated with
eigenvalue 0 and (𝑝

𝜎(𝑡)

)
𝑇1
𝑁

= 1.

Proof. From [7], there exists a left eigenvector 𝑝
𝜎(𝑡) of 𝐿

𝜎(𝑡)

associated with eigenvalue 0 and (𝑝
𝜎(𝑡)

)
𝑇1
𝑁

= 1. For 𝑡 ∈

[𝑡
𝑖
, 𝑡
𝑖+1

), 𝐿𝜎(𝑡) is fixed and so is 𝑝𝜎(𝑡).

Premultiplying both sides of (8) by ((𝑝
𝜎(𝑡)

)
𝑇

⊗𝐼) results in

((𝑝
𝜎(𝑡)

)
𝑇

⊗ 𝐼) �̇� (𝑡)

= (𝐴 + 𝐵𝐾
1
) ((𝑝
𝜎(𝑡)

)
𝑇

⊗ 𝐼) 𝑧 (𝑡) .

(27)

Based on Definition 2, one can obtain that

lim
𝑡→∞

(𝑧 (𝑡) − (1
𝑁

⊗ 𝐼) 𝑟 (𝑡)) = 0. (28)

Premultiplying both sides by ((𝑝
𝜎(𝑡)

)
𝑇

⊗ 𝐼), one has

lim
𝑡→∞

(((𝑝
𝜎(𝑡)

)
𝑇

⊗ 𝐼) 𝑧 (𝑡) − 𝑟 (𝑡)) = 0. (29)

Therefore, a formation center function can be

𝑟 (𝑡) = ((𝑝
𝜎(𝑡)

)
𝑇

⊗ 𝐼) 𝑧 (𝑡) . (30)

It follows from (27) and (30) that

̇𝑟 (𝑡) = (𝐴 + 𝐵𝐾
1
) 𝑟 (𝑡) . (31)

Thus, (26) can be obtained.

Remark 10. As can be seen, the formation center is discon-
tinuous due to the switching of the communication topology.
In addition, 𝐾

1
can be used to design the motion modes

of the formation center function. If 𝐾
1

= 0, protocol (4)
becomes a totally distributed controller. 𝐾

2
has no effect on

the formation center function.

Remark 11. Compared with [21, 22], the interaction topolo-
gies are more common. Formation for UAV swarm systems
with directed and switching topologies is solved. Further-
more, the gainmatrix was designed by solving an LMI, which
is simpler than solving an algebraic Riccati equation in [22].
In fact, undirected topologies are just special cases of directed
topologies. So the algorithms presented in this paper are
applicable to those cases in [21, 22].

Based on the above results, a design procedure of protocol
(4) can be summarized as follows. First, choose 𝐾

1
to design

the motion modes of the formation center by assigning the
eigenvalues of (𝐴+𝐵𝐾

1
).Then design𝐾

2
using the conclusion

of Theorem 8.

4. Examples

In this section, we provide an example to illustrate the
effectiveness of the above theoretical results. UAV swarm
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Figure 2: Switching signal 𝜎(𝑡).

systems consisting of four agents are considered. The system
matrices are defined as

𝑥
𝑖
=

[
[
[
[
[

[

𝑥
𝑖1

𝑥
𝑖2

𝑥
𝑖3

𝑥
𝑖4

]
]
]
]
]

]

,

𝐴 =

[
[
[
[
[

[

0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

]
]
]
]
]

]

,

𝐵 =

[
[
[
[
[

[

0 0

1 0

0 0

0 1

]
]
]
]
]

]

,

(32)

where 𝑥
𝑖1
, 𝑥
𝑖2
, 𝑥
𝑖3
, and 𝑥

𝑖4
stand for east position, east

velocity, north position, and north velocity. The directed
communication topologies are given in Figure 1. Clearly, each
topology contains a directed spanning tree. The switching
signal is shown in Figure 2.

Thus, we can obtain 𝜆min = 1 and then choose 𝛼 = 0.9.
Further, we can get that 𝜑

1
= 3.4175, 𝜑

2
= 0.2009, and ℎ =

17.0075. FromFigure 2, we can get that the average dwell time
is 1.25 s and then choose 𝛽 = 5.

Assign the eigenvalues of (𝐴 + 𝐵𝐾
1
) at (±𝑖, ±𝑖); we get

𝐾
1
= [

−1 0 0 0

0 0 −1 0
] . (33)

Solve LMI (14) with 𝛼 = 0.9 and 𝛽 = 5; a feasible solution
can be obtained. Accordingly, we can get

𝐾
2
= [

0.6565 1.3431 0 0

0 0 0.6565 1.3431
] . (34)
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Figure 3: Difference of UAV state and time-varying formation.

Choose the following time-varying formation:

ℎ
𝑖
(𝑡) =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

3 sin(0.2𝑡 +
(𝑖 − 1) 𝜋

2
)

0.6 cos(0.2𝑡 + (𝑖 − 1) 𝜋

2
)

8 cos(0.5𝑡 + (𝑖 − 1) 𝜋

2
)

−4 sin(0.5𝑡 +
(𝑖 − 1) 𝜋

2
)

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

(𝑖 = 1, 2, 3, 4) .

(35)

If ℎ(𝑡) is achieved, both the positions and velocities of
the four UAVs locate at the vertexes of a rotating parallel-
ogram, respectively. Choose initial states of four UAVs as
𝑥
1
(0) = [3 0 4 0]

𝑇, 𝑥
2
(0) = [−2 0 −5 0]

𝑇, 𝑥
3
(0) =

[0 0 −1 0]
𝑇, and 𝑥

4
(0) = [5 0 −5 0]

𝑇.
Figure 3 shows the trajectories of the difference of UAV

states and time-varying formation, which are denoted by
solid line, dotted line, dash-dotted line, and dashed line. And
the bold dotted line denotes the formation center trajectory.
It is obvious that the differences achieve consensus after
about 𝑡 = 7 s and converge to the formation center. From
Definition 2, one can obtain that the time-varying formation
problem is solved. Figure 4 shows the snapshots of four UAV
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Figure 4: Snapshots of UAV positions.

positions at different time. It can be seen that, after 𝑡 = 6 s, the
UAV swarm systems achieve a time-varying parallelogram
formation.Therefore, the time-varying formation is achieved
under the directed and switching topologies.

5. Conclusions

Formation problems for UAV swarm systems with directed
and switching topologies are studied. The average dwell time
of the switching topologies is introduced, based on which
an LMI-based method to design the protocol is proposed.
Though the UAV swarm systems can achieve the specified
formationwith the presentedmethod, there are still problems
in real application. As mentioned in Assumption 3, each of
the switching topologies is supposed to have a spanning tree,

whichmay not be applicable, so there is still work to do in our
future work.
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