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Indoor positioning systems (IPSs) have been discussed for use in entertainment, home automation, rescue, surveillance, and
healthcare applications. In this paper, we present an IPS that uses an impulse radio-ultra-wideband (IR-UWB) radar network.
This radar network system requires at least two radar devices to determine the current coordinates of a moving person. However,
one can enlarge the monitoring area by adding more radar sensors. To track moving targets in indoor environments, for example,
patients in hospitals or intruders in a home, signal processing procedures for tracking should be applied to the raw data measured
using IR-UWB radars. This paper presents the signal processing method required for robust target tracking in a radar network,
that is, an iterative extended Kalman filter- (IEKF-) based object tracking method, which uses two IR-UWB radars to measure the
coordinates of the targets. The proposed IEKF tracking method is compared to the conventional extended Kalman filter (EKF)
method. The results verify that the IEKF method improves the performance of 2D target tracking in a real-time system.

1. Introduction

Presently, people are familiar with outdoor positioning sys-
tems using the global position system (GPS), which does not
work indoors. To track moving targets in indoor environ-
ments, new tracking systems should be implemented using
other sensor/communication methods such as ultrasound,
Wi-Fi, infrared, and impulse radio-ultra-wideband (IR-
UWB) radar. Indoor positioning systems (IPSs) can be used
for rescue, surveillance, emergency, and healthcare situations
in indoor environments. Generally, object location in indoor
environments can be recognized by signals reflected from
the target [1]. For high-accuracy target location, we consider
an IR-UWB radar-based tracking system in this paper. In
addition to its enhanced accuracy, this system possesses
several advantages such as high spatial resolution, ultra-low
power, and low cost [2, 3]. When these IR-UWB radars are
installed on the ceiling of the building, they can monitor
the movements of patients in a hospital or intruders in a
home. For these surveillance and healthcare applications, the
sensor signals observed using IR-UWB radar should be sent
to a monitoring server and converted into useful monitoring

signals on the server. That is, radar networks are required for
these applications, as shown in Figure 1.

An IR-UWB-based tracking system implemented using
a radar network can estimate the distance to the target
location by observing the time of arrival (TOA) of the
first path, even in the indoor multipath environment. In
this paper, we use IR-UWB radar sensor devices for target
detection, localization, and tracking of themoving target.The
impulse radar consists of two antennas for transmitting and
receiving signals. These two antennas exchange an extremely
narrow pulse. However, the received target signal is generally
perturbed by noise, static clutter, and attenuation. Therefore,
we need signal processing procedures for extracting the target
signal from the raw delivered radar signals [4]. These pro-
cedures consist of (in sequence) clutter reduction, detection,
localization, and tracking steps, as shown in Figure 2.

In the clutter reduction step, the primary goal is to
remove clutter in the raw data captured by the IR-UWB radar.
Because clutter, that is, unwanted signals reflected from static
objects in indoor positioning applications, is present, the
received signal (which includes clutter) should be carefully
handled [5].We applied the conventionalKalmanfilter- (KF-)
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Figure 2: Signal processing procedures in IR-UWB application.

based clutter reductionmethod,which is known to be the best
among the conventionalmethods such as exponential average
(EA), singular value decomposition (SVD), and Kalman filter
(KF) [6].

In the detection step, the location of the target is deter-
mined. First, the strength of the clutter-eliminated signal is
compared to a threshold. If the signal strength is greater
than the threshold, a target is considered to be present.
There are detection techniques such as CLEAN, modified
CLEAN, matched filter, and constant false alarm rate (CFAR)
[7, 8]. In this paper, we use a modified CLEAN method
for the detection step introduced in the previous work [8].
The modified CLEAN method searches all pulse presences
by the cross-correlation between the received signal and the
template signal and then compares them to a threshold.
However, the received signal strength will be weaker when
the target distance is greater.Therefore, the modified CLEAN
compensates the weak signal transferred form the faraway
target and detects the target presence based on 1D/2D based
window method. That is, the filtering method is applied in
this detection stage.

In the localization and tracking step, the distance to the
target is determined using the TOA of the detected target
signal. Indeed, the distance to the target is obtained by multi-
plying the target sample index with the sample resolution of
IR-UWB radar. However, there are still estimation errors in
the target location. To localize and track the moving target,
several methods such as trilateration, Kalman filtering (KF),
and extended KF (EKF) have been proposed [9, 10].

The KF-based tracking used in this method has good
performance for linear systems. However, this technique has
high estimation errors because of the nonlinear relationship
between measurements and system states. On the other
hand, EKF has better performance than the conventional KF-
based tracking method in the nonlinear estimation system.
However, the conventional method still has low estimation
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Figure 3: The frame construction of IR-UWB radar.

features for tracking because the measurement noise and
error covariance matrix in EKF are affected by underesti-
mating the (substantial) covariance matrices. Additionally, if
the initial state estimation is wrong, this filter could diverge
rapidly because of its linearization. As a result, the accuracy of
tracking performance in EKF can be reduced when the target
drastically changes its direction.

In this paper, we present a performance evaluation of
the proposed iterative EKF- (IEKF-) based target tracking
method. IEKF has been introduced in our previous work;
however, in this paper, it is extensively illustrated and ana-
lyzed in a radar network at its suggested radar positions;
we provide various experimental results [11]. IEKF uses
a recursive estimation procedure to determine an object’s
motion parameters based on a series of signals. Thus, this
method can estimate the target position for drastic direction
changes of moving targets better than EKF can. Using IEKF,
we estimate the target trajectories in both natural and drastic
movements of a target.

The remainder of this paper is organized as follows:
Section 2 presents the conventional location estimation
methods that can be useful in 2D radar monitoring system.
Then, Section 3 describes the conventional EKF- and pro-
posed IEKF-based location estimationmethod.Theproposed
and conventional target tracking radar methods are com-
pared in Section 4 based on experimental results. Finally, the
conclusions of this work follow, in Section 5.

2. Location Estimation Methods

To track the moving object using the IR-UWB radar system,
we perform the steps of clutter reduction and detection.Then,
the location of the target should be determined from the
target-detected signal samples.

This paper uses IR-UWB radar with NVA6100 chipset
developed by Novelda [12]. Figure 3 shows a frame structure
consisting of samples captured at IR-UWB radar receiver.The
one frame consists of the 512 samples in this paper work.
Thus, sample can be interpreted to signal propagation time
and target distance. In the condition of 512 samples per frame,
the time interval of each sample is set up to 27 ps.Thedistance
from radar to the target, 𝑑sampler, could be expressed with the
interval, sample interval time, shown in (1). 𝐶 is the radio
wave speed in air. Consider

𝑑sampler =
𝐶 × sample interval time

2
. (1)
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By using (1), the resolution of the observed distance could
be about 4 millimeters. That is, the 512 samples can measure
about 2 meters. To measure a distance over the 2 meters, the
UWB radar system delays sampling times as long as the target
locates.

Therefore, the target signal samples indicating the target
location can be converted into the distance to the target. To
obtain the target distance, we use

𝐷 = 𝑁 × 𝑅, (2)

where 𝑁 is the target signal sample index of a frame stored
after applying the detection technique and 𝑅 is the sample
resolution, 4mm in our work. For example, if𝑁 is 500, then
𝐷 is 2m.

For the radar monitoring network, we use two impulse
radars, which determine the target location in 2D coordi-
nates.Therefore, the distance determination can be expressed
by a two-circle intersection as follows:

(𝑑𝑥 − 𝑋
𝑖
)
2
+ (𝑑𝑦 − 𝑌

𝑖
)
2
= 𝑟
2

𝑖
(𝑖 = 1, 2) . (3)

𝑋
𝑖
and 𝑌

𝑖
are the 𝑥 and 𝑦 coordinates of the radar positions,

respectively, where 𝑖 is the number of the radar. 𝑑𝑥 and
𝑑𝑦 are the 𝑥 and 𝑦 coordinates of the target locations
from each radar. 𝑟

𝑖
is a radius to target from the radar.

Each target distance makes a circle with a radius measured
from the radar position to the target locations as shown
in Figure 4. Here, we can find the target location which
is the coordinate of intersection that these circles make.
But the number of intersections is at least two. In Figure 5,
we could know that the intersection occurring on the first
quadrant is only valid for a target location, when the radi-
ation angle is shown depicted with the blue arrows in the
figure. That is, one intersection of circles existing on the
first quadrant and residing in the area overlapped by two
radar RF signals is selected from two intersections. If two
intersections are still available in the intersection selection,
the intersection close to the previous observed location is
preferred. However, the observed target distance information
still contains noise: therefore, an additional filtering method
is needed for location estimation. For high-performance
location estimation, linear and nonlinear approaches can be
used. Linear systems are used for predictable cases in location
estimation. When using a linear system, the current distance
of the target is estimated from the previous location in a linear
manner, whereas nonlinear systems use nonlinear formulas
to estimate the current target location.

In our experiments, we carried out location estimation
using EKF and IEKF to track a moving target, where the EKF
and IEKF estimationmethods are governed by nonlinear sys-
tems [13]. These two estimation methods provide the current
target location in 2D coordinates using nonlinear estimation
approaches. The system model 𝑥 and measurement model 𝑧
are described as follows:

𝑥
𝑘
= 𝑓 (𝑥

𝑘−1
, 𝑢
𝑘−1

) + 𝑤
𝑘−1

, (4)

𝑧
𝑘
= ℎ (𝑥

𝑘
) + V
𝑘
, (5)

Radar

Radar

Radius

Radius

x

y

(r2)

(X2, Y2)

(r1)

(X1, Y1)

Target location
(dx, dy)

Figure 4: Intersection of two circles.

x

y

Circle6

Circle5

Circle4

Circle3

Circle2

Circle1

Radar

Radar

Figure 5: Target estimation based on intersection position and radar
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where 𝑘 is a time index, 𝑢 is the control input such as an
acceleration,𝑤 is the process noise, and V is the measurement
noise. When applying the estimation methods, we must
define the appropriate target state vector in these methods as
follows:

𝑥
𝑘
= [𝑑𝑥, V𝑥, 𝑑𝑦, V𝑦]𝑇 , (6)

where 𝑑𝑥 is the 𝑥-coordinate location, 𝑑𝑦 is the 𝑦-coordinate
location, and V is the velocity of the target.

2.1. EKF Estimation for 2D Target Tracking. The EKF state
model is the same as the KF state model because EKF is a
nonlinear version of KF. The EKF state model is made of
the motion estimation for the target, which is needed by the
tracking system. Consider

𝑥
𝑘
= 𝑓 (𝑥

𝑘−1
, 𝑢
𝑘−1

) + 𝑤
𝑘−1

= 𝐴𝑥
𝑘−1

+ 𝐵𝑢
𝑘−1

+ 𝑤
𝑘−1

. (7)
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First, we derive the state and measurement model. Equa-
tion (7) is the state model in KF, EKF, and IEKF. This state
model can be changed by the target state vector for estimation
as follows:

𝑥
𝑘
=

[
[
[
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]
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where 𝑤
𝑘

= N(0, 𝑄) is the additive process noise with
covariance matrix 𝑄. The transition matrix 𝐴 is given by

𝐴 =

[
[
[
[
[

[

1 𝑡 0 0

0 1 0 0

0 0 1 𝑡

0 0 0 1

]
]
]
]
]

]

, (9)

where 𝑡 is 1. The control input matrix 𝐵 is given by
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[
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The input vector 𝑢 is given by

𝑢
𝑘
=
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where 𝑎
𝑥
and 𝑎
𝑦
are the acceleration components of the target.

Additionally, we derived the EKF measurement model as
follows:

𝑧
𝑘
= [

𝑟
1

𝑟
2

] =
[
[

[
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where𝑋
1
,𝑋
2
,𝑌
1
, and𝑌

2
are the locations of each radar in the

𝑥 and 𝑦 coordinates, as shown in Figure 4.
Second, we present the estimation process, which consists

of prediction and correction steps.The previously mentioned
problem is how to transform the nonlinear target state vector
into the linear target state vector. In EKF, this problem
has been resolved using a Jacobian matrix [13]. The EKF
algorithm recursively carries out prediction and correction
steps in the following order:

initialize: 𝑥−
𝑘−1

, 𝑃
−

𝑘
(13)

𝑥
−

𝑘
= 𝐴𝑥
𝑘−1

+ 𝐵𝑢
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, (14)

𝑃
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𝑇
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, (16)

𝑥
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𝑃
𝑘
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𝑘
𝐻
𝑘
) 𝑃
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𝑘
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The prediction step operates as shown in (13), (14), and
(15). 𝑥−

𝑘−1
is the state vector and 𝑃

−

𝑘
is the error covariance

diagonal matrix, which is the same size as the number of state
vectors. In (14), the current location is predicted using 𝑥

𝑘−1
.

Also,𝑃−
𝑘
is updated by𝑃

𝑘−1
and𝑄 to obtain the next estimated

location. 𝑄 is the process noise covariance diagonal matrix,
which is the same size as the number of state vectors:
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[
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]
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where 𝑞 is the variance of each process noise, as defined
by the user. The correction method is shown in (16), (17),
and (18); it is used for computing the Kalman gain, updating
the estimation state, updating the error covariance, and
computing the Jacobian matrix. The Jacobian matrix is as
follows:
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(20)
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In (16), 𝑅 is the measurement noise covariance matrix,
which has the same size as the number of radii, as follows:

𝑅 = [
𝑐
𝑘

0

0 𝑐
𝑘

] , (21)

where 𝑐 is the variance value of each measurement noise, as
defined by the user. In (18), 𝐼 is the identity matrix [13].

2.2. IEKF Estimation for 2D Target Tracking. Generally, EKF
is used to localize and track a moving target. Sometimes EKF
has low tracking performance, such as when the trajectory
of the target drastically changes. This happens because EKF
uses fixed initial filter parameters. To improve this weakness
of EKF, IEKF includes a recursive strategy that iteratively
calculates certain filter parameters; in this strategy, IEKF
defines an iteration triggering threshold based on the differ-
ence between the current estimated location and the previous
estimated location.This triggering threshold is defined as 0.01
by experimental experience. If the difference value is larger
than the predefined threshold, the added iterative function
restarts to obtain the current location using a randomly
chosen measurement noise covariance 𝑅 [14, 15]. This added
strategy allows the target tracking system to operate in a wide
variety of target movement situations.

IEKF uses the same state model and measurement model
as EKF; it also uses the same prediction and correction steps
as EKF. The prediction step of IEKF is the same as that of
EKF. However, the correction step of IEKF adds an iterative
process to that of EKF. The correction step of IEKF uses
the following four processes. First, Jacobian matrix 𝐻

𝑘
is

computed to update the Kalman gain. Second, the Kalman
gain 𝐾

𝑘
is computed using the Jacobian matrix 𝐻

𝑘
and

measurement noise covariance 𝑅. The value of 𝑅 is randomly
chosen whenever repeated before updating the Kalman gain
in this improved strategy. Third, the method estimates the
next location as follows:

𝑥
𝑛
= 𝑥
−

𝑘
+ 𝐾
𝑛
(𝑧
𝑛
− ℎ (𝑥

−

𝑛
) − 𝐻 (𝑥

−

𝑘
− 𝑥
𝑛
)) , (22)

where 𝑛 is the iteration count in the added function; it
increases by one, from zero. If the difference between the
estimated next location 𝑥

𝑛
and current location 𝑥

−

𝑘
is bigger

than the predefined threshold, 𝑛 increases one and (22)
is refreshed. These three processes are the added iterative
strategy. Last, error covariance 𝑃

𝑘
is updated like (18). The

measurement noise covariance 𝑅 has an effect on the estima-
tion results because of the change of 𝑅 [11].

When we compare EKF and IEKF, the difference is
whether themeasurement noise covariance𝑅 is continuously
changed or not. This difference indicates that IEKF can be
useful in a variety of tracking conditions. That is, 𝑅 of IEKF
is adaptively changed to obtain results with higher accuracy.

3. Experimental Scenario

To perform experiments for moving target tracking over a
multi-impulse radar network, we use one monitoring server,
two IR-UWB radar sensor devices with the NVA6100 chipset
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Figure 6: The measurement area generated by the antenna angles
of the selected radars. In this example, positions 1 and 4 are chosen
(first experiment).

Table 1: The average distance to the starting and ending positions
of target movement from radars.

Radar position Start position End position
Case 1 4.67m 4.67m
Case 2 4.13m 4.67m
Case 3 3.26m 4.24m

developed by Novelda, and sinuous directional (TX and RX)
antennas with an opening angle of 42 degrees [16].The radars
are set up to work pulse repetition frequency at 48MHz and
radar-scan rate of approximately 24 radar-scans per second.
The transmitted pulse width is 0.7 ns and the frequency range
is from 3.1 GHz to 5.6GHz. Also, its power spectral density
limit is −41.3 dBm/MHz indoors and outdoors. Two IR-
UWB radar devices are connected to the monitoring server,
which performs signal processing for target localization and
tracking. The radars observe a target located 8m away in
our experimental condition. Also, the target moves with a
speed of 0.3 meters per second in our experiments. EKF- and
IEKF-based localization and tracking methods were used for
experiments in an indoor environment of 6m × 6m in area.
To obtain the coordinates of the target, the constant target
and moving target were designed to move or hold within the
observation area, which is covered by two IR-UWB radars, as
shown in Figure 6.

First, we carried out tests by changing the position of
the radar to obtain the best placement of radars. In the first
test (case 1, shown in Table 1), the two radars are located at
(2m, 0m) and (0m, 2m), where (𝑥, 𝑦) indicates the 𝑥 and
𝑦 positions on a coordinate plane. In the second test (case
2), the two radars are located at (4m, 0m) and (0m, 2m).
In the last test (case 3), the two radars are relocated at (6m,
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Figure 7: The locations of the fixed targets for the second experi-
ment when the two radars are located at (0m, 2m) and (2m, 0m).

2m) and (0m, 2m). Under these conditions, the targetmoves
from (5m, 3m) to (3m, 5m), as shown in Figure 6.

Second, we carried out filtering performance experiment
at the two different locations such as (3m, 3m) and (4m, 4m)
localization shown in Figure 7. In this experiment, the two
radars are positioned in the selected locations such as (2m,
0m) and (0m, 2m) and evaluated with the proposed IEKF-
based target localization method.

Third, we carried out the last experiment with the two
trajectories shown in Figure 8. In this experiment, the two
radars are positioned in the same locations as the second
experiment and evaluated with the proposed IEKF-based
target tracking method.

4. Experimental Results

4.1. Selection of Radar Location. In these experiments, the
observed raw signals are conveyed to the server and rein-
terpreted by the KF clutter reduction and modified CLEAN
detection steps.

In the first experiment, we tested the three cases of
different radar locations, as shown in Figures 9, 10, and 11.
These figures show the orthogonal setup for the position
of two radars to monitor a confined area [17]. In Figure 9,
the two radars are located at (2m, 0m) and (0m, 2m),
and a target moves from (5m, 3m) to (3m, 5m). The test
of case 1 shows the worst tracking result among the three
cases, because the distances from the radar antennas to
the target are the longest among the cases. Table 1 gives
the average distance to the starting and ending positions
of the target movement. As we expected, the distance to
the target determines the accuracy of tracking, even when
the tracking filters are applied. The tests of cases 2 and 3
show better location estimation with this target tracking
method, because the distances from the radars to the target

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Radar 1

Radar 2

Trajectory case 2

Trajectory case 1

Y
(m

)

X (m)

Figure 8:The trajectories of the moving target when the two radars
are located at (0m, 2m) and (2m, 0m).
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Figure 9: Estimated tracking results of the moving target in 2D
coordinates when the radars are located at (2m, 0m) and (0m, 2m).

are shorter than that of case 1. Therefore, we can conclude
that the location closer to the target is preferred for the
impulse radar position. However, if targets move randomly
in the experiment area, any selection of radar positions is
acceptable. In this work, we chose case 1 to provide good and
bad signal detection conditions for our radar position. Our
developed radar system is to be evaluated and compared to
conventional systems in various experimental environments.
Figure 12 demonstrates how the tracking system determines
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the route of a moving target when the radars are positioned
as they are in case 1.

4.2. The Performance Evaluation of IEKF and EKF Filtering
Methods. In the second and third experiments, IEKF and
EKF filteringmethods are used for the localization and track-
ing estimation of a fixed and moving target. We tested two
localization cases and two trajectories, as shown in Figures 7
and 8. In these experiments, we fixed the radar locations at

Table 2: Performance comparison of filtering methods for fixed
target located on (3m, 3m).

Method RMSE Covariance 𝑅
Without filtering 0.1368 None
EKF 0.1312 𝑐 = 0.01

EKF 0.1232 𝑐 = 0.05

EKF 0.1184 𝑐 = 0.1

EKF 0.1068 𝑐 = 0.5

IEKF 0.0938 𝑐 is randomly chosen

Table 3: Performance comparison of filtering methods for fixed
target located on (4m, 4m).

Method RMSE Covariance 𝑅
Without filtering 0.3311 None
EKF 0.2983 𝑐 = 0.01

EKF 0.2561 𝑐 = 0.05

EKF 0.2319 𝑐 = 0.1

EKF 0.1771 𝑐 = 0.5

IEKF 0.1356 𝑐 is randomly chosen

Table 4: Performance comparison of different localization and
tracking methods for trajectory case 1.

Method RMSE Covariance 𝑅
Without filtering 0.2478 None
EKF (1) 0.2373 𝑐 = 0.01

EKF (2) 0.2321 𝑐 = 0.05

EKF (3) 0.2373 𝑐 = 0.1

EKF (4) 0.3373 𝑐 = 0.5

IEKF (1) 0.2270 𝑐 is randomly chosen
IEKF (2) 0.2285 𝑐 is randomly chosen
IEKF (3) 0.2289 𝑐 is randomly chosen
IEKF (4) 0.2289 𝑐 is randomly chosen

(2m, 0m) and (0m, 2m). To localize the constant target and
to track the moving target, we used KF clutter reduction and
modifiedCLEANdetection techniques on the rawdata before
starting the localization and tracking signaling process.Then,
we adopted IEKF and EKF filteringmethods for the fixed and
moving object. In these experiments, when the variance of
measurement noise 𝑐 in the EKF filtering method is changed
from 0.01 to 0.5, the root mean square error (RMSE) between
the estimated position and trajectory is seen to be different
each time. However, in the case of the IEKF filtering method,
the coefficient 𝑐 is randomly chosen and updated at each
iteration. The estimated localization and tracking results are
depicted in Figures 13, 14, 15, 16, 17, and 18.

The results of the second experiment are shown in Tables
2 and 3 with the RMSE between the estimated localization
and true position. As can be seen in the results, the IEKF
filtering method has the better RMSE values of 0.0938 and
0.1356, whereas the EKFhas RMSE values of 0.1068 and 0.1771
for the two localization experiments, respectively. In the third
experiment result, Tables 4 and 5 show RMSE between the
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Figure 12: Estimated tracking results of themoving target in 2D coordinates in the case of no filtering, (a) first trajectory, (b) second trajectory.
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Figure 13: Estimated localization result of fixed target using EKF filtering with 𝑐 of 0.5, (a) target location of (3m, 3m) and (b) target location
of (4m, 4m).

estimated trajectories and true trajectories using two filtering
methods. As a result, the IEKF filtering method has better
RMSE values of 0.2270 and 0.2145, whereas the EKF has
RMSE values of 0.2321 and 0.2378 for the two trajectory
experiments, respectively.

As our results show, the proposed IEKF filtering method
tracks closer to the real target position than the EKF filter-
ing method does under the different covariance condition.

Therefore, the value of the covariance 𝑅 is shown affecting
the tracking result. A large covariance 𝑅 generally increases
the range of estimation error, whereas a small covariance
𝑅 decreases the range of estimation error. However, the
smallest covariance 𝑅 does not always decrease the range
of the estimation error, as shown in Tables 2, 3, 4, and 5.
We can conclude that the EKF filtering method using a
constant covariance 𝑅 is not adaptive in a variety of indoor
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Figure 14: Estimated localization result of fixed target using IEKF filtering, (a) case 1 and (b) case 2.
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Figure 15: Estimated tracking result of moving target in 2D coordinates in the case of EKF and IEKF filtering methods, (a) EKF using 𝑐 =
0.01 and (b) EKF using 𝑐 = 0.05.

environments [8]. However, the IEKF filteringmethod can be
used in a robust target tracking systembecause the covariance
𝑅 is changeable.When the various trajectories of the target are
tracked, the IEKF filtering method can find the appropriate
covariance 𝑅.

5. Conclusion

In this paper, we discussed the signal processing technologies
required for a target localization and tracking systemusing an
IR-UWB radar network. Tracking of a moving target is the
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Figure 16: Estimated tracking result of moving target in 2D coordinates in the case of EKF and IEKF filtering methods, (a) EKF using 𝑐 = 0.1
and (b) EKF using 𝑐 = 0.5.
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Figure 17: Estimated tracking result of moving target in 2D coordinates in the case of EKF and IEKF filtering methods, (a) EKF using 𝑐 =
0.01 and (b) EKF using 𝑐 = 0.05.

most difficult procedure within IR-UWB signal processing.
Even though the KF and EKF filter technologies have been
used, there are still issues when enhancing the tracking
accuracy. In this paper, we introduced the IEKF-based target
trackingmethod, which can enhance the accuracy better than
other conventional filters. Also, the detailed description about

experiment condition and parameters could be valuable in
the incoming future 3D object tracking applications. In
addition, for 2D radar tracking, the relation between position
of radars and distance measurement is discussed in our
paper. This IEKF-based tracking method can also be used
in surveillance, rescue, and healthcare applications. If more
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Figure 18: Estimated tracking result of moving target in 2D coordinates in the case of EKF and IEKF filtering methods, (a) EKF using 𝑐 = 0.1
and (b) EKF using 𝑐 = 0.5.

Table 5: Performance comparison of different localization and
tracking methods for trajectory case 2.

Method RMSE Covariance 𝑅
Without filtering 0.2526 None
EKF (1) 0.2378 𝑐 = 0.01

EKF (2) 0.2393 𝑐 = 0.05

EKF (3) 0.2336 𝑐 = 0.1

EKF (4) 0.3151 𝑐 = 0.5

IEKF (1) 0.2167 𝑐 is randomly chosen
IEKF (2) 0.2198 𝑐 is randomly chosen
IEKF (3) 0.2198 𝑐 is randomly chosen
IEKF (4) 0.2145 𝑐 is randomly chosen

radars are connected by wired and/or wireless links, multiple
targets could be tracked with the lower location estimation
errors in a larger area.
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