
Hindawi Publishing Corporation
International Journal of Reconfigurable Computing
Volume 2012, Article ID 418315, 21 pages
doi:10.1155/2012/418315

Research Article

On the Feasibility and Limitations of Just-in-Time Instruction Set
Extension for FPGA-Based Reconfigurable Processors

Mariusz Grad and Christian Plessl

Paderborn Center for Parallel Computing, University of Paderborn, 33098 Paderborn, Germany

Correspondence should be addressed to Mariusz Grad, mariusz.grad@uni-paderborn.de

Received 13 May 2011; Revised 19 August 2011; Accepted 16 September 2011

Academic Editor: Viktor K. Prasanna

Copyright © 2012 M. Grad and C. Plessl. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Reconfigurable instruction set processors provide the possibility of tailor the instruction set of a CPU to a particular application.
While this customization process could be performed during runtime in order to adapt the CPU to the currently executed
workload, this use case has been hardly investigated. In this paper, we study the feasibility of moving the customization process to
runtime and evaluate the relation of the expected speedups and the associated overheads. To this end, we present a tool flow that is
tailored to the requirements of this just-in-time ASIP specialization scenario. We evaluate our methods by targeting our previously
introduced Woolcano reconfigurable ASIP architecture for a set of applications from the SPEC2006, SPEC2000, MiBench, and
SciMark2 benchmark suites. Our results show that just-in-time ASIP specialization is promising for embedded computing
applications, where average speedups of 5x can be achieved by spending 50 minutes for custom instruction identification and
hardware generation. These overheads will be compensated if the applications execute for more than 2 hours. For the scientific
computing benchmarks, the achievable speedup is only 1.2x, which requires significant execution times in the order of days to
amortize the overheads.

1. Introduction

Instruction set extension (ISE) is a frequently used approach
for tailoring a CPU architecture to a particular application
or domain [1]. The result of this customization process is
an application-specific instruction set processor (ASIP) that
augments a base CPU with custom instructions to increase
the performance and energy efficiency.

Once designed, the ASIP’s instruction set is typically
fixed and turned into a hardwired silicon implementation.
Alternatively, a reconfigurable ASIP architecture can imple-
ment the custom instructions in reconfigurable logic. Such
reconfigurable ASIPs have been proposed in academic re-
search [2–6], and there exist a few commercially available
CPU architectures that allow for customizing the instruction
set, for example, the Xilinx Virtex 4/5FX FPGAs or the
Stretch S5 processor [7]. But although the adaptation of
the instruction set during runtime is technically feasible
and provides a promising technology to build adaptive
computer systems which optimize themselves according to

the needs of the actually executed workload [8], the idea of
adapting the instruction set during runtime has been hardly
explored.

A number of obstacles make the exploitation of just-
in-time (JIT) ISE challenging: (1) there are only very few
commercially available silicon implementations of reconfig-
urable ASIP architectures, (2) methods for automatically
identifying custom instructions are algorithmically expensive
and require profiling data that may not be available until
runtime, and (3) synthesis and place-and-route tool flows
for reconfigurable logic are known to be notoriously slow.
While it is evident that even long runtimes of design tools will
be amortized over time provided that an application-level
speedup is achieved, it is so far an open question whether
the total required execution time until a net speedup is
achieved stays within practical bounds. The goal of this work
is to gain insights into the question whether just-in-time
processor customization is feasible and worthwhile under the
assumption that we rely on commercially available FPGA
devices and tools.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/205384058?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 International Journal of Reconfigurable Computing

In our previous work we have presented initial results in
each of these three areas. We have introduced the Woolcano
reconfigurable instruction set architecture in Grad and Plessl
[6] (obstacle 1). Woolcano is based on a Xilinx Virtex
4FX FPGA and augments the PowerPC core in the device
with user-defined custom instructions (UDCI) that can be
changed at runtime using partial reconfiguration. In Grad
and Plessl [9] we presented a circuit library and data path
generator that can generate custom instructions for this
architecture. In recent work [10] we have presented new
heuristics for reducing the runtime of methods for identify-
ing and selecting custom instructions for JIT ISE (obstacle 2).
Further, we have presented a first evaluation [11] of how the
long runtimes of FPGA implementation tools, mentioned as
(obstacle 3) above, limit the applicability of the approach.

This paper makes the following specific contributions
over our previous work.

(i) In contrast to our previous work which treated the
individual subproblems in JIT ISE in isolation, this
paper presents them in a comprehensive way and
covers the architecture, the design methods, and the
corresponding tool flow along with a more detailed
evaluation.

(ii) We provide an extended discussion and formal de-
scription of our candidate identification, estimation,
selection, and pruning methods for a just-in-time
context. Further we describe the algorithms which
were developed for candidate estimation and selec-
tion in detail.

(iii) Finally, we present an extended experimental evalu-
ation of the candidate identification and estimation
methods. In particular, we focus on the candidate
identification process and evaluate the suitability of
three state-of-the-art ISE algorithms for our purposes
by comparing their runtime, number of identified
instruction candidates, and the impact of constrain-
ing the search space.

2. Related Work

This work is built on research in three areas: reconfigurable
ASIP architectures, ISE algorithms, and just-in-time com-
pilation, which have mostly been studied in separation in
related works. Just-in-time ISE inherently needs a close inte-
gration of these topics; hence a main contribution of this
work is the integration of these approaches into a consistent
methodology and tool flow.

From the hardware perspective, this work does not target
the static but reconfigurable ASIP architectures such as
our Woolcano architecture [6] or comparable architectures
like CHIMAERA [4], PRISC [3], or PRISM [12]. These
architectures provide programmable functional units that
can be dynamically reconfigured during the runtime in order
to implement arbitrary custom instructions.

Research in the areas of ISE algorithms for ASIP architec-
tures is extensive; a recent survey can be found in Galuzzi and
Bertels [13]. However, the leading state-of-the-art algorithms

for this purpose have an exponential algorithmic complexity
which is prohibitive when targeting large applications and
when the runtime of the customization process is a concern
as it is in the case for JIT ISE. This work leverages our
preliminary work [10] in which new heuristics were studied
for effective ISEs search space pruning. It was shown that
these methods can reduce the runtime of ISE algorithms by
two orders of magnitude.

The goal of this work is to translate software binaries on
the fly into optimized binaries that use application-specific
custom instructions. Binary translation is used, for example,
to translate between different instruction sets in an efficient
way and has been used, for example, in Digital’s FX!32
product for translating X86 code to the Alpha ISA [14].
Binary translation has also been used for cases where the
source and target ISAs are identical with the objective to
create a binary with a higher degree of optimization [15, 16].

This work is conceptually similar to these approaches as it
also does not translate between different instruction sets, but
optimizes binaries to use specific user-defined instructions
in a reconfigurable ASIP. This kind of binary translation
has hardly been studied so far. One comparable research
effort is the WARP project [17]. The WARP processor is a
custom system on chip comprising a simple reconfigurable
array, an ARM7 processor core, and additional cores for
application profiling and place and route. This work differs
from WARP in several ways. The main difference is that we
target a reconfigurable ASIP with programmable processing
units in the CPU’s datapath, while WARP uses a bus-attached
FPGA coprocessor that is more loosely coupled with the
CPU. Hence, this work allows to offload operations at the
instruction level where WARP needs to offload whole loops
to the accelerators in order to cope with longer communi-
cation delays. Further, WARP operates at the machine-code
level and reconstructs the program’s higher-level structure
with decompilation, while this work relies on higher-level
information that is present in the virtual machine. Finally,
WARP assumes a custom system on chip, while this work
targets commercially available standard FPGAs.

Beck and Carro [18] present work on binary translation
of Java programs for a custom reconfigurable ASIP architec-
ture with coarse-grained reconfigurable datapath units. They
show that for a set of small benchmarks an average speedup
of 4.6x and power reduction of 10.9x can be achieved. The
identification and synthesis of new instructions occur at
runtime; however, the paper does not specify what methods
are used for instruction identification and what overheads
arise from instruction synthesis.

3. General ASIP Specialization Tool Flow and
Just-in-Time Runtime System

Figure 1 illustrates the difference between a conventional
static ASIP specialization process (ASIP-SP) and a runtime
system with a just-in-time ASIP-SP support. The ASIP-SP is
responsible for (a) generating bistreams for configuring the
underlying reconfigurable ASIP hardware architecture with
instruction extensions and (b) for modifying the source code

International Journal of Reconfigurable Computing 3

Reconfigurable ASIP architecture

Static system
based on traditional

compiler
(static compilation)

Runtime system based
on virtual machine with

JIT capabilities
(dynamic compilation)

Bitstream and
machine code

ASIP
specialization

process

Runtime
adaptation

HW custom
instructions (CI)

CPU execution CPU execution

St
ep

 1
: c

om
pi

la
ti

on
St

ep
 2

: e
xe

cu
ti

on

St
ep

 1
: i

n
te

rp
re

ta
ti

on
 (

so
u

rc
e

co
de

 c
om

pi
la

ti
on

 w
it

h
 c

on
cu

rr
en

t
 e

xe
cu

ti
on

)
an

d
ru

n
ti

m
e

ad
ap

ta
ti

on
 (

h
ar

dw
ar

e
an

d
so

ft
w

ar
e)

Reconfigurable ASIP architecture

ASIP
specialization

process

HW custom
instructions (CI)

Figure 1: Overview of ASIP specialization process for conventional static and runtime systems.

to actually utilize the newly created instructions. So far, ASIP
specialization has been applied almost exclusively in static
systems, where steps (a) and (b) occur off line before the
application is executed.

This work studies the feasibility of moving the ASIP
specialization to runtime by integrating it into a virtual
machine with just-in-time compilation capabilities. In such
a system the ASIP specialization is performed concurrently
with the execution of the application. As soon as (a) and
(b) are available, the runtime adaptation phase occurs
where ASIP architecture is reconfigured and the application
binary is modified such that the newly available custom
instructions are utilized. The main advantages of executing
ASIP specialization as part of the runtime system are the
following.

(i) The system can optimize its operation by reconfig-
uring the instruction set and by changing the code at
runtime, which is fundamentally more powerful than
static ASIP specialization.

(ii) The system can collect execution time, profiling, and
machine level information in order to identify the
code sections that are actually performance limiting
at runtime; these sections are ideal candidates to be
accelerated with custom instructions.

(iii) The virtual machine has the capability to execute
various dynamic optimizations like hotspot detec-
tion, alias analysis, or branch prediction to further
optimize the performance.

4. Our Tool Flow Implementation

For the purpose of evaluating the potential of just-in-time
ASIP specialization, we have developed a prototypical tool
flow that is presented in Figure 2. Our tool flow executes

ASIP specialization as part of a runtime system as introduced
in the previous section. However, since Xilinx’s proprietary
FPGA design tools can be executed only on X86 CPUs, our
current version of the tool flow runs the ASIP-SP on a host
computer and not on the Woolcano ASIP architecture itself;
see Section 10 for details considering the experimental setup.

The details of our implemented tool flow and the
Woolcano hardware architecture are presented in Figure 2.
The process comprises three main phases: Candidate Search,
Netlist Generation, and Instruction Implementation.

During the first phase, Candidate Search, suitable candi-
dates for custom instructions are identified in the applica-
tion’s bitcode with the help of ISE algorithms which search
the data flow graphs for suitable instruction patterns.

The ISE algorithms are computationally intensive with
runtimes ranging from seconds to days, which is a major
concern for the just-in-time ASIP specialization. To avoid
such scenarios, the candidate identification process is pre-
ceded by basic block pruning heuristics which prune the
search space for candidate identification algorithms to the
basic blocks from which the best performance improvements
can be expected. It was shown by Grad and Plessl [10] that
the runtime of the ISE algorithms can be reduced by two
orders of magnitude by sacrificing 1/4 of the speedup. The ISE
algorithm identifies a set of custom instruction candidates.
Afterwards the selection process using the performance
estimation data singles out only the best one.

The estimation data are computed by the PivPav tool
[9], and they represent the performance difference for every
candidate when executed either in software or in hardware.
This is possible since PivPav has a database with a wide
collection of the presynthesized hardware IP cores together
with more than 90 different metrics; see Grad and Plessl
[9] for details. The next two phases in the process cover the
generation of hardware from a software candidate and are
also implemented with the help of the PivPav tool.

4 International Journal of Reconfigurable Computing

Candidate search

Candidate
identification (ISE)

Candidate
selection

Candidate
estimation

Basic block
pruner

B
it

co
de

 (
IR

)

B
it

co
de

 (
IR

)

PivPav
Netlist generation

Generate VHDL

Extract netlists

Create project
(xtclsh)

PivPav
Instruction impl.

Check syntax
Synthesis (xst)

Translate (ngdbuild)

Map and par
(map, par, trce)

Partial
reconfiguration

bitstream
(bitgen)

St
ru

ct
. V

H
D

L

FCM controller

UDCI 1 UDCI 2 UDCI n

Operand bus

Result bus

FSM

Operand regs

Result reg.

Bus macro

ICAP

controller

Control bus

Woolcano architecture

 ASIP specialization process (ASIP-SP)
executed on

Xilinx ISE tools: xtclsh, xst, ngdbuild, map, par, trce, bitgen

Dell T3500 workstation

Woolcano reconfigurable
 ASIP architecture

ASIP specialization process

Dell T3500 workstation

R
u

n
ti

m
e

so
u

rc
e

co
de

ad
ap

ta
ti

on

R
u

n
ti

m
e

re
co

n
fi

gu
ra

ti
on

PPC 405
CPU

APU

Partially reconfigurable
"instruction slot"

region (PRR)

Figure 2: Overview of the developed tool flow and the targeted Woolcano hardware architecture. During experimental evaluation, instead
of a PPC405 CPU, the ASIP specialization process was executed on a Dell T3500 workstation; see Section 10 for details.

The second phase, Netlist Generation, generates a VHDL
code from the candidate’s bitcode and prepares an FPGA
CAD project for synthesizing the candidate. The Generate
VHDL task is performed with PivPav’s datapath generator.
This generator iterates over the candidate’s datapath and
translates every instruction into a matching hardware IP
core, wires these cores, and generates structural VHDL code
for the custom instruction. Next, PivPav extracts the netlist
for the IP cores from its circuit database. This is performed
for every IP core instantiated during the VHDL generation
and is used to speed up the synthesis and the translation
processes during the FPGA CAD tool flow; that is, PivPav
is used as a netlist cache. Finally, an FPGA CAD project for

Xilinx ISE is created, the parameters of the FPGA are set up,
and the VHDL and the netlist files are added.

In the third phase, Instruction Implementation, the pre-
viously prepared project is processed with the Xilinx FPGA
CAD tool flow. This results in an FPGA configuration bit-
stream for the given custom instruction candidate. This bit-
stream can be loaded to the Woolcano architecture using par-
tial reconfiguration. These steps are also handled by PivPav.

5. Woolcano Hardware Architecture

The bottom part of Figure 2 shows the Woolcano dynamical-
ly reconfigurable ASIP architecture. The main components

International Journal of Reconfigurable Computing 5

of the architecture are the PowerPC core, the internal config-
uration access port (ICAP) controller, the fabric co-processor
module (FCM) controller, and the partial reconfiguration
regions for implementing UDCI which we denote also as
instruction slots. The FCM controller implements the inter-
face between the CPU core and the UDCI. It forwards the
inputs to the instruction slots via the operand bus and, after
the custom instruction has finished computing, it transfers
the output back to the CPU via the result bus. The control
bus is used for sending control information, for example,
activation or abort signals, to the UDCI.

Bus macros are placed at the interface between the in-
struction slot and the (a) operand, (b) control, and (c) re-
sult busses for enabling dynamic partial reconfiguration of the
instruction slots. The instruction slots can be reconfigured
via ICAP or the external configuration port of the FPGA.

The FCM controller was implemented as a finite-state
machine (FSM) and is responsible for connection to the
auxiliary processor unit (APU) interface of the PowerPC 405
core. Its main function is to implement the APU protocol for
transferring data and for dispatching instructions. During
the UDCI execution the CPU is blocked and it is waiting
for the UDCI results. The architectural constraints of the
APU allow only for two input and one output operands
to the UDCI. This restriction limits the amount of data a
UDCI instruction can operate on, which in turn limits the
achievable speedup. To circumvent this limitation, the FCM
core implements internal operand registers for supplying the
UDCI with additional operands.

The number of instruction slots as well as their input and
output operands are compile-time configurable architecture
parameters denoted as Cmax, inmax, outmax, respectively. Since
all inputs and outputs to the instruction slots must be fed
through Xilinx bus macros, the size and geometric placement
options of the bus macros limit the number of input oper-
ands and results.

6. Candidate Identification

The candidate identification process identifies subgraphs in
the intermediate representation (IR) code, which are suitable
for fusing into a new UDCI which can be implemented
for the Woolcano architecture. Suitable candidates are rich
in instruction-level parallelism (ILP) while satisfying the
architectural constraints of the target architecture.

6.1. Formal Problem Definition. Formally, we can define the
candidate identification process as follows. Given a data
flow graph (DFG) G = (V ,E), the architectural constraints
inmax, outmax and a set of infeasible instructions F, find all
candidates (subgraphs) C = (V ′,E′) ⊆ G which satisfy the
following conditions:

Cin ≤ inmax, (1)

Cout ≤ outmax, (2)

V ′ ∩ F = ∅, (3)

∀t ∈ C : convex(t). (4)

Here,

(i) the DFG is a direct acyclic graph (DAG) G(V ,E), with
a set of nodes or vertices V that represent IR operations
(instructions), constants and values, and an edge set E
represented as binary relation on V which represents
the data dependencies. The edge set E consists of
ordered pairs of vertices where an edge ei j = (vi, vj)
exists in E if the result of operation or the value
defined by vi is read by vj .

(ii) C = (V ′,E′) is a subgraph of G = (V ,E) if V ′ ⊆ V
and E′ ⊆ E.

(iii) Cin is the set of input nodes of C, where a node vi /∈ C
with (vi, vj) ∈ E for some node vj ∈ C is called an
input node.

(iv) Cout is the set of output nodes of C, where a node v0 ∈
C with (v0, vk) ∈ E for some node vk /∈ C is called an
output node.

(v) inmax, outmax are constants that specify the input/
output operand constraints for UDCIs which apply
to the instruction slot implementation of the Wool-
cano architecture.

(vi) F ⊆ V is a subset of illegal graph nodes (IR instruc-
tions) which are not allowed to be included in an
UDCI. This set includes for instance all memory
access instructions like loads and stores (since a UDCI
cannot access memory) and other instructions which
are not suitable for a hardware implementation, for
example, for performance reasons.

(vii) Convex means that there does not exist a path
between two vertices in C which contains a node that
does not belong to C. In other words candidate C is
convex if vi ∈ C, i = 0, . . . , k for all paths 〈v0, . . . , vk〉
with v0 ∈ C and vk ∈ C where path is defined as
follows. A path from a vertex u to a vertex v in a graph
C is a sequence 〈v0, v1, . . . , vk〉 of vertices such that
v0 = u, vk = v and (vi−1, vi) ∈ E for i = 1, . . . , k.
Convexity ensures that C can be executed atomically
in the hardware. This property is required to make
sure that an instruction can be executed as an atomic
operation without exchanging intermediate results
with the CPU.

Translating these formal definitions to practice means that
the identification of UDCI candidates occurs at the level of
basic blocks (BBs). BBs are suitable units for this purpose
since they have a DAG structure as required by the ISE
algorithms. In addition, it is feasible to enforce the convexity
condition (cf. condition (4)) on them. When selecting IR
code for a UDCI implementation, illegal instructions, such
as control flow or memory operations, must be excluded (cf.
condition (3)). Finally, the number of inputs and outputs of
the candidate has to respect the architectural constraints (cf.
conditions (1) and (2)). These architectural constraints are
variable and are defined by the FCM controller and by the
interface to the partially reconfigurable slots into which the
UDCIs are loaded.

6 International Journal of Reconfigurable Computing

Table 1: Candidate identification ISE algorithms comparison.

Algorithm
of

inputs
of

outputs
Worst-case
complexity

Overlapping
candidates

MaxMiso
Invariant

(∞)
Invariant

(1)
O(n) No

SingleCut Variant Variant O(exp) Yes

Union Variant Variant O(exp) No

6.2. Supported Instruction Set Identification Algorithms. For
the identification process, we implemented three state-of-
the-art ISE algorithms that are considered as the most suit-
able for runtime processor specialization: the SingleCut (SC)
[19], the Union (UN) [20], and the MaxMiso (MM) [21]
algorithm. The most relevant properties of these algorithms
are presented in Table 1.

All identification algorithms do not try to find candidates
in the entire application at once. Instead, they focus on the
individual basic blocks of the application. Hence, in order to
prune the search space, the ISE algorithm is executed selec-
tively only for the most promising BBs (cf. Section 9). Each
ISE algorithm analyzes the basic block to identify all feasible
candidates. Further, some algorithms allow to constrain the
number of inputs and outputs of candidates to match the
architectural constraints of the targeted ASIP architecture.
Finally, all algorithms fulfill the condition (3).

The advantage of the MM algorithm is its linear complex-
ity O(n). However, it finds only candidates which have a sin-
gle output and does not allow to constrain number of inputs.
Therefore, some of the generated candidates need to be dis-
carded at additional costs later in the selection phase because
they validate conditions and thus they cannot be imple-
mented. In contrast, the SC and UN algorithms already allow
for restricting the desired number of inputs and outputs
for candidates during the identification phase. Finally, the
SC algorithm may produce overlapping candidates. Hence,
when using this algorithm an additional phase is needed in
the selection process to eliminate the overlapping candidates.

7. Candidate Estimation

Since the number of UDCIs that can be implemented con-
currently in the Woolcano architecture is limited, only the
best candidates are selected for an implementation. The
corresponding selection process which is described in the
following section is based on the estimated performance of
every candidate when executing in software on the CPU or in
hardware as a UDCI. Based on these performance estimates
the subsequent selection process can decide whether it is
affordable and beneficial to implement a candidate as a hard-
ware UDCI instruction.

7.1. Software Estimation. The Woolcano architecture con-
sists of a PowerPC 405 CPU hard core which is used for
software execution. In contrast to modern general-purpose
CPUs, the PowerPC CPU has a relatively simple design. It has
a scalar, in-order, five-stage pipeline, and most instructions

have a latency of a single cycle. This simple design makes the
task of software estimation relatively easy since the execution
of the instructions in the candidate is sequential. Hence, the
presented bellow estimation method is not a novel idea, and
it is based on research published in Gong et al. [22].

We estimate the performance of the execution with the
expression shown in (5) which corresponds to the sum of
latencies of all instructions found in the candidate multiplied
by the CPU clock period. This estimation technique has an
algorithmic complexity of O(n) where n is the number of
PowerPC instructions found in a candidate

Tsw = Tcpu · Lsum [ns],

Lsum =
n∑

i=0

Li [ns].
(5)

Here,

(i) Tcpu is the clock period of used PowerPC CPU.

(ii) Lsum is the sum of latencies of all instructions found
in a candidate, where n is the number of instructions
and Li is the latency of the ith instruction found
in a candidate (the instruction latencies have been
determined from the PowerPC manual [23]).

The use of the Tcpu in (5) ensures that the differences in clock
periods between the PowerPC CPU and the UDCI hardware
implementation are taken into account.

The presented method yields correct results only when
the candidate’s IR code is translated one to one into the
matching PowerPC instructions. In the case of a mismatch
between these two, the estimation results are inaccurate.
The mismatch can happen due to a few reasons, that is,
folding a few IR instructions into a single target instruction,
or because of differences in the register sets. The PowerPC
architecture has a fixed amount of registers (32 general-
purpose registers) whereas the IR code uses an unlimited
number of virtual registers. For larger code, which requires
more registers than available, the backend of the compiler
produces additional instructions which will move data from
registers into temporary variables kept on the stack. These
additional instructions are not covered in the software
estimation process. For such cases it has been shown that the
estimation inaccuracy can be as high as 29% [24].

7.2. Hardware Estimation. Since each instruction candidate
can be translated to a wide variety of functionally equivalent
datapaths, the task of hardware estimation is much more
complicated than the task of software estimation. In the
following, we choose to illustrate approach used in this work
by means of an actual example. Listing 1 shows an excerpt
from a raytracing algorithm. The corresponding IR code of
one of the identified candidates is presented in Listing 2. This
candidate is constructed from adders and multipliers and
corresponds to the scalar product which is shown in Listing 1
on the 5th line.

When translated to hardware, the DFG structure of the
candidate is preserved; that is, instead of complex high-level
synthesis [25], a more restricted and thus simpler datapath

International Journal of Reconfigurable Computing 7

��� bool ������	
	 �const
��
� const ���	
	 ����

��� {
��� · · ·
��� �	��	�
 ���� � ����� �
����
��

��� float � �
�� ∗ �� �
�� ∗ �� �
� ∗ � �

�!� float " � � ∗ � − ���� ∗ ���� � ���� 	 ∗ ���� 	�

�#� if �" < $�$%� return false;
�&� · · ·
�'� }

Listing 1: Part of the raytracing source code.

��� · · ·
��� %$ � mul float %
��� %��

��� %� � mul float %
��� %��

��� %� � add float %$� %�

��� %� � mul float %
� � %�

�!� %� � add float %�� %�

�#� · · ·

Listing 2: IR of candidate found in 5th line of previous listing.

synthesis (DPS) process [1] is required which does not
generate complex finite state machines in order to schedule
and synchronize computational tasks. The first step in the
hardware estimation for DPS involves translating each IR
instruction (node) into a corresponding hardware operator,
where operators may exist as purely combinational operators
or as sequential operators. Sequential operators produce a
valid result after one or—in the case of pipelined operators—
several clock cycles. Also, functionally equivalent operators
can have a large variety of different properties such as
hardware area, speed, latency, and power consumption.
Therefore, the hardware estimation tasks have to deal with
three different types of datapath structures: combinational,
sequential, and hybrid datapaths, where a mix of sequential
and combinational operators exists. Examples for such data-
paths for the discussed candidate are shown in Figure 3. The
hardware estimation process used in this work for estimating
the delay of a UDCI supports all of these scenarios and is
formally defined as

Chw = Tudci · RD · Pmax [ns], (6)

Tudci = max{L} [ns], (7)

Pmax = max{P} [#]. (8)

Here,

(i) Tudci corresponds to the minimal allowable clock pe-
riod, which is visualized as the tallest green box in
Figure 3. For combinational datapaths, scenario (a),
it is equivalent to the latency of critical path, whereas
for the sequential datapaths, scenario (b), to the

maximal latency of all operators (������ in this
example). For hybrid datapaths, scenario (c), it corre-
sponds to the highest latency of all sequential opera-
tors and combinational paths; in this case, to the sum
of combinational ���	�
� and sequential ������
operator latencies.

(ii) RD is an experimentally determined routing delay
parameter which is used to decrease the Tudci. The
routing delays are equivalent to the communication
latencies between connected operators caused by the
routing switch boxes and wires. The precise value
of RD is unknown until the physical placement of
the operators is performed in the FPGA; however,
experiments showed that RD often corresponds to
about half of all circuit latencies.

(iii) Pmax is the maximum number of pipeline stages. It
can be interpreted as the maximum number of all
green rectangles covering a given DFG. For scenarios
(a), (b), (c), and (d), Pmax equals to 1, 3, 2, and 24,
respectively.

(iv) L is a set of latencies generated in Algorithm 1, and
its maximum for all operators defines the minimal
allowable clock period; see (7). The graphical inter-
pretation of L, as presented in Figure 3, corresponds
to a list of the height of all green boxes. Thus, com-
binational datapaths, scenario (a), have the highest
latencies, whereas the smallest latency can be found in
highly pipelined sequential datapaths, scenario (d).
The latency of each operator is obtained from the
PivPav circuit library with the ��	����� function
found in the algorithm in the 4th line.

(v) P is a set of all pipeline stages generated by
Algorithm 1. P is used in (8) to select the maximum
number of stages in a given datapath. The number
of pipeline stages for operator is retrieved with
��������� function and it is presented in square
brackets in the operator name; thus, the ���	 ��
�-
reflects the 10 stages multiplier.

Algorithm 1 is used to compute the values of the L and P
sets, which are associated with the height and the number
of green boxes, respectively. In the first line of the algo-
rithm, initialization statements are found. In the second line,

8 International Journal of Reconfigurable Computing

mult [1] mult [1] mult [1]
add
[1]

add
[1]

add
[1]

rdx dx rdy dy rdz dz rdx dx rdy dy rdz dz rdx dx rdy dy rdz dz rdx dx rdy dy rdz dz

mult
[10]

mult
[10]

mult
[10]

add
[7]

add
[7]

res res res res

mult
[0] mult

[0]
mult
[0]

mult
[0]

mult
[0]

mult
[0]

add
[0]

add
[0]

add
[0]

(a) Combinational datapath (b) Sequential datapath (d) Highly pipelined sequential datapath(c) Hybrid datapath

Clock
period

Combinational
operator [0]

Sequential Highly pipelined Input
Outputoperator [≤5] operator [> 5]

Figure 3: Different types of a DFG presented for a UDCI candidate shown in Listing 2.

(1) L← P ← φ
(2) for p in critical paths do
(3) for n ∈ nodes(p) do
(4) Lp ← Lp + Latency(n)
(5) Pp ← Pp + Pipeline(n)
(6) if Pipeline(n) /= 0 then
(7) L ← L∪ Lp and Lp ← 0
(8) end if
(9) end for
(10) if Pipeline(n) = 0then
(11) Pp ← Pp + 1
(12) end if
(13) L← L∪ Lp and Lp ← 0
(14) P ← P ∪ Pp and Pp ← 0
(15) end for

Algorithm 1: Hardware estimation.

the algorithm iterates and generates results for every critical
path, which indicates that a path leads from the input to
the output node. In next three lines, for each node in a
given path, the latency and the number of pipeline stages are
accumulated in Lp and Pp temporal variables, respectively.
If the given node is sequential, the new green box is created
and the current latency value Lp is moved to the L set (lines
(6)–(8)). Lines (10)–(15) are executed when the algorithm
reaches the last node in the given critical path. Thus, lines
(10)–(12) add an additional pipeline stage if the last node
is a combinational one, whereas lines (13)-(14) move the
values of temporal variables to the resulting sets. Since the
candidate’s template does not overlap, each node of the
candidate is visited only once, and therefore this estimation
technique is of O(n) complexity.

In order to illustrate the estimation process in detail, we
show how Chw is estimated for (b) sequential datapath and
(d) highly pipelined sequential datapath representation of
the candidate. The metrics of the used operators obtained
from the PivPav circuit library are described below and are
presented in Table 2. The upper and lower parts of the table

show the metrics of the operators used in scenarios (b) and
(d), respectively. The estimation results found in Table 3
indicate that the sequential datapath is able to produce the
first result almost twice as fast as the highly pipelined
datapath (1.82x). However, processing many data (d) is able
to fill the pipeline and work with 24 data at once, generating
the results, accordingly to the formulaTudci∗RD, every 9.5 ns,
whereas (b) generates a result only every 41.78 ns.

The Tudci and Pmax factors in the equations depend on the
characteristics of every used hardware operator; see Latency()
and Pipeline() functions in Algorithm 1. Thus, the key to
accurate hardware estimation is the quality of the characteri-
zation database that provides performance, latency, and area
metrics for each operator. For some selected operators, for
example, for floating point operators obtained from IP Core
Libraries, data sheets that characterize each operator with
the required performance metrics are available, for example,
[26]. For most other operators—in particular those created
on demand by HDL synthesis tools, such as integer, logic, or
bit manipulation operators—no data sheets exist. Moreover,
the characterization data in data sheets are not exhaustive
and do not cover all FPGA families, models, and speed
grades, which is problematic, since even within one device
family the performance of operators can vary significantly.
For example, the data sheet for Xilinx Coregen quotes the
maximum speed of a floating-point multiplier as 192 MHz or
423 MHz, respectively, for two FPGA models from the Xilinx
Virtex-6 family (Table 23 versus Table 25) [26]. This huge
range makes it impractical to estimate accurate performance
metrics for devices that are not even tabulated in the data
sheets.

To meet the characterization data requirements for the
hardware operators, we have developed the open-source
PivPav tool [9], which we leverage also in this work to obtain
accurate characterization metrics. PivPav generates a library
of hardware operators, where each operator is specifically
optimized for the targeted FPGA family. For each operator,
the performance and many other metrics are automatically
extracted from the implementation. These metrics are made
available to the estimation process and other processes in
the ASIP specialization tool flow via the PivPav API, which

International Journal of Reconfigurable Computing 9

Table 2: Excerpt from metrics requested by the candidate estimation process from PivPav circuit library for the XC4VFX100-FF1152-10
FPGA device.

HW Oper.
Pp Lp Max FRQ after PAR FF LUT Slice BUF DSP

ns [MHz] # # # #

mul 1 24.81 40.3 66 76 46 103 0

add 1 32.15 31.1 66 377 250 103 5

mul 10 7.31 136.8 66 134 150 103 4

add 7 7.19 139.0 66 556 326 103 4

Table 3: Results of hardware estimation process for DFGs presented
in Figures 3(b) and 3(d) implemented with two different sets of
operators found in Table 2.

Sequential datapath
(Figure 3(b))

Highly pipelined sequential
datapath (Figure 3(d))

L [ns] 24.81 and 32.15 7.31 and 7.19

Tudci [ns] 32.15 7.31

P # 3 and 2 24 and 17

Pmax # 3 24

RD # 1.30 1.30

Chw [ns] 125.39 228.07

is illustrated in Figure 2. Since all the data are generated
beforehand with the benchmarking facilities of the PivPav,
there is no need to run the FPGA CAD tool flow in the
estimation process.

It is worth noticing that the presented estimation method
is not in itself a novel idea. There are many timing analysis
approaches which perform equivalent steps to the one
presented above [27]. Therefore, this subsection does not
contribute to the hardware timing analysis field. The novelty
in this estimation approach relies on the precise characteri-
zation data that were generated with PivPav tool. These data
together with presented methods allow to precisely estimate
the hardware performances for UDCI instructions.

8. Candidate Selection

Once the set of candidates has been determined and estima-
tion data are available, the selection process makes the final
decision about which candidates should be implemented in
the hardware.

First, all the candidates that violate at least one of the
constraints presented below are rejected:

C|in| ≤ inmax, (9)

C|out| ≤ outmax, (10)

Csw

Chw
≤ threshold. (11)

Here,

(i) C|in| and C|out| are equivalent to the constraints de-
scribed in conditions (1) and (2), respectively. They
correspond to architectural constraints for the num-
ber of input and output operands to the UDCI. They

are applied to the ISE algorithms that are not able
to perform this step themselves, such as the MM
algorithm.

(ii) Csw and Chw correspond to the software and hardware
estimations, respectively. If threshold = 1.0, then
there are no performance gains; when threshold >1.0
there is a performance gain since it takes more cycles
to execute the candidate in software than in hardware.
Finally, if threshold <1.0, the hardware implementa-
tion has a lower performance than the software.

After applying these conditions, the search space of the selec-
tion process is significantly reduced, since candidates that
are either infeasible or would provide only low speedups are
discarded. As a result, the runtime of the subsequent steps in
the tool flow is considerably lower.

8.1. Candidate Selection. In general, selecting the optimal
set of UDCI instructions under different architectural con-
straints is a demanding task. Related work has studied differ-
ent selection approaches, such as greedy heuristics, simulated
annealing, ILP, or evolutionary algorithms; see, for example,
Meeuws et al. [28] or Pozzi et al. [19]. For the purpose of
the ASIP specialization, we use the greedy candidate selection
algorithm that is presented in Algorithm 2 and which has
a computational complexity of O(|Cinput|). When using the
SC algorithm which may produce overlapping candidates for
ISE identification our algorithm rejects any candidates that
overlap with any candidate that has been selected so far. The
aim of this process is to select up to Cmax candidates from
the set of Cinput candidates generated by the identification
process that offers the greatest advantage in terms of some
metric M; in this case the application performance:

Cres = max
(
∀Ci ∈ Cinput :

∑
M(Ci)

)
. (12)

Here,

(i) Cres is the resulting set of best candidates, |Cres| is a
size of this set, and Cmax is the architectural constraint
representing the number of supported UDCI instruc-
tions.

(ii) M is a metric function defined as

M(Ci) = Csw(Ci)
Chw(Ci)

. (13)

10 International Journal of Reconfigurable Computing

while |Cres| ≤ Cmax do
ci ← max{M(Ci) | Ci ∈ Cinput}
if ci does not overlap with Cres then

Cres ← Cres ∪ ci
end if
Cinput ← Cinput ∩ ci.

end while

Algorithm 2: Best candidate selection.

8.2. Selection Metrics. The metric function is used as a policy
in the greedy selection process and is responsible for selecting
only the best candidates. While in (13), the application
performance policy is used, and nothing prevents basing the
decision preference on a different metric. It is worth men-
tioning that the PivPav tool could be used to provide a wealth
of other metrics since the circuit library stores more than
90 different properties about every hardware operator. These
properties could be used for instance to develop resource
usage or power consumption policies. Consequently, they
can be used to estimate the size of the final bitstream
and partial reconfiguration time, the runtimes of netlist
generation and instruction implementation, or many other
metrics. Finally, all these policies could be merged together
into a sophisticated ASIP specialization framework which
would

(i) maximize the performances,

(ii) minimize the power consumption, and

(iii) constrain the resource area to the sizes of UDCI slot.

Such a combined metric can be defined as an integer linear
programming model. While this method would allow a more
precise selection of candidates based on more parameters, its
algorithmic complexity is higher than O(|C|input||), resulting
in runtimes that are much longer, often by orders of
magnitude. Since it is important to keep the runtimes of the
ASIP-SP as low as possible, the tradeoff between the gains
and the costs of the metric function is an interesting research
topic in itself.

9. Pruning the Search Space

Pruning is the first process executed in the ASIP-SP outlined
in Figure 2. Pruning uses a set of algorithms which act as
filters to shrink the search space for the subsequent processes
by rejecting or by passing certain BBs.

This decision is based on the data obtained from program
analysis which provides information about loops, the sizes
of BBs, and the contained instruction types. In addition, the
ASIP-SP makes it possible to discard dead code by running
the filters only for the code which was executed at least once.

The objective of the pruning process is described by the
following term:

max
(

metric function
runtime of candidate identification

)
. (14)

The pruning aims to maximize the ratio between a metric
function to the time spent in the candidate identification
process. The metric function is defined in (13) and is equiv-
alent to the application performance gain. The denominator
of the equation takes into the account only the runtime
of the candidate identification since in comparison to this
runtime the runtime of the candidate estimation and selection
processes is insignificant.

For this work, we are using this @50pS3L filter heuristic,
which has been shown in our previous work [10] to provide
the best results for just-in-time systems. This filter has three
sequential pruning stages which can be decoded from its
name. The first filter stage (indicated by @) filters out dead
code; that is, it discards all BBs that have not been executed
at least once. This information is available during the ASIP-
SP runtime without access to profiling data. The second
filter stage (indicated by 50p) selects BBs based on their size.
Here, only BBs that have a size of at least 50% of the size
of the largest BB in the application are selected. Preferring
large over small BBs simplifies the task of identifying large
candidates which are likely to provide more speedups.
Finally, the last filter stage (indicated by 3L) selects only BBs
which are part of a loop and selects the 3 largest of these
BBs. The rationale of this filter is that the BBs contained in a
loop have a higher chance of being executed, and promoting
candidates which are more frequently executed is one of the
methods to increase the overall application speedup.

10. Experimental Setup

While this work targets the reconfigurable ASIPs, like our
Woolcano architecture presented in Figure 2, due to practical
limitations it is currently not feasible to execute the complete
ASIP-SP on an embedded reconfigurable ASIP architecture.
The specialization process heavily uses the LLVM compiler
framework and the Xilinx ISE tools which require high-
performance CPUs and desktop operating systems. These
resources are not available in currently existing ASIP archi-
tectures. Hence, we used Linux and a Dell T3500 workstation
(dual core Intel Xeon W3503 2.40 GHz, 4 M L3, 4.8 GT/s,
12 GB DDR3/1333 MHz RAM) as a host computer in place
of the PowerPC 405 CPU of the Woolcano architecture to
execute the ASIP-SP; see Figure 2.

The lack of the possibility to run the complete tool
flow on the ASIP has a number of consequences for the
experimental evaluation. Instead of running the ASIP-SP as
a single process, we are forced to spilt this process into two
steps. In the first step, the host computer is used to generate
the partial bitstreams by executing the tasks corresponding
to the upper half of Figure 2. In the second step, we switch
to the Woolcano architecture where we use the generated
bitstreams to reconfigure the UDCI slots and to measure the
performance improvements.

It is also worth noticing that this two-step process has an
impact on several reported measurements. First, all perfor-
mance measurements reported in Table 5 and 6, in columns
Max ASIP-SP speedups and ASIP ratio, are performed for
Woolcano’s PowerPC405 CPU and not for the host CPU.

International Journal of Reconfigurable Computing 11

Table 4: Characteristics of scientific and embedded applications. AVG-S represents the averages for scientific applications and AVG-E for
the embedded applications. Ratio = AVG-S/AVG-E.

App
Sources Compilation to IR IR in BBs Code coverage Kernel size

files loc real fun blk ins max avg udci live dead const size ins freq

[s] # # # # # [%] [%] [%] [%] [%] # [%]

164.gzip 20 8605 3.89 33 1006 6925 59 6.88 29.68 38.86 44.66 16.48 5.78 400 90.34

179.art 1 1270 1.06 21 376 2164 43 5.76 21.53 42.05 28.47 29.48 9.84 213 92.45

183.equake 1 1513 1.71 15 257 2670 132 10.39 23.0 75.39 8.91 15.69 15.32 409 92.9

188.ammp 31 13483 10.10 98 4244 26647 382 6.28 25.74 19.22 70.89 9.89 3.38 901 95.81

429.mcf 25 2685 0.97 18 284 1917 77 6.75 13.09 75.9 13.09 11.01 25.77 494 98.46

433.milc 89 15042 10.88 87 1538 14260 363 9.27 32.59 61.67 34.72 3.61 10.83 1545 93.99

444.namd 32 5315 22.77 84 5147 47534 291 9.24 37.82 31.71 62.81 5.48 7.33 3486 93.64

458.sjeng 23 13847 8.49 86 3373 20531 69 6.09 21.1 48.49 49.44 2.07 44.6 9157 100.0

470.lbm 6 1155 1.36 16 104 1988 405 19.12 57.55 55.23 24.9 19.87 32.75 651 97.57

473.astar 19 5829 3.68 45 757 6010 70 7.94 27.45 78.79 5.31 15.91 6.39 384 91.3

AVG S 24.70 6874 6.49 50 1709 13065 189.1 8.77 28.95 52.73 34.32 12.95 16.20 1764 94.65

adpcm 6 448 0.29 6 43 233 39 7.21 33.48 60.66 29.18 10.16 41.97 128 91.79

fft 3 187 0.26 10 47 297 41 6.53 42.09 58.88 30.26 10.86 44.08 134 95.98

sor 3 74 0.13 4 19 99 22 7.06 34.34 46.51 50.39 3.1 24.81 32 97.52

whetstone 1 442 0.25 12 44 285 32 6.58 34.04 32.75 36.27 30.99 10.21 29 93.27

AVG E 3.25 288 0.23 8 38.3 228.5 33.5 6.85 35.99 49.70 36.52 13.78 30.27 80.75 94.64

RATIO 7.60 23.89 28.22 6.29 44.67 57.18 5.64 1.28 0.80 1.06 0.94 0.94 0.54 21.85 1.00

Table 5: Specialization process executed for whole applications when targeting the Woolcano architecture without capacity constraints. The
performance of the custom instructions has been determined with the PivPav tool. ISE algorithms: MM: MaxMiso, SC: SingleCut, UN:
Union. SC and UN search is constrained to 4 inputs and 1 input.

App

Executionruntimes ISE algorithm runtime Candidates found Max ASIP-SP Speedup

VM Nat Ratio MM SC UN MM SC UN MM SC UN

[s] [s] x [ms] [ms] [ms] # # # x x x

164.gzip 23.71 18.47 1.28 40.6 549.0 11170.0 1621 44177 43682 1.172 1.213 1.213

179.art 69.92 74.70 0.94 12.3 55.1 3350.0 371 3534 3513 1.526 21.414 21.414

183.equake 7.97 6.79 1.17 13.5 457.9 4351.0 672 9690 9690 2.147 25.972 25.972

188.ammp 23.18 17.24 1.34 145.7 15840 — 7547 122441 — 3.449 20.826 —

429.mcf 23.94 24.06 1.00 11.1 68.7 200.5 571 3571 3562 1.112 1.112 1.112

433.milc 20.95 16.43 1.28 78.1 5065 — 3573 59450 — 1.301 21.546 —

444.namd 39.94 34.31 1.16 227.5 35854 — 11490 125970 — 1.609 24.846 —

458.sjeng 180.41 155.66 1.16 123.7 6244.1 235195.7 5540 83173 83035 1.118 1.137 1.137

470.lbm 5.68 5.36 1.06 8.6 2777.1 — 490 18216 — 2.554 44.622 —

473.astar 66.00 67.68 0.98 33.4 914.8 303796653 1408 37025 32368 1.159 1.19 1.19

AVG S 46.17 42.07 1.14 69.45 6783 30405092 3328 50724 17585 1.71 16.39 5.20

adpcm 29.22 28.35 1.03 1.7 15.0 3869.4 83 819 819 1.243 1.309 1.293

fft 18.47 18.49 1.00 1.6 9.7 33.1 87 553 552 3.1 14.413 14.413

sor 15.83 15.85 1.00 0.7 4.3 14.6 35 384 375 14.418 14.422 14.418

whetstone 28.66 28.50 1.01 1.6 9.5 64.0 69 435 435 18.012 18.012 18.012

AVG E 23.04 22.80 1.01 1.40 9.62 995.27 68.50 547.75 545.25 9.19 12.04 12.03

RATIO 2.00 1.85 1.13 49.61 705.05 30549.59 48.59 92.61 32.25 0.19 1.36 0.43

12 International Journal of Reconfigurable Computing

Table 6: The runtime overheads for the ASIP-SP.

App
Candidate Search: @50pS3L ASIP Runtime overheads Break-even

real pruner blk ins can ratio const map par sum break-even time

[ms] effic # # # x [m : s] [m : s] [m : s] [m : s] [d : h : m : s]

164.gzip 1.44 71.79 2 100 19 1.00 56 : 22 13 : 02 18 : 28 87 : 52 206 : 22 : 15 : 50

179.art 1.05 23.37 3 79 9 1.01 26 : 42 8 : 58 13 : 20 49 : 00 1 : 12 : 18 : 13

183.equake 2.25 8.33 2 244 11 1.00 32 : 38 7 : 56 16 : 12 56 : 46 259 : 02 : 28 : 33

188.ammp 3.27 52.29 1 382 92 1.41 272 : 58 102 : 12 142 : 49 517 : 59 0 : 14 : 56 : 39

429.mcf 1.05 28.2 1 77 5 1.00 14 : 50 4 : 06 7 : 48 26 : 44 213 : 20 : 05 : 55

433.milc 6.6 26.71 2 673 9 1.00 26 : 42 6 : 44 15 : 08 48 : 34 568 : 06 : 08 : 05

444.namd 7.68 57.43 3 776 129 1.03 382 : 45 117 : 24 178 : 04 678 : 13 6 : 16 : 00 : 48

458.sjeng 1.8 184.11 3 121 8 1.00 23 : 44 6 : 56 12 : 58 43 : 38 2403 : 01 : 35 : 57

470.lbm 10.62 2.43 3 961 179 2.53 531 : 07 181 : 51 308 : 24 1021 : 22 1 : 03 : 29 : 48

473.astar 2.25 38.2 3 184 33 1.00 97 : 54 29 : 46 46 : 59 174 : 39 5149 : 02 : 19 : 14

AVG S 3.80 49.29 2.30 358 49 1.20 146 : 34 47 : 53 76 : 01 270 : 28 881 : 00 : 33 : 54

adpcm 0.84 5.59 2 61 8 1.08 23 : 44 6 : 00 10 : 34 40 : 18 0 : 04 : 34 : 10

fft 0.78 3.78 2 75 14 2.40 41 : 32 11 : 44 20 : 56 74 : 12 0 : 01 : 53 : 07

sor 0.24 2.21 1 22 2 1.00 5 : 56 4 : 48 10 : 12 20 : 56 0 : 00 : 24 : 19

whetstone 0.54 7.7 2 49 9 15.43 26 : 42 11 : 34 25 : 52 64 : 08 0 : 01 : 08 : 04

AVG E 0.60 4.82 1.75 52 8 4.98 24 : 28 8 : 31 16 : 53 49 : 53 0 : 01 : 59 : 55

RATIO 6.33 10.23 1.31 6.95 5.99 0.24 5.99 5.62 4.50 5.42 10580

Further, in order to compute the break-even time reported in
Table 6 we used the runtime overheads values from the same
table which were measured on the host computer. Therefore,
this value is computed as if Woolcano’s PowerPC CPU had
the processing power of the host machine. Finally, while the
ASIP specialization tool flow is capable of performing UDCI
reconfiguration during runtime, in practice, we had to switch
from the first to the second step manually.

The hardware limitations of Woolcano, in particular the
number of UDCI slots, in practice do not allow us to measure
the performance improvements on a real system for all
applications. To this end, for these applications we estimate
the speedups with the help of the techniques presented in
Section 7.

11. Applications for Experimental Evaluation

Table 4 shows the characteristics of used applications divided
into two groups. The upper part of the table shows data
for applications obtained from the SPEC2006 and SPEC2000
benchmark suites which represent scientific computing do-
main whereas the lower part represents applications from the
embedded computing domain obtained from the SciMark2
and MiBench.

While the used benchmark suites count 98 different ap-
plications altogether, we could not run our evaluation on all
of them due to cross-compilation errors. Hence, from the
set of available applications, we selected the ones which are
the most representative and allow us to get comprehensive
insights into the JIT ASIP specialization methodology. While
we have used slightly different application sets in our pre-
vious publications which evaluated specific parts of the tool
flow, we have chosen an adapted common set of applications

for this work in order to get a consistent end-to-end evalua-
tion of the whole tool flow.

11.1. Source Code Characterization and Compilation. The
second and third columns of Table 4 contain the number of
source files and lines of code and tell that scientific applications
have on average 23.89x more code than the embedded
applications. This difference influences the compilation time
shown in the fourth column which for scientific applications
is 28.22x longer on average, but still the average compilation
time is only 6.5 s. The next three columns express the charac-
teristics of the bitcode reflecting the total number of functions,
basic blocks, and intermediate instructions, respectively. For
the scientific applications the ratio between ins (13065) and
the LOC (6874) is 1.9. This means that an average single
high-level code line is expressed with almost two IR instruc-
tions and less than one (0.8) for embedded applications.
Since scientific applications have 24 times more LOCs than
embedded applications, this results in a 57x difference in the
IR instructions.

The ISE algorithms operate on the BBs, and thus the IR in
BBs column indicates the characteristics of these BBs in more
detail. The max column indicates the BB with the highest
number of IR instructions and avg is the average number of
IR instructions in all BBs. These values in combination with
the data presented in Figures 4, 5, and 6 allow to understand
the runtime of the ISE and the number of candidates.

For embedded applications the largest BBs cover on aver-
age more than 14.7% of the application whereas the largest
basic block for scientific applications covers only 1.4% of the
total application. The difference between average-size BBs
for embedded and scientific applications is 1.28x and results
in a small average number of IR instructions of less than

International Journal of Reconfigurable Computing 13

100 101 102 103

10−1

100

101

102

103

104

105

Nodes

A
lg

or
it

h
m

ru
n

ti
m

e
(m

s)

SC-41

UN-41
SC-41-avg
UN-41-avg

MM-fitted

O (exp)
O (n2)

(s)

(min)

Small Medium Large

(ms)

Figure 4: Runtimes of the ISE identification algorithm for different
basic block sizes (nodes). The SC: SingleCut, UN: Union, MM:
MaxMiso algorithms. The label “41” means that the SC and UN
search has been constrained to 4 inputs and 1 output.

10 for both cases. The small size of BBs in our applications
needs to be attributed to the actual benchmark code, the
compiler, and the properties of the intermediate representa-
tion. Our experiments have shown that the size of the BBs
does not change significantly for different compiler opti-
mizations, transformations, or with the size of application
(LOC).

11.2. Feasible UDCI Instructions. The udci column lists the
percentage of all IR instructions which are feasible for a
hardware implementation. Feasible instructions include the
arithmetic, logic, and cast instructions for all data types
and make up to 1/3 of all instructions of the application.
Considering the small average size of BBs this means that the
size of an average-found candidate is only between 2 and 3 IR
instructions. This fact emphasizes the need for a proper BB
and candidate selection and stresses even more the impor-
tance of the proper pruning algorithms in order to avoid
spending time with analyzing candidates that will likely not
result in any speedup.

11.3. Code Coverage. The Code Coverage columns show the
percentages of the size of live, dead, and constant code. These
values were determined by executing each application for
different input data sets and by recording the execution

Nodes
Fo

u
n

d
ca

n
di

da
te

s

MM
SC-41
UN-41

MM-fitted

SC and UN-fitted

n6

n2

Medium LargeSmall
100

101

102

103

104

101 102 103

Figure 5: Number of found candidates by ISE algorithms for a large
spectrum of BB nodes, where SC and UN are constrained to 4 inputs
and 1 output.

frequency of each BB. For the SPEC benchmark suite appli-
cations, the standard test, train, and ref data sets were used,
whereas for the embedded ones, due to the unavailability
of standard data sets, each application was tested with at
least three different custom-prepared input data sets. After
execution, the change in execution frequency per block be-
tween the different runs was compared. If the frequency was
equal to 0, the code was marked as dead. If the frequency
was different from 0 but did not change for different inputs,
the code was marked as constant, and if the frequency
has changed, the block was marked as live. This frequency
information was used to compute the break-even points in the
following section. In addition, the live frequency information
indicates that roughly only 50% of the application has a
dynamic behavior in which the ISE algorithms are interested
in searching for candidates.

11.4. Kernel Size. The last three columns contain data on the
size of the kernel of the application. These data are derived
from the frequency data. The kernel of an application is
defined as the code that is responsible for more than 90%
of the execution time. The size of the kernel is measured as
the total number of IR instructions contained in the basic
blocks which represent the kernel. For scientific applications,
16.20% of the code affects 94.65% of the total application
execution time, and it corresponds to more than 1.7 k IR

14 International Journal of Reconfigurable Computing

100

101

102

103

104

105

10 20 30 40 50 60 70 80 90 100

NodesSmall Medium

MaxMiso-avg
n2

n

Fo
u

n
d

ca
n

di
da

te
s

SC and UN-i2-o1-avg
SC and UN-i2-o2-avg
SC and UN-i4-o1-avg
SC and UN-i4-o2-avg

Figure 6: Number of found candidates by ISE algorithms for a me-
dium spectrum of BB nodes, where SC and UN have variable con-
straints.

instructions. For embedded applications, the average relative
kernel size is 30.27% and is expressed only with 80 IR instruc-
tions. These numbers indicate that it is relatively easier to
increase the performances of the embedded applications
than the scientific ones, since they require 22x smaller UDCI
instructions.

11.5. Execution Runtimes. The VM column in Table 5 repre-
sents the application runtime when executed on the LLVM
virtual machine. The runtime of the application depends
heavily on the input data which, in the case of the scientific
applications, were obtained from the train datasets of the
SPEC benchmark suite. Due to the unavailability of standard
data sets for the embedded applications, custom-made data
sets were used. For both application classes, the input data
allowed to exercise the most computationally intensive parts
of the application for a few or several tens of seconds. The Nat
column shows the real runtime of the application when stat-
ically compiled, that is, without the overhead caused by the
runtime translation. The Ratio column shows the proportion
of Nat and VM and represents the overhead involved with the
interpretation during the runtime. For the small embedded
applications, the overhead of the VM is insignificant (1%).
For the large scientific applications, the average overhead
caused by the VM equals on average 14%. However, it is
important to notice that for some applications like 179.art or

473.astar, the VM was significantly faster than the statically
compiled code by 6% and 2%, respectively. This means that
the VM optimized the code in a way which allowed to
overcome the overhead involved in the optimization as well
as the dynamic just-in-time compilation.

12. Experimental Evaluation of
the Candidate Identification

In this section, we evaluate and compare the ISE algo-
rithms which have been used for candidate identification
as presented in Figure 2. Our evaluation covers the runtime
characteristics of the algorithms as well as the number of
identified candidates for different architectural constraints,
the maximum gain in application performance, and the run-
time of our benchmark algorithms when statically compiled
to native code and when executing in a virtual machine. The
discussion is based on data presented in Table 5 which was
obtained for the benchmark applications introduced in the
previous section.

12.1. ISE Algorithm Runtimes and Comparison. The average
ISE algorithm runtimes are presented in the 5th to 7th
columns of Table 5. As stated previously, the MM algorithm
has a linear complexity and therefore is the fastest, resulting
in a 0.22 s runtime for �������, which is the largest
application. Due to its larger algorithmic complexity, the
runtime of the UN algorithm should generally exceed the
runtime of SC but this is not the case for applications which
include specific types of BBs. For example, it took 3837 ms
to process such a specific BB consisting of 55 nodes in the
����� application, which is 99.15% of the overall runtime of
the UN algorithm. On contrast, the same BB was analyzed by
the SC algorithm in a mere 4.7 ms.

Since both SC and UN have exponential complexity, their
runtimes are a few orders of magnitude higher than for MM.
In average, MM is 96.94x faster than the SC algorithm.

The identification times for BBs of similar sizes also
vary significantly for the same algorithm since the number
of candidates that need to be actually considered in a BB
depends not only on the total size of the BB but also on the
structure of the represented DFG, the number and location
of infeasible instructions in the DFG, the architectural
constraints, and other factors. For example, it took the SC
algorithm 1707 ms to analyze a BB of �������� with 102
instructions, while the analysis of a slightly larger BB in
��
���� with 120 instructions took only 76 ms, which is
a 22.5x difference in runtime. This example illustrates that
it is impossible to accurately estimate the runtime of the
exponential ISE algorithms SC and UN in advance when
basing the estimation solely on the size of the BB.

It is worth pointing out that for keeping the search space
and thus the algorithm runtimes manageable, we had to
apply rather tight architectural constraints for the custom
instructions (4 inputs, 1 output) in our comparison of ISE
algorithm in Table 5. When loosening these constraints, the
execution times for the SC and UN algorithms rapidly grow
from seconds to many hours.

International Journal of Reconfigurable Computing 15

The overall runtime characterization of the instruction
identification algorithms is summarized in Figure 4 which
plots the runtime of the different algorithms for varying
BB sizes. Each data point represents an average which was
computed by running the ISE algorithm 1000 times on each
BB. The multitude of data points for a fixed BB size illustrates
that the runtime of the same algorithm can vary over several
orders of magnitude for BBs which have an equal size but
differ in their structure as pointed out above. This effect is
particularly strong for larger BBs where many variants of
DAG structures exist.

For visualizing the overall behavior of the algorithms
we have also added the average runtime for the SC and the
UN algorithms for each BB size. It can be observed that the
variability for the UN algorithm is larger than for the SC
algorithm. Another interesting observation is that although
the SC and UN algorithms have a worst-case algorithmic
complexity of O(exp), on average their runtime is only
polynomial O(n2), which can be seen by comparing the blue
dotted lines with the red and green lines, respectively.

We are able to fit the runtime of the MM algorithm with
a linear polynomial model which is represented with a black
line which has an almost ideal characteristic (goodness of
the fit: R2 = 0.9995). This means that the runtime of the
MM algorithm always depends linearly on the BB size O(n).
Unfortunately, the behavior of the other algorithms is not
sufficiently regular to perform a meaningful curve fitting
with similar quality.

In general, we can say that the MM is the fastest algorithm
and outperforms the SC and UN algorithms easily in terms of
runtime for small, medium, and large basic blocks. For small
BBs of up to 10 instructions, the runtime difference is in the
range of up to an order of magnitude; for medium inputs
(102 instructions), up to two orders of magnitude and for
the largest BBs (103 and more instructions), a difference of
more than three orders of magnitude can be observed. While
the runtime of the MM stays on the millisecond time scale
even for the largest inputs, the SC and UN algorithms work
on a scale of seconds or minutes.

It is important to note that runtime of the exponential
algorithms tend to literally explode when these algorithms
are constrained less tightly than 4 input 1 output (41), in
particular when allowing a larger number of outputs. For
instance, when applying an 8-input 2-output (82) constraint,
common runtimes are in the order of 108 ms, which is three
orders of magnitude higher than for the 41 constraint.

In terms of runtime, SC is approximately one order of
magnitude faster than UN. However, the runtime for both
algorithms grows similarly for increasing BB sizes with the
exception of significant outliers for the UN algorithm, for
peaks with a runtime difference of three orders of magnitude
which can be observed for large BBs. A similar behavior was
also found for architectural constraints other than 41.

The results presented here have been obtained using
a special benchmarking mode of our tool flow where the
instruction candidates are identified but not copied to a
separate data structure for further processing. Additionally,
the time needed to reject overlapping candidates for SC
algorithm as well as the time needed for the MM algorithm

to validate condition (1) presented in Section 6 was not in-
cluded. As a result, the runtimes of the candidate identifica-
tion algorithms will be slightly longer in practice when they
are applied as part of the complete tool flow.

12.2. Candidates Found by the ISE Algorithms. The number
of candidates found by the ISE identification algorithms is
presented in columns 8, 7, and 9 of Table 5. In addition, an
overview of all identified candidates as a function of the BB
size is shown in Figure 5, while Figure 6 presents a close up
of the same data for medium-sized BBs. As illustrated by the
red line in Figure 5, the SC and the UN algorithms generate
an equal number of candidates, given that the same archi-
tectural constraints are used and that any overlapping UDCI
candidates generated by the SC algorithm are removed.

In general, the total number of subgraphs that can be
created from an arbitrary graph G is exponential exp(n)
in the number of nodes of G. For ASIP specialization sce-
narios, that is, when architectural constraints are applied
cf. conditions (1), (2), and (4) [29] has shown that the
number of subgraphs is bounded by n(Cin+Cout+1). Thus, for
the 4-input/1-output constraints applied in this study, the
search space is equal to n6, which is represented by the gray
dotted line found in the upper-left corner of Figure 5. When
applying the final constraint condition (3), the search space
is significantly reduced from n6 by at least a power of 4 to
n2, which is presented with the blue dotted line above all
results.

The black line represents a linear fitting for the MM algo-
rithm, whereas the red line shows a second-order polynomial
curve fitting for the SC and UN algorithms. The goodness of
these fits represented with R2 parameter is equal to 0.9663 for
MM and to 0.9564 for the SC and UN algorithms. Therefore,
it is safe to assume that the number of candidates for the
4-input/1-output constraint is limited by a second-order
polynomial.

Figure 6 shows that the longer runtimes of the SC and
the UN algorithm also result in the identification of more
candidates. The difference for small and medium BBs is up
to one order of magnitude and increases for even larger BBs.

The data points (number of candidates) were obtained by
running the ISE algorithms on the applications presented in
Section 11. Thus, each data point is associated with a single
BB, and closely located data points tell that there are many
BBs of similar sizes.

It can be observed in Figure 6 that there are less data
points with large BBs than medium or small BBs. This is a
consequence of the distribution of basic block sizes; that is,
most BBs found in these applications have sizes of up to 100
instructions. For such BBs, the number of feasible candidates
reaches more than 10 when using the MM algorithm and
more than 100 when using the SC and UN algorithms.
Given that the average application has at least a few dozens
(38 for embedded) or hundreds (1709 for scientific) of BBs
this results in thousands of feasible candidates that are
suitable for hardware implementation. In our experiments,
we considered 3328 MM (50724 SC) candidates for the
scientific and 68.5 MM (547.75 SC) candidates for the em-
bedded applications. These high numbers are more than

16 International Journal of Reconfigurable Computing

enough since an average ISA consists of around 80 core
instructions for X86 platform and around 100 for PowerPC.
If one assumes 10% modification to the ISA, it results in a
task of selecting less than 10 UDCI instructions from a set of
thousands of feasible candidates.

The number of found candidates depends strongly on
the architectural constraints that are applied. Tighter con-
straints, that is, allowing a smaller number of inputs and out-
puts, lead to a smaller number of candidates for the SC and
UN algorithm. This behavior can be seen in Figure 6 where
the average number of candidates is plotted as a function of
the BB size for various constraints. There are two groups of
constraints: the 21,41 and 22,42, between which a rising gap
of one order of magnitude is established. Applying the MM
algorithm to BBs with a size of 100 instructions leads to more
than 10 feasible candidates whereas applying SC or UN leads
to more than 100 candidates for the first set of constraints
and even two orders of magnitude more candidates (104) for
the second set of constraints. This validates the second-order
polynomial characteristic n2 of the number of candidates for
the SC or UN algorithms.

The similar behavior of the lines representing the average
number of identified candidates is caused by the less or equal
(≤) relationships found in conditions (1) and (2). That is, the
less constrained algorithms (like 41) include all candidates of
more constrained ones like 21. The area between the red and
gray line corresponds exactly to the number of additional
candidates found in less constrained algorithms. Also, the
graphs illustrate that the number of candidates depends
much stronger on the number of allowable outputs than on
the number of allowable inputs.

For BBs with sizes of approximately 75 instructions, we
see an interesting decay from which all ISE algorithms suffer.
This decay is found only in a concrete benchmark and is the
result of a high concentration of illegal instructions in basic
blocks of those sizes, for which only a few feasible candidates
were found.

Finally, it can be seen that the MM algorithm has a linear
characteristic a · n where a ≤ 1. The SC and UN algorithms
also show a linear characteristic with a ≥ 1 for the case of the
21 and 41 constraints, whereas for the 22 and 42 constraints,
the characteristic changes by a power (n2).

12.3. Achievable Performance Gain. The Max ASIP-SP Speed-
up columns presented in Table 5 describe the upper limit
of performance improvement that can be achieved with the
Woolcano reconfigurable ASIP architecture and the pre-
sented ASIP-SP. These values show the hypothetical best-case
potential in which all candidates found by three different
ISE algorithms are implemented as custom instructions. In
reality, the overheads caused by implementing all possible
instructions and the limited hardware resources of the recon-
figurable ASIP require pruning of the set of candidates that
are evaluated and implemented to a tractable subset. There-
fore, the speedup quoted in these columns should be treated
only as an upper boundary on the achievable performance.

The ISE algorithms have a lot to offer, reaching a speedup
of up to 44.62x for SC algorithm and 18.01x for MM and

UN algorithms. The average speedups achieved with MM,
SC, and UN are 1.71, 16.39, and 5.20, respectively for the
scientific applications and 9.19, 12.04, and 12.03 for the
embedded applications. For all applications, the average
speedups achieved with MM, SC, and UN are 3.85, 15.15,
and 10.02, with the value of median 1.57, 16.22, and 7.85,
respectively. These results clearly indicate that the SC algo-
rithm is superior for static systems where identification run-
times are not a major concern.

For a JIT specialization process, one needs to balance the
achievable speedup with the identification time. Comparing
the ratios of average speedup to identification runtime for
embedded applications results in the following ratios : 6.56
(MM), 1.25 (SC), and 0.01 (UN). These figures suggest that
the MM algorithm is the most suitable for such systems.
In addition, the considerable difference of 0.19 between
average speedups for different application sets suggests that
the MM algorithm could find better candidates in the smaller
applications with more pronounced kernels and that these
applications will benefit most from JIT-based systems.

It is important to remember that these results were
obtained for the first time for the FPGA-based Woolcano
architecture and not as presented in related work for a fixed
CMOS ASIP architecture. This distinction is significant since
the same hardware custom instructions will achieve signifi-
cantly higher speedups when implemented in CMOS tech-
nology, often by more than one order of magnitude. But at
the same time, a fixed architecture will sacrifice the flexibility
and runtime customization capabilities of the Woolcano
architecture.

13. Runtime Overhead of the ASIP
Specialization Process

As elaborated in the previous section, the reconfigurable
ASIP architecture is considerably faster than the underlying
CPU alone for both benchmark domains. Thus, the over-
heads of just-in-time software compilation, optimization,
and custom instruction generation can be amortized pro-
vided that the application will be executed long enough. In
this section, we analyze the achievable performance gains by
ASIP specialization, presented in Figure 2, and the runtime
costs of the three different phases of that process. These fig-
ures are used to compute for how long the application needs
to be executed until the hardware generation overheads are
amortized, that is, when a net speedup is achieved.

13.1. Candidate Search. As described in Section 4, the Candi-
date Search phase is responsible for finding and selecting only
the best custom instruction candidates from the software.
As this task is frequently very time consuming, we are using
our pruning mechanisms introduced in Section 9 to reduce
the search space for instruction candidates. The number of
selected candidates, after pruning, is indicated in the can
column of Table 6.

The third column of Table 6 represents the pruning effi-
ciency ratio which is defined as the quotient of two terms.
The first term is the ratio of the average maximum ASIP

International Journal of Reconfigurable Computing 17

speedup to the runtime of the identification algorithm when
no pruning is used. The second term is the same ratio
when using the @50pS3L pruning mechanism. The pruning
efficiency can be used as a metric to describe the relative gain
in the speedup-to-identification-time ratio with and without
pruning.

The blk and ins columns represent the number of basic
blocks and instructions which have been passed to the
identification process. These numbers are significantly lower
than the total number of blocks and instructions presented
in the 6th and 7th columns of Table 4. That is, the pruning
mechanism reduced the size of the bitcode that needs to be
analyzed in the identification task by a factor of 36.49x and
4.4x for scientific and embedded applications, respectively.

The overall runtime of the data pruning, identification,
estimation, and selection is aggregated in the real column.
The total candidate search time is in the order of milliseconds
and thus insignificant in comparison to the overheads in-
volved in the hardware generation.

13.2. Performance Improvements. The column ASIP ratio
represents the speedup of the augmented hardware archi-
tecture when all candidates selected by Candidate Search are
offloaded from the software to custom instructions. In con-
trast to the maximum performance shown in the 11th col-
umn in Table 5 which assumes that all candidates are moved
to hardware, the average speedup drops by 30% from 1.71x–
1.20x for scientific applications and by 46% from 9.19x–
4.98x for the embedded ones. Comparing the fft with the
470.lbm applications illustrates the main difference between
embedded and scientific applications. Both applications have
a similar speedup of 2.40x versus 2.53x, respectively, but
differ significantly in the number of candidates that need
to be translated to hardware to achieve these speedups (14
versus 179 candidates). This correlates with the previously
described observation that scientific applications have a
significantly larger kernel size.

13.3. Netlist Generation. The tasks discussed in this section
are represented by the second phase in Figure 2. The task
Generate VHDL is performed with the PivPav datapath gen-
erator which produces the structural VHDL code. The data-
path generator traverses the datapath graph of the candidate
and matches every node with a VHDL component. This is
a constant time operation requiring 0.2 s per candidate. The
extract netlist task retrieves the netlist files for each hardware
component used in the candidate’s VHDL description from
the PivPav database. This step allows reduction of the FPGA
CAD tool flow runtimes, since the synthesis process needs to
build only a final netlist for the top module. The next step is
to create the FPGA CAD project which is performed by PivPav
with the help of the TCL scripting language. After the project
is created, it is configured with the FPGA parameters and
the generated VHDL code as well as the extracted netlist files
are added. On average this process took 2.5 s per candidate,
making this the most time-consuming task of the netlist
generation phase. The average total runtime for these three
tasks is presented in the C2V column of Table 7 and amounts

Table 7: Constant overheads involved in the ASIP-SP. C2V corre-
sponds to the Netlist Generation phase in Figure 2. Syn, Xst, Tra,
and Bitgen are the FPGA CAD tool flow processes and correspond
to the syntax check, synthesis, translate, and partial reconfiguration
bitstream generation processes, respectively, which can be found in
the third phase in Figure 2.

C2V
[s]

Syn
[s]

Xst
[s]

Tra
[s]

Bitgen
[s]

Sum
[s]

Average 3.22 4.22 10.60 8.99 151.00 178.03

Stdev 0.10 0.10 0.23 1.22 2.43

to 3.22 s. As the standard deviation is only 0.10, this time can
be considered as constant.

13.4. Instruction Implementation. Once the project is created
it can be used to generate the partial reconfiguration bit-
stream representing the FPGA implementation of the custom
instruction. This step is performed with the FPGA CAD tool
flow which includes several steps. First, the VHDL source
code is checked for any syntax errors. The runtime of this task
is presented in the second column of Table 7. On average it
takes 4.22 s to perform this task for every candidate. Since the
stdev is very low (0.10) we can assume that this is a constant
time too.

Once the source code is checked successfully the synthesis
process is launched. Since all the netlists for all hardware
components are retrieved from a database there is no need to
resynthesize them. The synthesis process thus has to generate
a netlist just for the top-level module which on average took
10.60 s. The runtime of this task does not vary a lot since
the VHDL source code for all candidates has a very similar
structure and changes only with the number of hardware
components. After this step all netlists and constraint files
are consolidated into a single database with the translate task,
which runs for 8.99 s on average.

In the next step, the most computationally intensive parts
of the tool flow are executed. These are the mapping and the
place and route tasks which are not constant time processes
as the previous tasks, but their duration depends on the
number of hardware components and the type of operation
they perform. For instance, the implementation of the shift
operator is trivial in contrast to a division. The spectrum of
runtimes for the mapping process ranges from 40 s for small
candidates up to 456 s for large and complex ones, whereas
the place and route task takes 56 s–728 s. There is no strict
correlation between the duration of these processes; the ratio
of place and route and mapping runtimes vary from 1.4x
for small candidates to 2.5x for large candidates. The last
step in the hardware custom instruction generation process
is the bitstream generation. Our measurements show that
this is again a constant time process depending only on the
characteristics of the chosen FPGA. Surprisingly, the runtime
of this task is substantial. On average, 151 s per candidate are
spent to generate the partial reconfiguration bitstream. This
runtime is constant and does not depend on the character-
istics of a candidate. In many cases, the bitstream creation
consumed more time than all other tasks of the instruction

18 International Journal of Reconfigurable Computing

synthesis process combined (including synthesis and place-
and-route). The runtime is mainly caused by using the early
access partial reconfiguration Xilinx 12.2 FPGA CAD tools
(EAPR). In comparison, creating a full-system bitstream that
includes not only the custom instruction candidate but also
the whole rest of the FPGA design takes just 41 s on average
when using the regular (non-EAPR) Xilinx FPGA CAD tools.

In Table 7, we summarize the runtime of the processes
which cause constant overheads that are independent of the
candidate characteristics. These are the Candidate to VHDL
translation (C2V), Syntax Check (Syn), Synthesis (Xst), Trans-
lation (Tra), and Partial Reconfiguration Bitstream Generation
(Bitgen). The total runtime for these processes is 178.03 s
and is inevitable when implementing even the most simple
custom instruction. The Bitgen process accounts for 85% of
the total runtime.

The overall runtime involved in the FPGA CAD Tool
Flow execution is presented in the column Runtime Over-
heads in Table 6. The column const represents the runtime
of constant processes shown in Table 7. The column map
stands for the mapping process, the column par for the place
and route, and the values in the column sum adds all three
columns together. These columns aggregate the total runtime
involved in the generation of all candidates for a given appli-
cation. The candidate’s partial reconfiguration times were
not included in these runtimes since they consume just a
fraction of a second [6]. On average it takes less than 50 min-
utes (49 : 53 min) to generate all candidates for the embedded
applications but more than 4 : 30 hours (270 : 28 min) for the
scientific applications. One can see that this large difference
is closely related to the number of candidates and that sum
column grows proportionally with the number of candidates.
This behavior can be observed for example for the 444.namd
and the 470.lbm applications, which consist of 179 and
129 candidates, respectively. The total runtime overhead for
them is more than 11 hours (678 : 13 min) and 17 hours
(1021 : 22 min), respectively and is caused primarily by the
high constant time overheads (const).

This observation emphasizes the importance of the
pruning algorithms, particularly for the large scientific
applications. We can observe the difference for the embedded
applications where a smaller number of candidates exists. On
average, the const time drops for the scientific applications
from 146 : 34 min to 24 : 28 min, that is, by a factor of
5.99x, which is exactly the difference in the number of
candidates (can) between the scientific and the embedded
applications.

13.5. Break-Even Times. In this section, we analyze the break-
even time for each application; that is, the minimal time each
application needs to execute before the overheads caused by
the ASIP-SP is compensated.

A simplistic way of computing the break-even time would
be to divide the total runtime overhead (sum in Table 6)
by the time saved during one execution of the application,
which can be computed using the VM execution time
and the Max ASIP Speedup (speedup) (see Table 5). This
computation assumes a scenario, where the size of the input
data is fixed and the application is executed several times.

We have followed a more sophisticated approach of com-
puting the break-even time, which assumes that more input
data is processed instead of multiple execution of the same
application. Hence, the additional runtime is spent only in
the parts of the code which are live while code parts that
are const or dead are not affected. To this end, we use the
information about the execution frequency of basic blocks
and the variability of this execution frequency for different
benchmark sizes which we have collected during profiling;
see Section 11.3. The resulting break-even times are pre-
sented in the last column of Table 6.

It is evident that there exists a major difference in the
break-even times for the embedded and the scientific appli-
cations. While the break-even time of the embedded applica-
tions is in the order of minutes to a few hours, the scientific
applications need to be executed for days to amortize the
overhead caused by custom instruction implementation
(always under the assumption that all candidates are imple-
mented in hardware). The reason for these excessive times is
the combination of rather long ASIP-SP runtimes (>4 : 30 h)
and modest performance gains of 1.2x. As described above,
the long runtimes are caused by implementing many can-
didates. One might expect that this large number of custom
instructions should cover a sizable amount of the code and
that significant speedups should be obtained, but evidently
this is not the case. The reason for this is that the custom
instructions are rather small, covering only 6.9 IR instruc-
tions on average. Although there are many custom instruc-
tions generated, they cover only a small part of the whole
computationally intensive kernels of the scientific applica-
tion, which has a size of 1764 IR instructions on average.
Adding more instructions will not solve this issue since every
candidate adds an additional FPGA CAD tool flow overhead.

In contrast, the break-even point for embedded applica-
tions is reached more easily. On average, the break-even time
is five orders of magnitude lower for these applications. In
contrast to the scientific applications, the custom instruc-
tions for embedded application can cover a significant part
of the computationally intensive kernel. This results in rea-
sonable performance gains with modest runtime overheads.
For an average-embedded application, a 5x speedup can be
achieved, resulting in a runtime overhead of less than 50
minutes and a break-even time of less than 2 hours.

The difference between scientific and embedded applica-
tions is not caused by a significant difference in the number
of IR instructions in the selected candidates. Scientific
applications have on average 7.31 instructions per candidate,
while embedded applications have on average 6.5 instruc-
tions per candidate.

Since we cannot decrease the size of the computational
kernel, we should strive for finding larger candidates in order
to cover a larger fraction of the kernel. Unfortunately, this
turns out to be difficult because the reason that the candi-
dates are small is that the BBs (blk) in which they are iden-
tified are also small. The average basic block has only 7.64
(5.94) IR instructions for a scientific (embedded) application
(see Table 5).

The pruning mechanism we are using is directing the
search for custom instruction to the largest basic blocks;

International Journal of Reconfigurable Computing 19

hence, the average basic block that passes the pruning
stage has 155.65 instructions for a scientific and 29.71 for
embedded application (see Table 6). However, even these
larger blocks include a sizable number of the hardware-
infeasible instructions, such as accesses to global variables or
memory, which cannot be included in a hardware custom
instruction. As a result, there are only 7.31 instructions per
candidate in a scientific application which causes high break-
even times for them.

This observation illustrates that there are practical limi-
tations for the ASIP-SP when using code that has been com-
piled from imperative languages.

14. Reduction of Runtime Overheads

In this section, we propose two approaches for reducing the
total runtime overheads and in turn also the break-even
times: partial reconfiguration bitstream caching and acceler-
ation of the CAD tool flow.

14.1. Partial Reconfiguration Bitstream Caching. As in many
areas of computer science, caching can be applied also in the
context of our work. Much like virtual machines cache the
binary code that was generated on the fly for further use, we
can cache the generated partial bitstreams for each custom
instruction. To this end, each candidate needs to have a
unique identifier that is used as a key for reading and writing
the cache. We can, for example, compute a signature of the
LLVM bitcode that describes the candidate for this purpose.
The cached bitstreams can be stored for example in an on-
disk database.

14.2. Acceleration of the CAD Tool Flow. A complementary
method for reducing the runtime overheads is to accelerate
the FPGA CAD tool flow. There are several options to achieve
this goal. One possibility is to use a faster computer that
provides faster CPUs and faster and larger memory or to
run the FPGA tool concurrently. Alternatively, it may be
possible to use a smaller FPGA device, since the constant
processes of the tool flow depend strongly on the capacity
of the FPGA device. We have used a rather large Virtex-4
FX100 device, therefore switching to a smaller device would
definitely reduce the runtime of the tool flow. Another option
would be to use a memory file system for storing the files
created by the tool flow. As the FPGA CAD tool flow is
known to be I/O intensive, this should speed up the tool flow.
Finally, we could change our architecture to a more coarse-
grained architecture with simplified computing elements and
limited or fixed routing. It has been shown that it is possible
to develop customized tools for such architectures which
work significantly faster [30].

14.3. Extrapolation. In Table 8 we calculate the average
breaking-even time for the embedded applications when ap-
plying these ideas. When the cache is disabled and we do
not assume any performance gain from the tool flow, the
first value is equal to the AVG E row and the last column in
Table 6. One can note also that these values do not scale

Table 8: The average breaking-even time for the embedded appli-
cations using a partial reconfiguration bitstream cache and a faster
FPGA CAD tool flow.

Faster FPGA CAD tool flow [%]

Cache 0 30 60 90

hit [%] [h : m : s] [h : m : s] [h : m : s] [h : m : s]

0 01 : 59 : 55 01 : 24 : 48 00 : 48 : 27 00 : 12 : 07

10 01 : 47 : 44 01 : 15 : 25 00 : 43 : 06 00 : 10 : 46

20 01 : 32 : 59 01 : 05 : 05 00 : 37 : 11 00 : 09 : 18

30 01 : 28 : 09 01 : 01 : 42 00 : 35 : 15 00 : 08 : 49

40 01 : 13 : 08 00 : 51 : 11 00 : 29 : 15 00 : 07 : 19

50 01 : 01 : 00 00 : 42 : 42 00 : 24 : 24 00 : 06 : 06

60 00 : 48 : 50 00 : 34 : 10 00 : 19 : 32 00 : 04 : 53

70 00 : 35 : 12 00 : 24 : 38 00 : 14 : 05 00 : 03 : 31

80 00 : 29 : 19 00 : 20 : 31 00 : 11 : 43 00 : 02 : 56

90 00 : 14 : 07 00 : 09 : 53 00 : 05 : 39 00 : 01 : 24

linearly because we consider the frequency information for
basic blocks.

For this evaluation, we varied the assumed cache hit rate
to be between 0%–90%. That is, for simulating a cache with
a 20% hit rate, we have populated the cache with 20% of
the required bitstreams for a particular application, whereas
the selection whose bitstreams are stored in the cache is
random. Whenever there is a hit in the cache for a given
candidate, the whole runtime associated with the generation
of the candidate is subtracted from the total runtime; see
sum column in Table 6. The values in the Faster FPGA CAD
tool flow columns are decreasing linearly with the assumed
speedup.

If we assume that the FPGA CAD tool flow can be
accelerated by 30% and that we have 30% cache hits, the
average break-even time drops almost by half (1.94x), from
1 : 59 : 55 h to 1 : 01 : 42 h. This means that the whole runtime
of the ASIP-SP could be compensated in a bit more than one
hour and for the rest of the time the adapted architecture
would provide a performance gain by an average factor of 5x.
These assumptions are modest values since the cache hit rate
depends only on the size of the cache, and our Dell T3500
workstation could be easily replaced by a faster one.

15. Conclusion and Future Work

In this work, we have studied the just-in-time ASIP-SP for
an FPGA-based reconfigurable architecture. The most signif-
icant parts of this process, including the candidate identifi-
cation, estimation, selection, and pruning mechanisms were
not only described with precise formalisms but were also
experimentally evaluated. In particular, we discussed and
compared characteristics of three state-of-the-art instruction
set extension algorithms in order to study the candidate iden-
tification mechanism in detail. This study included not only
algorithm runtimes, number of found UDCI candidates,
their properties, and impact of algorithm constraints on the
search space, but more importantly the achievable maximum

20 International Journal of Reconfigurable Computing

performance gains for various embedded computing and
scientific benchmark applications.

The study of the ASIP process was performed both
separately for every element but more importantly also for
the entire ASIP process, where the feasibility and limitations
were investigated. The study has shown that for embedded
applications an average speedup of 5x can be achieved with
a runtime overhead of less than 50 minutes. This overhead
can be compensated if the application executes for two hours
or for one hour when assuming a 30% cache hit rate and a
faster FPGA CAD tool flow. Our study further showed that
the larger and more complex software kernels of scientific
applications, represented by the SPEC benchmarks, do not
map well to custom hardware instructions targeting the
Woolcano architecture and lead to excessive times until the
break-even point is reached. The reason for this limitation
can be found in the properties of the intermediate code
generated by LLVM when compiling C code, in particular,
rather small basic block sizes with an insufficient amount
of instruction level parallelism. Similar results are expected
for other imperative languages. Simultaneously, this work
has explored the potential of our Woolcano reconfigurable
architecture, the ISE algorithms, and pruning mechanism for
them as well as the PivPav estimation and datapath synthesis
tools.

References

[1] P. Ienne and R. Leupers, Customizable Embedded Processors:
Design Technologies and Applications, Morgan Kaufmann, San
Francisco, Calif, USA, 2006.

[2] M. J. Wirthlin and B. L. Hutchings, “Dynamic instruction set
computer,” in Proceedings of the 3rd IEEE Symposium on FPGAs
for Custom Computing Machines, (FCCM ’95), pp. 99–107,
IEEE Computer Society, April 1995.

[3] R. Razdan and M. D. Smith, “A high-performance microar-
chitecture with hardware-programmable functional units,” in
Proceedings of the 27th International Symposium on Microar-
chitecture, (MICRO ’94), pp. 172–180, ACM, New York, NY,
USA, November 1994.

[4] Z. A. Ye, A. Moshovos, S. Hauck, and P. Banerjee, “Chimaera:
a high-performance architecture with a tightly-coupled recon-
figurable functional unit,” in Proceedings of the 27th Annual
International Symposium on Computer Architecture, (ISCA
’00), pp. 225–235, ACM, June 2000.

[5] P. M. Athanas and H. F. Silverman, “Processor reconfiguration
through instruction-set metamorphosis,” Computer, vol. 26,
no. 3, pp. 11–18, 1993.

[6] M. Grad and C. Plessl, “Woolcano: an architecture and tool
flow for dynamic instruction set extension on Xilinx Virtex-
4 FX,” in Proceedings of the 9th International Conference on
Engineering of Reconfigurable Systems and Algorithms (ERSA
’09), pp. 319–322, CSREA Press, Monte Carlo Resort, Nev,
USA, July 2009.

[7] J. M. Arnold, “S5: the architecture and development flow
of a software configurable processor,” in Proceedings of the
International Conference on Field Programmable Technology,
(ICFPT ’05), pp. 121–128, IEEE Computer Society, Kent Ridge
Guild House, Singapore, December 2005.

[8] S. Borkar, “Design challenges of technology scaling,” IEEE
Micro, vol. 19, no. 4, pp. 23–29, 1999.

[9] M. Grad and C. Plessl, “An open source circuit library with
benchmarking facilities,” in Proceedings of the 10th Interna-
tional Conference on Engineering of Reconfigurable Systems and
Algorithms (ERSA, ’10), T. P. Plaks, D. Andrews, R. F. DeMara
et al., Eds., pp. 144–150, CSREA Press, Las Vegas, Nev, USA,
July 2010.

[10] M. Grad and C. Plessl, “Pruning the design space for just-in-
time processor customization,” in Proceedings of the Interna-
tional Conference on ReConFigurable Computing and FPGAs
(ReConFig ’10), pp. 67–72, IEEE Computer Society, Cancun,
Mexico, December 2010.

[11] M. Grad and C. Plessl, “Just-in-time instruction set ex-
tension—feasibility and limitations for an FPGA-based recon-
figurable ASIP architecture,” in Proceedings of the 18th Recon-
figurable Architectures Workshop, (RAW ’11), pp. 278–285,
IEEE Computer Society, May 2011.

[12] M. Wazlowski, L. Agarwal, T. Lee et al., “PRISM-II compiler
and architecture,” in Proceedings of the IEEE Symposium on
Field-Programmable Custom Computing Machines, (FCCM
’93), pp. 9–16, IEEE Computer Society, April 1993.

[13] C. Galuzzi and K. Bertels, “The instruction-set extension
problem: a survey,” in Proceedings of the International Confer-
ence on Architecture of Computing Systems, (ARCS ’08), Lecture
Notes in Computer Science, no. 4943, pp. 209–220, Springer/
Kluwer Academic, Dresden, Germany, February 2008.

[14] R. J. Hookway and M. A. Herdeg, “DIGITAL FX!32: com-
bining emulation and binary translation,” Digital Technical
Journal, vol. 9, no. 1, pp. 3–12, 1997.

[15] V. Bala, E. Duesterwald, and S. Banerjia, “Transparent dy-
namic optimization,” Tech. Rep. number HPL-1999-78, HP
Laboratories Cambridge, 1999.

[16] K. Ebcioglu and E. R. Altman, “DAISY: dynamic compilation
for 100% architectural compatibility,” in Proceedings of the
24th Annual International Symposium on Computer Architec-
ture, pp. 26–37, New York, NY, USA, June 1997.

[17] F. Vahid, G. Stitt, and R. Lysecky, “Warp processing: dynamic
translation of binaries to FPGA circuits,” Computer, vol. 41,
no. 7, pp. 40–46, 2008.

[18] A. C. S. Beck and L. Carro, “Dynamic reconfiguration with
binary translation: breaking the ILP barrier with software
compatibility,” in Proceedings of the 42nd Design Automation
Conference, (DAC ’05), pp. 732–737, New York, NY, USA, June
2005.

[19] L. Pozzi, K. Atasu, and P. Ienne, “Exact and approximate
algorithms for the extension of embedded processor instruc-
tion sets,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 25, no. 7, pp. 1209–1229,
2006.

[20] P. Yu and T. Mitra, “Scalable custom instructions identifica-
tion for instruction-set extensible processors,” in Proceedings
of the International Conference on Compilers, Architecture,
and Synthesis for Embedded Systems, (CASES ’04), pp. 69–78,
Washington, DC, USA, September 2004.

[21] C. A. William, W. Fornaciari, L. Pozzi, and M. Sami, “A DAG-
based design approach for reconfigurable VLIW processors,”
in Proceedings of the Design, Automation and Test in Europe
Conference, (DATE ’99), pp. 778–779, ACM, Munich, Ger-
many, January 1999.

[22] J. Gong, D. D. Gajski, and S. Narayan, “Software estimation
from executable specifications,” Journal of Computer Software
Engineering, vol. 2, pp. 239–258, 1994.

[23] The PowerPC 405TM Core, IBM, 1998.

International Journal of Reconfigurable Computing 21

[24] A. Ray, T. Srikanthan, and W. Jigang, “Practical techniques for
performance estimation of processors,” in Proceedings of the
International Workshop on System-on-Chip for Real-Time
Applications, (IWSOC ’05), pp. 308–311, IEEE Computer
Society, Washington, DC, USA, 2005.

[25] B. So, P. C. Diniz, and M. W. Hall, “Using estimates from
behavioral synthesis tools in compiler-directed design space
exploration,” in Proceedings of the 40th Design Automation
Conference, pp. 514–519, New York, NY, USA, June 2003.

[26] Floating-Point Operator v5.0, Xilinx.

[27] N. Maheshwari and S. S. Sapatnekar, Timing Analysis and
Optimization of Sequential Circuits, Springer/Kluwer Aca-
demic Publishers, Norwell, Mass, USA, 1999.

[28] R. Meeuws, Y. Yankova, K. Bertels, G. Gaydadjiev, and S.
Vassiliadis, “A quantitative prediction model for hardware/
software partitioning,” in Proceedings of the International
Conference on Field Programmable Logic and Applications, (FPL
’07), pp. 735–739, Amsterdam, The Netherlands, August 2007.

[29] P. Bonzini and L. Pozzi, “Polynomial-time subgraph enumer-
ation for automated instruction set extension,” in Proceedings
of the Design, Automation and Test in Europe Conference and
Exhibition, pp. 1331–1336, Nice, France, April 2007.

[30] E. Bergeron, M. Feeley, and J. P. David, “Hardware JIT com-
pilation for off-the-shelf dynamically reconfigurable FPGAs,”
in Proceedings of the Joint European Conferences on Theory and
Practice of Software 17th International Conference on Compiler
Construction (CC/ETAPS’08), pp. 178–192, Springer-Verlag,
Berlin, Heidelberg, 2008.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

