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Localization is one of the most significant technologies in wireless sensor networks (WSNs) since it plays a critical role in many
applications. The main idea in most localization methods is to estimate the sensor-anchor distances that are used by sensors to
locate themselves. However, the distance information is always imprecise due to the measurement or estimation errors. In this
work, a novel algorithm called neighbor constraint assisted distributed localization (NCA-DL) is proposed, which introduces the
application of geometric constraints to these distances within the algorithm. For example, in the case presented here, the assistance
provided by a neighbor will consist in formulating a linear equality constraint. These constraints can be further used to formulate
optimization problems for distance estimation. Then through some optimization methods, the imprecise distances can be refined
and the localization precision is improved.

1. Introduction

Wireless sensor networks (WSNs) composed of a large num-
ber of low-power sensors have been a subject of increased
interest in recent years [1–3]. Location information of sensor
nodes is vital for location-aware applications such as envi-
ronmental monitoring, routing, and coverage control [4, 5].
Due to cost limitations and energy consumption, having each
one of the sensors locate its position individually via GPS or
other similarmeans is no longer a viable option.Hence, lots of
works have focused on the localization algorithms for WSNs
[6].

Based on the type of information they require, local-
ization algorithms can be divided into two categories: (i)
range-based and (ii) range-free [7–10]. For both categories of
localization algorithms, the most crucial phase of the process
lies in the determination of the distances between the sensor
nodes which need to be located and the anchors. In range-
based algorithms, the respective distances between sensors
and anchors can be obtained via various ranging techniques
such as time of arrival (TOA), time difference of arrival
(TDOA), and received signal strength indication (RSSI).
On the other hand, in range-free algorithms, distances can
be estimated through topological or geometric information.

DV-Hop is a classical distributed range-free algorithm which
determines distances by hop counts [11]. By further combi-
nation with ranging techniques, DV-Hop can be extended in
order to decrease its localization error; a noteworthy example
of thesemethods is robust position [12–14]. However, nomat-
ter whichmethod is used, the acquired distances information
to the anchors is usually imprecise compared with the true
distances because of ranging and estimation errors [15, 16].
The imprecise distances will result in poor localization per-
formance. Actually, these imprecise distances can be refined
since the true distances between nodes should satisfy the
geometric relations. In other words, the localization precision
can be improvedwith the help of some geometric constraints.

In this work, a novel algorithm called neighbor con-
straint assisted distributed localization (NCA-DL) is pro-
posed which is effective in refining the distances required
for localization. NCA-DL describes the geometric relations
among the distances between sensor nodes and anchors as
some equality constraints. The core idea behind NCA-DL
is to use the Cayley-Menger determinant [17, 18] which will
be defined in the following section. In NCA-DL, by using
an adjacent neighbor which could be a mobile anchor, a
linear equality constraint of distance estimation errors can
be obtained. Through some optimal solution computation
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methods that are used to minimize the sum of the squared
errors, the distances can be refined and the localization pre-
cision can be improved.Themajor contribution of this paper
is twofold. First, the proposed algorithm is distributed so
that sensor nodes can estimate their locations by themselves.
Second, it introduces the idea of geometric constraints and
decreases the distance estimation errors with the help of
an adjacent neighbor. In general, the proposed method can
largely improve the localization precision.

The layout of the paper is organized as follows. In
Section 2, the preliminaries to the problem are introduced.
In Section 3, the geometric relations among sensor nodes
are formulated as constraints. In Section 4, the proposed
distributed localization method will be described in detail.
Section 5 presents the implementation and results of the
numerical simulations that were performed to validate the
method. Finally, conclusion will be drawn from this research
in Section 6.

2. Preliminaries
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where 𝑑(a
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𝑗
); ∀(𝑖, 𝑗) ∈ {1, 2, . . . , 𝑛} denotes the Euclidean

distance between the points a
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𝑗
.

The Cayley-Menger bideterminant of these two sequences
of 𝑛 points is defined as
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The above determinant is widely used in distance geom-
etry theory [17]. When the two sequences of points are the
same, 𝐷(a

1
, a
2
, . . . , a

𝑛
; a
1
, a
2
, . . . , a

𝑛
) is denoted for conve-

nience by 𝐷(a
1
, a
2
, . . . , a

𝑛
) which is simply called a Cayley-

Menger determinant.
A brief summary of the Cayley-Menger determinant is

generalized as follows [19].

Theorem 1. Consider an n-tuple of points a
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Figure 1: A regular node and the anchors.

Theorem 2 (Theorem 112.1 in Blumenthal [17]). Consider an
n-tuple of points a

1
, a
2
, . . . , a

𝑛
in m-dimensional space. If 𝑛 ≥

𝑚+1, the rank of Cayley-Menger matrix 𝐶(a
1
, a
2
, . . . , a

𝑛
) is at

most𝑚 + 1.

In a 2-dimensional Euclidean space, each node has a set
of coordinates (𝑥

𝑖
, 𝑦
𝑖
). The study of the localization problem

applied to WSNs first requires some basic terminology and
concepts to be defined.

Definition 3 (regular nodes). Most of the nodes in the
network do not know their locations. The whole purpose of
localization algorithms is to estimate the coordinates of these
nodes.

Definition 4 (anchors). Some of the nodes can know their
locations through manual placement or with the help of
specific equipment such as GPS. The coordinates of these
nodes are used as reference information to assist in the
localization procedure.

According to the above theorems and definitions, an
interesting development of localization is how to use the
Cayley-Menger determinant to reduce the impact of distance
measurement errors [20]. As shown in Figure 1, let 𝑑

𝑖𝑗
=

𝑑(a
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, a
𝑗
) denote the accurate Euclidean distance between

anchors a
𝑖
and a
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with 𝑖 ̸= 𝑗, (𝑖, 𝑗 = 1, 2, 3), which can

be inferred from known anchor positions; 𝑑
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= 𝑑(r
0
, a
𝑖
)

denotes the accurate distances between the regular node r
0

and node a
𝑖
with 𝑖 = 1, 2, 3 and 𝑑

0𝑖
denotes the inaccurate

distances acquired by either noisy range measurement or
computations. Then the following equation is defined:
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Theorem 5. The errors 𝜀
𝑖
for 𝑖 = 1, 2, 3 as defined immediately

above satisfy a single algebraic equality which is quadratic
though not homogeneous in the 𝜀

𝑖
’s:

𝜀
𝑇A𝜀 + 𝜀𝑇b + 𝑐 = 0, (5)
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where
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Proof. According to Theorem 1, we know that 𝐷(r
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Suppose the anchors are nonlinear,𝐷(a
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Then according to (4), we can obtain
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Multiplying both sides of (10) by the determinant of E−1,
we can arrive at (5). This completes the proof.

3. Geometric Relations with
Neighbor Constraint

In this section, we will focus on the geometric relations
among the distances between nodes, which can be trans-
formed to an algebraic constraint of the distance estimation
errors. At first, we define another basic term.

Definition 6 (neighbors). Each node in WSNs has a commu-
nication range. So, for a node 𝑖 in network, the nodes which
can communicate with node 𝑖 directly are the neighbors of
node 𝑖.

As shown in Figure 2, r(𝑥
0
, 𝑦
0
) represents a regular node

which needs to be located, n(𝑥
1
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1
) represents a neighbor

of node r and a
𝑖
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) represents the anchors with 𝑖 =

2, 3, 4. Then Let 𝑑
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𝑑
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neighbor node n and anchor a
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with 𝑖 = 2, 3, 4, 𝑑
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𝑖
)

denote the accurate distances between the regular node r and
anchor a

𝑖
with 𝑖 = 2, 3, 4, and 𝑑

01
denote the accurate distance

between regular node r and its neighbor node n.
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Figure 2: Anchors, a regular node, and its neighbor node.

In this case, suppose we know the accurate distances 𝑑
1𝑖

(𝑖 = 2, 3, 4) and the accurate distance 𝑑
01

by refinement or
setting node n as a mobile anchor. Then 𝑑

2

0𝑖
= 𝑑
2

0𝑖
− 𝜀
𝑖
denote

the inaccurate distances squared between node r and anchor
a
𝑖
with 𝑖 = 2, 3, 4 for some error 𝜀

𝑖
. That is to say, the true

distances represented by the dotted line in Figure 2 cannot
be obtained. In this work, we aim to refine these inaccurate
distances to trend toward actual values.

Theorem 7. The errors 𝜀
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above satisfy an algebraic equality in the 𝜀
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That is,

det(
0 − (b𝑇

120
B−1
22
b
120

) 𝑑
2

01
− (b𝑇
120

B−1
22
b
121

)

𝑑
2

01
− (b𝑇
121

B−1
22
b
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) 0 − (b𝑇
121

B−1
22
b
121

)
) = 0,

(17)

where

b
120

= (𝑑
2

02
𝑑
2

03
𝑑
2

04
1)
𝑇

b
121

= (𝑑
2

12
𝑑
2

13
𝑑
2

14
1)
𝑇

.

(18)

According to the proof procedure of Theorem 5, we can
obtain b𝑇

120
B−1
22
b
120

= b𝑇
121

B−1
22
b
121

= 0. Then from (17), we
obtain

b𝑇
120

B−1
22
b
121

= b𝑇
121

B−1
22
b
120

= 𝑑
2

01
. (19)

This yields
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. (20)

Multiplying both sides of (20) by the determinant of B
22
, we

obtain

(𝑑
2
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2

𝑑
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(21)
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According to (21), we can get (11). This completes the proof.

4. Neighbor Constraint Assisted
Distributed Localization

Based on the algebraic constraints mentioned in the previous
sections, a neighbor constraint assisted distributed localiza-
tion algorithm (NCA-DL) is hereby proposed as a means of
improving the localization precision. The main idea behind
NCA-DL is to refine the distances to anchors using a neighbor
node. In NCA-DL, the regular nodes estimate the initial
distances to the anchors using the method similar to DV-
Hop [11]. Then according to the algebraic constraints of the
distance estimation errors, Lagrangian multiplier method is
introduced in order to obtain the optimal errors and refine
the distances.The following sectionwill give a full description
of the principles and performance analysis of this novel NCA-
DL algorithm.

4.1. Principles of the Algorithm. Initially, anchors (set 𝐴) are
deployed in the sensing field with the regular nodes (set 𝑅).
We assume each node has the ability of ranging, and for
simplicity, the number of the anchors is set to 3. The whole
process of NCA-DL is divided into four phases.

(A) Distance Estimation. Each regular node is supposed to
obtain initial distance estimation to the anchors. So two
times of flooding are required to accomplish the process of
distance estimation. In the first flooding, the anchors start
by propagating their location information. Then all nodes
receive the location information from every anchor as well
as the hop count to these anchors. When an anchor node
receives location information from other anchors, it can
calculate the average size of a hop based on their locations
and the hop count among them. In the second flooding, the
average size of a hop is transmitted in a controlled manner
into the network as a correction factor. When a regular
node receives the correction, it can be able to estimate the
distances to the anchors using the correction and the hop
count information received in the previous flooding.
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(B) Neighbor Node Election. The main purpose of this phase
is to choose a proper neighbor for each regular node to
assist distance refinement in the next phase. Formost ranging
technology, when sensors are closer, the distance estimations
are more accurate. According to the requirement ofTheorem
7, in order to obtain the constraint equation of the distance
estimation errors, it is fundamental to choose an adjacent
neighbor because the distance between the regular node and
its neighbor can be measured accurately. Meanwhile, the
distances among the neighbor and the anchors also should
satisfy geometry relationship, that is to say, the distances
should be refined by the method in [20]. So in this phase, the
nearest node of each regular node is chosen as an assistant
neighbor and its distances to the anchors obtained in the
previous phase are supposed to be refined usingTheorem 5.

To improve the localization precision of the regular
node further, the distances between the neighbor and the
anchors need to be estimated accurately. Though the impre-
cise distances can be refined through Theorem 5 which can
meet the requirement of Theorem 7, the distances are still
imprecise. So in this phase, with the growing research for
the mobility of sensors [21], a mobile anchor also can be
used to be a “neighbor” of each regular node. The distances
between this “neighbor” and the other static anchors can be
accurately calculated by the coordinates of these anchors,
which definitely meets the requirement of Theorem 7. In
this case, the mobile anchor is supposed to move in the
sensing field. The aim is just to assist the regular node with
localization through the constraint defined inTheorem 7 and
it does not need to consider the collinear problems of the
anchors. So SCAN [22] could be used for the path planning
method, which is the most straightforward one.

(C) Distance Refinement. The algebraic equalities that define
the errors and relate the distances to the anchors for each
regular node have now been fully determined from the
previous two phases, as described in Theorems 5 and 7. The
next step of the algorithm attempts to quantify these errors
in the inaccurate distance estimations between regular nodes
and anchors. Let 𝜀

𝑖
(∀𝑖 ∈ {2, 3, 4}) as defined in (4) be the

error in the estimated squared distances between a regular
node and the anchors. The goal here is to minimize the sum
of the squared errors:

𝐽 = 𝜀
2

2
+ 𝜀
2

3
+ 𝜀
2

4
. (23)

In (23), 𝐽 is subjected to a quadratic equality constraint
defined in (5) and a linear equality constraint defined in
(11). So, to solve the optimization problem with constraints,
Lagrangian multiplier method has been implemented in the
algorithm. It is a mathematical method used to solve the
optimization problem, which can convert the constraints to
the seeking of extreme values with the help of Lagrangian
multipliers. We can get the following Lagrangian multiplier
form:

𝐻(𝜀
2
, 𝜀
3
, 𝜀
4
, 𝜆
1
, 𝜆
2
)

=

4

∑
𝑖=2

𝜀
2

𝑖
+ 𝜆
1
𝑓
1
(𝜀
2
, 𝜀
3
, 𝜀
4
) + 𝜆
2
𝑓
2
(𝜀
2
, 𝜀
3
, 𝜀
4
) ,

(24)

where 𝜆
1
, 𝜆
2
are the Lagrangian multipliers and 𝑓

1
, 𝑓
2
are the

functions of 𝜀
2
, 𝜀
3
, 𝜀
4
, whose coefficients can be obtained in

(5) and (11).
By differentiating the Lagrangian 𝐻 with respect to 𝜀

𝑖

(𝑖 = 2, 3, 4) and 𝜆
𝑖
(𝑖 = 1, 2) and equating the result to zero,

five equations can be obtained. Solving these five algebraic
equations numerically and discarding all the nonoptimal
stationary-point solutions, 𝜀

2
, 𝜀
3
, 𝜀
4
can be solved. Then the

distances to the anchors for the regular node are refined. The
below example demonstrates the steps in this phase.

The simplest scenario as depicted in Figure 2 is consid-
ered, where node r is the regular node that needs to be
located. Node r can measure its distances to three anchors
a
2
, a
3
, a
4
whose coordinates are (10, 10), (90, 10), and (50, 90),

respectively. The noisy distance measurements acquired by
node r are 𝑑

02
= 56.3, 𝑑

03
= 65.7, and 𝑑

04
= 41.6. The

distances between the neighbor node n and other nodes are
estimated in the previous phase as 𝑑

01
= 5, 𝑑

12
= 56.6,

𝑑
13

= 56.6, and 𝑑
14

= 40. In this case, the goal is to obtain
the estimation errors 𝜀

2
, 𝜀
3
, 𝜀
4
and refine 𝑑

02
, 𝑑
03
, and 𝑑

04
.

Firstly, two equality constraints as described by (5) and
(11) will be determined:

0 = 𝑓
1
(𝜀
2
, 𝜀
3
, 𝜀
4
)

= (−2.5𝜀
2

2
− 2.5𝜀

2
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2
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2
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𝜀
4

+16597𝜀
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4
+ 14159000)× (25600)
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3
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4
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= 0.25𝜀
2
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3
+ 0.5𝜀

4
+ 310.6.

(25)

To determine the optimal values for 𝜀
2
, 𝜀
3
, 𝜀
4
, the follow-

ing problem needs to be solved:

min 𝜀
2

2
+ 𝜀
2

3
+ 𝜀
2

4

s.t. 𝑓
1
(𝜀
2
, 𝜀
3
, 𝜀
4
) = 0

𝑓
2
(𝜀
2
, 𝜀
3
, 𝜀
4
) = 0.

(26)

By differentiating the Lagrangian 𝐻 defined in (24), we
obtain

𝜕𝐻

𝜕𝜀
2

= 2𝜀
2
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2

+ 𝜆
1
(
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Figure 3: Locations of anchors and the regular node.
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2
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= 𝑓
2
(𝜀
2
, 𝜀
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, 𝜀
4
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(27)

Solving the above five algebraic equations above, we get,

𝜀
∗

2
= −67.39, 𝜀

∗

3
= −545.76, 𝜀

∗

4
= −314.59. (28)

Correspondingly, the refined distances between regular
node r and the three anchors are

𝑑
02

= √𝑑
2

02
+ 𝜀∗
2
= 55.6

𝑑
03

= √𝑑
2

03
+ 𝜀∗
3
= 61.4

𝑑
04

= √𝑑
2

04
+ 𝜀∗
4
= 37.6.

(29)

As shown in Figure 3, “.” represents the regular node,
“◻” represents the anchor, and the radius of the circle is
the estimated distance between the regular node and the
anchor. In Figure 3(b), the three circles intersect in one point,
which proves that the refined distances satisfy the geometric
constraints.

(D) Localization. So far, regular nodes have known the refined
distances to the anchors according to (29). Based on the above
refinement scheme, we know that the refined distances satisfy
the geometric constraints. Localization can be carried out by
the least square method. 𝑟(𝑥, 𝑦) represents the regular node,

𝑎(𝑥
𝑖
, 𝑦
𝑖
) (𝑖 = 2, 3, 4) represent the locations of the anchors,

and 𝑑
02
, 𝑑
03
, 𝑑
04

represent the refined distances between the
regular node and the anchors. The coordinate of the regular
node can be estimated by

𝑋 = (A𝑇A)
−1

A𝑇𝑏, (30)

where

A = (
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04
− 𝑑
2

03

).

(31)

Figure 4 illustrates the localization of the computational
example above with both noisy and refined distances. “∗”
represents the calculated location. The localization errors in
Figures 4(a) and 4(b) are 0.67m and 0.55m, respectively.

4.2. Communication Cost Analysis. For energy cost of NCA-
DL, the communication consumption ismainly considered in
the distance estimation and refinement phases. 𝑛 represents
the number of the sensors and 𝑛

𝐴
represents the number of

the anchors. Then for the two flooding processes in the dis-
tance estimation phase, it gives a bound of𝑂(2×𝑛

𝐴
×𝑛) to the

communication cost in this process. While in the refinement
phase, each node needs to communicate with its neighbors
so the communication cost is𝑂(𝑛). The total communication
complexity is 𝑂(𝑛 × (2 × 𝑛

𝐴
+ 1)). It is known that the

communication complexity of DV-Hop is 𝑂(2 × 𝑛
𝐴

× 𝑛).
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Figure 4: Localization effect of noisy distances and refined distances.
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Figure 5: Distance estimation and localization error of NCA-DL.

Since the method proposed in [20] is just to refine distance
estimations with additional calculation, its communication
complexity is the same as DV-Hop. So the cost of NCA-
DL is in the same order of magnitude as other algo-
rithms while it can largely improve the localization perform-
ance.

5. Numerical Results

This sectionwewill describe the implementation of theNCA-
DL algorithm and evaluate its performance through extensive
simulations. The results obtained from these simulations
will focus on analysing the distance estimation errors and
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Figure 6: Localization effect in both deployment models.

localization errors and further compare results obtained by
NCA-DL, DV-Hop, robust position, and the method pro-
posed in [20] which have been mentioned above.

5.1. Simulation Configuration. The basic network setup area
is considered to be a 100m × 100m square field. The
communication radius of the nodes is set to 10m. In our
simulations, sensor nodes are deployed using two models: (i)
random placement and (ii) perturbed grid. In the random
placement model, sensor nodes are randomly deployed in
the network by dropping from an airplane or some other
methods. In this case, the topology of the network is likely to
be irregular. In the second model, nodes are deployed using
perturbed grid where the nodes are perturbed with a random

shift from grid. In this situation, nodes will tend to uniformly
occupy the field avoiding large concentration of nodes, which
also guarantee the regularity of the topology of the net-
work.

In all cases, regular nodes have the ability of ranging and
the results are averaged over 10 trails.The average localization
error is defined as follows:

error = 1

𝑛

𝑛

∑
𝑖=1

x𝑖 − x
𝑖

 ×
1

𝑟
, (32)

where 𝑛 is the number of the regular nodes, x
𝑖
is the actual

location of regular node 𝑖, x
𝑖
is the estimated location of

regular node 𝑖, and 𝑟 is the communication radius.
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Figure 7: Localization error against number of nodes.

Table 1: Average distance estimation error.

Number of nodes
(Avg. degree)

Avg. distance estimation error (m)
Random placement Perturbed grid

DV-Hop NCA-DL DV-Hop NCA-DL

124 (4.8) 12.32 6.13 6.15 4.51
147 (5.8) 8.28 4.70 4.01 2.38
203 (7.5) 5.43 3.71 3.92 2.17
403 (11.1) 3.39 2.35 2.99 1.55
628 (14.2) 3.06 2.04 2.72 1.35

5.2. NCA-DL Performance. At first, we focus on the distance
estimation error between regular nodes and anchors. In this
set of simulations, we varied the number of the nodes (avg.
degree) from 124 (4.8) to 628 (14.2). The number of the
anchors is set to 3. The average distance estimation errors
obtained from these simulations are stated in Table 1.

As indicated in Table 1, we can observe that the distance
estimation error of both DV-Hop and NCA-DL under per-
turbed gird deployment is smaller than that of these two
algorithmsunder randomplacement.With the increase of the
number of nodes (avg. degree), both DV-Hop and NCA-DL
can improve the ranging effectiveness. Moreover, DV-Hop
suffers large ranging error when the average degree is low
while NCA-DL has smaller errors for divers network scales.

Now, it has been proved that the NCA-DL algorithm can
significantly decrease the distance estimation errors with the

help of a collaborating neighbor; both initial deployment
model conditions were therefore simulated in order to graph-
ically verify their respective localization performance.

Figure 5 exemplifies the distance estimation and local-
ization error of NCA-DL against number of nodes in both
deployment models. It is demonstrated that the distance esti-
mation error in NCA-DL can be decreased with the increase
of the number of nodes. As shown in Figure 5(b), the local-
ization error decreases more obviously when the distance
estimation error drops below a critical value (around 2m).

Figure 6 exemplifies the localization performance of DV-
Hop and NCA-DL. “Δ” represents the anchors, “.” represents
the true location, “∗” represents the calculated location, and
the line between them represents the localization error. In
this set of simulations, the number of deployed nodes (avg.
degree) is set to 403 (11.1) and the number of the anchors
is set to 3. According to the definition of localization error
in (32), in the random placement deployment, the average
localization error resulting form DV-Hop is around 66%
while the error goes down to around 46% in perturbed
grid deployment, as shown in Figures 6(a) and 6(c). In Fig-
ures 6(b) and 6(d), we can see that NCA-DL decreases the
localization error to 38% and 23%, respectively, in the two
deployment models. In general, NCA-DL can increase the
localization precision about 40% compared with DV-Hop
under such network environment.

Figure 7 illustrates the localization error in both random
placement and perturbed grid models. Compared with the
other algorithms,NCA-DLhasmuch lower localization error.
With the increase of number of nodes, the performance of
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all the algorithms upgrades. It is also demonstrated that the
NCA-DL algorithm can achieve high localization precision
in the perturbed grid deployment model when the density of
sensors is high, as shown by Figure 7(b).

6. Conclusions

Location information of sensors is vital inwireless sensor net-
works. In this paper, a novel distributed localization algo-
rithm called NCA-DL is proposed, which introduces the
Cayley-Menger determinant as an important tool for formu-
lating the distances between pairs of regular nodes and
anchors to algebraic constraints. In NCA-DL, an adjacent
neighbor is chosen for each regular node to establish con-
straint equations.Then the imprecise distances can be refined
by using these constraints and an appropriate objective
function. Finally, the localization precision is improved.

The set of numerical simulations carried out to validate
this method demonstrate the scalability of NCA-DL over a
range of node numbers. Comparisons have been performed
with other known localization algorithms, which show that
NCA-DL can largely reduce the localization errors displayed
by existing methods. In the considered sensor network
cases initialized under random deployment conditions, the
NCA-DL algorithm has proven to increase the localization
precision by up to 30% compared with the method proposed
in [20] and 40% compared with DV-Hop.
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