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In order to safely navigate populated environments, an autonomous vehicle must be able to detect human shapes using its sensory
systems, so that it can properly avoid a collision. In this paper, we introduce a Bayesian approach to the Viola-Jones algorithm, as a
method to automatically detect pedestrians in image sequences. We present a probabilistic interpretation of the basic execution of
the original tool and develop a technique to produce approximate convolutions of probability matrices with multiple local maxima.

1. Introduction

Being able to detect and avoid pedestrians is an essential
feature of autonomous vehicles, if they are to guarantee a safe
behavior in populated environments. However, automatically
detecting human shapes in images is a very complex proce-
dure for a computer vision system, and it has been widely
studied before.

One of the most usual frameworks in literature is Viola-
Jones [1], based on feature training and classifier cascades,
which is explained in detail in Section 2.1. This technique has
been improved by its authors by considering object motion
[2, 3] and also by applying several classifiers simultaneously
[4] or RealBoost to improve weak classifiers [5].

The main contributions of this paper are the intro-
duction of a Bayesian approach to pedestrian detection
methods—exemplified by, but not limited to, the Viola-Jones
framework—, by creating a statistical interpretation of the
basic execution of the original algorithm and developing a
technique to produce approximate convolutions of proba-
bilistic matrices with multiple local maxima. This aims to
increase the precision of the framework for its usage on
autonomous vehicles, in order to more efficiently detect and
avoid obstacles and pedestrians in image sequences.

Furthermore, the method we present can be used with
both preprocessed binary results and unaltered probabilistic

elements. As the latter are commonly returned by the sensors
of a robot, this allows for greater flexibility and a more
accurate management of the uncertainty of the available data.

1.1. RelatedWork. Another important algorithm for detecting
pedestrians consists of using Histograms of Oriented Gra-
dients (HOG) to define the features on an image [6]. This
algorithm has been implemented for FPGA-based accelera-
tors [7] and GPUs [8] and combined with Support Vector
Machine (SVM) classifiers [9, 10]. Variations of histogram-
based detection methods, such as Co-occurrence HOG [11]
and combinations with wavelet methods [12] also exist.
Bayesian methods have also been applied to the problem of
pedestrian detection [13].

Both HOG and Viola-Jones algorithms are included in
the official release of OpenCV [14]. Although the former
usually provides very precise detection results, as studied in
[15], it has been proved to perform slightly slower than the
latter and is therefore less suitable for a real-time operation
like pedestrian detection for a moving vehicle.

2. Materials and Methods

2.1. Viola-Jones Framework. TheViola-Jones object detection
framework uses object features which, similarly to Haar-like
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Figure 1: Features used by the Viola-Jones framework. The value of
each feature is the sum of the pixels in the white area minus the sum
of the pixels in the gray area.

features [16], are defined by additions and subtractions of the
sums of pixel values within rectangular, nonrotated areas of
an image. The different types of features used by Viola-Jones
are shown in Figure 1.

Thanks to the usage of integral images, such that
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where 𝐽 is the integral of image 𝐼, these operations can be
done in constant time. For example, the sum of all the pixels
of the rectangle in Figure 2 would be calculated as
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since each 𝐽
𝑃
value is the sum of all the pixels in the rectangle

defined by the opposite corners 𝑂 and 𝑃.
A set of classifiers are then trained using AdaBoost [17],

and a cascade architecture allows the result to be used in
real-time, by immediately discarding a sample as soon as one
classifier rejects it, as shown in Figure 3.

2.2. Bayesian Model. Let 𝑥 and 𝑧 be two random variables.
(i) 𝑥 expresses the existence or absence of objects of

interest (in our case, pedestrians) within an image, for
each pixel location.

(ii) 𝑧 shows an equivalent value, as returned by the Viola-
Jones detection when applied to an image.

It is possible to use 𝑧 as evidence to evaluate the degree of
belief of proposition 𝑥 (i.e., 𝑝(𝑥 | 𝑧)), by applying Bayes’
theorem:
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(3)

The common use of a Bayesian model is to weed out
wrong positive detections by comparing them to previous
observations. However, when detecting pedestrians this deci-
sion could be damaging to the procedure, since false positives
are preferable to false negatives, a missed detection involves
immediate danger, whereas a false detectionwould only cause
a less efficient route.

Therefore, we propose a reverse application of Bayes’ the-
orem, which filters absences of objects rather than detections,
by considering the reverse values of the presented variables:

𝑝 (𝑥 | 𝑧) ∝ 𝑝 (𝑧 | 𝑥) ⋅ 𝑝 (𝑥) , (4)
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Figure 2: Example of a rectangle in an integral image. The sum of
its pixels would be calculated as 𝐽
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Figure 3: Classifier cascade architecture.

where 𝑝(𝑧 | 𝑥) and 𝑝(𝑥) are calculated as explained in the
following subsections.

2.2.1. Likelihood. The default behavior of the Viola-Jones
detection method, for a given image, is to return a set of
rectangles within which objects of interest have been found.

A binary matrix can be produced from these areas, such
that each cell is set to 1 if it belongs to one of them, and 0
otherwise. In our work, the binary matrix corresponding to
the 𝑖th rectangle is named 𝐵

𝑖
.
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Figure 4: Unaltered Viola-Jones result for a minimum of three overlapping detections (a) and corresponding likelihood probability function
(b). Brighter areas represent a higher probability of presence of objects.

Some of these marked areas may be superfluous (false
positives), and others may overlap. The more rectangles that
overlap over a group of pixels, the more likely it will be to
contain an actual object of interest.

The original Viola-Jones algorithm allows for aminimum
overlap restriction: a rectangle would only be valid if it
can be computed as the intersection of a given number of
overlapping detections.

Instead, we suggest to produce a detection matrix, such
that the value of each one of its cells is equal to the
number of rectangles that overlap over its corresponding
pixel (Figure 4). This matrix is equal to the sum of the binary
matrices of all the observed detections.

The likelihood matrix for the probability of absence of
objects of interest within an image is proportional to the
opposite value of the detection matrix; for𝑁 detections, this
would be

𝑝 (𝑧
𝑡
| 𝑥
𝑡
) ∝ 𝑁 −

𝑁

∑

𝑖=1

𝐵
𝑖
. (5)

The concept of associating a weight value to each detec-
tion was also presented in the Soft Cascade method [18]. Its
results are returned as rectangular areas, but unlike Viola-
Jones, these are isolated and as such cannot be processed into
probabilisticmatrices. Preliminary tests showed that, because
of this restriction, the accuracy of this technique is noticeably
inferior to that of the probabilistic interpretation of Viola-
Jones that we present in this work. Therefore, we chose not
to use Soft Cascade in our experiments.

2.2.2. Prior. The usage of Bayes’ theorem involves an evolu-
tion of the resulting posterior probability function, in order
to produce the prior probability function for the following
iteration of the algorithm (typically a convolution is applied).

Ideally, at each time step 𝑡, the location of an object
is determined by a certain probability distribution. The
distribution of the appearance of objects of interest in our
experiments is extracted from the normalized addition of
overlapping binary rectangular distributions, which is asym-
metrical and has a flat top. A new probability distributionwas
developed to approximate this behavior.
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Figure 5: Example of theoretical cross section of the approximate
probability distribution for an object of interest.

Let𝐷 be a set of detections as returned by the Viola-Jones
method for a particular object of interest. An object can be
represented as a ⟨|𝐷|, 𝐴, 𝐵⟩ tuple, such that

(i) |𝐷| is the number of elements in set𝐷,
(ii) 𝐴 is the minimal rectangle area that holds the inter-

section of all the elements in𝐷, and
(iii) 𝐵 is the minimal rectangle area that holds the union

of all the elements in𝐷.

Using these data, a two-dimensional function which
simulates the summation of all the elements in 𝐷 was
modeled:

𝐹 (𝑟, ⟨|𝐷| , 𝐴, 𝐵⟩) =
{

{

{

0 if 𝑟 ∉ 𝐵

|𝐷| if 𝑟 ∈ 𝐴

∀𝑟 ∈ R
2
.

(6)

If considering a single dimension, rectangles𝐴 and 𝐵 can
be seen as two segments 𝑎

1
𝑎
2
and 𝑏
1
𝑏
2
, respectively, where

𝑏
1
< 𝑎
1
< 𝑎
2
< 𝑏
2
(Figure 5).
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Figure 6: Analytical reconstruction of a probability matrix (𝑏 copies 𝑎).

Consider the following function:
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The shape of 𝑓 suits our needs, but its height is scaled
down so that, for two dimensions, the summation of the
detections of a single object can be calculated as
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A probabilitymatrix can therefore be generated, using the

tuples which define the detected objects of interest. For 𝑀
objects
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𝐹 (𝑟, ⟨|𝐷| , 𝐴, 𝐵⟩𝑖) ∀𝑟 ∈ R
2
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In order to isolate each object of interest among the added
distributions of all the detections in an image, we locate the
maximum value in the probability matrix and analyze its
adjacent cells to define a tuple, such that

(i) area 𝐴 contains all the cells that share a maximum
probability value |𝐷|, caused by the overlapping of all
the involved detection rectangles, and

(ii) area 𝐵 contains all the cells that are delimited by local
minima and zero values, so that we can assume that
all nonzero cells that are not contained in 𝐵 belong to
unrelated detections.

After an object is located, its data are stored and it is removed
from the probability matrix. This procedure is repeated until
the matrix is empty.

Once all objects are extracted, they are matched to those
of previous time steps to study their relative movement.
When the objects involved are clearly individual, their move-
ments can be analyzed and predicted separately. In our case,
their number and their correspondences between frames are
unknown.

Using a minimum mean square error estimation, each
object is then added to a previously stored trajectory, which is
used to predict new values for the following time step, using
a linear regression over the tuple values.

Theprediction values are finally used to generate the prior
probability matrix using (9) (Figure 6).

3. Results and Discussion

Our method was tested over twelve image sequences,
described in Table 1 and exemplified by Figure 7. Dataset
ETSII was recorded in the parking lot of the Computer
Engineering School of Universidad de La Laguna. Datasets
ITER1 and ITER2 were filmed in the outer limits and in the
parking lot of the Institute of Technology and Renewable
Energy (ITER) facilities in Tenerife (Spain), respectively.

These three image sequences were captured by the visual
sensors of the VERDINO prototype (Figure 8), a modi-
fied EZ-GO TXT-2 golf cart equipped with computerized
steering, braking, and traction control systems. Its sensor
system consists of a differential GPS, an InertialMeasurement
Unit (IMU), an odometer, three Sick LMS221-30206 laser
range finders, two thermal stereo cameras, and two Santachi
DSP220x optical cameras.

Datasets BAHNHOF, JELMOLI, and SUNNY DAY were
downloaded fromAndreas Ess’ RobustMulti-Person Tracking
fromMobile Platformswebsite at the Swiss Federal Institute of
Tecnology.These image sequences were recorded using a pair
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Table 1: Features of the image datasets.

Dataset Environment Robot trajectory Pedestrian behavior
(a) ETSII Urban Slow, straight Static or erratic
(b) ITER1 Rural Fast, straight Static
(c) ITER2 Rural Fast, erratic Static
(d) BAHNHOF Urban Slow, straight Parallel to robot
(e) JELMOLI Urban Fast, erratic Several directions
(f) SUNNY DAY Urban Fast, straight Parallel to robot
(g) CAVIAR1 Indoors Static Erratic
(h) CAVIAR2 Indoors Static Static or erratic
(i) CAVIAR3 Indoors Static Static or erratic
(j) CAVIAR4 Indoors Static Erratic, crowded
(k) DAIMLER Urban Fast, erratic Several directions
(l) CALTECH Urban Fast, straight Parallel to robot

(g) (h)(f)(e)

(i) (j) (k) (l)

(a) (b) (c) (d)

Figure 7: Example frames for all datasets referenced in Table 1.

Figure 8: VERDINO prototype.

of AVT Marlins F033C and have been used in publications
[19–22].

Datasets CAVIAR1 to CAVIAR4 belong to the Context
Aware Vision using Image-based Active Recognition (CAV-
IAR) project [23] and were recorded in a shopping cen-
ter in Portugal using a static camera. The selected image
sequences correspond to the corridor views of clips Walk-
ByShop1 (CAVIAR1), OneShopOneWait1 (CAVIAR2), OneS-
hopOneWait2 (CAVIAR3), andThreePastShop1 (CAVIAR4).

Dataset DAIMLER corresponds to the Daimler pedes-
trian detection benchmark dataset, introduced in [24], and
dataset CALTECH corresponds to sequence V002 from test-
ing set seq06 of the Caltech pedestrian detection benchmark
[15, 25]. Both datasets were recorded from a vehicle driving
through regular traffic in an urban environment.

Ten tests were conducted over each image dataset; the
average results are shown in Figures 10 and 9. As explained
in Section 2.2, the main goal of our detection enhancement
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Figure 9: Comparison of the performances of the unaltered Viola-Jones tool and the presented Bayesian method.
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Figure 10: Average false negative rate for each complete image data-
set.

method is to reduce the amount of false negatives returned
by the Viola-Jones framework. As such, classic analysis
techniques such as receiver operating characteristic (ROC)
and detection error tradeoff (DET) curves, which depend on
the amount of false positives of the results, do not properly
display the improvement introduced by our approach. We
instead present the average ratio between the amount of false
positives returned by both the original and the enhanced
detection methods, and the amount of true positives found
in the input frames.

We observed that our Bayesian approach always provides
less conservative detection rates than Viola-Jones, success-
fully lowering the rate of false positives for all datasets. Results
were especially good for the ETSII, ITER, CAVIAR, and
DAIMLER datasets. The sequences for these sets have good
visibility, which results in more accurate detections by the
original method and, consequently, a higher improvement
introduced by our approach.

The rest of the datasets have higher occlusion rates and
feature pedestrians in poses and locations that complicate
their detection, thus lowering the enhancement of a Bayesian
processing. This effect was especially noticeable for the
CALTECH dataset, which features very few clearly visible
pedestrians.

4. Conclusions

We have developed a Bayesian approach to the Viola-
Jones detection method and applied it to a real case where
pedestrians must be located and avoided by a self-guided
device. Ourmethod describes a statistical modification of the
original tool, which is combined with a form of approximate
convolution of two-dimensional probability matrices with
multiple local maxima.

Our algorithm has been proved to improve the precision
of the results, by restricting a probabilistic matrix returned by
the original method to the area where objects are expected to
appear, according to their previously observed movements.

It was found that our method behaves best when pedes-
trians are clearly visible, so that the detections by the
original method can be properly enhanced by a Bayesian
processing. More accurate detection algorithms are expected
to improve the results of our approach in situations of high
visual occlusion. This proposal serves as grounds for further
research.
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