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We prove that the double inequality 𝐽
𝛼
(𝑎, 𝑏) < 𝑈(𝑎, 𝑏) < 𝐽

𝛽
(𝑎, 𝑏) holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 if and only if 𝛼 ≤ √2/(𝜋 − √2) =

0.8187 ⋅ ⋅ ⋅ and𝛽 ≥ 3/2, where𝑈(𝑎, 𝑏) = (𝑎−𝑏)/[√2 arctan((𝑎−𝑏)/√2𝑎𝑏)], and 𝐽
𝑝
(𝑎, 𝑏) = 𝑝(𝑎

𝑝+1

−𝑏
𝑝+1

)/[(𝑝+1)(𝑎
𝑝

−𝑏
𝑝

)] (𝑝 ̸= 0, −1),
𝐽
0
(𝑎, 𝑏) = (𝑎 − 𝑏)/(log 𝑎 − log 𝑏), and 𝐽

−1
(𝑎, 𝑏) = 𝑎𝑏(log 𝑎 − log 𝑏)/(𝑎 − 𝑏) are the Yang and 𝑝th one-parameter means of 𝑎 and 𝑏,

respectively.

1. Introduction

Let 𝑝 ∈ R and 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏. Then the 𝑝th one-
parameter mean 𝐽

𝑝
(𝑎, 𝑏), 𝑝th power mean 𝑀

𝑝
(𝑎, 𝑏), har-

monic mean 𝐻(𝑎, 𝑏), geometric mean 𝐺(𝑎, 𝑏), logarithmic
mean 𝐿(𝑎, 𝑏), first Seiffert mean𝑃(𝑎, 𝑏), identricmean 𝐼(𝑎, 𝑏),
arithmetic mean 𝐴(𝑎, 𝑏), Yang mean 𝑈(𝑎, 𝑏), second Seiffert
mean 𝑇(𝑎, 𝑏), and quadratic mean 𝑄(𝑎, 𝑏) are, respectively,
defined by

𝐽
𝑝
(𝑎, 𝑏) =

{{{{{{{{{{

{{{{{{{{{{

{

𝑝(𝑎
𝑝+1

− 𝑏
𝑝+1

)

(𝑝 + 1) (𝑎𝑝 − 𝑏𝑝)
, 𝑝 ̸= 0, −1,

𝑎 − 𝑏

log 𝑎 − log 𝑏
, 𝑝 = 0,

𝑎𝑏 (log 𝑎 − log 𝑏)

𝑎 − 𝑏
, 𝑝 = −1,

𝑀
𝑝
(𝑎, 𝑏) = [

𝑎
𝑝

+ 𝑏
𝑝

2
]

1/𝑝

(𝑝 ̸= 0) ,

𝑀
0
(𝑎, 𝑏) = √𝑎𝑏,

𝐻 (𝑎, 𝑏) =
2𝑎𝑏

𝑎 + 𝑏
,

𝐺 (𝑎, 𝑏) = √𝑎𝑏,

𝐿 (𝑎, 𝑏) =
𝑏 − 𝑎

log 𝑏 − log 𝑎
,

𝑃 (𝑎, 𝑏) =
𝑎 − 𝑏

2 arcsin ((𝑎 − 𝑏) / (𝑎 + 𝑏))
,

𝐼 (𝑎, 𝑏) =
1

𝑒
(

𝑏
𝑏

𝑎𝑎
)

1/(𝑏−𝑎)

,

𝐴 (𝑎, 𝑏) =
𝑎 + 𝑏

2
,

𝑈 (𝑎, 𝑏) =
𝑎 − 𝑏

√2 arctan ((𝑎 − 𝑏) /√2𝑎𝑏)
,

𝑇 (𝑎, 𝑏) =
𝑎 − 𝑏

2 arctan ((𝑎 − 𝑏) / (𝑎 + 𝑏))
,

𝑄 (𝑎, 𝑏) = √𝑎
2

+ 𝑏
2

2
.

(1)

It is well known that both themeans 𝐽
𝑝
(𝑎, 𝑏) and𝑀

𝑝
(𝑎, 𝑏)

are continuous and strictly increasing with respect to 𝑝 ∈ R

for fixed 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏. Recently, the one-parameter
mean 𝐽

𝑝
(𝑎, 𝑏) and Yang mean 𝑈(𝑎, 𝑏) have attracted the

attention of many researchers.
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Alzer [1] proved that the inequalities

𝐺 (𝑎, 𝑏) < √𝐽
𝑝
(𝑎, 𝑏) 𝐽

−𝑝
(𝑎, 𝑏) < 𝐿 (𝑎, 𝑏)

<
𝐽
𝑝
(𝑎, 𝑏) + 𝐽

−𝑝
(𝑎, 𝑏)

2
< 𝐴 (𝑎, 𝑏)

(2)

hold for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 and 𝑝 ̸= 0.
In [2, 3], the authors discussed the monotonicity and

logarithmic convexity properties of the one-parameter mean
𝐽
𝑝
(𝑎, 𝑏).
In [4, 5], the authors proved that the double inequalities

𝐽
𝑝
1
(𝑎, 𝑏) < 𝛼𝐴 (𝑎, 𝑏) + (1 − 𝛼) 𝐿 (𝑎, 𝑏) < 𝐽

𝑞
1
(𝑎, 𝑏)

𝐽
𝑝
2
(𝑎, 𝑏) < 𝛼𝐴 (𝑎, 𝑏) + (1 − 𝛼)𝐻 (𝑎, 𝑏) < 𝐽

𝑞
2
(𝑎, 𝑏) ,

(3)

hold for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 and 𝛼 ∈ (0, 1) if and only if
𝑝
1
≤ 𝛼/(2 − 𝛼), 𝑞

1
≥ 𝛼, 𝑝

2
≤ 3𝛼 − 2, and 𝑞

2
≥ 𝛼/(2 − 𝛼).

Xia et al. [6] proved that the double inequality

𝐽
(3𝛼−1)/2

(𝑎, 𝑏) < 𝛼𝐴 (𝑎, 𝑏) + (1 − 𝛼)𝐺 (𝑎, 𝑏)

< 𝐽
𝛼/(2−𝛼)

(𝑎, 𝑏)

(4)

holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 if 𝛼 ∈ (0, 2/3), and inequality
(4) is reversed if 𝛼 ∈ (2/3, 1).

Gao and Niu [7] presented the best possible parame-
ters 𝑝 and 𝑞 such that the double inequality 𝐽

𝑝
(𝑎, 𝑏) <

𝐴
𝛼

(𝑎, 𝑏)𝐺
𝛽

(𝑎, 𝑏)𝐻
1−𝛼−𝛽

(𝑎, 𝑏) < 𝐽
𝑞
(𝑎, 𝑏) holds for all 𝑎, 𝑏 > 0

with 𝑎 ̸= 𝑏 and 𝛼 + 𝛽 ∈ (0, 1).
In [8, 9], the authors proved that the double inequalities

𝐽
𝜆
1
(𝑎, 𝑏) < 𝑇 (𝑎, 𝑏) < 𝐽

𝜇
1
(𝑎, 𝑏) ,

𝐽
𝜆
2
(𝑎, 𝑏) < 𝐼 (𝑎, 𝑏) < 𝐽

𝜇
2
(𝑎, 𝑏)

(5)

hold for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 if and only if 𝜆
1
≤ 2/(2 − 𝜋),

𝜇
1
≥ 2, 𝜆

2
≤ 1/2, and 𝜇

2
≥ 1/(𝑒 − 1).

Xia et al. [10] found that 𝑀
(1+2𝑝)/3

(𝑎, 𝑏) is the best
possible lower power mean bound for the one-parameter
mean 𝐽

𝑝
(𝑎, 𝑏) if 𝑝 ∈ (−2, −1/2) ∪ (1,∞) and 𝑀

(1+2𝑝)/3
(𝑎, 𝑏)

is the best possible upper power mean bound for the one-
parameter mean 𝐽

𝑝
(𝑎, 𝑏) if 𝑝 ∈ (−∞, −2) ∪ (−1/2, 1).

For all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏, Yang [11] provided the bounds
for the Yang mean 𝑈(𝑎, 𝑏) in terms of other bivariate means
as follows:

𝑃 (𝑎, 𝑏) < 𝑈 (𝑎, 𝑏) < 𝑇 (𝑎, 𝑏) ,

𝐺 (𝑎, 𝑏) 𝑇 (𝑎, 𝑏)

𝐴 (𝑎, 𝑏)
< 𝑈 (𝑎, 𝑏) <

𝑃 (𝑎, 𝑏) 𝑄 (𝑎, 𝑏)

𝐴 (𝑎, 𝑏)
,

𝑄
1/2

(𝑎, 𝑏) [
2𝐺 (𝑎, 𝑏) + 𝑄 (𝑎, 𝑏)

3
]

1/2

< 𝑈 (𝑎, 𝑏)

< 𝑄
2/3

(𝑎, 𝑏) [
𝐺 (𝑎, 𝑏) + 𝑄 (𝑎, 𝑏)

2
]

1/3

,

𝐺 (𝑎, 𝑏) + 𝑄 (𝑎, 𝑏)

2
< 𝑈 (𝑎, 𝑏)

< [
2

3
(
𝐺 (𝑎, 𝑏) + 𝑄 (𝑎, 𝑏)

2
)

1/2

+
1

3
𝑄
1/2

(𝑎, 𝑏)]

2

.

(6)

In [12, 13], the authors proved that the double inequalities

[
2

3
(
𝐺 (𝑎, 𝑏) + 𝑄 (𝑎, 𝑏)

2
)

𝑝

+
1

3
𝑄
𝑝

(𝑎, 𝑏)]

1/𝑝

< 𝑈 (𝑎, 𝑏)

< [
2

3
(
𝐺 (𝑎, 𝑏) + 𝑄 (𝑎, 𝑏)

2
)

𝑞

+
1

3
𝑄
𝑞

(𝑎, 𝑏)]

1/𝑞

2
1−𝜆

(𝐺 (𝑎, 𝑏) + 𝑄 (𝑎, 𝑏))
𝜆

𝑄 (𝑎, 𝑏) + 𝐺 (𝑎, 𝑏) 𝑄
𝜆

(𝑎, 𝑏)

21−𝜆 (𝐺 (𝑎, 𝑏) + 𝑄 (𝑎, 𝑏))
𝜆

+ 𝑄𝜆 (𝑎, 𝑏)

< 𝑈 (𝑎, 𝑏)

<
2
1−𝜇

(𝐺 (𝑎, 𝑏) + 𝑄 (𝑎, 𝑏))
𝜇

𝑄 (𝑎, 𝑏) + 𝐺 (𝑎, 𝑏) 𝑄
𝜇

(𝑎, 𝑏)

21−𝜇 (𝐺 (𝑎, 𝑏) + 𝑄 (𝑎, 𝑏))
𝜇

+ 𝑄𝜇 (𝑎, 𝑏)
,

𝑀
𝛼
(𝑎, 𝑏) < 𝑈 (𝑎, 𝑏) < 𝑀

𝛽
(𝑎, 𝑏) ,

(7)

hold for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 if and only if 𝑝 ≤ 𝑝
0
, 𝑞 ≥ 1/5,

𝜆 ≥ 1/5, 𝜇 ≤ 𝑝
1
, 𝛼 ≤ 2 log 2/(2 log𝜋 − log 2), and 𝛽 ≥ 4/3,

where 𝑝
0
= 0.1941 ⋅ ⋅ ⋅ is the unique solution of the equation

𝑝 log(2/𝜋)−log(1+2
1−𝑝

)+log 3 = 0 on the interval (1/10,∞),
and 𝑝

1
= log(𝜋 − 2)/ log 2 = 0.1910 ⋅ ⋅ ⋅ .

Very recently, Zhou et al. [14] proved that𝛼 = 1/2 and𝛽 =

log 3/(1+ log 2) = 0.6488 ⋅ ⋅ ⋅ are the best possible parameters
such that the double inequality

[
𝑎
𝛼

+ (𝑎𝑏)
𝛼/2

+ 𝑏
𝛼

3
]

1/𝛼

< 𝑈 (𝑎, 𝑏)

< [
𝑎
𝛽

+ (𝑎𝑏)
𝛽/2

+ 𝑏
𝛽

3
]

1/𝛽

(8)

holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.
The aim of this paper is to present the best possible

parameters 𝛼 and 𝛽 such that the double inequality 𝐽
𝛼
(𝑎, 𝑏) <

𝑈(𝑎, 𝑏) < 𝐽
𝛽
(𝑎, 𝑏) holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.

2. Main Result

In order to prove our main result we need a lemma, which we
present in this section.

Lemma 1. Let 𝑝 ∈ R, and

𝑓 (𝑥, 𝑝) = 𝑝𝑥
4𝑝+6

− (𝑝 + 1) 𝑥
4𝑝+5

+ 𝑝𝑥
4𝑝+4

− (𝑝 + 1) 𝑥
4𝑝+1

− 𝑝 (𝑝 + 1) 𝑥
2𝑝+7

+ 2 (𝑝 + 1)
2

𝑥
2𝑝+5

− 2𝑝𝑥
2𝑝+4

− 2𝑝 (𝑝 + 1) 𝑥
2𝑝+3

− 2𝑝𝑥
2𝑝+2

+ 2 (𝑝 + 1)
2

𝑥
2𝑝+1

− 𝑝 (𝑝 + 1) 𝑥
2𝑝−1

− (𝑝 + 1) 𝑥
5

+ 𝑝𝑥
2

− (𝑝 + 1) 𝑥 + 𝑝.

(9)

Then the following statements are true:

(1) if 𝑝 = 3/2, then 𝑓(𝑥, 𝑝) > 0 for all 𝑥 ∈ (1,∞);
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(2) if 𝑝 = √2/(𝜋 − √2) = 0.8187 ⋅ ⋅ ⋅ , then there exists
𝜆 ∈ (1,∞) such that 𝑓(𝑥, 𝑝) < 0 for 𝑥 ∈ (1, 𝜆) and
𝑓(𝑥, 𝑝) > 0 for 𝑥 ∈ (𝜆,∞).

Proof. For part (1), if 𝑝 = 3/2, then (9) becomes

𝑓 (𝑥, 𝑝) =
1

4
(𝑥 − 1)

6

(𝑥
2

+ 2𝑥 + 2) (2𝑥
2

+ 2𝑥 + 1)

⋅ (3𝑥
2

+ 4𝑥 + 3) .

(10)

Therefore, part (1) follows from (10).
For part (2), let 𝑝 = √2/(𝜋−√2), 𝑓

1
(𝑥, 𝑝) = 𝜕𝑓(𝑥, 𝑝)/𝜕𝑥,

𝑓
2
(𝑥, 𝑝) = (1/2)(𝜕𝑓

1
(𝑥, 𝑝)/𝜕𝑥), 𝑓

3
(𝑥, 𝑝) = (1/(𝑝 +

1)𝑥
2

)(𝜕𝑓
2
(𝑥, 𝑝)/𝜕𝑥), 𝑓

4
(𝑥, 𝑝) = (𝑥

7−2𝑝

/2𝑝)(𝜕𝑓
3
(𝑥, 𝑝)/𝜕𝑥),

𝑓
5
(𝑥, 𝑝) = (1/2𝑥)(𝜕𝑓

4
(𝑥, 𝑝)/𝜕𝑥), 𝑓

6
(𝑥, 𝑝) = 𝜕𝑓

5
(𝑥, 𝑝)/𝜕𝑥,

𝑓
7
(𝑥, 𝑝) = (1/2)(𝜕𝑓

6
(𝑥, 𝑝)/𝜕𝑥),𝑓

8
(𝑥, 𝑝) = 𝜕𝑓

7
(𝑥, 𝑝)/𝜕𝑥,𝑓

9
(𝑥,

𝑝) = (1/2(𝑝+1))(𝜕𝑓
8
(𝑥, 𝑝)/𝜕𝑥), and𝑓

10
(𝑥, 𝑝) = 𝜕𝑓

9
(𝑥, 𝑝)/𝜕𝑥.

Then elaborated computations lead to

lim
𝑥→1

𝑓 (𝑥, 𝑝) = 0,

lim
𝑥→+∞

𝑓 (𝑥, 𝑝) = +∞,

(11)

lim
𝑥→1

𝑓
1
(𝑥, 𝑝) = 0,

lim
𝑥→+∞

𝑓
1
(𝑥, 𝑝) = +∞,

(12)

lim
𝑥→1

𝑓
2
(𝑥, 𝑝) = 0,

lim
𝑥→+∞

𝑓
2
(𝑥, 𝑝) = +∞,

(13)

lim
𝑥→1

𝑓
3
(𝑥, 𝑝) = 0,

lim
𝑥→+∞

𝑓
3
(𝑥, 𝑝) = +∞,

(14)

lim
𝑥→1

𝑓
4
(𝑥, 𝑝) = −48 (𝑝 + 1) (

3

2
− 𝑝) < 0,

lim
𝑥→+∞

𝑓
4
(𝑥, 𝑝) = +∞,

(15)

lim
𝑥→1

𝑓
5
(𝑥, 𝑝) = −192 (𝑝 + 1)

2

(
3

2
− 𝑝) < 0,

lim
𝑥→+∞

𝑓
5
(𝑥, 𝑝) = +∞,

(16)

lim
𝑥→1

𝑓
6
(𝑥, 𝑝) = 2 (𝑝 + 1) (368𝑝

3

+ 332𝑝
2

− 484𝑝

− 963) < 0,

(17)

lim
𝑥→+∞

𝑓
6
(𝑥, 𝑝) = +∞, (18)

lim
𝑥→1

𝑓
7
(𝑥, 𝑝) = (𝑝 + 1) (1024𝑝

4

+ 2096𝑝
3

+ 1844𝑝
2

− 2876𝑝 − 5193) < 0,

(19)

lim
𝑥→+∞

𝑓
7
(𝑥, 𝑝) = +∞, (20)

lim
𝑥→1

𝑓
8
(𝑥, 𝑝) = (𝑝 + 1) (2560𝑝

5

+ 6336𝑝
4

+ 14176𝑝
3

+ 11028𝑝
2

− 12680𝑝 − 22005) < 0,

(21)

lim
𝑥→+∞

𝑓
8
(𝑥, 𝑝) = +∞, (22)

lim
𝑥→1

𝑓
9
(𝑥, 𝑝) = 6 (512𝑝

6

+ 1184𝑝
5

+ 4064𝑝
4

+ 6372𝑝
3

+ 4068𝑝
2

− 3495𝑝 − 5775) = 15.2085

⋅ ⋅ ⋅ > 0,

(23)

𝑓
10

(𝑥, 𝑝) = (𝑝 + 2) (2𝑝 + 1) (2𝑝 + 3)
2

(2𝑝 + 5) (2𝑝

+ 7) (4𝑝 + 1) (4𝑝 + 5) 𝑥
2𝑝

− 8𝑝 (𝑝 + 1) (𝑝 + 2) (𝑝

+ 3) (2𝑝 + 1) (2𝑝 + 3) (4𝑝 + 3) (4𝑝 + 5) 𝑥
2𝑝−1

+ 𝑝 (2𝑝 − 1) (2𝑝 + 1)
2

(2𝑝 + 3) (2𝑝 + 5) (4𝑝 − 1)

⋅ (4𝑝 + 3) 𝑥
2𝑝−2

− 8𝑝 (𝑝 − 1)
2

(𝑝 − 2) (2𝑝 − 1) (2𝑝

− 3) (16𝑝
2

− 1) 𝑥
2𝑝−5

− 720 (𝑝 + 3) (2𝑝 + 5) (2𝑝

+ 7) 𝑥.

(24)

Note that

2𝑝 > 1 > 2𝑝 − 1 > 0 > 2𝑝 − 2 > 2𝑝 − 5,

1536𝑝
7

+ 15040𝑝
6

+ 59440𝑝
5

+ 122280𝑝
4

+ 137144𝑝
3

+ 61850𝑝
2

− 49845𝑝 − 72450

= 85165.4405 ⋅ ⋅ ⋅ > 0.

(25)

It follows from (24) and (25) that

𝑓
10

(𝑥, 𝑝) > [(𝑝 + 2) (2𝑝 + 1) (2𝑝 + 3)
2

(2𝑝 + 5)

⋅ (2𝑝 + 7) (4𝑝 + 1) (4𝑝 + 5) − 8𝑝 (𝑝 + 1) (𝑝 + 2)

⋅ (𝑝 + 3) (2𝑝 + 1) (2𝑝 + 3) (4𝑝 + 3) (4𝑝 + 5)

− 720 (𝑝 + 3) (2𝑝 + 5) (2𝑝 + 7)] 𝑥 + [𝑝 (2𝑝 − 1)

⋅ (2𝑝 + 1)
2

(2𝑝 + 3) (2𝑝 + 5) (4𝑝 − 1) (4𝑝 + 3)

− 8𝑝 (𝑝 − 1)
2

(𝑝 − 2) (2𝑝 − 1) (2𝑝 − 3) (16𝑝
2

− 1)]

⋅ 𝑥
2𝑝−2

= (1536𝑝
7

+ 15040𝑝
6

+ 59440𝑝
5

+ 122280𝑝
4

+ 137144𝑝
3

+ 61850𝑝
2

− 49845𝑝

− 72450) 𝑥 + 𝑝 (2𝑝 − 1) (4𝑝 − 1) (704𝑝
4

+ 136𝑝
3

+ 1120𝑝
2

+ 248𝑝 − 3) 𝑥
2𝑝−2

> 0,

(26)

for 𝑥 ∈ (1,∞).
From (23) and (26) we clearly see that 𝑓

8
(𝑥, 𝑝) is strictly

increasing with respect to 𝑥 on the interval (1,∞). Then (21)
and (22) lead to the conclusion that there exists 𝜆

1
> 1 such
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that the function 𝑥 → 𝑓
7
(𝑥, 𝑝) is strictly decreasing on (1, 𝜆

1
]

and strictly increasing on [𝜆
1
,∞).

It follows from (19) and (20) together with the piecewise
monotonicity of the function 𝑥 → 𝑓

7
(𝑥, 𝑝) that there exists

𝜆
2

> 1 such that the function 𝑥 → 𝑓
6
(𝑥, 𝑝) is strictly

decreasing on (1, 𝜆
2
] and strictly increasing on [𝜆

2
,∞).

Making use of (13)–(18) and the samemethod as the above
we know that there exists 𝜆

𝑖
> 1 (𝑖 = 3, 4, 5, 6, 7) such that the

function 𝑥 → 𝑓
8−𝑖

(𝑥, 𝑝) is strictly decreasing on (1, 𝜆
𝑖
] and

strictly increasing on [𝜆
𝑖
,∞).

It follows from (12) and the piecewisemonotonicity of the
function 𝑥 → 𝑓

1
(𝑥, 𝑝) that there exists 𝜆

∗

> 1 such that the
function 𝑥 → 𝑓(𝑥, 𝑝) is strictly decreasing on (1, 𝜆

∗

] and
strictly increasing on [𝜆

∗

,∞).
Therefore, part (2) follows easily from (11) and the

piecewise monotonicity of the function 𝑥 → 𝑓(𝑥, 𝑝).

Theorem 2. The double inequality

𝐽
𝛼
(𝑎, 𝑏) < 𝑈 (𝑎, 𝑏) < 𝐽

𝛽
(𝑎, 𝑏) (27)

holds for all 𝑎, 𝑏 > 0with 𝑎 ̸= 𝑏 if and only if𝛼 ≤ √2/(𝜋−√2) =

0.8187 ⋅ ⋅ ⋅ and 𝛽 ≥ 3/2.

Proof. Since𝑈(𝑎, 𝑏) and 𝐽
𝑝
(𝑎, 𝑏) are symmetric and homoge-

neous of degree one,without loss of generality, we assume that
𝑎 = 𝑥
2

> 1 and 𝑏 = 1. Let 𝑝 ∈ R and 𝑝 ̸= 0, −1. Then (1) lead
to

𝐽
𝑝
(𝑎, 𝑏) − 𝑈 (𝑎, 𝑏) = 𝐽

𝑝
(𝑥
2

, 1) − 𝑈 (𝑥
2

, 1)

=
𝑝 (𝑥
2𝑝+2

− 1)

(𝑝 + 1) (𝑥2𝑝 − 1) arctan ((𝑥2 − 1) /√2𝑥)
𝐹 (𝑥, 𝑝) ,

(28)

where

𝐹 (𝑥, 𝑝) = arctan(
𝑥
2

− 1

√2𝑥
)

−
(𝑝 + 1) (𝑥

2

− 1) (𝑥
2𝑝

− 1)

√2𝑝 (𝑥2𝑝+2 − 1)
,

(29)

lim
𝑥→1

𝐹 (𝑥, 𝑝) = 0, (30)

𝜕𝐹 (𝑥, 𝑝)

𝜕𝑥
=

√2

𝑝 (𝑥4 + 1) (𝑥2𝑝+2 − 1)
2
𝑓 (𝑥, 𝑝) , (31)

where 𝑓(𝑥, 𝑝) is defined by (9).
We divide the proof into four cases.

Case 1 (𝑝 = √2/(𝜋 − √2)). Then it follows from Lemma 1(2),
(29), and (31) that there exists 𝜆 > 1 such that the function
𝑥 → 𝐹(𝑥, 𝑝) is strictly decreasing on (1, 𝜆] and strictly
increasing on [𝜆,∞), and

lim
𝑥→∞

𝐹 (𝑥, 𝑝) = 0. (32)

Therefore,

𝐽
√2/(𝜋−√2)

(𝑎, 𝑏) < 𝑈 (𝑎, 𝑏) (33)

follows easily from (28), (30), and (32) together with the pie-
cewise monotonicity of the function 𝑥 → 𝐹(𝑥, 𝑝).

Case 2 (𝑝 > √2/(𝜋 − √2)). Then (1) leads to

lim
𝑥→∞

𝐽
𝑝
(𝑥, 1)

𝑈 (𝑥, 1)
=

√2𝑝

2 (𝑝 + 1)
𝜋 > 1. (34)

Inequality (34) implies that there exists large enough𝑋 =

𝑋(𝑝) > 1 such that 𝑈(𝑎, 𝑏) < 𝐽
𝑝
(𝑎, 𝑏) for all 𝑎, 𝑏 > 0 with

𝑎/𝑏 ∈ (0, 1/𝑋) ∪ (𝑋,∞).

Case 3 (𝑝 = 3/2). Then from Lemma 1(1) and (31) we know
that the function 𝑥 → 𝐹(𝑥, 𝑝) is strictly increasing on the
interval (1,∞). Therefore,

𝑈 (𝑎, 𝑏) < 𝐽
3/2

(𝑎, 𝑏) (35)

follows from (28) and (30) together with the monotonicity of
the function 𝑥 → 𝐹(𝑥, 𝑝).

Case 4 (0 < 𝑝 < 3/2). Let 𝑥 > 0 and 𝑥 → 0; then making use
of Taylor expansion we get

𝑈 (1, 1 + 𝑥) − 𝐽
𝑝
(1, 1 + 𝑥)

=
𝑥

√2 arctan (𝑥/√2 (1 + 𝑥))

−
𝑝 [1 − (1 + 𝑥)

𝑝+1

]

(𝑝 + 1) [1 − (1 + 𝑥)
𝑝

]
=

3 − 2𝑝

24
𝑥
2

+ 𝑜 (𝑥
2

) .

(36)

Equation (36) implies that there exists small enough 𝛿 > 0

such that 𝑈(1, 1 + 𝑥) > 𝐽
𝑝
(1, 1 + 𝑥) for all 𝑥 ∈ (0, 𝛿).
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