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This paper studies the following discrete systems of the complex Ginzburg-Landau equation: 𝑖𝑢̇
𝑚
− (𝛼 − 𝑖𝜀)(2𝑢

𝑚
− 𝑢
𝑚+1

− 𝑢
𝑚−1

) +

𝑖𝜅𝑢
𝑚
+ 𝛽|𝑢

𝑚
|
2𝜎

𝑢
𝑚
= 𝑔
𝑚
, 𝑚 ∈ Z. Under some conditions on the parameters 𝛼, 𝜀, 𝜅, 𝛽, and 𝜎, we prove the existence of exponential

attractor for the semigroup associated with these discrete systems.

1. Introduction

In the study of infinite dynamical systems, attractors occupy a
central position (see, e.g., Chepyzhov andVishik [1], Hale [2],
Ladyzhenskaya [3], and Temam [4]). Exponential attractors
are realistic objects intermediate between the global attractors
and the inertial manifolds. There are several approaches for
proving the existence of exponential attractors for parabolic
and hyperbolic partial differential equations (PDEs) arising
from mathematical physics. For example, we can refer to
[5–7] for the existence of the exponential attractors for
general evolution equations in Banach spaces, to [8] for
the exponential attractors for reaction diffusion equations
in unbounded domains, to [9] for the exponential attractors
of the nonlinear wave equations, and to [10] for the expo-
nential attractor for the generalized 2D Ginzburg-Landau
equations. Also there are some references investigating the
exponential attractors for lattice dynamical systems (LDSs).
We can see [11–13] for the exponential attractors for first-
order LDSs; see [14, 15] for the pullback exponential attractors
for first- and second-order LDSs; see [16, 17] for second-order
nonautonomous LDSs and discrete Zakharov equations for
the uniform exponential attractors.

Lattice dynamical systems (LDSs) are currently under
active investigation for their wide applications in electrical
engineering [18], chemical reaction theory [19, 20], laser
systems [21], and biology [22]. There are many references
studying the asymptotic behavior of general LDSs. For
instance, we can refer to [23–25] for the existence of global
attractor, to [26–28] for the uniform attractor, to [11, 14, 15]
for the exponential and pullback exponential attractor, and
to [29, 30] for the random attractor. Also, there are some
concrete applications of the above theory to the discrete
PDEs. We can refer to [31–33] for discrete Klein-Gordon-
Schrödinger equations, [34] for discrete three-component
reversible Gray-Scott model, [35] for discrete coupled non-
linear Schrödinger-Boussinesq equations, [36] for discrete
long-wave-short-wave resonance equations, and [37] for the
discrete complex Ginzburg-Landau equation.

Lattice systems including coupled ordinary differential
equations, coupled map lattices, and cellular automata are
spatiotemporal systems with discretization in some variables.
In some cases, lattice systems arise as the spatial discretization
of partial differential equations on unbounded or bounded
domains.

Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2015, Article ID 217608, 6 pages
http://dx.doi.org/10.1155/2015/217608

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/205385493?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Discrete Dynamics in Nature and Society

This paper will study the following discrete systems
(lattice systems):

𝑖𝑢̇
𝑚
− (𝛼 − 𝑖𝜀) (2𝑢

𝑚
− 𝑢
𝑚+1

− 𝑢
𝑚−1

) + 𝑖𝜅𝑢
𝑚

+ 𝛽
󵄨󵄨󵄨󵄨𝑢𝑚

󵄨󵄨󵄨󵄨

2𝜎

𝑢
𝑚
= 𝑔
𝑚
,

(1)

𝑢
𝑚
(0) = 𝑢

0,𝑚
, 𝑚 ∈ Z, (2)

where 𝑖 is the unit of imaginary numbers and 𝛼, 𝜀, 𝜅, 𝛽, 𝜎 are
parameters. Equation (1) can be regarded as a discrete ana-
logue of the following complex Ginzburg-Landau equation
on the real line:

𝑖𝑢̇ + (𝛼 − 𝑖𝜀) 𝑢
𝑥𝑥
+ 𝑖𝜅𝑢 + 𝛽 |𝑢|

2𝜎

𝑢 = 𝑔, 𝑥 ∈ R. (3)

The complex Ginzburg-Landau equation is a simplified
mathematical model for various pattern formation systems
in mechanics, physics, and chemistry. We can refer to [10, 38,
39] for the detailed significations of the complex Ginzburg-
Landau equation.

The existence of the exponential attractors for continu-
ous complex Ginzburg-Landau equation in two-dimensional
space was proved in [10]. Later, under some conditions on
𝛼, 𝜀, 𝜅, 𝛽, 𝜎, and 𝑔

𝑚
, [37] established the existence of global

attractor for the semigroup associated with discrete systems
(1)-(2). The aim of this paper is to prove the existence of
exponential attractors for discrete systems (1)-(2). To this end,
we will establish the following three items:

(I) The solution operators associated with (1)-(2) gen-
erate a continuous semigroup {𝑆(𝑡)}

𝑡⩾0
in the phase

space ℓ2 and {𝑆(𝑡)}
𝑡⩾0

possesses a bounded and closed
positively invariant set B ⊂ ℓ

2. Moreover, for any
𝑇 > 0, the map 𝑆(𝑡) is Lipschitz continuous from
[0, 𝑇] ×B intoB.

(II) There exists a time 𝑇
∗
such that the map 𝑆(𝑇

∗
) := 𝑆
∗
:

B 󳨃→ B is an 𝛼-contraction onB.
(III) The map 𝑆

∗
satisfies the discrete squeezing property

onB.

Compared with previous works such as [9], here we no
longer require the compactness of the invariant set B (this
fact was first noted by Babin and Nicolaenko [8] and then by
Eden et al. [6]), which can usually be obtained by the compact
embedding between Sobolev spaces when studying PDEs.
Note that the compact embedding theorem of Sobolev spaces
seems difficult to be applicable when studying LDSs. This is
caused by the discrete characteristics of LDSs which restrict
us to choose the phase spaces. Fortunately, the intrinsic
characteristics of LDSs enable us to use the 𝛼-contraction
property to compensate the compactness of the invariant set.

2. Positively Invariant Set and
Lipschitz Continuity

Set

ℓ
2

= {𝑢 = (𝑢
𝑚
)
𝑚∈Z

, 𝑢
𝑚
∈ C : ∑

𝑚∈Z

󵄨󵄨󵄨󵄨𝑢𝑚
󵄨󵄨󵄨󵄨

2

< +∞} (4)

and equip it with the inner product and norm as

(𝑢, V) = ∑

𝑚∈Z

𝑢
𝑚
V
𝑚
,

‖𝑢‖
2

= (𝑢, 𝑢) ,

𝑢 = (𝑢
𝑚
)
𝑚∈Z

,

V = (V
𝑚
)
𝑚∈Z

∈ ℓ
2

,

(5)

where V
𝑚
denotes the conjugate of V

𝑚
. Then (ℓ2, ‖ ⋅ ‖, (⋅, ⋅)) is

a separable Hilbert space. We now introduce the operators𝐴,
𝐵, and 𝐵∗ on ℓ2 as follows:

(𝐴𝑢)
𝑚
= 2𝑢
𝑚
− 𝑢
𝑚+1

− 𝑢
𝑚−1

, ∀𝑚 ∈ Z,

(𝐵𝑢)
𝑚
= 𝑢
𝑚+1

− 𝑢
𝑚
,

(𝐵
∗

𝑢)
𝑚
= 𝑢
𝑚−1

− 𝑢
𝑚
,

∀𝑚 ∈ Z.

(6)

In fact,𝐵∗ is the adjoint operator of𝐵 and one can easily check
that

(𝐴𝑢, V) = (𝐵
∗

𝐵𝑢, V) = (𝐵𝑢, 𝐵V) ,

(𝐵𝑢, V) = (𝑢, 𝐵
∗V) ,

∀𝑢, V ∈ ℓ2,

‖𝐴𝑢‖
2

⩽ 16 ‖𝑢‖
2

,

‖𝐵𝑢‖
2

⩽ 4 ‖𝑢‖
2

,

󵄩󵄩󵄩󵄩𝐵
∗

𝑢
󵄩󵄩󵄩󵄩

2

⩽ 4 ‖𝑢‖
2

,

∀𝑢 ∈ ℓ
2

.

(7)

Using the notations introduced above, we can write problem
(1)-(2) as

𝑖𝑢̇ − (𝛼 − 𝑖𝜀) 𝐴𝑢 + 𝑖𝜅𝑢 + 𝛽 |𝑢|
2𝜎

𝑢 = 𝑔, (8)

𝑢 (0) = 𝑢
0
, (9)

where 𝑢 = (𝑢
𝑚
)
𝑚∈Z, |𝑢|

2𝜎

𝑢 = (|𝑢
𝑚
|
2𝜎

𝑢
𝑚
)
𝑚∈Z, 𝑔 = (𝑔

𝑚
)
𝑚∈Z,

and 𝑢
0
= (𝑢
𝑚
(0))
𝑚∈Z.

For the well-posedness of problem (1)-(2), we have the
following.

Lemma 1 (see [37]). Let 𝛼, 𝜀, 𝜅, 𝛽, 𝜎 > 0 and 𝑔 = (𝑔
𝑚
)
𝑚∈Z ∈

ℓ
2:

(i) For any 𝑢
0
∈ ℓ
2, problem (8)-(9) has a unique solution

𝑢 ∈ C1([0, 𝑇
0
); ℓ
2

) for some 𝑇
0
> 0. Moreover, if 𝑇

0
<

+∞, then lim
𝑡→+𝑇

−

0

‖𝑢(𝑡)‖ = +∞.

(ii) For any 𝑢
0
∈ ℓ
2, the solution of problem (8)-(9) satisfies

‖𝑢 (𝑡)‖
2

⩽
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩

2

𝑒
−𝜅𝑡

+

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

2

𝜅2
, ∀𝑡 ⩾ 0. (10)
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Lemma 1(i) shows that, for each initial value 𝑢
0
∈ ℓ
2,

problem (8)-(9) possesses a unique solution. Letting 𝑡 →

+∞, we see from (10) that, for any 𝑢
0
∈ ℓ
2, the corresponding

solution 𝑢(𝑡) ∈ ℓ
2 of problem (8)-(9) is uniformly (with

respect to 𝑡) bounded for all 𝑡 ∈ [0, +∞). Again, by
Lemma 1(i), the solution exists globally; that is, problem (8)-
(9) is globally well-posed.The above analysis implies that the
solution operators

𝑆 (𝑡) : ℓ
2

∋ 𝑢
0
󳨃󳨀→ 𝑆 (𝑡) 𝑢

0
= 𝑢 (𝑡) ∈ ℓ

2 (11)

generate a continuous semigroup {𝑆(𝑡)}
𝑡⩾0

on ℓ
2. We next

investigate the existence of the bounded and closed positively
invariant set, as well as the Lipschitz property for the
semigroup {𝑆(𝑡)}

𝑡⩾0
.

Lemma 2. Let 𝛼, 𝜀, 𝜅, 𝛽, 𝜎 > 0 and 𝑔 = (𝑔
𝑚
)
𝑚∈Z ∈ ℓ

2.
Then the semigroup {𝑆(𝑡)}

𝑡⩾0
possesses a bounded and closed

positively invariant setB ⊂ ℓ
2.

Proof. By (10) we see that the set

B := {𝑢 ∈ ℓ
2

: ‖𝑢‖ ⩽

√2
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

𝜅
} (12)

is a bounded and closed absorbing set for {𝑆(𝑡)}
𝑡⩾0

. Thus,
there is a time 𝑡

∗
:= 𝑡
∗
(B) such that 𝑆(𝑡)B ⊆ B for any

𝑡 ⩾ 𝑡
∗
. Set

B := ⋃

𝜏⩾𝑡
∗

𝑆 (𝜏)B. (13)

ThenB is the bounded and closed positively invariant set for
{𝑆(𝑡)}
𝑡⩾0

. The proof is complete.

The positively invariant property ofB implies that

𝑆 (𝑡)B ⊆ B ⊆ B, ∀𝑡 ⩾ 0. (14)

Lemma 3. Let 𝛼, 𝜀, 𝜅, 𝛿 > 0, 𝜎 ⩾ 1/2, and 𝑔 = (𝑔
𝑚
)
𝑚∈Z ∈

ℓ
2. Then the semigroup {𝑆(𝑡)}

𝑡⩾0
is Lipschitz continuous from

[0, 𝑇] ×B intoB for each 𝑇 > 0.

Proof. Let 𝑢
0
, V
0
∈ B, 𝑆(𝑡)𝑢

0
= 𝑢(𝑡) = (𝑢

𝑚
(𝑡))
𝑚∈Z, 𝑆(𝑡)V0 =

V(𝑡) = (V
𝑚
(𝑡))
𝑚∈Z, and 𝑤(𝑡) = 𝑢(𝑡) − V(𝑡). By (8),

𝑖𝑤̇ − (𝛼 − 𝑖𝜀) 𝐴𝑤 + 𝑖𝜅𝑤 + 𝛽 |𝑢|
2𝜎

𝑢 − 𝛽 |V|2𝜎 V = 0, (15)

𝑤 (0) = 𝑢
0
− V
0
. (16)

Using 𝑖𝑤(𝑡) to take inner product (⋅, ⋅) with both sides of (15)
and then taking the real part, we obtain

1

2

d
d𝑡

‖𝑤 (𝑡)‖
2

+ 𝜀 ‖𝐵𝑢‖
2

+ 𝜅 ‖𝑤 (𝑡)‖
2

− Im𝛽∑
𝑚∈Z

(
󵄨󵄨󵄨󵄨𝑢𝑚

󵄨󵄨󵄨󵄨

2𝜎

𝑢
𝑚
−
󵄨󵄨󵄨󵄨V𝑚

󵄨󵄨󵄨󵄨

2𝜎 V
𝑚
)𝑤
𝑚
= 0.

(17)

Now set 𝑓(𝑥) = 𝑥
2𝜎

, 𝑥 ∈ R
+
. Since 𝜎 ⩾ 1/2, 𝑓󸀠(𝑥) = 2𝜎𝑥

2𝜎−1

is continuous and increasing on R
+
. By Cauchy inequality,

− Im𝛽∑
𝑚∈Z

(
󵄨󵄨󵄨󵄨𝑢𝑚

󵄨󵄨󵄨󵄨

2𝜎

𝑢
𝑚
−
󵄨󵄨󵄨󵄨V𝑚

󵄨󵄨󵄨󵄨

2𝜎 V
𝑚
)𝑤
𝑚

⩽
𝜅

2
‖𝑤 (𝑡)‖

2

+
𝛽
2

2𝜅
∑

𝑚∈Z

(𝑓 (
󵄨󵄨󵄨󵄨𝑢𝑚

󵄨󵄨󵄨󵄨) 𝑢𝑚 − 𝑓 (
󵄨󵄨󵄨󵄨V𝑚

󵄨󵄨󵄨󵄨) V𝑚)
2

.

(18)

Using mean value theorem, (12), and (14), we get

∑

𝑚∈Z

(𝑓 (
󵄨󵄨󵄨󵄨𝑢𝑚

󵄨󵄨󵄨󵄨) 𝑢𝑚 − 𝑓 (
󵄨󵄨󵄨󵄨V𝑚

󵄨󵄨󵄨󵄨) V𝑚)
2

⩽ (2 + 8𝜎
2

)(
2
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

2

𝜅2
)

2𝜎

‖𝑤‖
2

.

(19)

It then follows from (17)–(19) that

d
d𝑡

‖𝑤 (𝑡)‖
2

+ (𝜅 − 𝛿) ‖𝑤 (𝑡)‖
2

⩽ 0, (20)

where

𝛿 = 𝛿 (𝜅, 𝛽, 𝜎,
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩) :=

2𝛽
2

𝜅
⋅ (1 + 4𝜎

2

)(
2
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

2

𝜅2
)

2𝜎

. (21)

Applying Gronwall inequality to (20) yields

‖𝑤 (𝑡)‖
2

=
󵄩󵄩󵄩󵄩𝑆 (𝑡) 𝑢0 − 𝑆 (𝑡) V0

󵄩󵄩󵄩󵄩

2

⩽ ‖𝑤 (0)‖
2

𝑒
(𝛿−𝜅)𝑡

,

∀𝑡 ⩾ 0,

(22)

and, for any 𝑇 > 0,
󵄩󵄩󵄩󵄩𝑆 (𝑡) 𝑢0 − 𝑆 (𝑡) V0

󵄩󵄩󵄩󵄩 ⩽
󵄩󵄩󵄩󵄩𝑢0 − V

0

󵄩󵄩󵄩󵄩 𝑒
(𝛿−𝜅)𝑇/2

,

∀𝑡 ∈ [0, 𝑇] .

(23)

The proof is complete.

3. Existence of Exponential Attractor

For each positive number 𝑀, we define the orthogonal
projection 𝑃

𝑀
: ℓ
2

󳨃→ ℓ
2 as

(𝑃
𝑀
𝑢)
𝑚
=
{

{

{

𝑢
𝑚
, |𝑚| ⩽ 𝑀;

0, |𝑚| > 𝑀

(24)

and set 𝑄
𝑀
= 𝐼 − 𝑃

𝑀
, where 𝐼 is the identity operator on ℓ2.

We next make some assumptions on the numbers
𝛼, 𝜅, 𝛽, 𝜎, and 𝑔

𝑚
:

(H) Assume 𝑔 = (𝑔
𝑚
)
𝑚∈Z ∈ ℓ

2, 𝛼, 𝜅, 𝛽 are positive,
𝜎 ⩾ 1/2, and

𝜅 > 𝛿, (25)

where 𝛿 is defined by (21).
The definitions of 𝛼-contraction and discrete squeezing

property can be found in [2, 6].
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Lemma 4. Let assumption (H) hold. Then there exists a time
𝑇
∗
such that the operator 𝑆(𝑇

∗
) := 𝑆

∗
: B 󳨃→ B is an 𝛼-

contraction onB.

Proof. Let 𝑢
0
, V
0
∈ B, 𝑆(𝑡)𝑢

0
= 𝑢(𝑡) = (𝑢

𝑚
(𝑡))
𝑚∈Z, 𝑆(𝑡)V0 =

𝑢(𝑡) = (V
𝑚
(𝑡))
𝑚∈Z, and 𝑤(𝑡) = 𝑢(𝑡) − V(𝑡). By (20), we have

for any𝑀 ∈ N that
d
d𝑡

‖𝑤 (𝑡)‖
2

+ 𝜅 ‖𝑤 (𝑡)‖
2

⩽ 𝛿 ‖𝑤 (𝑡)‖
2

= 𝛿 (
󵄩󵄩󵄩󵄩𝑃𝑀𝑤 (𝑡)

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑄𝑀𝑤 (𝑡)

󵄩󵄩󵄩󵄩

2

) ,

(26)

which, together with (25), gives
d
d𝑡

‖𝑤 (𝑡)‖
2

+ (𝜅 − 𝛿) ‖𝑤 (𝑡)‖
2

⩽ 𝛿
󵄩󵄩󵄩󵄩𝑃𝑀𝑤 (𝑡)

󵄩󵄩󵄩󵄩

2

,

𝑡 ⩾ 𝑡
∗
.

(27)

Thus we have
d
d𝑡

(𝑒
(𝜅−𝛿)𝑡

‖𝑤 (𝑡)‖
2

) ⩽ 𝛿𝑒
(𝜅−𝛿)𝑡 󵄩󵄩󵄩󵄩𝑃𝑀𝑤 (𝑡)

󵄩󵄩󵄩󵄩

2

, 𝑡 ⩾ 𝑡
∗
. (28)

Integrating both sides of (28) over [𝑡
∗
, 𝑇] with 𝑇 > 𝑡

∗
and

then using (22), we obtain

‖𝑤 (𝑇)‖
2

⩽ 𝑒
−(𝜅−𝛿)𝑇

‖𝑤 (0)‖
2

+
𝛿

𝜅 − 𝛿
max
𝑠∈[𝑡
∗

,𝑇]

󵄩󵄩󵄩󵄩𝑃𝑀𝑤 (𝑠)
󵄩󵄩󵄩󵄩

2

, 𝑇 ⩾ 𝑡
∗
.

(29)

Now we choose

𝑇
∗
= max{𝑡

∗
+
ln 256
𝜅 − 𝛿

+
(𝜅 + 𝛿) 𝑡

∗
+ ln 256

2𝜅
,

ln ((𝜅 + 𝛿) /2048𝛽𝜎) (𝜅/2 󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩)
2𝜎

𝜅 − 𝛿
}

(30)

and it follows from (29) that

󵄩󵄩󵄩󵄩𝑤 (𝑇
∗
)
󵄩󵄩󵄩󵄩

2

⩽
‖𝑤 (0)‖

2

256
+

𝛿

𝜅 − 𝛿
max
𝑠∈[𝑡
∗

,𝑇
∗

]

󵄩󵄩󵄩󵄩𝑃𝑀𝑤 (𝑠)
󵄩󵄩󵄩󵄩

2

. (31)

Proceeding as that as [11] did, we can show
√𝛿/(𝜅 − 𝛿)max

𝑠∈[𝑡
∗

,𝑇
∗

]
‖𝑃
𝑀
𝑤(𝑠)‖ is a precompact pseudo-

metric onB, which, together with (31) and [2, Lemma 2.3.6],
gives the desired result.

Remark 5. Since Lemma 4 holds for any 𝑀 ∈ N, we can
specify some𝑀

∗
(see (40)).Then 𝑇

∗
is chosen such that both

𝑒
(𝛿−𝜅)𝑇

∗ ⩽ 1/256 and (41) hold.

Lemma 6. Let assumption (H) hold. Then the operator 𝑆
∗
:

B 󳨃→ B satisfies the discrete squeezing property onB.

Proof. Define a smooth function 𝜒(𝑥) ∈ C(R
+
, [0, 1]) (see,

e.g., [33]) such that

𝜒 (𝑥) =
{

{

{

0, 0 ⩽ 𝑥 ⩽ 1;

1, 𝑥 ⩾ 2,

󵄨󵄨󵄨󵄨󵄨
𝜒
󸀠

(𝑥)
󵄨󵄨󵄨󵄨󵄨
⩽ 𝜒
0

(constant) , ∀𝑥 ∈ R
+
.

(32)

Let 𝑢
0
, V
0
∈ B, 𝑆(𝑡)𝑢

0
= 𝑢(𝑡) = (𝑢

𝑚
(𝑡))
𝑚∈Z, 𝑆(𝑡)V0 = V(𝑡) =

(V
𝑚
(𝑡))
𝑚∈Z, and𝑤(𝑡) = 𝑢(𝑡)−V(𝑡). Set𝑦

𝑚
= 𝜒(|𝑚|/𝑀

∗
)𝑤
𝑚
for

each𝑚 ∈ Z and 𝑦 = (𝑦
𝑚
)
𝑚∈Z, where𝑀∗ is a positive integer

that will be specified later. Using 𝑖𝑦(𝑡) to take inner product
(⋅, ⋅) with both sides of (15) and then taking the real part, we
obtain

1

2

d
d𝑡

( ∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
∗

)
󵄨󵄨󵄨󵄨𝑤𝑚

󵄨󵄨󵄨󵄨

2

)

+ Re (𝑖𝛼 + 𝜀) ∑
𝑚∈Z

(𝐵𝑤)
𝑚
(𝐵𝑦)
𝑚

− Im𝛽∑
𝑚∈Z

𝜒(
|𝑚|

𝑀
∗

) (
󵄨󵄨󵄨󵄨𝑢𝑚

󵄨󵄨󵄨󵄨

2𝜎

𝑢
𝑚
−
󵄨󵄨󵄨󵄨V𝑚

󵄨󵄨󵄨󵄨

2𝜎 V
𝑚
)𝑤
𝑚

+ 𝜅 ∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
∗

)
󵄨󵄨󵄨󵄨𝑤𝑚

󵄨󵄨󵄨󵄨

2

= 0.

(33)

By (31) and [37, (4.8)], we have for any 𝑡 ⩾ 𝑡
∗
that

Re (𝑖𝛼 + 𝜀) ∑
𝑚∈Z

(𝐵𝑤 (𝑡))
𝑚
(𝐵𝑦 (𝑡))

𝑚
⩾ −

2𝛼𝜒
0

𝑀
∗

‖𝑤‖
2

,

− Im𝛽∑
𝑚∈Z

𝜒(
|𝑚|

𝑀
∗

) (𝑓 (
󵄨󵄨󵄨󵄨𝑢𝑚

󵄨󵄨󵄨󵄨) 𝑢𝑚 − 𝑓 (
󵄨󵄨󵄨󵄨V𝑚

󵄨󵄨󵄨󵄨) V𝑚) 𝑤𝑚

⩾ −2𝛽𝜎(
2
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

𝜅
)

2𝜎

‖𝑤‖
2

.

(34)

Taking (33)-(34) into account, we obtain

d
d𝑡

( ∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
∗

)
󵄨󵄨󵄨󵄨𝑤𝑚

󵄨󵄨󵄨󵄨

2

) + 2𝜅 ∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
∗

)
󵄨󵄨󵄨󵄨𝑤𝑚

󵄨󵄨󵄨󵄨

2

⩽ 𝐶 ‖𝑤‖
2

, ∀𝑡 ⩾ 𝑡
∗
,

(35)

where 𝐶 := 4𝜒
0
𝛼/𝑀
∗
+ 4𝛽𝜎(2‖𝑔‖/𝜅)

2𝜎. By (22) and (35), we
have for any 𝑡 ⩾ 𝑡

∗
that

d
d𝑡

( ∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
∗

)
󵄨󵄨󵄨󵄨𝑤𝑚

󵄨󵄨󵄨󵄨

2

) + 2𝜅 ∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
∗

)
󵄨󵄨󵄨󵄨𝑤𝑚

󵄨󵄨󵄨󵄨

2

⩽ 𝐶𝑒
(𝛿−𝜅)𝑡

‖𝑤 (0)‖
2

,

(36)

d
d𝑡

( ∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
∗

) 𝑒
2𝜅𝑡 󵄨󵄨󵄨󵄨𝑤𝑚

󵄨󵄨󵄨󵄨

2

) ⩽ 𝐶𝑒
(𝛿+𝜅)𝑡

‖𝑤 (0)‖
2

. (37)

Integrating both sides of (37) over [𝑡
∗
, 𝑇]with𝑇 ⩾ 𝑡

∗
, we then

get

∑

𝑚∈Z

𝜒(
|𝑚|

𝑀
∗

) 𝑒
2𝜅𝑇 󵄨󵄨󵄨󵄨𝑤𝑚 (𝑇)

󵄨󵄨󵄨󵄨

2

⩽ 𝑒
2𝜅𝑡
∗

󵄩󵄩󵄩󵄩𝑤 (𝑡
∗
)
󵄩󵄩󵄩󵄩

2

+
𝐶

𝜅 + 𝛿
𝑒
(𝛿+𝜅)𝑇

‖𝑤 (0)‖
2

.

(38)
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Again from (22), we obtain that

󵄩󵄩󵄩󵄩󵄩
𝑄
𝑀
∗

𝑤 (𝑇)
󵄩󵄩󵄩󵄩󵄩

2

⩽ (𝑒
(𝛿+𝜅)𝑡

∗

−2𝜅𝑇

+
𝐶

𝜅 + 𝛿
𝑒
(𝛿−𝜅)𝑇

) ‖𝑤 (0)‖
2

,

𝑇 ⩾ 𝑡
∗
.

(39)

We now take

𝑀
∗
=
2048𝜒

0
𝛼

𝜅 + 𝛿
, (40)

and then from (25), (30), and (39), we have

𝑒
(𝛿+𝜅)𝑡

∗

−2𝜅𝑇
∗ ⩽

1

256
,

4𝜒
0
𝛼

(𝜅 + 𝛿)𝑀
∗

𝑒
(𝛿−𝜅)𝑇

∗ ⩽
1

512
,

4𝜎𝛽

𝜅 + 𝛿
(
2
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

𝜅
)

2𝜎

𝑒
(𝛿−𝜅)𝑇

∗ ⩽
1

512
.

(41)

Thus ‖𝑄
2𝑀
∗

𝑤(𝑇
∗
)‖
2

= ‖𝑄
2𝑀
∗

(𝑆
∗
𝑢
0
− 𝑆
∗
V
0
)‖
2

⩽

(1/128)‖𝑤(0)‖
2

= (1/128)‖𝑢
0
− V
0
‖
2. Therefore, we can

claim that if ‖𝑃
2𝑀
∗

(𝑆
∗
𝑢
0
− 𝑆
∗
V
0
)‖ ⩽ ‖𝑄

2𝑀
∗

(𝑆
∗
𝑢
0
− 𝑆
∗
V
0
)‖,

then
󵄩󵄩󵄩󵄩𝑆∗𝑢0 − 𝑆∗V0

󵄩󵄩󵄩󵄩

2

= ∑

|𝑚|≤2𝑀
∗

󵄨󵄨󵄨󵄨𝑤𝑚 (𝑇∗)
󵄨󵄨󵄨󵄨

2

+ ∑

|𝑚|≥2𝑀
∗

󵄨󵄨󵄨󵄨𝑤𝑚 (𝑇∗)
󵄨󵄨󵄨󵄨

2

=
󵄩󵄩󵄩󵄩󵄩
𝑃
2𝑀
∗

(𝑆
∗
𝑢
0
− 𝑆
∗
V
0
)
󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑄
2𝑀
∗

(𝑆
∗
𝑢
0
− 𝑆
∗
V
0
)
󵄩󵄩󵄩󵄩󵄩

2

⩽ 2
󵄩󵄩󵄩󵄩󵄩
𝑄
2𝑀
∗

(𝑆
∗
𝑢
0
− 𝑆
∗
V
0
)
󵄩󵄩󵄩󵄩󵄩

2

⩽
1

64

󵄩󵄩󵄩󵄩𝑢0 − V
0

󵄩󵄩󵄩󵄩

2

.

(42)

The proof is complete.

Taking Lemmas 2, 3, 4, and 6 and [7, Theorem 3.1] into
account, we now can state the main result of this paper as
follows.

Theorem 7. Let assumption (H) hold. Then, one has the
following:

(1) 𝑆
∗

has an exponential attractor A
∗

on B which
satisfies the following:

(i) M ⊆ A
∗
⊆ B, where M is the global attractor

of {𝑆(𝑡)}
𝑡⩾0

;
(ii) 𝑆
∗
A
∗
⊆ A
∗
; that is, A

∗
is positively invariant

under 𝑆
∗
;

(iii) A
∗
has finite fractal dimension Dim

𝑓
(A
∗
);

(iv) there exist two constants 𝑐
1
and 𝑐

2
such that,

for each 𝑢 ∈ B and every positive integer 𝑘,
Dist(𝑆𝑘

∗
𝑢,A) ⩽ 𝑐

1
𝑒
−𝑐
2

𝑘;

(2) A = ⋃
0⩽𝑡⩽𝑇

∗

𝑆(𝑡)A
∗
is an exponential attractor for

{𝑆(𝑡)}
𝑡⩾0

onB and Dim
𝑓
(A) ⩽ Dim

𝑓
(A
∗
) + 1.
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