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This study considers the bifurcation evolutions for a combining spiral gear transmission through parameter domain structure
analysis. The system nonlinear vibration equations are created with piecewise backlash and general errors. Gill’s numerical
integration algorithm is implemented in calculating the vibration equation sets. Based on cell-mapping method (CMM), two-
dimensional dynamic domain planes have been developed and primarily focused on the parameters of backlash, transmission
error, mesh frequency and damping ratio, and so forth. Solution demonstrates that Period-doubling bifurcation happens as the
mesh frequency increases; moreover nonlinear discontinuous jump breaks the periodic orbit and also turns the periodic state into
chaos suddenly. In transmission error planes, three cell groups which are Period-1, Period-4, and Chaos have been observed, and
the boundary cells are the sensitive areas to dynamic response. Considering the parameter planes which consist of damping ratio
associatedwith backlash, transmission error,mesh stiffness, and external load, the solution domain structure reveals that the system
step into chaos undergoes Period-doubling cascade with Period-2𝑚 (𝑚: integer) periodic regions. Direct simulations to obtain the
bifurcation diagram and largest Lyapunov exponent (LE) match satisfactorily with the parameter domain solutions.

1. Introduction

The geared transmission which is driven by several powers
is considered as a combining geared system. In contrast to
the ordinary gear structures, combining configuration can
readily transmit the power from separate branches into one
route to deliver a strongly transmissible drive. Their inherent
distinctive features make it fit very well in some specific
fields. One of its significant applications is in the cabin
of today’s mainstream helicopters, such as Blackhawk UH-
60, Apache AH-64, Tiger EC-665, and Mil Mi-26, as the
requirement of high performance working condition needs
deep-going investigation on the gear dynamic characteristics.
Generally, the gear system is subjected to various impulsive
excitations including backlash, geometry error, time-varying
mesh stiffness, and torque fluctuations. These parametric
excitations exist in the driving situation and relate to the
tooth engagement stability and some significant nonlinear
instabilities such as bifurcation and chaos. For the nonlinear
system, bifurcation is a typical phenomenon and has been

conducted through various techniques. Poincaré map, phase
portrait, and Largest Lyapunov exponent already have been
exhibited efficiently in dealing with the matters with bifur-
cation parameter, but when the system is concerned with
multiple quantities, the long term prediction of the global
analysis to the system has to take other strategies to explore.
Theobservation of the global bifurcation is necessarily relying
on the solutions of the dynamical domains. In the parameter
plane, the dynamic domain structure provides a visible sight
to the routes opening into chaos, and the size of dynamic
group reveals the effect of the control parameters. According
to the cell state, the bifurcation solutions are a combination
of multiple dynamicmotions; once the bifurcation parameter
varies, the system will respond with a change of the cor-
responding attractor. Therefore, a better way to investigate
the bifurcation behavior is to trace the development of the
dynamical domains. Since the cell-mappingmethod has been
successfully applied in the field of global exploration, here
it is considered to divide the parameter plane into series of
excitation cells to locate the existence of all the attractors,
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and based on these one can determine the bifurcation
developments.

As for the gear system, geometry clearance, transmission
error, and variation meshing stiffness are of interest. Such
vibratory elements may interact mutually to bring about the
unexpected dynamical phenomena. In the early literature
[1–4], the appearance of the saddle-node bifurcation, grazing
bifurcation, and Hopf bifurcation leading into chaos has
been presented. Researchers have discovered homoclinic
bifurcation and intermittent chaos under the excitations of
instability domains as well [5–11]. Lin and Parker [12] exam-
ined parametric instability in view of fluctuating stiffness
under multiple mesh conditions. Li et al. [13] systematically
investigated bifurcation and chaos properties in terms of
damping ratio, backlash, and excitation frequency and found
the system motion state changes into chaos via Hopf bifurca-
tion finally. Studies by Ambarisha and Parker [14] predicted
that, due to the unstable contact loss and periodically time-
variable characters, bifurcation and chaotic perturbation
will occur when the mesh frequency is close to a natural
frequency. It is obvious that smooth running, quiet noise, and
long life service are an expectation in the gear actual applica-
tions. However, the unpredicted problems such as displace-
ment shock and intermittent perturbation may happen on
the meshing tooth when the parameter changes. In order to
identify the dominant excitation related to the existing issues,
many researchers have been dedicated to the explorations.
Chang-Jian and Chang [15] examined the chaotic behavior
with respect to the sensitivity of participation parameters;
the systematic investigation was studied in conjunction with
Lyapunov exponent, fractal dimension, Poincaré section, and
bifurcation diagrams.With a single degree of freedom geared
model, Sato et al. [16] have considered the harmonic excita-
tions and investigated the chaotically transitional phenomena
through Li-Yorke’s theorem, and the tangent bifurcation sets
and pitchfork bifurcation sets were plotted on the parametric
plane. Parker and Guo [17] based on the planetary gear non-
linearity further analyzed the solution stability using Floquet
theory. Their simulation reveals that the secondary Hopf
bifurcation was referred to the transition from quasi-chaos to
chaos.

In the prior literatures, one can find that bifurcation
characteristics and nonlinear behaviors have been discussed
through several approaches. Nevertheless, a deeper under-
standing of the bifurcation evolution as well as the transition
between stable periodic and chaotic motion is still essential
for designing and adjusting the key parameters to enable the
system to perform well. Since Hsu first proposed the cell-
mapping method to cope with the global analysis for the
nonlinear system, it has proven to be an efficient technique
to locate the strange attractors as well as basins of attraction
[18, 19]. With the development of dynamical technologies,
more and more attentions on the global analyses have been
given. Hinrichs et al. [20] examined a nonsmooth oscillator.
The solution about the domain of attraction has given insight
into the overall dynamic behavior; meanwhile, the special
attention to the discontinuity region was also pointed out.
de Souza et al. [21] have focused on the researches of
parameter intervals for a rattling gearbox system and found
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Figure 1: Dynamic model for a combining spiral gear transmission
using lumped-parameter method.

that the basin hopping and different attractors switching are
due to the additional noise. Yunwen et al. [22] developed
a mixed cell mapping method; the obtained coexisting
attractors suggested that parameter structure has the sig-
nificant advantage in performing gear dynamic behaviors.
Most recently, Farshidianfar and Saghafi employed Melnikov
analytical approach to trace the global homoclinic bifurcation
along with the evolution of chaotic orbit. Their analytical
simulations demonstrate the homoclinic bifurcation and the
transition route to chaos with respect to the stable and
unstable manifolds [23].

The remainder of this paper is organized as follows. In
Section 2 dynamic model involving nonlinear backlash is
formulated and solved utilizing step-variant Gill numerical
algorithm. In Section 3.3 the bifurcation evolution procedure
is conducted and observed with respect to transmission error
andmesh frequency. In Section 3.4 two-dimensional parame-
ter domain structure is explored, and the bifurcation diagram
and largest Lyapunov exponent are used to validate the
solutions. Finally, Section 4 draws conclusions and describes
the outcome of the simulation results.

2. Dynamics Model

In Figure 1, for a combining spiral gear system, the shaft
angle between mating gears is set as 𝜋/2. We introduce the
generalized coordinate for gear modeling, where the origins
𝑜
𝑖
stand for the geometric centre of each gear. Under the

assumption of a rigid gear body, the dynamical model can
be constructed by employing a lumped-parameter method,
where the gear body is described by mass 𝑚

𝑖
, and with equal

support bearing stiffness and damping in 𝑥,𝑦, 𝑧 directions. In
the normal direction of tooth profile, the backlash and static
transmission error are considered. Since each deflection
displacement can be described by means of the degrees
of freedom (DOF), one component mass would possess 3
translational DOF, namely, 𝑥, 𝑦, and 𝑧, and 1 angular rotation,
which can be described by 𝑢

𝑖
= 𝑟
𝑖
𝜃
𝑖
, where 𝑟

𝑖
and 𝜃

𝑖
are the

meshing point radius and angular displacement; eventually,
the systemwould amount to be of 12DOF totally.Throughout
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Table 1: Main dynamic parameters for the study gear system.

Items Pinion 1 (2) Gear 3
Number of teeth 𝑧 23 67
Module 𝑚 (mm) 3 3
Pressure angle 𝛼

𝑛
(deg) 25 25

Helix angle 𝛽
𝑖
(deg) 35 35

Mass 𝑚
𝑖
(kg) 2.6 6.8

Moment of inertia 𝐽
𝑖
(kg⋅m2) 0.018 0.042

Bearing stiffness 𝑘
𝑗

𝑖
(N/m) 2.08 × 108 2.08 × 108

Mean mesh stiffness 𝑘
1

𝑚
, 𝑘2
𝑚
(N/m) 1.21 × 109 1.21 × 109

this paper, if there is no special designation, the subscript
𝑖 = 1, 2, 3 denotes pinion 1, pinion 2, and bevel 3, respectively,
and superscript 𝑗 represents the coordinate axis of 𝑥, 𝑦, and
𝑧.

In order to eliminate the rigid body displacement, the
normal relative displacements 𝛿

13
and 𝛿

23
have to be inves-

tigated by means of the general coordinates. Thereupon we
assume that the deflection along the line of action is positive;
accordingly, the translational component deflection 𝑥

𝑖
, 𝑦
𝑖
,

and 𝑧
𝑖
and angular deflection 𝜃

𝑖
can be formulated by Δ

1,
Δ
2, Δ
3

1
, and Δ

3

2
. Similarly, let the mesh forces 𝐹

13
and 𝐹

23

project on the coordinate axis with three distributed forces,
which can be expressed by𝐹

𝑥,𝐹𝑦, and𝐹
𝑧. In Table 1, themain

parameters of the study gear system are listed.
Due to the symmetry structure of pinion 1 and pinion

2, the axial component displacements and component forces
projected in the meshing direction can be given by
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(1)

where Δ
1 and Δ

2 designate the relative displacement vector
for pinion 1 and pinion 2, respectively, and with respect to
their force vectors 𝐹

1 and 𝐹
2, respectively.

A similar operation can be done on driven gear 3, given
by
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where Δ
3

1
and Δ

3

2
represent the relative displacement vectors

for gear 3 and 𝐹
3

1
and 𝐹

3

2
denote the force vectors acting on

gear 3, where the subscripts 1 and 2 denote the left side and
right side, respectively.

Now, it is apparently that the overall component force
acting on gear 3 becomes

𝐹
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=
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In (1)–(3), the term 𝑎
𝑖
(𝑖 = 1, 2, . . . , 5) is used repeatedly

in calculating themesh force and the deflection displacement
is a derivative parameter. Expressions are given as follows:

𝑎
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= sin 𝛾
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(4)

The translational equations of motion for the system can
be obtained as follows:
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(5)

where 𝜁
𝑖
= {𝑥
𝑖
, 𝑦
𝑖
, 𝑧
𝑖
}
𝑇

𝑖 = 1, 2, 3 stand for the translational
degrees of freedom.

The differential equations for torsional motion for each
body in the direction of 𝜃

𝑖
are formulated as follows:
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(6)

Equations (5)-(6) are the system governing equations
of motion and can be modeled as a set of second-order
differential equations:

[𝑀] {�̈�} + [𝐶] {�̇�} + [𝐾] {𝑞} = {𝐹
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} , (7)
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}
𝑇.

The meshing force 𝐹
𝑖𝑗
acting between contact teeth is
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𝑖
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𝑖
)), 𝑘𝑖
𝑚
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the mean mesh stiffness between gear pair,𝑚𝑘 is the stiffness
factor, and the mesh frequency and initial mesh phasing are
represented by Ω and 𝜓

𝑖
, respectively. The relative deflection

𝛿
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is coupled with the translational and torsional motions,

associated with the transmission error, and can be expressed
as
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where 𝑖 = 1, 2, 𝑗 = 3; 𝑒
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(𝑡) is the time varying general error,

expressed by 𝑒
𝑖
(𝑡) = 𝐸𝑛 sin(Ω𝑡 + 𝜓

𝑖
), and 𝐸𝑛 is the amplitude

of transmission error.
Substituting the quantities of Δ1, Δ2, Δ3

1
, and Δ
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into (9),

the coupled formulation can be rewritten as follows:

�̈�
13

+ 𝑎
2
�̈�
1
+ 𝑎
3
�̈�
1
+ 𝑎
1
�̈�
1
− 𝑎
3
𝑟
4

𝜕
2

𝜃
1

𝜕𝑡
2

− 𝑎
3
�̈�
3
+ 𝑎
5
�̈�
3

− 𝑎
4
�̈�
3
+ 𝑎
3
𝑟
3

𝜕
2

𝜃
3

𝜕𝑡
2

= − ̈𝑒
1
(𝑡) ,

�̈�
23

− 𝑎
3
�̈�
2
− 𝑎
2
�̈�
2
+ 𝑎
1
�̈�
2
+ 𝑎
3
𝑟
2

𝜕
2

𝜃
2

𝜕𝑡
2

+ 𝑎
3
�̈�
3
− 𝑎
5
�̈�
3

− 𝑎
4
�̈�
3
− 𝑎
3
𝑟
3

𝜕
2

𝜃
3

𝜕𝑡
2

= − ̈𝑒
2
(𝑡) ,

(10)

where

𝜕
2

𝜃
1

𝜕𝑡
2

=
𝑇
0
− 𝑎
3
𝑟
1
𝐹
13

𝐽
1

,

𝜕
2

𝜃
2

𝜕𝑡
2

=
𝑇
0
− 𝑎
3
𝑟
2
𝐹
23

𝐽
2

,

𝜕
2

𝜃
3

𝜕𝑡
2

=
−𝑇
1
+ 𝑎
3
𝑟
3
𝐹
13

+ 𝑎
3
𝑟
3
𝐹
23

𝐽
3

.

(11)

Eliminating rigid body motion (7) then can be rewritten
as

Mq̈ (t) + Cq̇ (t) + Kq (𝑓 (𝑡, 𝑏
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)) = F (t) , (12)
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the new degrees of freedom of the system, and 𝛿
13
and 𝛿
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are

no longer containing rigid body displacement. 𝑏
𝑛
is the half

backlash.
Obviously, (12) turns out to have 11 DOF after simplifica-

tion.
Other terms in (12) are listed below:
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(𝑡) a𝜁
3
𝑘
2

𝑚
(𝑡)

0
1×3

0
1×3

0
1×3

a2
3
𝑘
1

𝑚
(𝑡)

𝑀
𝑒

a2
3
𝑘
2

𝑚
(𝑡)

𝑀
3

0
1×3

0
1×3

0
1×3

a2
3
𝑘
1

𝑚
(𝑡)

𝑀
3

a2
3
𝑘
2

𝑚
(𝑡)

𝑀
𝑒

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

C =

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

c𝜁
1

0
3×3

0
3×3

a𝜁
1
𝑐
1

𝑚
0
3×1

0
3×3

c𝜁
2

0
3×3

0
3×1

a𝜁
2
𝑐
2

𝑚

0
3×3

0
3×3

c𝜁
3

a𝜁
3
𝑐
1

𝑚
a𝜁
3
𝑐
2

𝑚

0
1×3

0
1×3

0
1×3

a2
3
𝑐
1

𝑚

𝑀
𝑒

a2
3
𝑐
2

𝑚

𝑀
3

0
1×3

0
1×3

0
1×3

a2
3
𝑐
1

𝑚

𝑀
3

a2
3
𝑐
2

𝑚

𝑀
𝑒

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

F (t) = {0 0 0 0 0 0 0 0 0 𝐹
13

(𝑡) 𝐹
23

(𝑡)}
𝑇

,

(13)
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where

m
1
= diag {𝑚

1
𝑚
1

𝑚
1
} ,

m
2
= diag {𝑚

2
𝑚
2

𝑚
2
} ,

m
3
= diag {𝑚

3
𝑚
3

𝑚
3
} ,

a
1
= {𝑎
2

𝑎
3

𝑎
1
} ,

a
2
= {−𝑎

3
𝑎
5

−𝑎
4
} ,

a
3
= {−𝑎

3
−𝑎
2

𝑎
1
} ,

a
4
= {𝑎
3

−𝑎
5

𝑎
4
} ,

k𝜁
1

= diag {𝑘
𝑥

1
𝑘
𝑦

1
𝑘
𝑧

1
} ,

k𝜁
2

= diag {𝑘
𝑥

2
𝑘
𝑦

2
𝑘
𝑧

2
} ,

k𝜁
3

= diag {𝑘
𝑥

3
𝑘
𝑦

3
𝑘
𝑧

3
} ,

c𝜁
1
= diag {𝑐

𝑥

1
𝑐
𝑦

1
𝑐
𝑧

1
} ,

c𝜁
2
= diag {𝑐

𝑥

2
𝑐
𝑦

2
𝑐
𝑧

2
} ,

c𝜁
3
= diag {𝑐

𝑥

3
𝑐
𝑦

3
𝑐
𝑧

3
} ,

a𝜁
1
= {−𝑎

2
−𝑎
3

−𝑎
1
}
𝑇

,

a𝜁
2
= {𝑎
3

𝑎
2

−𝑎
1
}
𝑇

,

a𝜁
3
= {𝑎
3

−𝑎
5

𝑎
4
}
𝑇

,

a𝜁
3

= {−𝑎
3

𝑎
5

𝑎
4
}
𝑇

,

𝐹
13

(𝑡) =
𝑎
3
𝑟
1
𝑇
0

𝐽
1

+
𝑎
3
𝑟
3
𝑇
1

𝐽
3

− ̈𝑒
1
(𝑡) ,

𝐹
23

(𝑡) =
𝑎
3
𝑟
2
𝑇
0

𝐽
2

+
𝑎
3
𝑟
3
𝑇
1

𝐽
3

− ̈𝑒
2
(𝑡) .

(14)

𝑀
𝑖
and 𝑀

𝑒
are the equivalent masses introduced to

simplify the computational process, defined by

𝑀
𝑖
=

𝐽
𝑖

𝑟
2

𝑖

,

𝑀
𝑒
=

𝐽
2
𝐽
3

𝐽
2
𝑟
2

3
+ 𝐽
3
𝑟
2

2

.

(15)

Mesh damping 𝑐
𝑖

𝑚
associated with the mesh stiffness can

be obtained by

𝑐
𝑖

𝑚
= 2𝜉
𝑖
(

𝑘
𝑖

𝑚

1/𝑀
𝑖
+ 1/𝑀

3

)

0.5

, (16)

where 𝜉
𝑖
is the damping ratio (𝜉

𝑖
= 0.01).

Nonlinear backlash function is described by a piecewise
formulation 𝑓(𝑡, 𝑏

𝑛
), given by

𝑓 (𝑡, 𝑏
𝑛
) =

{{{{

{{{{

{

𝛿
𝑖𝑗
(𝑡) − 𝑏

𝑛
, 𝛿
𝑖𝑗
(𝑡) > 𝑏

𝑛
,

0, −𝑏
𝑛

≤ 𝛿
𝑖𝑗
(𝑡) ≤ 𝑏

𝑛
,

𝛿
𝑖𝑗
(𝑡) + 𝑏

𝑛
, 𝛿
𝑖𝑗
(𝑡) < −𝑏

𝑛
.

(17)

To enhance the ability of convergence in the differential
equation computation, we introduce the terms 𝑏



𝑛
and 𝜔

𝑛
for

the nondimensionalization operation, where 𝑏


𝑛
= 100 ×

10
−6m represents a characteristic length and 𝜔

𝑛
is the

characteristic frequency used to define dimensionless time 𝜏

as well as other quantities. Here 𝜔
𝑛
is defined by

𝜔
𝑛

= [𝑘
𝑗

𝑚
(

1

𝑀
1

+
1

𝑀
3

)]

0.5

. (18)

With these terms, (12) yields the dimensionless equations
of motion and is rewritten in the following forms:

𝑚
1
𝜔
2

𝑛
𝑏


𝑛

𝜕
2�̂�
1

𝜕𝑡
2

+ 𝑐
̂
𝜁
1

1
𝜔
𝑛
𝑏


𝑛

𝜕�̂�
1

𝜕𝑡
+ 𝑘
̂𝜁
1

1
𝑏


𝑛
�̂�
1

+ 𝑎
̂𝜁
1

1
[𝑐
1

𝑚
𝜔
𝑛
𝑏


𝑛
�̇�
13

+ 𝑘
1

𝑚
(𝑡) 𝑏


𝑛
�̂� (𝛿
13

)] = 0,

𝑚
2
𝜔
2

𝑛
𝑏


𝑛

𝜕
2�̂�
2

𝜕𝑡
2

+ 𝑐
̂𝜁
2

2
𝜔
𝑛
𝑏


𝑛

𝜕�̂�
2

𝜕𝑡
+ 𝑘
̂𝜁
2

2
𝑏


𝑛
�̂�
2

+ 𝑎
̂𝜁
2

2
[𝑐
2

𝑚
𝜔
𝑛
𝑏


𝑛
�̇�
23

+ 𝑘
2

𝑚
(𝑡) 𝑏


𝑛
�̂� (𝛿
23

)] = 0,

𝑚
3
𝜔
2

𝑛
𝑏


𝑛

𝜕
2�̂�
3

𝜕𝑡
2

+ 𝑐
̂𝜁
3

3
𝜔
𝑛
𝑏


𝑛

𝜕�̂�
3

𝜕𝑡
+ 𝑘
̂𝜁
3

3
𝑏


𝑛
�̂�
3

+ 𝑎
̂𝜁
3

3
[𝑐
1

𝑚
𝜔
𝑛
𝑏


𝑛
�̇�
13

+ 𝑘
1

𝑚
(𝑡) 𝑏


𝑛
�̂� (𝛿
13

)]

+ 𝑎

̂𝜁
3

3
[𝑐
2

𝑚
𝜔
𝑛
𝑏


𝑛
�̇�
23

+ 𝑘
2

𝑚
(𝑡) 𝑏


𝑛
�̂� (𝛿
23

)] = 0,

�̈�
13

= −𝑎
2
�̈�
1
− 𝑎
3
�̈�
1
− 𝑎
1
�̈�
1
+ 𝑎
3
�̈�
3
− 𝑎
5
�̈�
3
+ 𝑎
4
�̈�
3

− 2𝑎
2

3
𝜉
1
�̇�
13

−
𝑎
2

3
�̂�
1

𝜔
2

𝑛
𝑀𝑒

�̂� (𝛿
13

) − 2𝑎
2

3
𝜉
2
�̇�
23

−
𝑎
2

3
�̂�
2

𝜔
2

𝑛
𝑀𝑒

�̂� (𝛿
23

) +
𝑎
3
𝑟
1
𝑇
0

𝜔
2

𝑛
𝐽
1
𝑏


𝑛

+
𝑎
3
𝑟
3
𝑇
1

𝜔
2

𝑛
𝐽
3
𝑏


𝑛

−

̈̂𝑒
1
(𝜏)

𝜔
𝑛

,

�̈�
23

= 𝑎
3
�̈�
2
+ 𝑎
2
�̈�
2
− 𝑎
1
�̈�
2
− 𝑎
3
�̈�
3
+ 𝑎
5
�̈�
3
+ 𝑎
4
�̈�
3

− 2𝑎
2

3
𝜉
2
�̇�
23

−
𝑎
2

3
�̂�
2

𝜔
2

𝑛
𝑀𝑒

�̂� (𝛿
23

) − 2𝑎
2

3
𝜉
1
�̇�
13

−
𝑎
2

3
�̂�
1

𝜔
2

𝑛
𝑀𝑒

�̂� (𝛿
13

) +
𝑎
3
𝑟
2
𝑇
0

𝜔
2

𝑛
𝐽
2
𝑏


𝑛

+
𝑎
3
𝑟
3
𝑇
1

𝜔
2

𝑛
𝐽
3
𝑏


𝑛

−

̈̂𝑒
2
(𝜏)

𝜔
𝑛

,

(19)

where �̂�
𝑖
= {𝑋
𝑖
, 𝑌
𝑖
, 𝑍
𝑖
}
𝑇, 𝑖 = 1, 2, 3.
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Other essential nondimensional parameters used are
defined as follows:

𝜏 = 𝜔
𝑛
𝑡,

𝜔 =
Ω

𝜔
𝑛

,

𝑏 =
𝑏
𝑛

𝑏


𝑛

,

�̂�
1

𝑚
(𝜏) = 𝑘

1

𝑚
(𝑡) ,

�̂�
2

𝑚
(𝜏) = 𝑘

2

𝑚
(𝑡) ,

�̂�
1

𝑚
(𝜏) = 𝑐

1

𝑚
(𝑡) ,

�̂�
2

𝑚
(𝜏) = 𝑐

2

𝑚
(𝑡) ,

𝜉
1
=

�̂�
1

𝑚

2𝜔
𝑛
𝑀
𝑒

,

𝜉
2
=

�̂�
2

𝑚

2𝜔
𝑛
𝑀
𝑒

,

�̂� (𝜏) =
𝜁 (𝑡)

𝑏


𝑛

,

̂̇
𝜁 (𝜏) =
�̇� (𝑡)

𝜔
𝑛
𝑏


𝑛

,

̂̈
𝜁 (𝜏) =
�̈� (𝑡)

𝜔
2

𝑛
𝑏


𝑛

,

�̂� (𝜏, 𝑏


𝑛
) =

𝑓 (𝑡, 𝑏
𝑛
)

𝑏


𝑛

,

̈̂𝑒
𝑖
(𝜏) =

̈𝑒
𝑖
(𝑡)

𝜔
2

𝑛
𝑏


𝑛

,

M̂ = M,

K̂ =
K
𝜔
2

𝑛

,

Ĉ =
C
𝜔
𝑛

,

F̂ =
F

𝜔
2

𝑛
𝑏


𝑛

.

(20)

̂means dimensionless unit.
The varying-step Gill integrations are applied to compute

the dimensionless equation sets. For the convenience of
programming, define the following state quantities, �̇�

1
= 𝜆
2
,

�̇�
3

= 𝜆
4
, �̇�
5

= 𝜆
6
, Δ̇
1

= Δ
2
, and Δ̇

3
= Δ
4
, to make the system

equations become a first-order differential equation set, given
by

�̇�
2
= 𝑓
1
(𝜆
1
,𝜆
2
,Δ
1
,Δ
2
)

�̇�
4
= 𝑓
2
(𝜆
3
,𝜆
4
,Δ
3
,Δ
4
)

�̇�
6
= 𝑓
3
(𝜆
5
,𝜆
6
,Δ
1
,Δ
2
,Δ
3
,Δ
4
)

Δ̇
2
= 𝑓
4
(𝜆
1
,𝜆
2
,𝜆
3
,𝜆
4
,𝜆
5
,𝜆
6
,Δ
1
,Δ
2
,Δ
3
,Δ
4
)

Δ̇
4
= 𝑓
5
(𝜆
1
,𝜆
2
,𝜆
3
,𝜆
4
,𝜆
5
,𝜆
6
,Δ
1
,Δ
2
,Δ
3
,Δ
4
) ,

(21)

where 𝜆
𝑖

= (𝑥
𝑖
, 𝑦
𝑖
, 𝑧
𝑖
), 𝑖 = (1, 2, 3, . . . , 6), represent the

translational displacement vector and Δ
𝑖
(𝑖 = 1, 2, 3, 4)

represent the relative displacements.

3. Bifurcation Behaviors

For (12), as a nonautonomous equation set with multiple
parameters, it can be generally described as follows:

�̇� = 𝐽 (𝜆,𝜇, 𝜏)𝜆,

𝜆 (𝜏
0
) = 𝜆
0
,

𝜆 ∈ 𝑅
𝑁

, 𝜇 ∈ 𝑅
𝐾

, 𝜏 ∈ 𝑅,

(22)

where 𝐽(𝜆,𝜇, 𝜏) is a Jacobi matrix, 𝜇 stands for the excitation
source in the system, and 𝜆

0
represents an initial condition.

3.1. Lyapunov Exponent. Introduce two close initial values
𝜆
5
(𝛿
13

(0), �̇�
13

(0)) and 𝜆
5
(𝛿


13
(0), �̇�


13
(0)), and define them by

𝐿
0

= ‖𝜆
5
− 𝜆


5
‖ = 0.0001, where 𝐿

0
stands for the distance

of those two state vectors. After several steps of computa-
tion, the initial value would become 𝜆

5
(𝛿
13

(𝑡), �̇�
13

(𝑡)) and
𝜆


5
(𝛿


13
(𝑡), �̇�


13
(𝑡)), and the separation of those two orbits can

be evaluated through [24, 25]

𝐿 (𝑡) = 𝐿 (𝜆
5
,𝜆


5
) = sqrt (∑(𝜆

5
− 𝜆


5
)
2

) . (23)

While (23) reaches the steady state, the state variable
would develop into 𝜆

5
(𝑛𝜏) and 𝜆

5
(𝑛𝜏) at the time step of

(𝑛)th, where 𝜏 is the time step in Gill’s computation, 𝑛 is the
current number of iteration, and the distance at this moment
is

𝐿
𝑛

= ‖𝑙 (𝑛𝜏)‖ =

𝜆
5
(𝑛𝜏) − 𝜆



5
(𝑛𝜏)


. (24)

With the iteration of the state points, the result on the
orbits at the next step (𝑛 + 1)th would be

𝜆
5
[(𝑛 + 1) 𝜏] = 𝑓

𝜏

𝜆
5
(𝑛𝜏) ,

𝜆


5
[(𝑛 + 1) 𝜏] = 𝑓

𝜏

𝜆


5
(𝑛𝜏) ,

(25)

where 𝑓
𝜏 represent the mapping formula under parametric

excitation. Combining (24) and (25) the trajectory separation
at (𝑛 + 1)th step will be

𝐿
𝑛+1

=

𝑓
𝜏

𝜆
5
(𝑛𝜏) − 𝑓

𝜏

𝜆


5
(𝑛𝜏)


. (26)
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One can find a start point 𝜆
5
that will keep a constant

distance 𝐿
0
away from 𝜆

5
[(𝑛 + 1)𝜏] which avoids the diver-

gence of 𝐿
𝑛+1

during numerical procedure. After a certain
number of steps, a series of Lyapunov exponents are obtained
as follows:

1

𝜏
ln 𝐿
1

𝐿
0

,
1

𝜏
ln 𝐿
2

𝐿
0

, . . . ,
1

𝜏
ln

𝐿
𝑖

𝐿
0

, (27)

where 𝑖 = 1, 2, . . . ,∞.
The largest Lyapunov exponent 𝜆

1
in terms of (27) can be

obtained by

𝜆
1
= lim
𝑛→∞

1

𝑛𝜏

𝑛

∑

𝑖=1

ln
𝐿
𝑖

𝐿
0

. (28)

3.2. Cell-Mapping Method. In order to reveal the global
bifurcation behavior in parametric space, we adopt the CMM
[26–30]. In this study the global domain comprised several
control quantities from the system equations and is uniformly
described by 𝜇

𝑗
= {𝑢
𝑗
}
𝑇, where 𝑢

𝑗
is one of the concerned

parameters, in the global domain with the forms of

𝜇
𝑗
=

𝑁

⋃

𝑗=1

𝑢
𝑗

𝑢
𝑗
=

𝑛

∏

𝑗=1

[𝜇
𝑗
, 𝜇
𝑗+1

] , (29)

where 𝜇
𝑗
is a unit cell in domain space.

The centre of the cell is used in computing. For an 𝑚-
dimensional domain, the cell identification can be discretized
as

Π
𝑖

𝑗
= [

1

2
(𝜇
1,𝑗

+ 𝜇
1,𝑗+1

) ,
1

2
(𝜇
2,𝑗

+ 𝜇
2,𝑗+1

) , . . . ,

1

2
(𝜇
𝑖,𝑗

+ 𝜇
𝑖,𝑗+1

)]

𝑇

𝑖 = 1, 2, . . . , 𝑚,

(30)

where 𝑖 refers to the quantities of interest and 𝑗 refers to the
𝑗th cell.

Here, only a two-dimensional domain is used to simplify
the calculation for convenience, which also satisfies the
requirement of gear dynamic exploration. In this case, the
centre of the 𝑗th cell is transformed as

Π
2

𝑗
= [

1

2
(𝜇
1,𝑗

+ 𝜇
1,𝑗+1

) ,
1

2
(𝜇
2,𝑗

+ 𝜇
2,𝑗+1

)]

𝑇

. (31)

Under the periodical excitation, the effect with regard to
𝜇
𝑗
has the following relation to the system response:

𝑋(𝑛 + 1) = 𝑋 (𝑛) + ∫

𝑡
0
+𝑇

𝑡
0

𝑓 (𝜇
𝑗
, 𝑡) 𝑑𝑡. (32)

Data is only captured after the computation runs into
steady state, according to (32), and supposing the system is
in the Period-1 state, it can be described by 𝑋

𝑖+1
= 𝐶(𝑋

𝑖
,𝜇
𝑗
),

if it is a multiple periodic motion, and the mapping route of
term 𝜇

𝑗
would be

(𝑋
𝑖
,𝜇
𝑗
) → 𝐶(𝑋

𝑖
,𝜇
𝑗
) → 𝐶

2

(𝑋
𝑖
,𝜇
𝑗
) → ⋅ ⋅ ⋅ → 𝐶

𝑘

(𝑋
𝑖
,𝜇
𝑗
) 𝑘 ∈ 𝑅. (33)

If 𝑘 → ∞, (33) is still not satisfied, which means that the
cell of 𝜇

𝑗
is in a chaotic state.

In a dynamic region Σ which contains 𝑛 × 𝑛 cells, the
whole domain may consist of the periodic, quasi-periodic,
or chaotic state due to the analytic solution. If the cells
𝜇
𝑗
demonstrate being 𝑘-periodic motion, such cells can be

described by

∑

𝑘

=

𝑛

⋃

𝑗=1

𝜇
𝑗

(𝑘 = 1, 2, . . . , 𝑚) . (34)

The union of quasi-periodic cell is

∑

𝑞

=

𝑛

⋃

𝑗=1

𝜇
𝑗

(𝑞 = 1, 2, . . . , 𝑘) . (35)

Similarly, it yields the chaotic domain

∑

𝑐

=

𝑛

⋃

𝑗=1

𝜇
𝑗

if 𝑘 > 𝑛𝑇. (36)

The whole domain plane can be assembled by

∑ =

𝑚

⋃

𝑘=1

∑

𝑘

+

𝑘

⋃

𝑞=1

∑

𝑞

+∑

𝑐

. (37)

3.3. Bifurcation Evolution. With respect to the bifurcation
investigation, the key parameter 𝑢

𝑗
is set in a certain range

and varies with time 𝜏; accordingly a series of state vectors can
be obtained via𝑋

𝑗
(𝑢
𝑗
, 𝜏), 𝑗 = 1, 2, . . . , 𝑛. Here, the bifurcation

diagram is considered using deflection displacement 𝛿
13

versus variable 𝑢
𝑗
which can be plotted by (𝑢

𝑗
, 𝛿
13

). Figure 2
demonstrates the threshold of bifurcation as well as the
development process from a simple motion to chaos with
the changes of 𝐸𝑛. At first 𝐸𝑛 = 28, three bifurcation nodes
present at 𝜔

1
= 0.917, 𝜔

2
= 0.935, and 𝜔

3
= 0.951; within

𝜔 ∈ [0.9, 0.954], the system is completely under periodic state
without uncertainty. It is also shown that a discontinuous
jump is taking place at the second node, and this breakmakes
the Period-2 orbit be split as two sections before coming into
Period-1 motion; meanwhile, the instability region emerges
from 𝜔 > 0.954. When 𝐸𝑛 = 28.7 and 𝐸𝑛 = 29, the Period-
2 motion over the range 𝜔 ∈ [0.935, 0.951] becomes more
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Figure 2: Bifurcation evolution procedure in terms of the mesh frequency 𝜔 ∈ [0.9, 1.08].

andmore degenerate and accompanied by further and further
strengthening of the unstable vibration at 𝜔 > 0.951. For
𝐸𝑛 = 30 and 𝐸𝑛 = 32, the right side of the Period-2 orbit has
disappeared, giving way to stable Period-1 vibration instead.
Along with the bifurcation development, the nonlinearity
manners become stronger gradually under the combination
effects of error and mesh frequency, which makes the system
response in turn alternate between the periodic and chaotic
motions. At 𝐸𝑛 = 42, we see the initial right branches of
Period-2 which have been totally replaced by Period-1 motion
over the span of 𝜔 ∈ [0.9, 0.96]. Finally, in Figure 2(f)
the bifurcation diagram presents three evident periodic
windows at 𝜔

1
∈ [0.975, 0.978], 𝜔

2
∈ [0.989, 0.999], and

𝜔
3

∈ [1.012, 1.016], which have been verified with periodic
responses of Period-9, Period-11, and Period-11, respectively.
Moreover, the amplitude of bifurcation diagram is increased
further too. One thing to be noted is that the occurrence of
the bifurcation intersection location shifts to a larger value of
the mesh frequency in the process of error increasing. This

may be considered as an opportunity to improve the system
bifurcation characteristics.

Displacement bifurcation versus dimensionless frequen-
cy has been shown in Figure 3(a) based on 𝜔 ∈ [1.68, 2.21].
One can find two significant skips that appear at 𝜔 = 1.927

and 𝜔 = 2.112. We note that the first one also breaks the
route of Period-2 orbit, and the other one makes the system
enter chaos with a suddenly induced exterior crisis due to
the collision with a chaotic attractor, both of which are more
likely to induce instability or tooth collision in gear system.
As expected, the largest Lyapunov exponent in Figure 3(b)
provides a good determination regarding the transition from
periodicity to chaos in the light of the criterion value of 0.

3.4. Domain Structure Analysis. Discretize the parameter
space to be a two-dimensional plane with 𝑐

𝑛
⊗ 𝑐
𝑛
, where 𝑐

𝑛

denotes the 𝑛th cell. The mapping initial condition is set as
𝜆
5
= 0, letting 𝜀

1
= 1𝑒−2 and 𝜀

2
= 1𝑒−4 to be the computing

precision to distinguish the target cell unit and identify
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Figure 3: Bifurcation behavior with respect to the mesh frequency 𝜔 ∈ [1.68, 2.21].
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Figure 4: Domain structure analysis: (a), (b) parameter planes; (c), (d) bifurcation diagrams.

the dynamic periodicity; for instance, if |𝜆
5
(𝑖)−𝜆

5
(𝑖+1)| < 𝜀

1
,

that means that the dynamic state is under periodic motion,
then judging the periodicity by comparing with 𝜀

2
. In order

to capture the accurate solutions, we record 1000 mapping
periods for a single cell parameter.

In Figure 4(a) the whole plane is divided into 22500
rectangular cells with uniform size of intervals of 0.008
and 0.0008 for 𝐸𝑛 and 𝑏

𝑛
, respectively. Clearly, the global

attraction is constructed with three distinct domains of 𝑃1,
𝑃4, and Chaos, where 𝑃 represents the periodic domains;
the numbers 1, 4 refer to the motion characteristics. It is
obvious that the window of Period-4 orbit is filled inside the
chaotic domain. With increasing the transmission error 𝐸𝑛,
the periodic motion and chaotic state present alternately in
the parameter plane. In Figure 4(c) the control parameters for

the bifurcation diagram are extracted from the 𝐸𝑛 ⊗ 𝑏
𝑛
plane

in the case 𝑏
𝑛

= 0.1 and 𝐸𝑛 ∈ [0.3, 1.6], and we can see that
the response suddenly alters at the bifurcation point, which
means a slight disturbance close to the intersection of this
parametric area would result in significant breaking of the
equilibrium state, with original attractor destroyed suddenly.
The cells in 𝑃1 show that backlash plays a small role on
the bifurcation adjustment when 𝐸𝑛 < 0.4. Another param-
eter domain plane 𝐸𝑛 ⊗ 𝑚𝑘 with [0.3, 1.6] ⊗ [0.05, 0.4] was
conducted in Figure 4(b) and received the similar attractions
with 𝑃1, 𝑃4, and Chaos. Bifurcation diagram in Figure 4(d)
indicates a good agreement with the parameter domain
analysis.

The results in Figure 5 demonstrate the complicated
bifurcation evolutions in the bounded domain. The dynamic
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Figure 5: Parametric plane for the case. 𝐸𝑛 ⊗ 𝜔 ∈ [1.2, 2.5] ⊗

[0.74, 0.825]. 𝑇
0
= 400, 𝜉 = 0.01, 𝑏 = 0.093, and 𝑚𝑘 = 0.08.

group mainly consists of 𝑃1, 𝑃2, and 𝑃3 as well as Chaos,
with some regular cells forming an instability narrow zone,
which indicates that the system behavior is sensitive with the
impact of errors and mesh frequency. It could be convinced
that this area is unstable under the corresponding excitation,
for the gears should avoid being in such irregular region. In
this𝐸𝑛⊗𝜔 plane,Period-2 cells have a spatial domination over
the system response. During the changes of decreasing 𝐸𝑛,
the Period-1 cells disappeared firstly and the Period-3 orbit
moves upwards along the 𝐶 edge on the left side of Period-2
group. Moreover, over the range of 𝜔 ∈ [0.74, 0.825], the cells
mapping into chaos is not smooth. As 𝜔 goes up to 0.82, the
cell evolution undergoes a transition from Period-1 motion
to an irregular region and then to chaotic domain, and chaos
appears following Period-3 cells.

In Figure 6(a), the occurrence of bifurcation motion is
synchronous with largest Lyapunov exponent in the case 𝜔 =

0.788, and the system vibration goes through stable Period-
1 and Period-2 orbit to the chaotic vibration. Bifurcation
diagram and the largest LE both discover that a sudden
jumping occurs at 𝐸𝑛 = 1.45 just happening at Period-
2 motion which is transiting into chaos. At this moment,
intermittent fluctuation also can be found from the largest
Lyapunov exponent with a sharp switch from −0.02 to
0.02. This unstable parameter domain probably shadows an
existence of chaotic domain nearby. However, CMM does
not have the capability to find such a nonlinear jumping
discontinuity; yet it gives a satisfying conformation about the
emergence of chaos.

For Figure 7, the CMM solutions are depicted employing
the damping ratio of 𝜉 ∈ [0.05, 0.41] and, respectively, versus
parameters of backlash 𝑏

𝑛
, mesh error 𝐸𝑛, stiffness factor𝑚𝑘,

and input torque 𝑇
1
. In these four plots, likewise, chaotic

cells cover a big area with small 𝜉 inside the parametric
planes. Period-doubling bifurcation is exhibited along the
route approaching chaos and passes in sequence through
𝑃2, 𝑃4, 𝑃8, and 𝑃16; besides, some 𝑃32 points are also
evident at the edge before chaos emerges. In Figures 7(a)–
7(c) after Period-4 mapping region, small quantity of Period-
8 and Period-16 cells can be seen. In 𝜉 ⊗ 𝑇

1
plane, very few

Period-32 points are showing up at the intersection near the
onset of chaos. The reason is that, with the bifurcation of
the periodic motions, the windows of the coming periodic
response become narrower and narrower, and small cells are

able to explore the transition. In Figure 7(a), three Pseudo-
periodic cells are noticed lying on a deviate location, which
fails to reveal the real nature of the dynamicmotions. Further
investigation of the periodic evolvement is subject to a finer
resolution of parametric field. According to these four planes,
we know that the mapping result shows specific structure
in the evolution plane which indicates various bifurcation
manifestations for the system. Specifically, the domains of
attraction gather to develop special features as parameter
changes, which substantially helps to track different dynamic
responses. It is also interesting that the system is in the chaotic
state for a small 𝜉 and in periodic motion at larger 𝜉. Hence
one should take into account that a higher damping ratio will
suppress the gear vibration.

The condition in Figure 8 is pictured with 300 steady
periods for a fixed 𝜉. With the damping ratio decreasing,
it mainly illustrates the changes starting from a Period-
2
𝑚 response (𝑚: integer) to a doubled periodic (𝑚 + 1)
again and goes on until eventually reaching chaos with the
recursive topological structure, andwe can find that themesh
movement experienced a dramatic transition. Figure 8(b)
shows that the largest Lyapunov exponent rises gradually
from the value of −0.1 to 0.08 ultimately, where the largest
LE indeed matches the tendency of bifurcation develop-
ment.

4. Conclusions

The nonlinear vibration equations of combining spiral gear
transmission were set up, and the calculations were done by
adopting Gill’s numerical algorithm. The investigation con-
sidered gear backlash, transmission error, damping ratio, and
variation mesh stiffness. Using the cell-mapping technique
leads to good insight into the dynamic features of parameter
domain structures. Bifurcation diagram and Lyapunov expo-
nent are used to validate the results in parameter spaces. Some
main conclusions are as follows:

(1) Under the excitation of mesh frequency 𝜔, period-
doubling bifurcation was observed with the Largest
Lyapunov exponent 𝜆

1
∈ [−0.021, 0.038]; when

𝜔 = 1.93, the discontinuous jump breaks the Period-
2 orbit and at the point of 𝜔 = 2.12, the jump
switches Period-2 state into chaos suddenly. As the
transmission error changes from 28 to 42, bifurcation
evolution was exhibited.

(2) In 𝐸𝑛 ⊗ 𝑏
𝑛
and 𝐸𝑛 ⊗ 𝑚𝑘 parameter spaces, three

dynamic regions including Period-1, Period-4, and
Chaos were exhibited, and gear dynamic responses
are sensitive to the boundary parameters of the cell
groups.

(3) In 𝜉⊗𝑏
𝑛
, 𝜉⊗𝐸𝑛, 𝜉⊗𝑚𝑘, and 𝜉⊗𝑇

1
planes, the param-

eter domain structure reveals the global dynamic
behavior distributions, with periodic regions of
𝑃𝑒𝑟𝑖𝑜𝑑-2, 𝑃𝑒𝑟𝑖𝑜𝑑-4, 𝑃𝑒𝑟𝑖𝑜𝑑-8, . . ., and Period-2𝑚 (𝑚:
integer), leading to chaos, and large damping ratio
contributes to a steady dynamic response.
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Figure 6: Verification of the domain structure with respect to transmission error.
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Figure 7: Domain structure analysis in two-dimensional parameter planes.
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Figure 8: Bifurcation evolution with respect to the damping ratio.
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Nomenclature

𝑚
𝑖
: Mass of the gear-𝑖

𝜂: Gear transmission ratio
𝑘
𝑗

𝑖
: Support bearing stiffness

𝑐
𝑗

𝑖
: Support bearing damping

𝑘
1

𝑚
, 𝑘2
𝑚
: Gear meshing stiffness

𝑐
1

𝑚
, 𝑐2
𝑚
: Gear meshing damping

𝑇
1
, 𝑇
2
: Input torques on pinions

𝑇
3
: Output torque on gear 3, where 𝑇

3
= 2𝜂𝑇

1

𝐽
𝑖
: Moment of inertia for each gear

𝛿
13
, 𝛿
23
: Relative displacement functions

𝑥
𝑖
, 𝑦
𝑖
, 𝑧
𝑖
: Generalized coordinate axis

𝑜
𝑖
: Origin of coordinate system

𝛾
𝑖
: Reference cone angle

𝑏
𝑛
: The half backlash

Δ
1, Δ2: Displacement vector for pinions

Δ
3

1
, Δ3
2
: Vibration displacement vector on gear 3

𝐹
13
, 𝐹
23
: Mesh force acting at tooth contact point

𝐹
𝑗: Component forces in axis direction

𝑎
𝑖
: Computation coefficient 𝑖 = 1, 2, 3, 4, 5

𝑒
1
(𝑡), 𝑒
2
(𝑡): Gear transmission error functions

𝜓
1
, 𝜓
2
: Initial mesh phasing

Ω: Mesh frequency with dimension
𝐸𝑛: Dimensionless amplitude of errors
𝑀
𝑒
: The equivalent masses

𝑀
𝑖
: The equivalent mass of gears 𝑀

𝑖
= 𝑚
𝑖
/𝑟
𝑖

𝜉: The mesh damping ratio
𝜔: Dimensionless mesh frequency
𝑞: Displacement vector
M: Total mass matrix
K: Total stiffness matrix
C: Total stiffness matrix
a
𝑖
: Computation coefficient sub-matrix.

Superscript

𝑗: 𝑗 = 𝑥, 𝑦, 𝑧.

Subscript

𝑖: 𝑖 = 1, 2, 3.
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