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In order to study the dynamic characteristics of urban public traffic network, this paper establishes the conventional bus traffic
network and the urban rail traffic network based on the space 𝑅 modeling method. Then regarding these two networks as the
subnetwork, the paper presents a new bilayer coupled public traffic network through the transfer relationship between subway and
bus, and this model well reflects the connection between the passengers and bus operating vehicles. Based on the synchronization
theory of coupling network with time-varying delay and taking “Lorenz system” as the network node, the paper studies the
synchronization of bilayer coupled public traffic network. Finally, numerical results are given to show the impact of public traffic
dispatching, delayed departure, the number of public bus stops between bus lines, and the number of transfer stations between two
traffic modes on the bilayer coupled public traffic network balance through Matlab simulation.

1. Introduction

Synchronization of complex networks is an important subject
of study dynamics of complex networks; in recent years,
many scholars have studied in depth the synchronization
of complex networks [1–10]. However, most studies are
only focused on the single networks synchronization and
not many on the study of synchronization between two
different networks. Li et al. [11] focus on two unidirectionally
coupled networks and derive analytically a criterion for
the synchronization of these two networks. Tang et al.
[12] designed effective adaptive controllers and addressed
the theoretical analysis of synchronization between two
complex networks with nonidentical topological structures.
Chen et al. [13] presented a general network model for two
complex networks with time-varying delay coupling and
derived a synchronization criterion by using the adaptive
controllers. Wang et al. [14] designed an adaptive controller
to achieve synchronization between two different complex
networks with time-varying delay coupling. Sun et al. [15]

investigated the linear generalized synchronization between
two complex networks. In [16] the outer synchronization
between two complex networks with discontinuous coupling
is studied and the sufficient conditions for complete outer
synchronization and generalized outer synchronization are
obtained. Sun and Li [17] investigated the generalized outer
synchronization between two uncertain dynamical networks
with a novel feature that the couplings of each network
are unknown functions. Based on Lyapunov stability theory
and Barbalat’s lemma, they obtained two sufficient criteria
for generalized outer synchronization with or without time
delay. And two types of synchronization between two coupled
networks with interactions, including inner synchronization
inside each network and outer synchronization between
two networks with the adaptive controllers, are investigated
in [18]. They designed the adaptive controllers to realize
the inner and outer synchronization simultaneously and
obtained a theorem for the outer synchronization with the
adaptive controllers. However, they did not consider time-
varying delay in their work, but the existence of delay is
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inevitable in real life and delay can affect many synchronous
phenomena, so the study of synchronization between two
different complex networks with time-varying delay coupling
is particularly important.

As one of the important research tools, complex networks
have been widely used in urban traffic system [19–22].
Urban public transport network is an actual typical complex
network, and there has been a lot of research and analysis
of public transport network. However, most studies just
investigated the static characteristics of complex network and
its stability, such as the topology properties study of traffic
network, the study of reliability and robustness of the net-
work, and the research of structure optimization. And there
are few literatures that studied the dynamic characteristics of
urban public traffic network. Because the urban public traffic
network own its unique characteristics, to analyze its dynamic
characteristics is very necessary.

With the development of economy and society, the city
size and population are gradually increasing, and the resident
trips are also increasing. Limited city traffic space difficultly
meets the increasing traffic demand and the traffic congestion
is becoming more and more serious. Just through control
and optimization of conventional public traffic to solve this
problem has no significant effect, and the emergence of urban
rail traffic has greatly made up for many shortcomings of
conventional public traffic. The conventional public traffic
and urban rail traffic both belong to urban public trans-
portation system, and each has its unique superiority. The
conventional public traffic is of lower operating cost and
wide coverage and flexible. The urban rail traffic has the
characteristics of higher speed, large freight volume, being
fast, safety, and causing less environmental pollution. And it
also has its own shortcomings. Therefore, strengthening the
effective cooperation and transfer join between conventional
public traffic and urban rail traffic can help to improve the
operating efficiency of the whole city public transportation
system and maximum to meet the needs of passengers.
However, at present most studies only focused on a single
conventional public traffic network or single urban rail traffic
network.

This paper presents a new complex network synchroniza-
tion model and designs an adaptive controller to make the
two different networks achieve synchronization based on the
LaSalle invariable principle. In addition, we construct a new
bilayer coupled public traffic network model by using the
space𝑅modelingmethod. And the synchronization problem
of this model is studied by using the synchronization theory
of two different complex networks with time-varying delay
coupling. At last, we discussed the impact of the artificial
scheduling, the number of the public stations between two
traffic lines, the number of the transfer stations between con-
ventional bus lines and subway lines, and delayed departure
to the new bilayer coupled public traffic network model’s
synchronous ability.

The paper is organized as follows. The synchronization
theory of two different complex networks with time-varying
delay coupling is presented in Section 2. In Section 3, a new
bilayer public traffic coupled network model is established.
In Section 4, the synchronization problem of the bilayer

coupled public traffic network model is investigated. Simu-
lation results are given to show the impact of the artificial
scheduling, the number of the public stations between two
traffic lines, the number of the transfer stations between
conventional bus lines and subway lines, and delayed depar-
ture to the bilayer coupled public traffic network balance in
Section 5. In Section 6, we conclude the paper.

2. Synchronization between Two Different
Complex Networks with Time-Varying
Delay Coupling

Consider two networks with time-varying delay coupling,
and the fact that they both consist of same nodes can be
described by
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for node 𝑖 to be designed according to the specific network
structures 𝐴 and 𝐵. Without loss of generality, assume that
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number of nodes.

Definition 1. Let 𝑥
𝑖
(𝑡, 𝑋
0
) (𝑖 = 1, 2, . . . , 𝑁

1
) and 𝑦

𝑖
(𝑡, 𝑌
0
,

𝑢
𝑖
) (𝑖 = 1, 2, . . . , 𝑁

2
) be the solutions of the networks (1)

and (2), where 𝑋
0
= (𝑥

0

1
, 𝑥
0

2
, . . . , 𝑥

0

𝑁
1

)
𝑇
∈ 𝑅
𝑛𝑁
1 , 𝑌
0
=

(𝑦
0

1
, 𝑦
0

2
, . . . , 𝑦

0

𝑁
2

)
𝑇
∈ 𝑅
𝑛𝑁
2 , and 𝑓, 𝑔 : Ω → 𝑅

𝑛 are the
continuously differentiable mappings with Ω ⊆ 𝑅

𝑛. If there
is a nonempty open subset Λ ⊆ Ω, with 𝑥0

𝑖
, 𝑦
0

𝑖
∈ Λ, so when

𝑡 ≥ 0 such that 𝑥
𝑖
(𝑡, 𝑋
0
) (1 ≤ 𝑖 ≤ 𝑁

1
), 𝑦
𝑖
(𝑡, 𝑌
0
, 𝑢
𝑖
) (1 ≤ 𝑖 ≤

𝑁
2
) ∈ Ω, and

lim
𝑡→∞

𝑦𝑖 (𝑡, 𝑌0, 𝑢𝑖) − 𝑥𝑖 (𝑡, 𝑋0)
 = 0, (𝑖 = 1, 2, . . . , 𝑁

2
) (3)

then complex networks (1) and (2) are said to realize synchro-
nization.

Assumption 2. For function 𝑓(𝑥) there exists a positive
constant 𝐿 such that
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Assumption 3. Here 𝜏(𝑡) is a differential function with 0 ≤
�̇�(𝑡) ≤ 𝜉 < 1. Obviously, this assumption includes constant
time delay as a special case.
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where 𝑔 is a sufficiently larger positive constant which is to
be determined. Using Assumptions 2 and 3 and Lemma 4, we
can get the following formula by derivation of (7):
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2

∑

𝑗=1

𝑒
𝑇

𝑖
(𝑡) (𝑐𝑖𝑗 + 𝑑𝑖𝑗) 𝑒𝑗 (𝑡 − 𝜏 (𝑡)) +

1

2 (1 − 𝜉)

⋅

𝑁
2

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) 𝑒𝑖 (𝑡) −

1 − �̇� (𝑡)

2 (1 − 𝜉)

𝑁
2

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡 − 𝜏 (𝑡)) 𝑒𝑖 (𝑡

− 𝜏 (𝑡)) =

𝑁
2

∑

𝑖=1

(𝐿 − 𝑔)
𝑒𝑖 (𝑡)



2
+ 𝜀
1

𝑛

∑

𝑗=1

𝑒
𝑇

𝑗
(𝑡)

⋅ 𝛾
1𝑗
𝐴

𝑒
𝑗 (𝑡 − 𝜏 (𝑡)) + 𝜀2

𝑛

∑

𝑗=1

𝑒
𝑇

𝑗
(𝑡) 𝛾2𝑗𝐵𝑒𝑗 (𝑡 − 𝜏 (𝑡))

− 𝜇

𝑛

∑

𝑗=1

𝑒
𝑇

𝑗
(𝑡) (𝐶


+ 𝐷

) 𝑒
𝑗 (𝑡 − 𝜏 (𝑡)) +

1

2 (1 − 𝜉)

⋅

𝑁
2

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) 𝑒𝑖 (𝑡) −

1 − �̇� (𝑡)

2 (1 − 𝜉)

𝑛

∑

𝑗=1

𝑒
𝑇

𝑗
(𝑡 − 𝜏 (𝑡)) 𝑒𝑗 (𝑡

− 𝜏 (𝑡)) ≤

𝑁
2

∑

𝑖=1

(𝐿 − 𝑔)
𝑒𝑖 (𝑡)



2
+

𝑛

∑

𝑗=1

𝛾
2

1𝑗

2
𝑒
𝑇

𝑗
(𝑡) (𝜀1𝐴


)

⋅ (𝜀
1
𝐴

)
𝑇

𝑒
𝑗 (𝑡) +

𝑛

∑

𝑗=1

𝛾
2

2𝑗

2
𝑒
𝑇

𝑗
(𝑡) (𝜀2𝐵) (𝜀2𝐵)

𝑇
𝑒
𝑗 (𝑡)

−

𝑛

∑

𝑗=1

1

2
𝑒
𝑇

𝑗
(𝑡) (𝜇𝐶


+ 𝜇𝐷

) (𝜇𝐶


+ 𝜇𝐷

)
𝑇

𝑒
𝑗 (𝑡)

+
1

2 (1 − 𝜉)

𝑁
2

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) 𝑒𝑖 (𝑡) + (

1

2
−
1 − �̇� (𝑡)

2 (1 − 𝜉)
)

𝑛

∑

𝑗=1

𝑒
𝑇

𝑗
(𝑡

− 𝜏 (𝑡)) 𝑒𝑗 (𝑡 − 𝜏 (𝑡)) ≤

𝑁
2

∑

𝑖=1

(𝐿 − 𝑔)
𝑒𝑖 (𝑡)



2

+

𝑛

∑

𝑗=1

𝛾
2

1𝑗

2
𝑒
𝑇

𝑗
(𝑡) (𝜀1𝐴


) (𝜀
1
𝐴

)
𝑇

𝑒
𝑗 (𝑡) +

𝑛

∑

𝑗=1

𝛾
2

2𝑗

2
𝑒
𝑇

𝑗
(𝑡)

⋅ (𝜀
2
𝐵) (𝜀
2
𝐵)
𝑇
𝑒
𝑗 (𝑡) −

𝑛

∑

𝑗=1

1

2
𝑒
𝑇

𝑗
(𝑡) (𝜇𝐶


+ 𝜇𝐷

) (𝜇𝐶



+ 𝜇𝐷

)
𝑇

𝑒
𝑗 (𝑡) +

1

2 (1 − 𝜉)

𝑁
2

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) 𝑒𝑖 (𝑡) ≤

𝑁
2

∑

𝑖=1

(𝐿 − 𝑔

+
1

2 (1 − 𝜉)
)
𝑒𝑖 (𝑡)



2
+ 𝛾
𝑗

𝑛

∑

𝑗=1

𝑒
𝑇

𝑗
(𝑡) 𝑃𝑒𝑗 (𝑡) ≤ 𝑒

𝑇
(𝑡)

⋅ {[𝐿 − 𝑔 +
1

2 (1 − 𝜉)
+ max
1≤𝑗≤𝑛

(𝛾
𝑗
) 𝜆max (𝑃)] 𝐼𝑛𝑁

2

}

⋅ 𝑒 (𝑡) = e𝑇 (𝑡) 𝑄e (𝑡) ,
(8)

where e(𝑡) = (𝑒
1
(𝑡), 𝑒
2
(𝑡), . . . , 𝑒

𝑁
2

(𝑡))
𝑇
∈ 𝑅
𝑛𝑁
2 and 𝛾

1𝑗
, 𝛾
2𝑗
are

the 𝑗th diagonal elements of Γ
1
, Γ
2
, respectively. Consider

𝛾
𝑗
= max{

𝛾
2

1𝑗

2
,

𝛾
2

2𝑗

2
,
1

2
} ,

𝑃 = (𝜀
1
𝐴

) (𝜀
1
𝐴

)
𝑇

+ (𝜀
2
𝐵) (𝜀
2
𝐵)
𝑇

+ (𝜇𝐶

+ 𝜇𝐷

) (𝜇𝐶


+ 𝜇𝐷

)
𝑇

,

𝑄 = [𝐿 − 𝑔 +
1

2 (1 − 𝜉)
+ max
1≤𝑗≤𝑛

(𝛾
𝑗
) 𝜆max (𝑃)] 𝐼𝑛𝑁

2

,

(9)

where 𝜆max(𝑃) is the largest eigenvalue ofmatrix𝑃, 𝐼
𝑛𝑁
2

is the
unit 𝑛×𝑁

2
matrix,𝐴, 𝐶, 𝐷 are the𝑁

2
order principalminor

determinant of matrices 𝐴,𝐶,𝐷, respectively. Obviously,
there exists a sufficiently large positive constant 𝑔 such that
the symmetry matrix𝑄 is negative definite; namely, �̇�(𝑡) < 0.
Here, the largest invariant set contained in set 𝐸 = {�̇�(𝑡) =
0} = {e(𝑡) = 0, 𝑖 = 1, 2, . . . , 𝑁

2
} can be described as

𝑀 = {(e, g) ∈ 𝑅𝑛𝑁2 × 𝑅𝑁2 : e = 0, ġ = 0} , (10)
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where g = (𝑔
1
, 𝑔
2
, . . . , 𝑔

𝑁
2

)
𝑇. According to the LaSalle

invariance principle, starting with arbitrary initial values, the
trajectory asymptotically converges to the largest invariant
𝑀 which implies that lim

𝑡→∞
𝑒
𝑖
(𝑡) = 0, 𝑖 = 1, 2, . . . , 𝑁

2
,

so driving network (1) and response network (2) realized
synchronization. The proof is completed.

Corollary 6. If networks (1) and (2) have the same node
number, driving network (1) and response network (2) can
realize synchronization by using the following controllers:

𝑢
𝑖
= 𝑓 (𝑦

𝑖 (𝑡)) − 𝑔 (𝑦𝑖 (𝑡)) + 𝜀1

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
Γ
1
𝑦
𝑗 (𝑡 − 𝜏 (𝑡))

− 𝜀
2

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
Γ
2
𝑥
𝑗 (𝑡 − 𝜏 (𝑡)) + 𝜇

𝑁

∑

𝑗=1

𝑐
𝑖𝑗
𝑥
𝑗 (𝑡 − 𝜏 (𝑡))

− 𝜇

𝑁

∑

𝑗=1

𝑑
𝑖𝑗
𝑦
𝑗 (𝑡 − 𝜏 (𝑡)) − 𝑔𝑖𝑒𝑖 (𝑡) ,

(11)

where 𝑒
𝑖
(𝑡) = 𝑦

𝑖
(𝑡) − 𝑥

𝑖
(𝑡), �̇�
𝑖
= 𝑘
𝑖
‖𝑒
𝑖
‖
2, and 𝑘

𝑖
is a positive

constant, 𝑖 = 1, 2, . . . , 𝑁.

Corollary 7. If networks (1) and (2) have the same node
dynamic, then using the controllers

𝑢
𝑖
= 𝜀
1

𝑁
2

∑

𝑗=1

𝑎
𝑖𝑗
Γ
1
𝑦
𝑗 (𝑡 − 𝜏 (𝑡)) − 𝜀2

𝑁
1

∑

𝑗=1

𝑏
𝑖𝑗
Γ
2
𝑥
𝑗 (𝑡 − 𝜏 (𝑡))

+ 𝜇

𝑁
1

∑

𝑗=1

𝑐
𝑖𝑗
𝑥
𝑗 (𝑡 − 𝜏 (𝑡)) − 𝜇

𝑁
2

∑

𝑗=1

𝑑
𝑖𝑗
𝑦
𝑗 (𝑡 − 𝜏 (𝑡))

+ 𝜀
1

𝑁
1

∑

𝑗=𝑁
2
+1

𝑎
𝑖𝑗
Γ
1
𝑥
𝑗 (𝑡 − 𝜏 (𝑡))

+ 𝜀
2

𝑁
1

∑

𝑗=𝑁
2
+1

𝑏
𝑖𝑗
Γ
2
𝑥
𝑗 (𝑡 − 𝜏 (𝑡))

− 𝜇

𝑁
1

∑

𝑗=𝑁
2
+1

(𝑐
𝑖𝑗
+ 𝑑
𝑖𝑗
) 𝑥
𝑗 (𝑡 − 𝜏 (𝑡)) − 𝑔𝑖𝑒𝑖 (𝑡) ,

(12)

can make driving network (1) and response network (2) realize
synchronization, where 𝑒

𝑖
(𝑡) = 𝑦

𝑖
(𝑡) − 𝑥

𝑖
(𝑡), �̇�
𝑖
= 𝑘
𝑖
‖𝑒
𝑖
‖
2, and

𝑘
𝑖
is a positive constant, 𝑖 = 1, 2, . . . , 𝑁

2
.

3. A New Bilayer Public Traffic Coupled
Network Model

Urban public traffic network can be regarded as a complex
network which consists of different stops and lines. There
are mainly three kinds of modeling methods to establish
the urban public traffic network: space 𝐿 modeling method,
space 𝑃 modeling method, and space 𝑅 modeling method

[23, 24]. Using space 𝐿 modeling method to establish public
traffic stations networks, taking the bus station as the nodes
of network, the two bus stations have edge if they are adjacent
in a bus line. Using space 𝑃 modeling method to establish
public traffic transfer networks, also taking the bus station
as the nodes of network, the two bus stations have edge
if there are direct bus lines between them. Using space 𝑅
modeling method to establish public traffic roads networks,
taking bus lines as the network’s nodes, the two bus lines
have edge if there exist same bus stops between them. This
paper established a new bilayer coupled public traffic network
model based on the existing modeling methods and the
modeling idea as follows:

(1) Taking conventional public traffic lines and urban
rail traffic lines as the network’s nodes, then based
on the space 𝑅 modeling method and established
conventional bus traffic network A and urban rail
traffic network B, respectively, the weight of each edge
is defined as the number of public stops between two
lines.

(2) If there is an opportunity to transfer between con-
ventional bus traffic lines and urban rail traffic
lines, we link these two different types of nodes
and constitute the coupling edges of bilayer coupled
public traffic network. The coupling edges reflect the
transfer relationship between urban rail traffic lines
and conventional bus traffic lines. The conventional
bus traffic network, urban rail traffic network, and its
coupling edges form a bilayer coupled public traffic
network.

In this model, the conventional bus traffic network has
larger scale but the transmission performance of the network
is poor, and the urban rail traffic network is with smaller
network size but the network transmission performance
is stronger. These two networks coupled together through
the transfer relationship and collaboration complete the
transport mission of the whole urban public traffic network,
and the mixed traffic patterns can make the passengers travel
more quickly and conveniently.

Without loss of generality, taking two urban rail lines
(subway line 1, subway line 2) and eight conventional bus lines
(bus numbers 4, 6, 12, 36, 102, 235, 511, and 707) at Xi’an as the
network nodes, we established a new bilayer coupled public
traffic network model as shown in Figure 1.

4. Synchronization Analysis of Bilayer Coupled
Public Traffic Network

We can use the synchronization theory of two different com-
plex networks with time-varying delay coupling to analyze
the balance problem of bilayer coupled public traffic network.
Wu et al. [21] reached the conclusion that the passenger flow
of urban public traffic fulfills the nonlinear behavior.Through
the analysis of the global public traffic network, we know
that urban public traffic network has the characteristics of
BA scale-free networks. Suppose that the passenger flow of
eight bus lines and two rail traffic lines both fulfill the Lorenz
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A

B

Bus 707

Subway line 2Subway line 1

Bus 6

Bus 36

Bus 235

Bus 12

Bus 511

Bus 102

Bus 4

Figure 1: The topology map of bilayer public traffic network model.

chaotic system; that is, the nodes dynamical equations can be
described as follows:

[
[

[

�̇�
𝑖1

�̇�
𝑖2

�̇�
𝑖3

]
]

]

=

[
[
[
[

[

−10 10 0

28 −1 0

0 0 −
8

3

]
]
]
]

]

[
[

[

𝑥
𝑖1

𝑥
𝑖2

𝑥
𝑖3

]
]

]

+
[
[

[

0

−𝑥
𝑖1
𝑥
𝑖3

𝑥
𝑖1
𝑥
𝑖2

]
]

]

,

[
[

[

�̇�
𝑖1

�̇�
𝑖2

�̇�
𝑖3

]
]

]

=

[
[
[
[

[

−10 10 0

28 −1 0

0 0 −
8

3

]
]
]
]

]

[
[

[

𝑦
𝑖1

𝑦
𝑖2

𝑦
𝑖3

]
]

]

+
[
[

[

0

−𝑦
𝑖1
𝑦
𝑖3

𝑦
𝑖1
𝑦
𝑖2

]
]

]

.

(13)

For the bilayer coupled public traffic network described
in Figure 1, we have the following coupling matrix:

𝑎
12
= 2, 𝑎

13
= 2, 𝑎

14
= 2, 𝑎

15
= 1, 𝑎

16
= 1, 𝑎

17
= 7, 𝑎

18
= 4,

𝑎
23
= 3, 𝑎

24
= 3, 𝑎

25
= 1, 𝑎

26
= 1, 𝑎

27
= 1, 𝑎

28
= 3, 𝑎

34
= 7,

𝑎
35
= 7, 𝑎

36
= 6, 𝑎

37
= 0, 𝑎

38
= 1, 𝑎

45
= 1, 𝑎

46
= 2, 𝑎

47
= 4,

𝑎
48
= 1, 𝑎

56
= 5, 𝑎

57
= 0, 𝑎

58
= 1, 𝑎

67
= 2, 𝑎

68
= 1, 𝑎

78
= 2,

𝑎
𝑗𝑖
= 𝑎
𝑖𝑗

(𝑖 ̸= 𝑗, 𝑖, 𝑗 = 1, 2, . . . , 8) , 𝑎
𝑖𝑖
= −

8

∑

𝑖=1,𝑖 ̸=𝑗

𝑎
𝑖𝑗

(𝑖, 𝑗 = 1, 2, . . . , 8) ,

𝑏
11
= −1, 𝑏

12
= 1, 𝑏

21
= 1, 𝑏

22
= −1,

𝑐
11
= 4, 𝑐

12
= 3, 𝑐

21
= 1, 𝑐

22
= 3, 𝑐

31
= 6, 𝑐

32
= 7, 𝑐

41
= 1,

𝑐
42
= 10, 𝑐

51
= 2, 𝑐

52
= 1, 𝑐

61
= 1, 𝑐

62
= 3, 𝑐

71
= 8, 𝑐

72
= 2,

𝑐
81
= 1, 𝑐

82
= 1, 𝑑

𝑗𝑖
= 𝑐
𝑖𝑗

(𝑖 = 1, 2, . . . , 8, 𝑗 = 1, 2) .

(14)

Assume that Γ
1
= Γ
2
= diag{1, 1, 1} and the controllers

are designed as follows:

𝑢
𝑖
= 𝜀
1

2

∑

𝑗=1

𝑎
𝑖𝑗
𝑦
𝑗 (𝑡 − 𝜏 (𝑡)) − 𝜀2

8

∑

𝑗=1

𝑏
𝑖𝑗
𝑥
𝑗 (𝑡 − 𝜏 (𝑡))

+ 𝜇

8

∑

𝑗=1

𝑐
𝑖𝑗
𝑥
𝑗 (𝑡 − 𝜏 (𝑡)) − 𝜇

2

∑

𝑗=1

𝑑
𝑖𝑗
𝑦
𝑗 (𝑡 − 𝜏 (𝑡))

+ 𝜀
1

8

∑

𝑗=3

𝑎
𝑖𝑗
𝑥
𝑗 (𝑡 − 𝜏 (𝑡)) + 𝜀2

8

∑

𝑗=3

𝑏
𝑖𝑗
𝑥
𝑗 (𝑡 − 𝜏 (𝑡))

− 𝜇

8

∑

𝑗=3

(𝑐
𝑖𝑗
+ 𝑑
𝑖𝑗
) 𝑥
𝑗 (𝑡 − 𝜏 (𝑡)) − 𝑔𝑖𝑒𝑖 (𝑡) ,

(15)

where �̇�
𝑖
= 𝑘
𝑖
‖𝑒
𝑖
‖
2 and 𝑘

𝑖
is a positive constant, 𝑖 = 1, 2.
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According to (1), the dynamical equations of conventional
bus traffic network A for each node 𝑖 (1 ≤ 𝑖 ≤ 8) can be
described by

[
[

[

�̇�
𝑖1

�̇�
𝑖2

�̇�
𝑖3

]
]

]

=

[
[
[
[

[

−10 10 0

28 −1 0

0 0 −
8

3

]
]
]
]

]

[
[

[

𝑥
𝑖1

𝑥
𝑖2

𝑥
𝑖3

]
]

]

+
[
[

[

0

−𝑥
𝑖1
𝑥
𝑖3

𝑥
𝑖1
𝑥
𝑖2

]
]

]

+
[
[

[

𝑀
𝑖1

𝑀
𝑖2

𝑀
𝑖3

]
]

]

,

𝑀
1𝑗
= 𝜀
1
(𝑎
11
𝑥
1𝑗 (𝑡 − 𝜏 (𝑡)) + 𝑎12𝑥2𝑗 (𝑡 − 𝜏 (𝑡))

+ 𝑎
13
𝑥
3𝑗 (𝑡 − 𝜏 (𝑡)) + 𝑎14𝑥4𝑗 (𝑡 − 𝜏 (𝑡))

+ 𝑎
15
𝑥
5𝑗 (𝑡 − 𝜏 (𝑡)) + 𝑎16𝑥6𝑗 (𝑡 − 𝜏 (𝑡))

+ 𝑎
17
𝑥
7𝑗 (𝑡 − 𝜏 (𝑡)) + 𝑎18𝑥8𝑗 (𝑡 − 𝜏 (𝑡)))

+ 𝜇 (𝑐
11
𝑦
1𝑗 (𝑡 − 𝜏 (𝑡)) + 𝑐12𝑦2𝑗 (𝑡 − 𝜏 (𝑡))) ,

𝑗 = 1, 2, 3

𝑀
2𝑗
= 𝜀
1
(𝑎
21
𝑥
1𝑗 (𝑡 − 𝜏 (𝑡)) + 𝑎22𝑥2𝑗 (𝑡 − 𝜏 (𝑡))

+ 𝑎
23
𝑥
3𝑗 (𝑡 − 𝜏 (𝑡)) + 𝑎24𝑥4𝑗 (𝑡 − 𝜏 (𝑡))

+ 𝑎
25
𝑥
5𝑗 (𝑡 − 𝜏 (𝑡)) + 𝑎26𝑥6𝑗 (𝑡 − 𝜏 (𝑡))

+ 𝑎
27
𝑥
7𝑗 (𝑡 − 𝜏 (𝑡)) + 𝑎28𝑥8𝑗 (𝑡 − 𝜏 (𝑡)))

+ 𝜇 (𝑐
21
𝑦
1𝑗 (𝑡 − 𝜏 (𝑡)) + 𝑐22𝑦2𝑗 (𝑡 − 𝜏 (𝑡))) ,

𝑗 = 1, 2, 3

𝑀
3𝑗
= 𝜀
1
(𝑎
31
𝑥
1𝑗 (𝑡 − 𝜏 (𝑡)) + 𝑎32𝑥2𝑗 (𝑡 − 𝜏 (𝑡))

+ 𝑎
33
𝑥
3𝑗 (𝑡 − 𝜏 (𝑡)) + 𝑎34𝑥4𝑗 (𝑡 − 𝜏 (𝑡))

+ 𝑎
35
𝑥
5𝑗 (𝑡 − 𝜏 (𝑡)) + 𝑎36𝑥6𝑗 (𝑡 − 𝜏 (𝑡))

+ 𝑎
37
𝑥
7𝑗 (𝑡 − 𝜏 (𝑡)) + 𝑎38𝑥8𝑗 (𝑡 − 𝜏 (𝑡)))

+ 𝜇 (𝑐
31
𝑦
1𝑗 (𝑡 − 𝜏 (𝑡)) + 𝑐32𝑦2𝑗 (𝑡 − 𝜏 (𝑡))) ,

𝑗 = 1, 2, 3

𝑀
4𝑗
= 𝜀
1
(𝑎
41
𝑥
1𝑗 (𝑡 − 𝜏 (𝑡)) + 𝑎42𝑥2𝑗 (𝑡 − 𝜏 (𝑡))

+ 𝑎
43
𝑥
3𝑗 (𝑡 − 𝜏 (𝑡)) + 𝑎44𝑥4𝑗 (𝑡 − 𝜏 (𝑡))

+ 𝑎
45
𝑥
5𝑗 (𝑡 − 𝜏 (𝑡)) + 𝑎46𝑥6𝑗 (𝑡 − 𝜏 (𝑡))

+ 𝑎
47
𝑥
7𝑗 (𝑡 − 𝜏 (𝑡)) + 𝑎48𝑥8𝑗 (𝑡 − 𝜏 (𝑡)))

+ 𝜇 (𝑐
41
𝑦
1𝑗 (𝑡 − 𝜏 (𝑡)) + 𝑐42𝑦2𝑗 (𝑡 − 𝜏 (𝑡))) ,

𝑗 = 1, 2, 3

𝑀
5𝑗
= 𝜀
1
(𝑎
51
𝑥
1𝑗 (𝑡 − 𝜏 (𝑡)) + 𝑎52𝑥2𝑗 (𝑡 − 𝜏 (𝑡))

+ 𝑎
53
𝑥
3𝑗 (𝑡 − 𝜏 (𝑡)) + 𝑎54𝑥4𝑗 (𝑡 − 𝜏 (𝑡))

+ 𝑎
55
𝑥
5𝑗 (𝑡 − 𝜏 (𝑡)) + 𝑎56𝑥6𝑗 (𝑡 − 𝜏 (𝑡))

+ 𝑎
57
𝑥
7𝑗 (𝑡 − 𝜏 (𝑡)) + 𝑎58𝑥8𝑗 (𝑡 − 𝜏 (𝑡)))

+ 𝜇 (𝑐
51
𝑦
1𝑗 (𝑡 − 𝜏 (𝑡)) + 𝑐52𝑦2𝑗 (𝑡 − 𝜏 (𝑡))) ,

𝑗 = 1, 2, 3

𝑀
6𝑗
= 𝜀
1
(𝑎
61
𝑥
1𝑗 (𝑡 − 𝜏 (𝑡)) + 𝑎62𝑥2𝑗 (𝑡 − 𝜏 (𝑡))

+ 𝑎
63
𝑥
3𝑗 (𝑡 − 𝜏 (𝑡)) + 𝑎64𝑥4𝑗 (𝑡 − 𝜏 (𝑡))

+ 𝑎
65
𝑥
5𝑗 (𝑡 − 𝜏 (𝑡)) + 𝑎66𝑥6𝑗 (𝑡 − 𝜏 (𝑡))

+ 𝑎
67
𝑥
7𝑗 (𝑡 − 𝜏 (𝑡)) + 𝑎68𝑥8𝑗 (𝑡 − 𝜏 (𝑡)))

+ 𝜇 (𝑐
61
𝑦
1𝑗 (𝑡 − 𝜏 (𝑡)) + 𝑐62𝑦2𝑗 (𝑡 − 𝜏 (𝑡))) ,

𝑗 = 1, 2, 3

𝑀
7𝑗
= 𝜀
1
(𝑎
71
𝑥
1𝑗 (𝑡 − 𝜏 (𝑡)) + 𝑎72𝑥2𝑗 (𝑡 − 𝜏 (𝑡))

+ 𝑎
73
𝑥
3𝑗 (𝑡 − 𝜏 (𝑡)) + 𝑎74𝑥4𝑗 (𝑡 − 𝜏 (𝑡))

+ 𝑎
75
𝑥
5𝑗 (𝑡 − 𝜏 (𝑡)) + 𝑎76𝑥6𝑗 (𝑡 − 𝜏 (𝑡))

+ 𝑎
77
𝑥
7𝑗 (𝑡 − 𝜏 (𝑡)) + 𝑎78𝑥8𝑗 (𝑡 − 𝜏 (𝑡)))

+ 𝜇 (𝑐
71
𝑦
1𝑗 (𝑡 − 𝜏 (𝑡)) + 𝑐72𝑦2𝑗 (𝑡 − 𝜏 (𝑡))) ,

𝑗 = 1, 2, 3

𝑀
8𝑗
= 𝜀
1
(𝑎
81
𝑥
1𝑗 (𝑡 − 𝜏 (𝑡)) + 𝑎82𝑥2𝑗 (𝑡 − 𝜏 (𝑡))

+ 𝑎
83
𝑥
3𝑗 (𝑡 − 𝜏 (𝑡)) + 𝑎84𝑥4𝑗 (𝑡 − 𝜏 (𝑡))

+ 𝑎
85
𝑥
5𝑗 (𝑡 − 𝜏 (𝑡)) + 𝑎86𝑥6𝑗 (𝑡 − 𝜏 (𝑡))

+ 𝑎
87
𝑥
7𝑗 (𝑡 − 𝜏 (𝑡)) + 𝑎88𝑥8𝑗 (𝑡 − 𝜏 (𝑡)))

+ 𝜇 (𝑐
81
𝑦
1𝑗 (𝑡 − 𝜏 (𝑡)) + 𝑐82𝑦2𝑗 (𝑡 − 𝜏 (𝑡))) ,

𝑗 = 1, 2, 3.

(16)

And based on (2) the dynamical equations of urban rail
traffic network B for each node 𝑖 (1 ≤ 𝑖 ≤ 2) can be written as

[
[

[

�̇�
𝑖1

�̇�
𝑖2

�̇�
𝑖3

]
]

]

=

[
[
[
[

[

−10 10 0

28 −1 0

0 0 −
8

3

]
]
]
]

]

[
[

[

𝑦
𝑖1

𝑦
𝑖2

𝑦
𝑖3

]
]

]

+
[
[

[

0

−𝑦
𝑖1
𝑦
𝑖3

𝑦
𝑖1
𝑦
𝑖2

]
]

]

+
[
[

[

𝑁
𝑖1

𝑁
𝑖2

𝑁
𝑖3

]
]

]

+ 𝑢
𝑖
,
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𝑁
1𝑗
= 𝜇 (𝑑

11
𝑥
1𝑗 (𝑡 − 𝜏 (𝑡)) + 𝑑12𝑥2𝑗 (𝑡 − 𝜏 (𝑡))

+ 𝑑
13
𝑥
3𝑗 (𝑡 − 𝜏 (𝑡)) + 𝑑14𝑥4𝑗 (𝑡 − 𝜏 (𝑡))

+ 𝑑
15
𝑥
5𝑗 (𝑡 − 𝜏 (𝑡)) + 𝑑16𝑥6𝑗 (𝑡 − 𝜏 (𝑡))

+ 𝑑
17
𝑥
7𝑗 (𝑡 − 𝜏 (𝑡)) + 𝑑18𝑥8𝑗 (𝑡 − 𝜏 (𝑡)))

+ 𝜀
2
(𝑏
11
𝑥
1𝑗 (𝑡 − 𝜏 (𝑡)) + 𝑏12𝑥2𝑗 (𝑡 − 𝜏 (𝑡))) ,

𝑗 = 1, 2, 3

𝑁
2𝑗
= 𝜇 (𝑑

21
𝑥
1𝑗 (𝑡 − 𝜏 (𝑡)) + 𝑑22𝑥2𝑗 (𝑡 − 𝜏 (𝑡))

+ 𝑑
23
𝑥
3𝑗 (𝑡 − 𝜏 (𝑡)) + 𝑑24𝑥4𝑗 (𝑡 − 𝜏 (𝑡))

+ 𝑑
25
𝑥
5𝑗 (𝑡 − 𝜏 (𝑡)) + 𝑑26𝑥6𝑗 (𝑡 − 𝜏 (𝑡))

+ 𝑑
27
𝑥
7𝑗 (𝑡 − 𝜏 (𝑡)) + 𝑑28𝑥8𝑗 (𝑡 − 𝜏 (𝑡)))

+ 𝜀
2
(𝑏
21
𝑥
1𝑗 (𝑡 − 𝜏 (𝑡)) + 𝑏22𝑥2𝑗 (𝑡 − 𝜏 (𝑡))) ,

𝑗 = 1, 2, 3.

(17)

For any vectors 𝑥
𝑖
and 𝑦

𝑖
of the Lorenz chaotic sys-

tem, there exists a positive constant 𝑅 such that ‖𝑥
𝑖𝑚
‖ ≤

𝑅, ‖𝑦
𝑖𝑚
‖ ≤ 𝑅 (𝑚 = 1, 2, 3), since the Lorenz chaotic system

is bounded in a certain region. Therefore, one has

𝑓 (𝑦𝑖) − 𝑓 (𝑥𝑖)
 =

√(−𝑦
𝑖1
𝑦
𝑖3
− (−𝑥

𝑖1
𝑥
𝑖3
))
2
+ (𝑦
𝑖1
𝑦
𝑖2
− 𝑥
𝑖1
𝑥
𝑖2
)
2

= √(−𝑦
𝑖3
(𝑦
𝑖1
− 𝑥
𝑖1
) − 𝑥
𝑖1
(𝑦
𝑖3
− 𝑥
𝑖3
))
2
+ (𝑦
𝑖2
(𝑦
𝑖1
− 𝑥
𝑖1
) + 𝑥
𝑖1
(𝑦
𝑖2
− 𝑥
𝑖2
))
2
≤ √2𝑅

𝑦𝑖 − 𝑥𝑖
 ;

(18)

that is, Assumption 2 is satisfied. If we select a proper 𝜏(𝑡)
such that Assumption 3 is satisfied, according to Theorem 5,
conventional bus traffic network A and urban rail traffic
network B achieved synchronization; namely, the whole
bilayer coupled public traffic network system is globally
asymptotically stable.

5. Numerical Simulations

The meaning of urban public traffic network balance is
that there is a dynamic balance between running vehicles
and passengers; that is, the running time of public traffic
vehicles is closest to preset time (traffic delay is shortest),
and meanwhile the retention time of the passengers in traffic
stations is shortest [25]. The aim of the study is to investigate
the impact of public traffic dispatching, delayed departure,
the number of public bus stops between bus lines, and the
number of transfer stations between two trafficmodes, that is,
the impact of coupling strengths 𝜀

1
, 𝜀
2
, 𝜇, time-varying delay

𝜏(𝑡), the edge weights of conventional bus traffic network
A, the edge weights of urban rail traffic network B, and the
weights of external coupling edges on the balance of whole
bilayer coupled public traffic network. During the numerical
simulation process, we choose the initial value conditions as
follows:

𝑘
𝑖
= 50, (1 ≤ 𝑖 ≤ 2) ,

𝑥
𝑖 (0) = (0.1 + 0.3𝑖, 0.2 + 0.3𝑖, 0.3 + 0.3𝑖)

𝑇
,

(1 ≤ 𝑖 ≤ 8) ,

𝑦
𝑖 (0) = (2.5 + 0.3𝑖, 2.6 + 0.3𝑖, 2.7 + 0.3𝑖)

𝑇
,

(1 ≤ 𝑖 ≤ 2) ,

𝑔
𝑖 (0) = 3.3 + 0.1𝑖, (1 ≤ 𝑖 ≤ 2) .

(19)

We fixed 𝜏(𝑡) = 0.05, and then take 𝜀
1
= 𝜀
2
=

𝜇 = 0.2 and 𝜀
1
= 𝜀
2
= 𝜇 = 0.3 and draw the

synchronization errors for the bilayer coupled public traffic
network, as shown in Figures 2 and 3, respectively. From the
simulation results, we can come to the conclusion that the
bilayer coupled public traffic network achieves balance in 5
time units when 𝜀

1
= 𝜀
2
= 𝜇 = 0.2 and achieves balance

in 3 time units when 𝜀
1
= 𝜀
2
= 𝜇 = 0.3, respectively.

Obviously, the greater the value of coupling strengths 𝜀
1
, 𝜀
2
, 𝜇,

the shorter the time required to balance bilayer coupled
public traffic network. Accordingly, the coupling strengths
have certain influence on the bilayer coupled public traffic
network’s synchronization; that is, increase of the artificial
scheduling (appropriate adjusting of the departing frequency
and time, optimization of the transfer facilities, effective
traffic dispersion, etc.) can speed up the bilayer coupled
public traffic network’s synchronization, and the network can
reach steady state faster.

Let 𝜀
1
= 𝜀
2
= 𝜇 = 0.3 and plot the synchronization errors

for the bilayer coupled public traffic network with 𝜏(𝑡) =
0.03, as shown in Figure 4. Figure 4 shows that the bilayer
coupled public traffic network achieves balance in 2 time
units when reducing the delay; compared with Figure 3 the
synchronization time decreased 1 time unit. Obviously, the
coupling delays have some influences on the bilayer coupled
public traffic network’s synchronization. This suggests that
bus delays or traffic jams caused by the weather or human
factors make the passengers stranded time extended, so the
time of the network into balance has delayed.
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Figure 2: Synchronization errors for bilayer coupled public traffic
network with 𝜀

1
= 𝜀
2
= 𝜇 = 0.2.
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Figure 3: Synchronization errors for bilayer coupled public traffic
network with 𝜀

1
= 𝜀
2
= 𝜇 = 0.3.

Fixing 𝜏(𝑡) = 0.05, 𝜀
1
= 𝜀
2
= 𝜇 = 0.3, if the edge weights

of conventional bus traffic network A are changed to

t

0.5

0

−0.5

e
i
(t

)

0 2 4 6 8

Figure 4: Synchronization errors for bilayer coupled public traffic
network with 𝜏(𝑡) = 0.03.
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Figure 5: Synchronization errors for bilayer coupled public traffic
network after decrease of the public bus stops between conventional
bus lines.

𝑎
12
= 0, 𝑎

13
= 1, 𝑎

14
= 1, 𝑎

15
= 0, 𝑎

16
= 0, 𝑎

17
= 3, 𝑎

18
= 2,

𝑎
23
= 1, 𝑎

24
= 1, 𝑎

25
= 0, 𝑎

26
= 0, 𝑎

27
= 0, 𝑎

28
= 1, 𝑎

34
= 3,

𝑎
35
= 3, 𝑎

36
= 3, 𝑎

37
= 0, 𝑎

38
= 0, 𝑎

45
= 0, 𝑎

46
= 1, 𝑎

47
= 2,

𝑎
48
= 0, 𝑎

56
= 2, 𝑎

57
= 0, 𝑎

58
= 0, 𝑎

67
= 1, 𝑎

68
= 0, 𝑎

78
= 1,

𝑎
𝑗𝑖
= 𝑎
𝑖𝑗

(𝑖 ̸= 𝑗, 𝑖, 𝑗 = 1, 2, . . . , 8) , 𝑎
𝑖𝑖
= −

8

∑

𝑖=1,𝑖 ̸=𝑗

𝑎
𝑖𝑗

(𝑖, 𝑗 = 1, 2, . . . , 8) ,

(20)

namely, decreased the public bus stops between some con-
ventional bus lines, the synchronization errors are shown

in Figure 5. We can found that the bilayer coupled public
traffic network achieves balance in 3.6 time units, compared



10 Mathematical Problems in Engineering

t

0.6

0.4

0.2

0

−0.2

−0.4

−0.6

e
i
(t

)

0 2 4 6 108

Figure 6: Synchronization errors for bilayer coupled public traffic network after reducing the public subway stations between subway lines.
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Figure 7: Synchronization errors for bilayer coupled public traffic
network after decrease of the transfer stations between conventional
bus lines and subway lines.

with Figure 3 the synchronization time increased 0.6 time
units. This implies that the more public bus stops between
conventional bus lines the more vehicles for the passengers
to transfer, the passengers stranded time have shortened and
the faster the whole network reach stable.

Fixing 𝜏(𝑡) = 0.05, 𝜀
1
= 𝜀
2
= 𝜇 = 0.3, if the edge weights

of urban rail traffic network B are changed to 𝑏
11
= 0, 𝑏

12
=

0, 𝑏
21
= 0, 𝑏

22
= 0, namely, remove the public subway

stations between subway line 1 and subway line 2 and make
no transfer between two subway lines, the synchronization
errors are shown in Figure 6.The simulation result shows that
the bilayer coupled public traffic network achieves balance
in 8 time units; compared with Figure 3 the synchronization
time increased 5 time units. This indicates that establishing
the public subway stations between two subway lines has very
good effect on the whole traffic networks’ balance.

Fixing 𝜏(𝑡) = 0.05, 𝜀
1
= 𝜀
2
= 𝜇 = 0.3, if the weights of

external coupling edges are changed to

𝑐
11
= 3, 𝑐

12
= 2, 𝑐

21
= 0, 𝑐

22
= 2, 𝑐

31
= 5, 𝑐

32
= 6, 𝑐

41
= 0,

𝑐
42
= 9, 𝑐

51
= 1, 𝑐

52
= 0, 𝑐

61
= 0, 𝑐

62
= 2, 𝑐

71
= 7, 𝑐

72
= 1,

𝑐
81
= 0, 𝑐

82
= 0, 𝑑

𝑗𝑖
= 𝑐
𝑖𝑗

(𝑖 = 1, 2, . . . , 8, 𝑗 = 1, 2) ,

(21)

namely, decrease the transfer stations between conventional
bus lines and subway lines, the synchronization errors are
shown in Figure 7. The result shows that the bilayer coupled
public traffic network achieves balance in 4 time units;
compared with Figure 3 the synchronization time increased
1 time unit. This shows that the more the transfer stations
between conventional bus lines and subway lines, the more
the convenience for the passengers to transfer.The passengers
stranded time will be shortened, and the bilayer coupled
public traffic network can reach balance faster.

6. Conclusions

Thepaper established a bilayer coupled public traffic network
model by using the space 𝑅 modeling method. Based on
the synchronization theory of coupling network with time-
varying delay, the paper investigated the synchronization of
bilayer coupled public traffic network. And the impacts of
public traffic dispatching, delayed departure, the number
of public bus stops between bus lines, and the number of
transfer stations between two traffic modes on the bilayer
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coupled public traffic network balance are analyzed in detail.
The results prove that the reasonable artificial scheduling
such as appropriate adjusting of the departing frequency
and time, optimization of the transfer facilities, and effective
traffic dispersion can speed up the bilayer coupled public
traffic network’s stability. And increase of the public bus
stops between conventional bus lines and the public subway
stations between subways lines can shorten the passengers
stranded time and decreased thewhole network synchroniza-
tion’s time. Besides, increase of the transfer stations between
conventional bus lines and subway lines can make the bilayer
coupled public traffic network reach balance faster. To ease
traffic congestion and optimize the traffic network structure,
these conclusions can provide decision-making basis for
transportation planning, control, and management.
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