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In this paper, we give some necessary conditions for the existence of positive solutions for integral systems.

1. Introduction

In this paper, we study the necessary condition for the exis-
tence of positive solutions for the following integral system:

𝑢 (𝑥) = ∫

R𝑁





𝑥 − 𝑦






𝜆
V(𝑦)
𝑝
𝑑𝑦 in R

𝑁
,

V (𝑥) = ∫

R𝑁





𝑥 − 𝑦






𝜆
𝑢(𝑦)
𝑞
𝑑𝑦 in R

𝑁
,

(1)

where 𝜆, 𝑝, and 𝑞 are real parameters.
As for one single equation

𝑢 (𝑥) = ∫

R𝑁





𝑥 − 𝑦






𝜆
𝑢(𝑦)
𝑝
𝑑𝑦 in R

𝑁
, (2)

there are a lot of results of this problem. If 𝜆 = 𝛼 − 𝑁 with
0 < 𝛼 < 𝑁, then problem (2) is equivalent to the following
differential equation:

(−Δ)
𝛼/2

𝑢 (𝑥) = 𝑢(𝑥)
𝑝 in R

𝑁
. (3)

This problem has been widely studied in the past few years.
For example, in order to answer a question raised by Lieb in
[1], the authors studied the symmetric property and the
uniqueness of solutions for problem (2) in [2]. Later, they
studied the integral system (1) in [3]. Also, after the work of
[2], Li studied the general form of (2) in [4]. For the case 𝜆 <

0, he obtained similar results to [2] but with less regularity
requirement. For the case 𝜆 > 0, he shows that if problem (2)

has a nonnegative solution inR𝑁 and 𝜆(𝑝+1)+2𝑁 ≥ 0, then
𝑞 = −1 − 2𝑁/𝜆. The main ingredients in these papers are the
moving plane method and moving sphere method based on
the maximum principle of integral forms. This method has
been widely used in other works. For example, inspired by
these works, the author studied the Liouville-type theorems
for problems (1) and (2) with general nonlinearities in [5, 6].
For further results of this type of integral equations, see [7–
18], and so forth. We note that all these results concern the
cases 𝜆 < 0 and 𝑝 > 0. A natural question is whether similar
results hold for 𝜆 > 0 or 𝑝 < 0. We note that the case 𝜆 < 0

and 𝑝 > 0 is quite different from the case 𝜆 > 0 or 𝑝 < 0.
Generally speaking, the moving plane method or the moving
sphere method does not work in the latter case, so we have
to look for other methods. In a recent paper [19], the author
give a sufficient and necessary condition for the existence of
positive solutions for problem (2) with 𝜆 > 0. Based on
some integral estimates, the author proved that problem (2)
possesses a positive solution if and only if 𝜆𝑝 = −(𝜆 + 2𝑁).
Inspired by the work of [19], we first study the integral system
(1) with 𝜆 > 0. Our main result is the following theorem.

Theorem 1. Suppose that 𝜆 > 0 and problem (1) possesses a𝐶1
positive solution; then

1

1 + 𝑝

+

1

1 + 𝑞

= −

𝜆

𝑁

. (4)

As for 𝜆 < 0, we have the following nonexistence result.
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Theorem 2. If −𝑁 < 𝜆 < 0, then problem (1) possesses no 𝐶1
positive solution provided that 𝑝 < 0 or 𝑞 < 0.

This paper is organized as follows.We proveTheorem 1 in
Section 2. The proof of Theorem 2 is completed in Section 3.

2. Proof of Theorem 1

We first claim that 𝑢(𝑥) ∈ 𝐿
𝑞+1

(R𝑁) and V(𝑥) ∈ 𝐿
𝑝+1

(R𝑁).
In fact, we infer from

V (0) = ∫

R𝑁





𝑦





𝜆
𝑢(𝑦)
𝑞
𝑑𝑦

≥ ∫

R𝑁\𝐵1(0)





𝑦





𝜆
𝑢(𝑦)
𝑞
𝑑𝑦

≥ ∫

R𝑁\𝐵1(0)

𝑢(𝑦)
𝑞
𝑑𝑦

(5)

that 𝑢(𝑥) ∈ 𝐿
𝑞
(R𝑁). Also, it follows from (1) that

|𝑥|
𝜆
𝑢(

𝑥

|𝑥|
2
) = ∫

R𝑁
|𝑥|
𝜆











𝑥

|𝑥|
2
− 𝑦











𝜆

V(𝑦)
𝑝
𝑑𝑦

= ∫

R𝑁





𝑦





𝜆












𝑥 −

𝑦





𝑦





2












𝜆

V
𝑝
(𝑦) 𝑑𝑦.

(6)

Now taking limit in (6) by letting 𝑥 → 0, we obtain

lim
|𝑥|→0

[|𝑥|
𝜆
𝑢(

𝑥

|𝑥|
2
)] = ∫

R𝑁
V
𝑝
(𝑦) 𝑑𝑦 < ∞. (7)

We point out that we can take the limit under the integral sign
because of the dominated convergence theorem. In fact, we
note that when 𝜆 > 0 and |𝑥| ≤ 1, we have










𝑥 −

𝑦

|𝑦|
2










𝜆

≤ (|𝑥| +

1





𝑦





)

𝜆

≤ (1 +

1





𝑦





)

𝜆

. (8)

It is easy to check that |𝑦|𝜆(1 + 1/|𝑦|)
𝜆V𝑝(𝑦) ∈ 𝐿

1
(R𝑁).

It follows from (7) that there exist 𝑅 > 0 and 𝐶 > 0 such
that

𝐶
−1
|𝑥|
𝜆
≤ 𝑢 (𝑥) ≤ 𝐶|𝑥|

𝜆 (9)

for |𝑥| ≥ 𝑅. Finally, we have

∫

R𝑁\𝐵𝑅(0)

𝑢
𝑞+1

(𝑥) 𝑑𝑥 = ∫

R𝑁\𝐵𝑅(0)

𝑢
𝑞
𝑢 𝑑𝑥

≤ 𝐶∫

R𝑁
|𝑥|
𝜆
𝑢
𝑞
𝑑𝑥

= 𝐶V (0) ,

(10)

which further implies that 𝑢(𝑥) ∈ 𝐿
𝑞+1

(R𝑁). Similarly, we
have V(𝑥) ∈ 𝐿

𝑝+1
(R𝑁).

Next, we can prove as in [19] that

∇𝑢 (𝑥) = 𝜆∫

R𝑁





𝑥 − 𝑦






𝜆−2
(𝑥 − 𝑦) V

𝑝
(𝑦) 𝑑𝑦,

∇V (𝑥) = 𝜆∫

R𝑁





𝑥 − 𝑦






𝜆−2
(𝑥 − 𝑦) 𝑢

𝑞
(𝑦) 𝑑𝑦

(11)

in the sense of distribution. Hence, we infer from (11) that

∇𝑢
1+𝑞

(𝑥) = (1 + 𝑞) 𝑢
𝑞
(𝑥) 𝜆

⋅ ∫

R𝑁





𝑥 − 𝑦






𝜆−2
(𝑥 − 𝑦) V

𝑝
(𝑦) 𝑑𝑦,

∇V
1+𝑝

(𝑥) = (1 + 𝑝) V
𝑝
(𝑥) 𝜆

⋅ ∫

R𝑁





𝑥 − 𝑦






𝜆−2
(𝑥 − 𝑦) 𝑢

𝑞
(𝑦) 𝑑𝑦.

(12)

Now we choose a cut-off function 𝜂 ∈ 𝐶
∞
([0, +∞))

satisfying 0 ≤ 𝜂 ≤ 1, 0 ≤ |𝜂

| ≤ 2, 𝜂(𝑡) = 1 for 𝑡 ≤ 1 and

𝜂(𝑡) = 0 for 𝑡 ≥ 2. For any 𝑅 > 0, if we multiply (12) by
𝜂(|𝑥|/𝑅)𝑥 and integrate over R𝑁, then we get

∫

R𝑁
𝜂 (

|𝑥|

𝑅

) V
𝑝
(𝑥) ⟨𝑥, ∇V (𝑥)⟩ 𝑑𝑥

= ∫

R𝑁
𝜂 (

|𝑥|

𝑅

) V
𝑝
∫

R𝑁
𝜆




𝑥 − 𝑦






𝜆−2
⟨𝑥, 𝑥 − 𝑦⟩ 𝑢(𝑦)

𝑞
𝑑𝑦𝑑𝑥,

(13)

∫

R𝑁
𝜂 (

|𝑥|

𝑅

) 𝑢
𝑞
(𝑥) ⟨𝑥, ∇𝑢 (𝑥)⟩ 𝑑𝑥

= ∫

R𝑁
𝜂 (

|𝑥|

𝑅

) 𝑢
𝑞
(𝑥) ∫

R𝑁
𝜆




𝑥 − 𝑦






𝜆−2
⟨𝑥, 𝑥 − 𝑦⟩V(𝑦)

𝑝
𝑑𝑦𝑑𝑥.

(14)

While the left-hand side of (13) equals

∫

R𝑁
𝜂 (

|𝑥|

𝑅

) V
𝑝
(𝑥) ⟨𝑥, ∇V (𝑥)⟩ 𝑑𝑥

=

1

1 + 𝑝

∫

R𝑁
𝜂 (

|𝑥|

𝑅

) ⟨𝑥, ∇V
1+𝑝

(𝑥)⟩ 𝑑𝑥

= −

𝑁

1 + 𝑝

∫

R𝑁
𝜂 (

|𝑥|

𝑅

) V
1+𝑝

(𝑥) 𝑑𝑥

−

1

1 + 𝑝

∫

R𝑁
⟨∇(𝜂(

|𝑥|

𝑅

)) , 𝑥⟩ V
1+𝑝

𝑑𝑥,

(15)

it follows from

⟨∇(𝜂(

|𝑥|

𝑅

)) , 𝑥⟩ ≤

2 |𝑥|

𝑅

(16)

that

∫

R𝑁
⟨∇(𝜂(

|𝑥|

𝑅

)) , 𝑥⟩ V
1+𝑝

𝑑𝑥

≤ 4∫

𝑅≤|𝑥|≤2𝑅

V
1+𝑝

𝑑𝑥 → 0

(17)
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as 𝑅 → ∞ by V ∈ 𝐿
1+𝑝

(R𝑁). Thus we conclude that

lim
𝑅→∞

∫

R𝑁
𝜂 (

|𝑥|

𝑅

) V
𝑝
(𝑥) ⟨𝑥, ∇V (𝑥)⟩ 𝑑𝑥

= −

𝑁

1 + 𝑝

∫

R𝑁
V
1+𝑝

(𝑥) 𝑑𝑥.

(18)

While the right-hand side of (13) equals

𝜆∫

R𝑁
𝜂 (

|𝑥|

𝑅

) V
𝑝
(𝑥)

⋅ ∫

R𝑁





𝑥 − 𝑦






𝜆−2
⟨𝑥, 𝑥 − 𝑦⟩ 𝑢(𝑦)

𝑞
𝑑𝑦𝑑𝑥

=

𝜆

2

∫

R𝑁
𝜂 (

|𝑥|

𝑅

) V
𝑝
(𝑥)

⋅ ∫

R𝑁





𝑥 − 𝑦






𝜆−2
⟨𝑥 − 𝑦, 𝑥 − 𝑦⟩𝑢(𝑦)

𝑞
𝑑𝑦𝑑𝑥

+

𝜆

2

∫

R𝑁
𝜂 (

|𝑥|

𝑅

) V
𝑝
(𝑥)

⋅ ∫

R𝑁





𝑥 − 𝑦






𝜆−2
⟨𝑥 + 𝑦, 𝑥 − 𝑦⟩𝑢(𝑦)

𝑞
𝑑𝑦𝑑𝑥

=

𝜆

2

∫

R𝑁
𝜂 (

|𝑥|

𝑅

) V
1+𝑝

(𝑥) 𝑑𝑥

+

𝜆

2

∫

R𝑁
𝜂 (

|𝑥|

𝑅

) V
𝑝
(𝑥)

⋅ ∫

R𝑁





𝑥 − 𝑦






𝜆−2
⟨𝑥 + 𝑦, 𝑥 − 𝑦⟩𝑢(𝑦)

𝑞
𝑑𝑦𝑑𝑥,

(19)

it can be checked as in [19] that

∫

R𝑁
∫

R𝑁





𝑥 − 𝑦






𝜆−2
⟨𝑥 + 𝑦, 𝑥 − 𝑦⟩𝑢(𝑦)

𝑞
V(𝑥)
𝑝
𝑑𝑦𝑑𝑥 < ∞.

(20)

Hence, by letting 𝑅 → ∞ in (19) we get

lim
𝑅→∞

𝜆∫

R𝑁
𝜂 (

|𝑥|

𝑅

) V
𝑝
(𝑥)

⋅ ∫

R𝑁





𝑥 − 𝑦






𝜆−2
⟨𝑥, 𝑥 − 𝑦⟩ 𝑢(𝑦)

𝑞
𝑑𝑦𝑑𝑥

=

𝜆

2

∫

R𝑁
V
1+𝑝

(𝑥) 𝑑𝑥 +

𝜆

2

⋅ ∫

R𝑁
∫

R𝑁





𝑥 − 𝑦






𝜆−2

⋅ ⟨𝑥 + 𝑦, 𝑥 − 𝑦⟩ 𝑢
𝑞
(𝑦) V
𝑝
(𝑥) 𝑑𝑦 𝑑𝑥.

(21)

We infer from (13), (18), and (21) that

−

𝑁

1 + 𝑝

∫

R𝑁
V
1+𝑝

(𝑥) 𝑑𝑥

=

𝜆

2

∫

R𝑁
V
1+𝑝

(𝑥) 𝑑𝑥

+

𝜆

2

∫

R𝑁
∫

R𝑁





𝑥 − 𝑦






𝜆−2

⋅ ⟨𝑥 + 𝑦, 𝑥 − 𝑦⟩ 𝑢
𝑞
(𝑦) V
𝑝
(𝑥) 𝑑𝑦 𝑑𝑥.

(22)

Similarly, we can prove that

−

𝑁

1 + 𝑝

∫

R𝑁
𝑢
1+𝑞

(𝑥) 𝑑𝑥

=

𝜆

2

∫

R𝑁
𝑢
1+𝑞

(𝑥) 𝑑𝑥

+

𝜆

2

∫

R𝑁
∫

R𝑁





𝑥 − 𝑦






𝜆−2

⋅ ⟨𝑥 + 𝑦, 𝑥 − 𝑦⟩ 𝑢
𝑞
(𝑥) V
𝑝
(𝑦) 𝑑𝑦 𝑑𝑥

=

𝜆

2

∫

R𝑁
𝑢
1+𝑞

(𝑥) 𝑑𝑥

−

𝜆

2

∫

R𝑁
∫

R𝑁





𝑥 − 𝑦






𝜆−2

⋅ ⟨𝑥 + 𝑦, 𝑥 − 𝑦⟩ 𝑢
𝑞
(𝑦) V
𝑝
(𝑥) 𝑑𝑥 𝑑𝑦.

(23)

The above two equations imply that

−

𝑁

1 + 𝑝

∫

R𝑁
𝑢
1+𝑞

(𝑥) 𝑑𝑥 −

𝑁

1 + 𝑝

∫

R𝑁
V
1+𝑝

(𝑥) 𝑑𝑥

=

𝜆

2

[∫

R𝑁
𝑢
1+𝑞

(𝑥) 𝑑𝑥 + ∫

R𝑁
V
1+𝑝

(𝑥) 𝑑𝑥] .

(24)

On the other hand, since

V(𝑥)
1+𝑝

= V(𝑥)
𝑝
∫

R𝑁





𝑥 − 𝑦






𝜆
𝑢
𝑞
(𝑦) 𝑑𝑦, (25)

we have

∫

R𝑁
V
1+𝑝

(𝑥) 𝑑𝑥

= ∫

R𝑁
∫

R𝑁





𝑥 − 𝑦






𝜆
𝑢
𝑞
(𝑦) V(𝑥)

𝑝
𝑑𝑦𝑑𝑥

(26)

by taking into account that V(𝑥) ∈ 𝐿
1+𝑝

(R𝑁). Similarly, we
have

∫

R𝑁
𝑢
1+𝑞

(𝑥) 𝑑𝑥

= ∫

R𝑁
∫

R𝑁





𝑥 − 𝑦






𝜆
𝑢
𝑞
(𝑦) V(𝑥)

𝑝
𝑑𝑦 𝑑𝑥.

(27)
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Then it follows from (26) and (27) that

∫

R𝑁
𝑢
1+𝑞

(𝑥) 𝑑𝑥 = ∫

R𝑁
V
1+𝑝

(𝑥) 𝑑𝑥. (28)

Finally, we infer from (24) and (28) that

1

1 + 𝑝

+

1

1 + 𝑞

= −

𝜆

𝑁

. (29)

This completes the proof of Theorem 1.

3. Proof of Theorem 2

We assume that 𝑞 < 0without loss of generality. First, we note
that by Lemma 3.11.3 in [20], we have, for all 𝑟 > 0,

1

𝜔𝑁𝑟
𝑁
∫

𝐵𝑟(0)

𝑢 (𝑥) 𝑑𝑥

= ∫

R𝑁
{

1

𝜔𝑁𝑟
𝑁
∫

𝐵𝑟(0)





𝑥 − 𝑦






𝜆
𝑑𝑥} V

𝑝
(𝑦) 𝑑𝑦

≤ 𝐶∫

R𝑁





𝑦





𝜆
V
𝑝
(𝑦) 𝑑𝑦 = 𝐶𝑢 (0) .

(30)

Similarly, we have

1

𝜔𝑁𝑟
𝑁
∫

𝐵𝑟(0)

V (𝑥) 𝑑𝑥 ≤ 𝐶V (0) (31)

for any 𝑟 > 0.
If we choose 𝛼 = 𝑞/(𝑞 − 1), 𝛽 = 1 − 𝑞, and 𝛿 = (𝑞 − 1)/𝑞,

then we can infer from the Holder inequality that

1 =

1

𝜔𝑁𝑟
𝑁
∫

𝐵𝑟(0)

𝑢(𝑥)
−𝛼
𝑢(𝑥)
𝛼
𝑑𝑥

≤ (

1

𝜔𝑁𝑟
𝑁
∫

𝐵𝑟(0)

𝑢(𝑥)
−𝛼𝛽

𝑑𝑥)

1/𝛽

⋅ (

1

𝜔𝑁𝑟
𝑁
∫

𝐵𝑟(0)

𝑢(𝑥)
𝛼𝛿
𝑑𝑥)

1/𝛿

= (

1

𝜔𝑁𝑟
𝑁
∫

𝐵𝑟(0)

𝑢(𝑥)
𝑞
𝑑𝑥)

1/(1−𝑞)

⋅ (𝐶𝑢 (0))
𝑞/(𝑞−1)

.

(32)

That is,

(𝐶𝑢 (0))
𝑞
≤

1

𝜔𝑁𝑟
𝑁
∫

𝐵𝑟(0)

𝑢
𝑞
(𝑥) 𝑑𝑥. (33)

Since 𝜆 < 0, so if |𝑥| < 𝑟, then we have 𝑟𝜆 < |𝑥|
𝜆. Multiplying

both sides of (33) by 𝜔𝑁𝑟
𝑁+𝜆, we get

𝐶
𝑞
𝜔𝑁𝑟
𝑁+𝜆

𝑢(0)
𝑞

≤ 𝜔𝑁𝑟
𝑁+𝜆 1

𝜔𝑁𝑟
𝑁
∫

𝐵𝑟(0)

𝑢
𝑞
(𝑥) 𝑑𝑥

= 𝑟
𝜆
∫

𝐵𝑟(0)

𝑢
𝑞
(𝑥) 𝑑𝑥

≤ ∫

𝐵𝑟(0)

|𝑥|
𝜆
𝑢
𝑞
(𝑥) 𝑑𝑥 = V (0) .

(34)

Since −𝑁 < 𝜆 < 0, we have 𝑁 + 𝜆 > 0. Hence the left-hand
side of (34) goes to infinity as 𝑟 → ∞, which is a contradic-
tion. This completes the proof.
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