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TheWronskian technique is used to investigate a (3+1)-dimensional generalized BKP equation. Based onHirota’s bilinear form, new
exact solutions including rational solutions, soliton solutions, positon solutions, negaton solutions, and their interaction solutions
are formally derived. Moreover we analyze the strangely mechanical behavior of the Wronskian determinant solutions. The study
of these solutions will enrich the variety of the dynamics of the nonlinear evolution equations.

1. Introduction

In recent years, the problem of finding exact solutions of non-
linear evolution equations (NLEEs) is very popular for both
mathematicians and physicists. Because seeking exact solu-
tions of NLEEs is of great significance in nonlinear dynamics,
many methods such as the inverse scattering transformation
[1], Hirota’s bilinear method [2], the Darboux transformation
[3], the sine-cosine method [4], 𝐺/𝐺-expansion method
[5, 6], and the transformed rational functionmethod [7] have
been proposed.TheWronskianmethodwhich is based on the
bilinear form of the NLEEs was proposed by Freeman and
Nimmo in [8, 9]. It is a fairly powerful tool to construct exact
solutions of NLEEs in terms of the Wronskian determinant.
By means of the method, the exact solutions of some NLEEs
are obtained [10–16].

The study of the BKP equation has attracted a consider-
able size of researchwork.These equationswere studied using
the Hirota method, the multiple exp-function algorithm, the
Pfaffian technique, Riemann theta functions, the extended
homoclinic test approach, and Bäcklund transformation by
many authors [17–26]. In this paper, based on theWronskian
method, the new exact solutions including rational solutions,
soliton solutions, positon solutions, negaton solutions, and
their interaction solutions of the (3+1)-dimensional general-
ized BKP equations are investigated.

In this paper, we will consider the following (3+1)-
dimensional generalized BKP equation:

𝑢
𝑦𝑡
− 𝑢
𝑥𝑥𝑥𝑦

− 3 (𝑢
𝑥
𝑢
𝑦
)
𝑥
+ 6𝑢
𝑥𝑥

− 3𝑢
𝑧𝑧

= 0. (1)

When 𝑧 = 𝑥, this (3+1)-dimensional generalized BKP
equation reduces to the BKP equation [27, 28]:

𝑢
𝑦𝑡
− 𝑢
𝑥𝑥𝑥𝑦

− 3 (𝑢
𝑥
𝑢
𝑦
)
𝑥
+ 3𝑢
𝑥𝑥

= 0. (2)

By the dependent variable transformation

𝑢 = 2 (ln𝑓)
𝑥
=
2𝑓
𝑥

𝑓
, (3)

the (3+1)-dimensional generalized BKP equation (1) becomes
a bilinear form

(𝐷
𝑦
𝐷
𝑡
− 𝐷
3

𝑥
𝐷
𝑦
+ 6𝐷
2

𝑥
− 3𝐷
2

𝑧
) 𝑓 ⋅ 𝑓 = 0, (4)

where𝐷
𝑡
,𝐷
𝑥
,𝐷
𝑦
, and𝐷

𝑧
are the Hirota operators [2]:

𝑓 (𝑓
𝑦𝑡
− 𝑓
𝑥𝑥𝑥𝑦

+ 6𝑓
𝑥𝑥

− 3𝑓
𝑧𝑧
) − 𝑓
𝑦
𝑓
𝑡
+ 𝑓
𝑥𝑥𝑥

𝑓
𝑦

+ 3𝑓
𝑥𝑥𝑦

𝑓
𝑥
− 3𝑓
𝑥𝑥
𝑓
𝑥𝑦

− 6𝑓
2

𝑥
+ 3𝑓
2

𝑧
= 0.

(5)
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We will show this (3+1)-dimensional generalized BKP
equation has a class of Wronskian solutions with all gener-
ating functions for matrix entries satisfying a linear system
of partial differential equations involving a free parameter.
Rational solutions, solitons, positons, negatons, and interac-
tion solutions to (1) amongWronskian determinant solutions
are constructed and a few plots of particular solutions are
made.

The paper is organized as follows. In Section 2, we derive
a Wronskian formulation for the (3+1)-dimensional general-
ized BKP equation. In Section 3, Wronskian solutions to the
(3+1)-dimensional generalized BKP equation are obtained.
Section 4 presents the conclusion.

2. A Wronskian Formulation

TheWronskian technique is a powerful tool to construct exact
solutions to bilinear differential or difference equations. To
use theWronskian technique, we adopt the compact notation
introduced by Freeman and Nimmo [8, 9]:

𝑊(𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑁
) = (𝑁 − 1;Φ) =


𝑁 − 1



=



𝜙
(0)

1
𝜙
(1)

1
⋅ ⋅ ⋅ 𝜙
(𝑁−1)

1

𝜙
(0)

2
𝜙
(1)

2
⋅ ⋅ ⋅ 𝜙
(𝑁−1)

2

.

.

.
.
.
. d

.

.

.

𝜙
(0)

𝑁
𝜙
(1)

𝑁
⋅ ⋅ ⋅ 𝜙
(𝑁−1)

𝑁



,

(6)

where

Φ = (𝜙
1
, . . . , 𝜙

𝑁
)
𝑇

,

𝜙
(0)

𝑖
= 𝜙
𝑖
,

𝜙
(𝑗)

𝑖
=

𝜕
𝑗

𝜕𝑥𝑗
𝜙
𝑖
,

𝑗 ≥ 1, 1 ≤ 𝑖 ≤ 𝑁.

(7)

Solutions determined by 𝑢 = 2(ln𝑓)
𝑥
with𝑓 = |𝑁 − 1| to the

(3+1)-dimensional generalized BKP equation (1) are called
Wronskian solutions.

Theorem 1. Assuming that a group of functions 𝜙
𝑖

=

𝜙
𝑖
(𝑥, 𝑦, 𝑧, 𝑡), 1 ≤ 𝑖 ≤ 𝑁, satisfies the following linear conditions

−𝜙
𝑖,𝑥𝑥

=

𝑁

∑

𝑗=1

𝜆
𝑖𝑗
(𝑡) 𝜙
𝑗
, (8)

𝜙
𝑖,𝑦

= 𝑘𝜙
𝑖,𝑥
, (9)

𝜙
𝑖,𝑧

= √2𝜙
𝑖,𝑥
, (10)

𝜙
𝑖,𝑡
= 4𝜙
𝑖,𝑥𝑥𝑥

, (11)

where 𝑘 is an arbitrary nonzero constant, then the Wronskian
determinant 𝑓 = |𝑁 − 1| defined by (6) solves the bilinear
equation (5).

Proof. Obviously, we have

𝑓
𝑥
=

𝑁 − 2,𝑁


,

𝑓
𝑥𝑥

=

𝑁 − 3,𝑁 − 1,𝑁


+

𝑁 − 2,𝑁 + 1


,

𝑓
𝑥𝑥𝑥

=

𝑁 − 4,𝑁 − 2,𝑁 − 1,𝑁



+ 2

𝑁 − 3,𝑁 − 1,𝑁 + 1



+

𝑁 − 2,𝑁 + 2


.

(12)

Using conditions (9), (10), and (11), we get that

𝑓
𝑦
= 𝑘


𝑁 − 2,𝑁


,

𝑓
𝑥𝑦

= 𝑘 (

𝑁 − 3,𝑁 − 1,𝑁


+

𝑁 − 2,𝑁 + 1


) ,

𝑓
𝑥𝑥𝑦

= 𝑘 (

𝑁 − 4,𝑁 − 2,𝑁 − 1,𝑁



+ 2

𝑁 − 3,𝑁 − 1,𝑁 + 1


+

𝑁 − 2,𝑁 + 2


) ,

𝑓
𝑥𝑥𝑥𝑦

= 𝑘 (

𝑁 − 5,𝑁 − 3,𝑁 − 2,𝑁 − 1,𝑁



+ 3

𝑁 − 4,𝑁 − 2,𝑁 − 1,𝑁 + 1



+ 2

𝑁 − 3,𝑁,𝑁 + 1


+ 3


𝑁 − 3,𝑁 − 1,𝑁 + 2



+

𝑁 − 2,𝑁 + 3


) ,

𝑓
𝑧
= √2


𝑁 − 2,𝑁


,

𝑓
𝑧𝑧

= 2 (

𝑁 − 3,𝑁 − 1,𝑁


+

𝑁 − 2,𝑁 + 1


) ,

𝑓
𝑡
= 4 (


𝑁 − 4,𝑁 − 2,𝑁 − 1,𝑁



−

𝑁 − 3,𝑁 − 1,𝑁 + 1


+

𝑁 − 2,𝑁 + 2


) ,

𝑓
𝑦𝑡
= 4𝑘 (


𝑁 − 5,𝑁 − 3,𝑁 − 2,𝑁 − 1,𝑁



−

𝑁 − 3,𝑁,𝑁 + 1


+

𝑁 − 2,𝑁 + 3


) .

(13)

Under (8), it is not difficult to obtain [10]


𝑁 − 1



𝑁

∑

𝑖=1

𝜆
𝑖𝑖
(𝑡) (

𝑁

∑

𝑖=1

𝜆
𝑖𝑖
(𝑡)


𝑁 − 1


)

= (

𝑁

∑

𝑖=1

𝜆
𝑖𝑖
(𝑡)


𝑁 − 1


)

2

= (

𝑁 − 2,𝑁 + 1



−

𝑁 − 3,𝑁 − 1,𝑁


)
2

=

𝑁 − 1



⋅ (

𝑁 − 5,𝑁 − 3,𝑁 − 2,𝑁 − 1,𝑁



−

𝑁 − 4,𝑁 − 2,𝑁 − 1,𝑁 + 1



+ 2

𝑁 − 3,𝑁,𝑁 + 1


−

𝑁 − 3,𝑁 − 1,𝑁 + 2



+

𝑁 − 2,𝑁 + 3


) .

(14)
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Therefore,

𝑓 (𝑓
𝑦𝑡
− 𝑓
𝑥𝑥𝑥𝑦

+ 6𝑓
𝑥𝑥

− 3𝑓
𝑧𝑧
) = 3𝑘


𝑁 − 1



⋅ (

𝑁 − 5,𝑁 − 3,𝑁 − 2,𝑁 − 1,𝑁



−

𝑁 − 4,𝑁 − 2,𝑁 − 1,𝑁 + 1



− 2

𝑁 − 3,𝑁,𝑁 + 1


−

𝑁 − 3,𝑁 − 1,𝑁 + 2



+

𝑁 − 2,𝑁 + 3


) = 3𝑘 (


𝑁 − 2,𝑁 + 1



−

𝑁 − 3,𝑁 − 1,𝑁


)
2

− 12𝑘

𝑁 − 3,𝑁,𝑁 + 1



⋅

𝑁 − 1


− 𝑓
𝑦
𝑓
𝑡
+ 𝑓
𝑥𝑥𝑥

𝑓
𝑦
+ 3𝑓
𝑥𝑥𝑦

𝑓
𝑥
− 6𝑓
2

𝑥
+ 3𝑓
2

𝑧

= 12𝑘

𝑁 − 3,𝑁 − 1,𝑁 + 1




𝑁 − 2,𝑁


− 3𝑓
𝑥𝑥
𝑓
𝑥𝑦

= −3𝑘 (

𝑁 − 2,𝑁 + 1


−

𝑁 − 3,𝑁 − 1,𝑁


)
2

− 12𝑘

𝑁 − 3,𝑁 − 1,𝑁




𝑁 − 2,𝑁 + 1


.

(15)

Substitution of the above results into (4) finally leads to the
following Plücker relation:

(𝐷
𝑦
𝐷
𝑡
− 𝐷
3

𝑥
𝐷
𝑦
+ 6𝐷
2

𝑥
− 3𝐷
2

𝑧
) 𝑓 ⋅ 𝑓

= −12𝑘

𝑁 − 3,𝑁,𝑁 + 1




𝑁 − 1



+ 12𝑘

𝑁 − 3,𝑁 − 1,𝑁 + 1




𝑁 − 2,𝑁



− 12𝑘

𝑁 − 3,𝑁 − 1,𝑁




𝑁 − 2,𝑁 + 1


= 0.

(16)

Theorem 1 tells us that if a group of functions 𝜙
𝑖

=

𝜙
𝑖
(𝑥, 𝑦, 𝑧, 𝑡), 1 ≤ 𝑖 ≤ 𝑁, satisfies the linear conditions in (8)–

(11), then we can get a solution 𝑓 = |𝑁 − 1| to the bilinear
BKP equation (4). The corresponding solution of (1) is

𝑢 = 2 (ln𝑓)
𝑥
=
2𝑓
𝑥

𝑓
=

2

𝑁 − 2,𝑁



𝑁 − 1



. (17)

Remark 1. From the compatibility conditions 𝜙
𝑖,𝑥𝑥𝑡

= 𝜙
𝑖,𝑡𝑥𝑥

,
1 ≤ 𝑖 ≤ 𝑁, of conditions (8)–(11), we have the equality

𝑁

∑

𝑗=1

𝜆
𝑖𝑗
(𝑡) 𝜙
𝑗
= 0, 1 ≤ 𝑖 ≤ 𝑁, (18)

and thus it is easy to see that the Wronskian determinant
𝑊(𝜙
1
, 𝜙
2
, . . . , 𝜙

𝑁
) becomes zero if there is at least one entry

𝜆
𝑖𝑗
satisfying 𝜆

𝑖𝑗
(𝑡) ̸= 0.

Remark 2. If the coefficient matrix Λ = (𝜆
𝑖𝑗
) is similar to

anothermatrix𝑀 = (𝜇
𝑖𝑗
) under an invertible constantmatrix

𝑃, let us say Λ = 𝑃
−1
𝑀𝑃, then Φ̃ = 𝑃Φ solves

−Φ̃
𝑥𝑥

= 𝑀Φ̃,

Φ̃
𝑦
= 𝑘Φ̃
𝑥
,

Φ̃
𝑧
= √2Φ̃

𝑥
,

Φ̃
𝑡
= 4Φ̃
𝑥𝑥𝑥

,

(19)

and the resulting Wronskian solutions to (1) are the same:

𝑢 (Λ) = 2𝜕
𝑥
ln Φ
(0)
, Φ
(1)
, . . . , Φ

(𝑁−1)

= 2𝜕
𝑥
ln 𝑃Φ

(0)
, 𝑃Φ
(1)
, . . . , 𝑃Φ

(𝑁−1)
= 𝑢 (𝑀) .

(20)

Based on Remark 1, we only need to consider case of (8)–(11)
under 𝑑Λ/𝑑𝑡 = 0, that is, the following conditions:

−𝜙
𝑖,𝑥𝑥

=

𝑁

∑

𝑗=1

𝜆
𝑖𝑗
(𝑡) 𝜙
𝑗
,

𝜙
𝑖,𝑦

= 𝑘𝜙
𝑖,𝑥
,

𝜙
𝑖,𝑧

= √2𝜙
𝑖,𝑥
,

𝜙
𝑖,𝑡
= 4𝜙
𝑖,𝑥𝑥𝑥

,

(21)

where Λ = (𝜆
𝑖𝑗
) is an arbitrary real constant matrix.

Moreover, Remark 2 tells us that an invertible constant linear
transformation onΦ in theWronskian determinant does not
change the corresponding Wronskian solution, and thus, we
only have to solve (21) under the Jordan form of Λ.

3. Wronskian Solutions

In principle, we can construct general Wronskian solutions
of (1) associated with two types of Jordan blocks of the
coefficient matrix Λ. But it is not easy. In this section we will
present a few special Wronskian solutions to the generalized
BKP equation, together with examples of exact solutions.

It is well known that the corresponding Jordan form of a
real matrix

Λ =

[
[
[
[

[

𝐽 (𝜆
1
) 0

1 𝐽 (𝜆
2
)

d d
0 1 𝐽 (𝜆

𝑚
)

]
]
]
]

]
𝑛×𝑛

(22)

has the following two types of blocks:
(I)

𝐽 (𝜆
𝑖
) =

[
[
[
[

[

𝜆
𝑖

0

1 𝜆
𝑖

d d
0 1 𝜆

𝑖

]
]
]
]

]𝑘𝑖×𝑘𝑖

(23)

(II)

𝐽 (𝜆
𝑖
) =

[
[
[
[

[

Λ
𝑖

0

𝐼
2

Λ
𝑖

d d
0 𝐼

2
Λ
𝑖

]
]
]
]

]𝑙𝑖×𝑙𝑖

,

Λ
𝑖
= [

𝛼
𝑖
−𝛽
𝑖

𝛽
𝑖

𝛼
𝑖

] , 𝐼
2
= [

1 0

0 1
] ,

(24)
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where 𝜆
𝑖
, 𝛼
𝑖
, 𝛽
𝑖
are all real constants. The first type of

blocks has the real eigenvalue 𝜆
𝑖
with algebraic multiplicity

𝑘
𝑖
(Σ
𝑚

𝑖=1
𝑘
𝑖
= 𝑁), and the second type of blocks has the complex

eigenvalue 𝜆±
𝑖
= 𝛼
𝑖
± 𝛽
𝑖
√−1 with algebraic multiplicity 𝑙

𝑖
.

3.1. Rational Solutions. SupposeΛ has the first type of Jordan
blocks. Without loss of generality, let

𝐽 (𝜆
1
) =

[
[
[
[
[

[

𝜆
1

0

1 𝜆
1

d d

0 1 𝜆
1

]
]
]
]
]

]𝑘1×𝑘1

. (25)

In this case, if the eigenvalue 𝜆
1
= 0, 𝐽(𝜆

1
) becomes of the

following form:

[
[
[
[
[

[

0 0

1 0

d d

0 1 0

]
]
]
]
]

]𝑘1×𝑘1

. (26)

From condition (21), we get

𝜙
1,𝑥𝑥

= 0,

−𝜙
𝑖+1,𝑥𝑥

= 𝜙
𝑖
,

𝜙
𝑖,𝑦

= 𝑘𝜙
𝑖,𝑥
,

𝜙
𝑖,𝑧

= √2𝜙
𝑖,𝑥
,

𝜙
𝑖,𝑡
= 4𝜙
𝑖,𝑥𝑥𝑥

,

𝑖 ≥ 1.

(27)

Such functions 𝜙
𝑖
(𝑖 ≥ 1) are all polynomials in 𝑥, 𝑦, 𝑧, and

𝑡, and a generalWronskian solution to the (3+1)-dimensional
generalized BKP equation (1)

𝑢 = 2𝜕
𝑥
ln𝑊(𝜙

1
, 𝜙
2
, . . . , 𝜙

𝑘1
) (28)

is rational and is called a rationalWronskian solution of order
𝑘
1
− 1.
From (27), we solve 𝜙

1,𝑥𝑥
= 0, 𝜙

1,𝑦
= 𝑘𝜙
1,𝑥
, 𝜙
1,𝑧

= √2𝜙
1,𝑥
,

𝜙
1,𝑡

= 4𝜙
1,𝑥𝑥𝑥

and have

𝜙
1
= 𝑐
1
+ 𝑐
2
(𝑥 + 𝑘𝑦 + √2𝑧) , (29)

where 𝑐
1
, 𝑐
2
, and 𝑘 ̸= 0 are all real constants. Similarly, by

solving −𝜙
𝑖+1,𝑥𝑥

= 𝜙
1
, 𝜙
𝑖+1,𝑦

= 𝑘𝜙
𝑖+1,𝑥

, 𝜙
𝑖+1,𝑧

= √2𝜙
𝑖+1,𝑥

,
𝜙
𝑖+1,𝑡

= 4𝜙
𝑖+1,𝑥𝑥𝑥

, 𝑖 ≥ 1, then two special rational solutions of
lower-order are obtained after setting some integral constants
to be zero.

(1) Zero-Order. When 𝑐
1
= 0, 𝑐

2
= 1, 𝜙

1
= 𝑥 + 𝑘𝑦 + √2𝑧,

we have the corresponding Wronskian determinant 𝑓 =

𝑊(𝜙
1
) = 𝑥+𝑘𝑦+√2𝑧 and the associated rationalWronskian

solution of zero-order:

𝑢 = 2𝜕
𝑥
ln𝑊(𝜙

1
) =

2

𝑥 + 𝑘𝑦 + √2𝑧
. (30)

(2) First-Order. Taking 𝑐
1
= 0, 𝑐
2
= −1, 𝜙

1
= −(𝑥 + 𝑘𝑦 +√2𝑧),

we have 𝜙
2
= (1/6)(𝑥 + 𝑘𝑦 + √2𝑧)

3
+ 4𝑡. In this case, the

corresponding Wronskian determinant is 𝑓 = 𝑊(𝜙
1
, 𝜙
2
) =

−(1/3)(𝑥 + 𝑘𝑦 + √2𝑧)
3
+ 4𝑡, and the rational Wronskian

solution of first-order reads

𝑢 = 2𝜕
𝑥
ln𝑊(𝜙

1
, 𝜙
2
) =

2 (𝑥 + 𝑘𝑦 + √2𝑧)
2

(1/3) (𝑥 + 𝑘𝑦 + √2𝑧)
3

− 4𝑡

. (31)

(3) Second-Order. Taking 𝜙
1
= 𝑥+𝑘𝑦+√2𝑧, 𝜙

2
= −(1/6)(𝑥+

𝑘𝑦 + √2𝑧)
3
− 4𝑡, we have 𝜙

3
= (1/120)(𝑥 + 𝑘𝑦 + √2𝑧)

5
+

2(𝑥 + 𝑘𝑦 + √2𝑧)
2
𝑡. Then the Wronskian determinant is 𝑓 =

𝑊(𝜙
1
, 𝜙
2
, 𝜙
3
) = −(1/45)(𝑥 + 𝑘𝑦 + √2𝑧)

6
+ (4/3)(𝑥 + 𝑘𝑦 +

√2𝑧)
3
𝑡+16𝑡

2, and the rationalWronskian solution of second-
order is given by

𝑢 = 2𝜕
𝑥
ln𝑊(𝜙

1
, 𝜙
2
, 𝜙
3
)

=

− (2/15) (𝑥 + 𝑘𝑦 + √2𝑧)
5

+ 4 (𝑥 + 𝑘𝑦 + √2𝑧)
2

𝑡

− (1/45) (𝑥 + 𝑘𝑦 + √2𝑧)
6

+ (4/3) (𝑥 + 𝑘𝑦 + √2𝑧)
3

𝑡 + 16𝑡2
.

(32)

3.2. Solitons, Positons, and Negatons. If the eigenvalue 𝜆
𝑖

̸= 0,
𝐽(𝜆
𝑖
) becomes of the following form:

[
[
[
[
[

[

𝜆
𝑖

0

1 𝜆
𝑖

d d

0 1 𝜆
𝑖

]
]
]
]
]

]𝑘𝑖×𝑘𝑖

. (33)

We start from the eigenfunction 𝜙
𝑖
(𝜆
𝑖
) determined by

− (𝜙
𝑖
(𝜆
𝑖
))
𝑥𝑥

= 𝜆
𝑖
𝜙
𝑖
(𝜆
𝑖
) ,

(𝜙
𝑖
(𝜆
𝑖
))
𝑦
= 𝑘 (𝜙

𝑖
(𝜆
𝑖
))
𝑥
,

(𝜙
𝑖
(𝜆
𝑖
))
𝑧
= √2 (𝜙

𝑖
(𝜆
𝑖
))
𝑥
,

(𝜙
𝑖
(𝜆
𝑖
))
𝑡
= 4 (𝜙

𝑖
(𝜆
𝑖
))
𝑥𝑥𝑥

.

(34)

General solutions to this system in two cases of 𝜆
𝑖
> 0 and

𝜆
𝑖
< 0 read as

𝜙
𝑖
(𝜆
𝑖
) = 𝐶
1𝑖
sin(√𝜆

𝑖
(𝑥 + 𝑘𝑦 + √2𝑧 − 4𝑡𝜆

𝑖
))

+ 𝐶
2𝑖
cos(√𝜆

𝑖
(𝑥 + 𝑘𝑦 + √2𝑧 − 4𝑡𝜆

𝑖
)) ,

𝜙
𝑖
(𝜆
𝑖
) = 𝐶
3𝑖
sinh(√−𝜆

𝑖
(𝑥 + 𝑘𝑦 + √2𝑧 − 4𝑡𝜆

𝑖
))

+ 𝐶
4𝑖
cosh (√−𝜆

𝑖
(𝑥 + 𝑘𝑦 + √2𝑧 − 4𝑡𝜆

𝑖
)) ,

(35)
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respectively, where 𝐶
1𝑖
, 𝐶
2𝑖
, 𝐶
3𝑖
, and 𝐶

4𝑖
are arbitrary real

constants. By an inspection, we find that

−

[
[
[
[
[
[
[
[
[

[

𝜙
𝑖
(𝜆
𝑖
)

1

1!
𝜕
𝜆𝑖
𝜙
𝑖
(𝜆
𝑖
)

.

.

.

1

(𝑘
𝑖
− 1)!

𝜕
𝑘𝑖−1

𝜆𝑖

𝜙
𝑖
(𝜆
𝑖
)

]
]
]
]
]
]
]
]
]

]
𝑥𝑥

=

[
[
[
[
[

[

𝜆
𝑖

0

1 𝜆
𝑖

d d

0 1 𝜆
𝑖

]
]
]
]
]

]𝑘𝑖×𝑘𝑖

[
[
[
[
[
[
[
[
[

[

𝜙
𝑖
(𝜆
𝑖
)

1

1!
𝜕
𝜆𝑖
𝜙
𝑖
(𝜆
𝑖
)

.

.

.

1

(𝑘
𝑖
− 1)!

𝜕
𝑘𝑖−1

𝜆𝑖

𝜙
𝑖
(𝜆
𝑖
)

]
]
]
]
]
]
]
]
]

]

,

(
1

𝑗!
𝜕
𝑗

𝜆𝑖

𝜙
𝑖
(𝜆
𝑖
))

𝑦

= 𝑘(
1

𝑗!
𝜕
𝑗

𝜆𝑖

𝜙
𝑖
(𝜆
𝑖
))

𝑥

,

(
1

𝑗!
𝜕
𝑗

𝜆𝑖

𝜙
𝑖
(𝜆
𝑖
))

𝑧

= √2(
1

𝑗!
𝜕
𝑗

𝜆𝑖

𝜙
𝑖
(𝜆
𝑖
))

𝑥

,

(
1

𝑗!
𝜕
𝑗

𝜆𝑖

𝜙
𝑖
(𝜆
𝑖
))

𝑡

= 4(
1

𝑗!
𝜕
𝑗

𝜆𝑖

𝜙
𝑖
(𝜆
𝑖
))

𝑥𝑥𝑥

,

0 ≤ 𝑗 ≤ 𝑘
𝑖
− 1.

(36)

Therefore, through this set of eigenfunctions, we obtain a
Wronskian solution to (1):

𝑢 = 2𝜕
𝑥
ln𝑊(𝜙

𝑖
(𝜆
𝑖
) ,

1

1!
𝜕
𝜆𝑖
𝜙
𝑖
(𝜆
𝑖
) , . . . ,

1

(𝑘
𝑖
− 1)!

⋅ 𝜕
𝑘𝑖−1

𝜆𝑖

𝜙
𝑖
(𝜆
𝑖
)) ,

(37)

which corresponds to the first type of Jordan blocks with a
nonzero real eigenvalue.

When 𝜆
𝑖
> 0, we get positon solutions [29], and when

𝜆
𝑖

< 0, we get negaton solutions [30]. If we suppose Λ

have 𝑛 different nonzero real eigenvalues, in which there are
𝑙 positive real eigenvalues and 𝑛 − 𝑙 negative real eigenvalues,

then a more general positon can be obtained by combining 𝑙
sets of eigenfunctions associated with different 𝜆

𝑖
> 0:

𝑢 = 2𝜕
𝑥
ln𝑊(𝜙

1
(𝜆
1
) ,

1

1!
𝜕
𝜆1
𝜙
1
(𝜆
1
) , . . . ,

1

(𝑘
1
− 1)!

⋅ 𝜕
𝑘1−1

𝜆1

𝜙
1
(𝜆
1
) ; . . . ; 𝜙

𝑙
(𝜆
𝑙
) ,

1

1!
𝜕
𝜆𝑙
𝜙
𝑙
(𝜆
𝑙
) , . . . ,

1

(𝑘
𝑙
− 1)!

⋅ 𝜕
𝑘𝑙−1

𝜆𝑙

𝜙
𝑙
(𝜆
𝑙
)) .

(38)

Similarly, a more general negaton can be obtained by com-
bining 𝑛 − 𝑙 sets of eigenfunctions associated with different
𝜆
𝑖
< 0:

𝑢 = 2𝜕
𝑥
ln𝑊(𝜙

1
(𝜆
1
) ,

1

1!
𝜕
𝜆1
𝜙
1
(𝜆
1
) , . . . ,

1

(𝑘
1
− 1)!

⋅ 𝜕
𝑘1−1

𝜆1

𝜙
1
(𝜆
1
) ; . . . ; 𝜙

𝑛−𝑙
(𝜆
𝑛−𝑙

) ,
1

1!

⋅ 𝜕
𝜆𝑛−𝑙

𝜙
𝑛−𝑙

(𝜆
𝑛−𝑙

) , . . . ,
1

(𝑘
𝑛−𝑙

− 1)!
𝜕
𝑘𝑛−𝑙−1

𝜆𝑛−𝑙

𝜙
𝑛−𝑙

(𝜆
𝑛−𝑙

)) .

(39)

This solution is called an 𝑙-positon of order (𝑘
1
− 1, 𝑘

2
−

1, . . . , 𝑘
𝑙
−1) or 𝑛−𝑙-negaton of order (𝑘

1
−1, 𝑘
2
−1, . . . , 𝑘

𝑛−𝑙
−1).

If 𝑙 = 𝑛 or 𝑙 = 0, we simply say that it is an 𝑛-positon of order
𝑛 or an 𝑛-negaton of order 𝑛.

(1) Solitons. An 𝑛-soliton solution is a special 𝑛-negaton:

𝑢 = 2𝜕
𝑥
ln𝑊(𝜙

1
, 𝜙
2
, . . . , 𝜙

𝑛
) , (40)

with 𝜙
𝑖
being given by

𝜙
𝑖
= cosh (√−𝜆

𝑖
(𝑥 + 𝑘𝑦 + √2𝑧 − 4𝑡𝜆

𝑖
) + 𝛾
𝑖
) ,

𝑖 odd,

𝜙
𝑖
= sinh(√−𝜆

𝑖
(𝑥 + 𝑘𝑦 + √2𝑧 − 4𝑡𝜆

𝑖
) + 𝛾
𝑖
) ,

𝑖 even,

(41)

where 𝜆
1
< 𝜆
2
< ⋅ ⋅ ⋅ < 𝜆

𝑛
< 0 and 𝛾

𝑖
(1 ≤ 𝑖 ≤ 𝑛) are arbitrary

real constants. For example, a 1-soliton to (1) is given by

𝑢 = 2𝜕
𝑥
ln𝑊(𝜙

1
) = 2𝜕

𝑥

⋅ ln(cosh (√−𝜆
1
(𝑥 + 𝑘𝑦 + √2𝑧 − 4𝑡𝜆

1
) + 𝛾
1
))

= 2√−𝜆
1
tanh (𝜃

1
) ,

(42)

where 𝜃
1
= √−𝜆

1
(𝑥 + 𝑘𝑦 + √2𝑧 − 4𝑡𝜆

1
) + 𝛾
1
.

Similarly, we have a 2-soliton to (1):

𝑢 = 2𝜕
𝑥
ln𝑊(cosh (𝜃

1
) , sinh (𝜃

2
)) =

2 (𝜆
1
− 𝜆
2
) (sinh (𝜃

1
− 𝜃
2
) − sinh (𝜃

1
+ 𝜃
2
))

(√−𝜆
1
− √−𝜆

2
) cosh (𝜃

1
+ 𝜃
2
) − (√−𝜆

1
+ √−𝜆

2
) cosh (𝜃

1
− 𝜃
2
)

, (43)
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Figure 1:The shape of the 1-soliton to (1) with 𝜆
1
= −2, 𝑦 = 0, 𝑡 = 1,

𝛾
1
= 0.
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Figure 2: The shape of the 2-soliton to (1) with 𝜆
1
= −4, 𝜆

2
= −1,

𝑦 = 0, 𝑡 = 0, 𝛾
1
= 𝛾
2
= 0.

where 𝜃
𝑖
= √−𝜆

𝑖
(𝑥+𝑘𝑦+√2𝑧−4𝑡𝜆

𝑖
)+𝛾
𝑖
, 𝑖 = 1, 2. Figures 1 and

2 of three-dimensional plots show the 𝑛-soliton to (1) defined
by (40) on the indicated specific regions, with specific values
being chosen for the parameters.

(2) Positons. Two kinds of special positons of order 𝑘
1
− 1 are

𝑢 = 2𝜕
𝑥
ln𝑊(𝜙, 𝜕

𝜆
𝜙, . . . , 𝜕

𝑘1−1

𝜆
𝜙) ,

𝜙 = cos (√𝜆 (𝑥 + 𝑘𝑦 + √2𝑧 − 4𝑡𝜆) + 𝛾 (√𝜆)) ,

(44)

𝑢 = 2𝜕
𝑥
ln𝑊(𝜙, 𝜕

𝜆
𝜙, . . . , 𝜕

𝑘1−1

𝜆
𝜙) ,

𝜙 = sin (√𝜆 (𝑥 + 𝑘𝑦 + √2𝑧 − 4𝑡𝜆) + 𝛾 (√𝜆)) ,

(45)
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Figure 3:The shape of the 1-positon of zero-order to (1) with 𝜆
1
= 2,

𝑦 = 0, 𝑡 = 1, 𝛾
3
= 0.

where 𝜆 > 0 and 𝛾 is an arbitrary function of √𝜆. But these
two kinds of positons are equivalent to each other, due to the
existence of the arbitrary function 𝛾.

When 𝜆
1
> 0, a 1-positon of zero-order reads

𝑢 = 2𝜕
𝑥
ln𝑊(𝜙

1
)

= 2𝜕
𝑥
ln(cos(√𝜆

1
(𝑥 + 𝑘𝑦 + √2𝑧 − 4𝑡𝜆

1
) + 𝛾
1
))

= −2√𝜆
1
tan (𝜃

3
) ,

(46)

where 𝜃
3
= √𝜆

1
(𝑥 + 𝑘𝑦 + √2𝑧 − 4𝑡𝜆

1
) + 𝛾
3
. And a 1-positon

of first-order is

𝑢 = 2𝜕
𝑥
ln𝑊(cos (𝜃

3
) , 𝜕
𝜆1
cos (𝜃

3
))

=
4√𝜆
1
(1 + cos (2𝜃

3
))

2√𝜆
1
(𝑥 + 𝑘𝑦 + √2𝑧 − 12𝑡𝜆

1
) + sin (2𝜃

3
)

.

(47)

Figures 3 and 4 of three-dimensional plots show the special
positons to (1) defined by (44) on the indicated specific
regions, with specific values being chosen for the parameters.

(3) Negatons. Two kinds of special negatons of order 𝑘
1
− 1

are

𝑢 = 2𝜕
𝑥
ln𝑊(𝜙, 𝜕

𝜆
𝜙, . . . , 𝜕

𝑘1−1

𝜆
𝜙) ,

𝜙 = cosh (√−𝜆 (𝑥 + 𝑘𝑦 + √2𝑧 − 4𝑡𝜆) + 𝛾 (√−𝜆)) ,

(48)

𝑢 = 2𝜕
𝑥
ln𝑊(𝜙, 𝜕

𝜆
𝜙, . . . , 𝜕

𝑘1−1

𝜆
𝜙) ,

𝜙 = sinh (√−𝜆 (𝑥 + 𝑘𝑦 + √2𝑧 − 4𝑡𝜆) + 𝛾 (√−𝜆)) ,

(49)

where 𝜆 < 0 and 𝛾 is an arbitrary function of√−𝜆. Similarly,
these two kinds of negatons are equivalent to each other.
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When 𝜆
1
< 0, a 1-negaton of first-order reads

𝑢 = 2𝜕
𝑥
ln𝑊(cosh (𝜃

1
) , 𝜕
𝜆1
cosh (𝜃

1
))

=
4√−𝜆

1
(1 + cosh (2𝜃

1
))

2√−𝜆
1
(𝑥 + 𝑘𝑦 + √2𝑧 − 4𝑡𝜆

1
) + sinh (2𝜃

1
)

,

(50)

where 𝜃
1
= √−𝜆

1
(𝑥+𝑘𝑦+√2𝑧−4𝑡𝜆

1
)+𝛾
1
. And the 1-negaton

of second-order is given by

𝑢 = 2𝜕
𝑥
ln𝑊(cosh (𝜃

1
) , 𝜕
𝜆1
cosh (𝜃

1
) , 𝜕
2

𝜆1
cosh (𝜃

1
))

=

(−6𝜆
1
𝛿
1
+ 48𝑡𝜆

2

1
) sinh (𝜃

1
) − 4𝜆

1
√−𝜆
1
𝛿
2

1
cosh (𝜃

1
) + 6√−𝜆

1
sinh2 (𝜃

1
) cosh (𝜃

1
)

−2𝜆
1
𝛿
2

1
sinh (𝜃

1
) + (24𝑡𝜆

1
√−𝜆
1
− √−𝜆

1
𝛿
1
) cosh (𝜃

1
) + sinh (𝜃

1
) cosh2 (𝜃

1
)

,

(51)

where 𝛿
1
= 𝑥 + 𝑘𝑦 + √2𝑧 − 12𝑡𝜆

1
. Figures 5 and 6 of three-

dimensional plots show the special negatons to (1) defined
by (48) on the indicated specific regions, with specific values
being chosen for the parameters.

3.3. Interaction Solutions. We are now presenting examples
of Wronskian interaction solutions among different kinds of
Wronskian solutions to the (3+1)-dimensional generalized
BKP equation (1).

Let us assume that there are two sets of eigenfunctions

𝜙
1
(𝜆) , 𝜙

2
(𝜆) , . . . , 𝜙

𝑙
(𝜆) ;

𝜓
1
(𝜇) , 𝜓

2
(𝜇) , . . . , 𝜓

𝑚
(𝜇)

(52)

associated with two different eigenvalues 𝜆 and 𝜇, respec-
tively. A Wronskian solution

𝑢 = 2𝜕
𝑥
ln𝑊

⋅ (𝜙
1
(𝜆) , 𝜙

2
(𝜆) , . . . , 𝜙

𝑙
(𝜆) ; 𝜓

1
(𝜇) , 𝜓

2
(𝜇) , . . . , 𝜓

𝑚
(𝜇))

(53)

is said to be a Wronskian interaction solution between two
solutions determined by the two sets of eigenfunctions in
(52).

In what follows, we would like to show a few special
Wronskian interaction solutions. Let us first choose different
sets of eigenfunctions:

𝜙rational = 𝑥 + 𝑘𝑦 + √2𝑧,

𝜙soliton = cosh (√−𝜆
1
(𝑥 + 𝑘𝑦 + √2𝑧 − 4𝑡𝜆

1
) + 𝛾
1
) ,

𝜙positon = cos(√𝜆
2
(𝑥 + 𝑘𝑦 + √2𝑧 − 4𝑡𝜆

2
) + 𝛾
2
) ,

(54)

where 𝜆
1
< 0, 𝜆

2
> 0, and 𝛾

𝑖
(𝑖 = 1, 2) are arbitrary real

constants.

Through three Wronskian interaction solutions between
any two of a rational solution, a single soliton and a single
positon read as

𝑢rs = 2𝜕
𝑥
ln𝑊(𝜙rational, 𝜙soliton)

=

−2𝜆
1
(𝑥 + 𝑘𝑦 + √2𝑧) cosh (𝜃

1
)

√−𝜆
1
(𝑥 + 𝑘𝑦 + √2𝑧) sinh (𝜃

1
) − cosh (𝜃

1
)

,

𝑢rp = 2𝜕
𝑥
ln𝑊(𝜙rational, 𝜙positon)

=

2𝜆
2
(𝑥 + 𝑘𝑦 + √2𝑧) cos (𝜃

2
)

√𝜆
2
(𝑥 + 𝑘𝑦 + √2𝑧) sin (𝜃

2
) + cos (𝜃

2
)

,

𝑢sp = 2𝜕
𝑥
ln𝑊(𝜙soliton, 𝜙positon)

=
2 (𝜆
2
− 𝜆
1
) cosh (𝜃

1
) cos (𝜃

2
)

√−𝜆
1
sinh (𝜃

1
) cos (𝜃

2
) + √𝜆

2
cosh (𝜃

1
) sin (𝜃

2
)
,

(55)

where 𝜃
1
= √−𝜆

1
(𝑥+𝑘𝑦+√2𝑧−4𝑡𝜆

1
)+𝛾
1
and 𝜃
2
= √𝜆
2
(𝑥+

𝑘𝑦 + √2𝑧 − 4𝑡𝜆
2
) + 𝛾
2
.

One Wronskian interaction solution involving the three
eigenfunctions is given by

𝑢rsp = 2𝜕
𝑥
ln𝑊(𝜙rational, 𝜙soliton, 𝜙positon) =

2𝑞

𝑝
, (56)

where

𝑝 = (𝑥 + 𝑘𝑦 + √2𝑧) (𝜆
2
√−𝜆
1
sinh (𝜃

1
) cos (𝜃

2
)

+ 𝜆
1
√𝜆
2
cosh (𝜃

1
) sin (𝜃

2
)) + (𝜆

1
− 𝜆
2
) cosh (𝜃

1
)

⋅ cos (𝜃
2
) ,

𝑞 = (𝑥 + 𝑘𝑦 + √2𝑧)√−𝜆
1
𝜆
2
(𝜆
1
− 𝜆
2
) sinh (𝜃

1
)

⋅ sin (𝜃
2
) + 𝜆
1
√−𝜆
1
sinh (𝜃

1
) cos (𝜃

2
) + 𝜆
2
√𝜆
2

⋅ cosh (𝜃
1
) sin (𝜃

2
) ,
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Figure 4: The shape of the 1-positon of first-order to (1) with 𝜆
1
=

1.5, 𝑦 = 0, 𝑡 = 1, 𝛾
3
= 0.
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Figure 5: The shape of the 1-negaton of first-order to (1) with 𝜆
1
=

−4, 𝑦 = 0, 𝑡 = 0, 𝛾
1
= 0.

𝜃
1
= √−𝜆

1
(𝑥 + 𝑘𝑦 + √2𝑧 − 4𝑡𝜆

1
) + 𝛾
1
,

𝜃
2
= √𝜆

2
(𝑥 + 𝑘𝑦 + √2𝑧 − 4𝑡𝜆

2
) + 𝛾
2
.

(57)

Of course, we have more general Wronskian interaction
solutions among three or more kinds of solutions such as
rational solutions, positons, solitons, breathers, and negatons.
Roughly speaking, it increases the complexities of rational
solutions, positons, solitons, and negatons, respectively, to
add zero, positive, negative eigenvalues to the spectrumof the
coefficient matrix.

4. Conclusion

In summary we have extended the Wronskian method to a
(3+1)-dimensional generalized BKP equation by its bilinear
form. Moreover, we obtained some rational solutions, soli-
tons, positons, negatons, and their interaction solutions to
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Figure 6: The shape of the 1-negaton of second-order to (1) with
𝜆
1
= −1, 𝑦 = 0, 𝑡 = 0, 𝛾

1
= 0.

this equation by solving the systems of linear partial differ-
ential equations. All these show the richness of the solution
space of the (3+1)-dimensional generalizedBKP equation and
the resulting solutions are expected to help understand wave
dynamics in weakly nonlinear and dispersive media.
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