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Abstract In this paper, we present a new approach to the
construction of Mellin–Barnes representations for Feynman
integrals inspired by the Method of Brackets. The novel
technique is helpful to lower the dimensionality of Mellin–
Barnes representations in complicated cases, some examples
are given.

1 Introduction

The evaluation of multi-loop Feynman integrals is one of the
basic building blocks in phenomenological and theoretical
studies in quantum field theory. For this purpose, many tech-
niques have been developed over the years. For an overview
see e.g. [1]. Among the most successful ones are the method
of differential equations [2–4], Mellin–Barnes (MB) inte-
gral representations [5,6], and, for numerical evaluations,
the method of sector decomposition [7–9].

After the construction of a MB representation for a given
Feynman integral, one has a large amount of public tools at
hand for their subsequent evaluation. For example one can
resolve singularities [10,11], expand in dimensional and ana-
lytic regulators [10], perform an asymptotic expansion [12],
add up residues in terms of multi-fold sums [13] or numeri-
cally evaluate the integrals in the Euclidean domain [10]. For
a long time the numerical evaluation of MB integrals with
physical kinematics was an unresolved problem. However,
significant progress was recently made also in that direc-
tion [14–16] (see also [17] for a first application).

Obviously, for all these applications one prefers to have
a low number of MB integrations in the representation. This
number strongly depends on the technique used to con-
struct the representation. Two widely used techniques are the
loop-by-loop approach [18,19] and the global approach [14,
20], both implemented in the public Mathematica package
AMBRE [14,18–20]. In the context of this paper, we denote a
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MB representation as better if it requires a lower number of
MB integrations.

Besides the already mentioned methods for the evalua-
tion of Feynman integrals there exist also many less known
techniques. One of them is the Method of Brackets [21–23].
This method is an improvement of an older technique called
Negative Dimension Integration [24].

The Method of Brackets defines a small set of simple rules
which, when applied to a Schwinger parametrized Feynman
integral, yields a set of multi-fold sums. Unfortunately, in
many cases not all of these sums contribute to the final result
and it is sometimes hard to tell which sum does contribute
and which sum should be neglected.

In this paper we modify the Method of Brackets so that it
leads to a set of multi-dimensional MB integrals instead of
a set of multi-fold sums. From this set of solutions a single
multi-dimensional MB integral contains the full result of the
Feynman integral. The ambiguity of the original method is
therefore not present.

Reference [21] describes a factorization procedure for
the Symanzik polynomials that appear in the Schwinger
parametrization of Feynman integrals. This factorization
reduces the multiplicity of the resulting multi-fold sums in
the context of the original Method of Brackets. In our adapted
version the same optimization helps to minimize the number
of MB integrations in the constructed representation. This
number is in some cases even smaller than for the best result
the Mathematica package AMBRE can provide. The modi-
fied Method of Brackets is applicable for both planar and
non-planar Feynman diagrams.

In Sect. 2 we derive a set of rules for the adapted Method
of Brackets in analogy to the rules defined in [23]. Section 3
discusses the optimization of Symanzik polynomials. In Sect.
4 an example of the method is presented in great detail. At
last, we compare our approach with the results of the AMBRE
package for a couple of Feynman integrals in Sect. 5.
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2 The modified Method of Brackets

The original Method of Brackets is based on Ramanujan’s
master theorem [25] which states that if a function g(x)
admits a Taylor expansion

g(x) =
∞∑

n=0

G(n)
(−x)n

n! , (2.1a)

the integral over the parameter x is given by

∞∫

0

dx xα−1g(x) = �(α)G(−α). (2.1b)

The similarity of this relation to the well-known Mellin-
transform

f (x) =
c+i∞∫

c−i∞

dz

2π i
x z F(z), (2.2a)

with

∞∫

0

dx xα−1 f (x) = F(−α) (2.2b)

allows reformulating the Method of Brackets in a way that
leads to MB representations instead of multi-fold sums.

Utilizing (2.1), the original Method of Brackets formu-
lates a set of simple rules to rewrite a Schwinger parametrized
Feynman integral (2.4) into a so-called presolution of the dia-
gram – a multi-fold sum over �-functions and newly intro-
duced objects called brackets [23]. The brackets in the pres-
olution can then be eliminated using only linear algebra.

In this section we present a similar set of rules, but our
presolution will be a multi-dimensional MB integral instead
of a multi-fold sum.

2.1 Schwinger parametrization

The starting point to apply the Method of Brackets to
Feynman integrals is Schwinger parametrization. An L-loop
Feynman integral in Euclidean space-time is given by

I (a1, . . . , aN ) =
∫

ddl1
πd/2 · · ·

∫
ddlL
πd/2

× 1

[P2
1 + m2

1]a1 · · · [P2
N + m2

N ]aN , (2.3)

where the momenta Pi are linear combinations of loop
momenta and external momenta. For physical Feynman inte-
grals with a Minkowski space-time metric one can usually

perform a Wick-rotation [26] to transform the integral into
the form (2.3).

The Schwinger parameters xi are introduced for all prop-
agators with the well known formula

1

[P2
i + m2

i ]ai
= 1

�(ai )

∞∫

0

dxi x
ai−1
i e−xi [P2

i +m2
i ].

Afterwards the integrations over the loop-momenta can be
performed loop-by-loop via
∫

ddl

πd/2 e
−αl2+2ql = α−d/2eq

2/α.

The result can be written as

I (a1, . . . , aN ) = 1

�(a1) · · · �(aN )

×
∞∫

0

dx1 xa1−1
1 · · ·

∞∫

0

dxN xaN−1
N

e−F/U−∑
i xim

2
i

Ud/2 .

(2.4)

The Symanzik polynomialsU and F depend on the Schwinger
parameters xi and can be read off directly from the Feynman
graph. For an overview of the properties of these graph poly-
nomials, see [27].

2.2 The bracket

The central object of the technique is the bracket, which is
defined as

〈α〉 ≡
∞∫

0

dx xα−1. (2.5)

Of course, this object by itself is not well-defined as the
integral on the right-hand side is divergent for all α. However,
it makes sense inside a MB integral

c+i∞∫

c−i∞

dz

2π i
〈α + z〉F(z) =

∞∫

0

dx

c+i∞∫

c−i∞

dz

2π i
xα+z−1F(z)

= F(−α), (2.6)

where in the last step we used Eq. (2.2). In contrast, the
original Method of Brackets interprets this object inside a
multi-fold sum using Ramanujan’s master theorem (2.1).

2.3 The rules

The rules provided in this sub-section have to be applied
successively to a Schwinger parameterized Feynman integral
(2.4). In doing so, rule B has to be used multiple times if
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the Symanzik polynomials are given in optimized form (see
Sect. 3 for details).

Rule A: Exponential functions

The exponential function in (2.4) is first split into factors
using e−∑

i Ai = ∏
i e

−Ai so that every exponent Ai consists
only of a monomial or a monomial divided byU . Afterwards
the exponential functions are rewritten into contour integrals
using the Cahen–Mellin formula

e−Ai =
ci+i∞∫

ci−i∞

dzi
2π i

Azi
i �(−zi ). (2.7)

The contour is chosen such that all singularities coming from
�(−zi ) are to the right of the contour (i.e. ci < 0). The valid-
ity of this equation can be checked by closing the contour at
|zi | → ∞ to the right and using the residue theorem.

The factor Azi
i on the right-hand side of (2.7) should then

be expanded to a product of powers, where the base is a
single Schwinger parameter, the polynomial U , or one of the
symbols introduced by the optimization procedure described
in Sect. 3. After this, all powers of a common base have to
be combined, e.g.

U−d/2
( x1x3

U

)z1
( x1x4

U

)z2 = U−d/2−z1−z2xz1+z2
1 xz1

3 xz2
4 .

This rule corresponds to rule I in [23].

Rule B: Multinomials

Powers of multinomials occur after the insertion of the
Symanzik polynomials U or the re-substitution of the sym-
bols introduced by the optimization procedure in Sect. 3.
These powers can also be rewritten in terms of MB integrals
using the formula

(A1 + · · · + AJ )
α

= 1

�(−α)

c1+i∞∫

c1−i∞

dz1

2π i
· · ·

cJ+i∞∫

cJ−i∞

dzJ
2π i

〈z1 + · · · + z J − α〉

× Az1
1 · · · AzJ

J �(−z1) · · · �(−z J ). (2.8)

The formula can be derived by first applying Schwinger
parametrization to the left-hand side of (2.8) and then using
rule A and the definition of the bracket (2.5).

The factors Az1
1 , . . . , AzJ

J on the right-hand side of (2.8)
are treated in the same way as described for rule A.

This rule corresponds to rule III in [23].

Rule C: Schwinger parameters

After the application of rule A and B, the Schwinger integrals
should all be of the form
∞∫

0

dxi x
L(a1,...;z1,...)−1
i ,

where L(a1, . . . ; z1, . . .) is a linear combination of the
indices a j and the Mellin–Barnes variables z j . These inte-
grals can now be written as brackets using the definition (2.5):

∞∫

0

dxi x
L(a1,...;z2,...)−1
i = 〈L(a1, . . . ; z1, . . .)〉.

This rule corresponds to rule II in [23].

Rule D: Eliminating the brackets

Applying the rules A, B and C to a Schwinger parametrized
Feynman integral results in a presolution of the form

P =
c1+i∞∫

c1−i∞

dz1

2π i
· · ·

cJ+i∞∫

cJ−i∞

dzJ
2π i

×〈β1 + �α1 · �z〉 · · · 〈βK + �αK · �z〉 f (�z),
where J ≥ K and �z = (z1, . . . , z J )T .

We first consider the case J = K and define a K × K -
matrix A by

A =
⎛

⎜⎝
�αT

1
...

�αT
K

⎞

⎟⎠ ,

where we assume for now its invertibility. A change of basis
�z = −A−1�s leads to

P = 1

| det A|
d1+i∞∫

d1−i∞

ds1

2π i
· · ·

dK+i∞∫

dK−i∞

dsK
2π i

×〈β1 − s1〉 · · · 〈βK − sK 〉 f (−A−1�s).
Note the change in the integration contour to (d1, . . . , dK )T =
−A(c1, . . . , cK )T . Now all MB integrations can be solved
one by one using (2.6):

P = 1

| det A| f (−A−1 �β),

where �β = (β1, . . . , βK )T .
In the case J > K , this formula can be used to solve

K out of the J MB integrations. The result will be a (J −
K )-dimensional MB integral. Without loss of generality we
solve the MB integrals over z1, . . . , zK using the K brackets
while the J − K integrals over zK+1, . . . , z J should remain.
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Therefore, we arrange the first K integration variables into a
vector �z1 = (z1, . . . , zK )T and the variables of the remaining
integrals into a vector �z2 = (zK+1, . . . , z J )T . Now, we can
write down our last rule:
c1+i∞∫

c1−i∞

dz1

2π i
· · ·

cJ+i∞∫

cJ−i∞

dzJ
2π i

〈β1 + �α1 · �z1 + �γ1 · �z2〉

· · · 〈βK + �αK · �z1 + �γK · �z2〉 f (�z1, �z2)

= 1

| det A|

cK+1+i∞∫

cK+1−i∞

dzK+1

2π i
· · ·

cJ+i∞∫

cJ−i∞

dzJ
2π i

× f (−A−1 �β − A−1C �z2, �z2),

where the K × (J − K )-matrix C is given by C =
( �γ1, . . . , �γK )T . The vector �β and the matrix A are again
defined as K -dimensional quantities in the same way as
before.

The choice which integrals should be solved by this for-
mula and which integrals should remain is somewhat arbi-
trary. There are

( J
K

)
possibilities. Some of them lead to a

singular matrix A and yield no solution. All other choices1

lead to a possible MB representation for the full result, which
implies that we only have to consider one of them.

This is a major improvement from the original Method
of Brackets, where the individual sum only gives a partial
result for the Feynman integral and various choices (but not
all) have to be considered to obtain a full result.

We let the question unanswered, if some of the obtained
MB representations are in some sense better than others.
More studies are necessary to tackle this problem.

This rule corresponds to rule IV in [23].

3 Optimization procedure

Rules A to D applied to (2.4) are sufficient to obtain a MB
representation for a given Feynman integral. However, the
naïve application of these rules often leads to a huge number
of MB integrations in the result.

Better MB representations can be achieved by first ana-
lyzing the Symanzik polynomials U and F as well as the
polynomial

∑
i xim

2
i for sub-expressions (polynomials of

Schwinger parameters) that appear multiple times. These

1 Unfortunately, we cannot present a proof that a choice with det A 	= 0
always exists.

q

1

2

3

4

5

Fig. 1 Two-loop propagator diagram. Bold (thin) lines represent mas-
sive (massless) propagators

common sub-expressions are then substituted by new vari-
ables which are treated as Schwinger parameters. This can
be done recursively.

The Schwinger parametrized Feynman integral (2.4) can
now be treated with the set of rules given in Sect. 2.3 as
before. However, after the first application of rule B (to the
power of base U ), the intermediate result contains powers
of the variables introduced by the optimization, such that
rule C cannot yet be applied. These powers have to be, after
the corresponding sub-expressions are re-substituted, treated
by rule B as well. Only after all optimization variables have
been eliminated, one can continue with rule C.

This procedure reduces the number of MB integrals in the
result significantly. If a polynomial ξ with N terms appears
J times inU , F and

∑
i xim

2
i , the substitution of ξ decreases

the number of terms in these polynomials by J (N −1). After
rule A and the first application of rule B, the number of MB
integrals is therefore reduced by J (N −1) as well. However,
the other application of rule B, after ξ is re-inserted, produces
N additional MB integrals and one additional bracket. In the
end, this optimization leads therefore to a reduction of the
number of MB integrals in the final result (after rule D) by
(J − 1)(N − 1).

This optimization approach was first proposed in [21] in
the context of the original Method of Brackets. An algorithm
to find common sub-expressions in a list of polynomials is
given in Appendix.

4 Example

As an example, we consider the two-loop propagator diagram
in Fig. 1. The corresponding Feynman integral is given by

I (a1, . . . , a5) =
∫

ddl1
πd/2

∫
ddl2
πd/2

1

[l21 ]a1[(l1 − q)2]a2 [(l1 − l2)2 + m2]a3[l22 + m2]a4 [(l2 − q)2 + m2]a5
,
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and the Schwinger parametrization by

I (a1, . . . , a5) = 1

�(a1) · · · �(a5)

∞∫

0

dx1 xa1−1
1

· · ·
∞∫

0

dx5 xa5−1
5

e−F/U−m2(x3+x4+x5)

Ud/2 ,

with

U = x2x5 + x1x3 + x1x5 + x3x4 + x1x4

+ x2x3 + x3x5 + x2x4,

F = q2(x1x2x5 + x1x2x3 + x1x3x5 + x1x4x5 + x1x2x4

+ x2x4x5 + x2x3x4 + x3x4x5).

A naïve application of rules A to D without optimization
would lead to a 13-fold MB representation.

In order to reduce this number, we first identify common
sub-expressions in U , F and

∑
i xim

2
i = m2(x3 + x4 + x5)

and replace them by new variables ri :

r1 = x3 + x4,

r2 = r1 + x5,

r3 = r2x1 + x3x4,

U = r2x2 + r3 + x3x5,

F = q2(x2x4x5 + r1x1x5 + r3x2 + x3x4x5),
∑

i

xim
2
i = m2r2.

Rule A then leads to

I (a1, . . . , a5) =
∞∫

0

dx1 · · ·
∞∫

0

dx5

c1+i∞∫

c1−i∞

dz1

2π i

· · ·
c5+i∞∫

c5−i∞

dz5

2π i
(q2)z1234(m2)z5

�(−z1) · · · �(−z5)

�(a1) · · · �(a5)

×U−d/2−z1234r z2
1 r z5

2 r z3
3 xa1+z2−1

1 xa2+z13−1
2

xa3+z4−1
3 xa4+z14−1

4 xa5+z124−1
5 ,

where we introduced the notation zi jk··· = zi + z j + zk +· · ·
(and later also ai jk··· = ai + a j + ak + · · · ). Note that we
have combined all powers of a common base. As a next step,
the Symanzik polynomial U in optimized form is re-inserted
and rule B applied:

I (a1, . . . , a5) =
∞∫

0

dx1 · · ·
∞∫

0

dx5

c1+i∞∫

c1−i∞

dz1

2π i

· · ·
c8+i∞∫

c8−i∞

dz8

2π i
(q2)z1234 (m2)z5 〈d/2 + z1234678〉

× �(−z1) · · · �(−z8)

�(a1) · · · �(a5)�(d/2 + z1234)

× r z2
1 r z56

2 r z37
3 xa1+z2−1

1 xa2+z136−1
2

xa3+z48−1
3 xa4+z14−1

4 xa5+z1248−1
5 ,

Now, rule B must be used again three times for r3, r2 and r1

in that order2:

I (a1, . . . , a5) =
∞∫

0

dx1 · · ·
∞∫

0

dx5

×
c1+i∞∫

c1−i∞

dz1

2π i
· · ·

ce+i∞∫

ce−i∞

dze
2π i

(q2)z1234 (m2)z5

× 〈d/2 + z1234678〉〈z9a − z37〉〈zbc − z569〉〈zde − z2b〉
× �(−z1) · · · �(−ze)

�(a1) · · · �(a5)�(d/2 + z1234)�(−z37)�(−z569)�(−z2b)

× xa1+z29−1
1 xa2+z136−1

2 xa3+z48ad−1
3 xa4+z14ae−1

4 xa5+z1248c−1
5 .

Now we can apply rule C to obtain the presolution

I (a1, . . . , a5) =
c1+i∞∫

c1−i∞

dz1

2π i
· · ·

ce+i∞∫

ce−i∞

dze
2π i

(q2)z1234 (m2)z5

× 〈a1 + z29〉〈a2 + z136〉〈a3 + z48ad 〉
× 〈a4 + z14ae〉〈a5 + z1248c〉〈d/2 + z1234678〉
× 〈z9a − z37〉〈zbc − z569〉〈zde − z2b〉
× �(−z1) · · · �(−ze)

�(a1) · · · �(a5)�(d/2 + z1234)�(−z37)�(−z569)�(−z2b)
,

(4.1)

with 14 MB integrals and nine brackets, which leads to only
5 MB integrations at the end.

From the
(14

9

) = 2002 possibilities only 957 lead to a
non-singular matrix A. We choose for the example the MB
integrals over z1, z2, z3, z4, z7 to remain. The vectors �z1, �z2

and �β and the matrices A and C defined in rule D read

�z1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z5

z6

z8

z9

za
zb
zc
zd
ze

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, �z2 =

⎛

⎜⎜⎜⎜⎝

z1

z2

z3

z4

z7

⎞

⎟⎟⎟⎟⎠
, �β =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1

a2

a3

a4

a5
d
2
0
0
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

2 The MB integration variables are sorted as in z1, . . . , z9, za, . . . , ze.
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q1

q2

(a)

q1

q2

(b)

q1

q2

(c)

q1

q2

(d)

q

(e)

q

(f)

q

(g)

q

(h)

q1

q2 q3

(i)

q1

q2 q3

(j)

Fig. 2 Example two- and three-loop diagrams. Bold (thin) lines represent massive (massless) propagators

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 1 0 0 1 0

0 0 0 0 1 0 0 0 1

0 0 1 0 0 0 1 0 0

0 1 1 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0

−1 −1 0 −1 0 1 1 0 0

0 0 0 0 0 −1 0 1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

C =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0

1 0 1 0 0

0 0 0 1 0

1 0 0 1 0

1 1 0 1 0

1 1 1 1 1

0 0 −1 0 −1

0 0 0 0 0

0 −1 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Using the formulas of rule D, we have to substitute

z5 → d − a12345 − z1234, z6 → −a2 − z13,

z8 → −d

2
+ a2 − z247, z9 → −a1 − z2,

za → a1 + z237, zb → d

2
− 2a1 − a234 − z147 − 2z23,

zc → d

2
− a25 − z17, zd → d

2
− a123 − z3,

ze → −a14 − z12347

in (4.1), which yields the final five-dimensional MB repre-
sentation

I (a1, . . . , a5) =
c1+i∞∫

c1−i∞

dz1

2π i
· · ·

c4+i∞∫

c4−i∞

dz4

2π i

c7+i∞∫

c7−i∞

dz7

2π i
(m2)d−a12345−z1234(q2)z1234

× �(−z1) · · · �(−z4)�(−z7)�(−d + a12345 + z1234)�(a1 + z2)�(−d/2 + a123 + z3)

�(a1) · · · �(a5)

× �(a2 + z13)�(−d/2 + a25 + z1 − z7)�(−a1 − z237)�(d/2 − a2 + z247)

�(d/2 + z1234)�(−d + 2a12 + a345 + 2z1234)

× �(a14 + z12347)�(−d/2 + 2a1 + a234 + z147 + 2z23)

�(−z37)�(−d/2 + 2a1 + a234 + z1247 + 2z3)
.
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5 Comparison to AMBRE

In this section we compare the MB representations of the
diagrams in Fig. 2 obtained by our method to the represen-
tations constructed by the package AMBRE [14,18–20]. The
kinematics for the triangle diagrams in Fig. 2a–d is

q2
1 = q2

2 = 0, q1 · q2 = s

2
,

for the propagator diagrams in Fig. 2e–h

q2 = s,

and for the two box diagrams in Fig. 2i and j

q2
1 = q2

2 = q2
3 = 0, q1 · q2 = s

2
, q2 · q3 = t

2
,

q1 · q3 = − s

2
− t

2
.

The diagram in Fig. 2e is the example from Sect. 4.
For planar diagrams, we used the loop-by-loop approach

implemented in AMBRE version 2.1 [19] and tried out all
permutations of the loop momenta to find the representation
with a minimum number of MB integrations. We note that
the quality of the loop-by-loop approach also depends on the
momentum flow through the diagram.3 For non-planar dia-
grams, we used the global approach implemented in AMBRE
version 3.1.1 [14,20]. We tried to apply Barnes’ first lemma
to all representations, afterwards. Unfortunately, for none of
the representations constructed by the Method of Brackets
the lemma could be applied.

The results are given in Table 1. For the four diagrams
in Fig. 2a–d, our approach leads to a lower-dimensional MB
representation. However, for the four diagrams in Fig. 2e–h
AMBRE is able to construct better results. For the diagrams
in Fig. 2i and j both methods are comparable.

As shown in Table 1, our novel method can not provide
a full replacement of the techniques implemented in AMBRE
but could be helpful in some complicated cases.

We checked the representations obtained by AMBRE and
the Method of Bracket for numerical agreement using the
Mathematica packages MBresolve [11] and MB [10].
The numerical integration was performed via the
MBintegrate function of the package MB using the inte-
gration method Cuhre [28,29] implemented in the Cuba-
library [30]. For the kinematic variables, we chose the
Euclidean values s = −1/2, t = −1/3 and a mass m = 1
for the massive propagators. All propagator powers were
set to one and the ε-expansion was performed to next-to-
leading order. The most complicated representation for a
numerical integration was the seven dimensional representa-
tion for Fig. 2g obtained by the Method of Brackets. Here,
the maximum number of evaluation points had to be set

3 Thanks to Ievgen Dubovyk for pointing this out.

Table 1 The number of MB integrations of the representation con-
structed by the Method of Brackets compared to the best representation
constructed by the AMBRE-package [14,18–20]. The smaller number is
marked in bold. The last column gives the planarity of the diagram (P
= planar, NP = non-planar)

Diagram Method of brackets AMBRE Planarity

Figure 2a 7 13 NP

Figure 2b 1 2 P

Figure 2c 7 9 NP

Figure 2d 7 8 NP

Figure 2e 5 3 P

Figure 2f 9 4 P

Figure 2g 7 4 P

Figure 2h 5 4 P

Figure 2i 2 2 P

Figure 2j 2 2 P

to 2 × 109 and the runtime was about 16 h on 16 CPU
cores to achieve an agreement of the three most signifi-
cant digits of the numerical values. However, more advanced
integration algorithms may help to improve the accuracy
reached on a reasonable time scale even for such high dimen-
sional MB integrals. For recent developments in that direc-
tion, see [14,15]. All numerical values also agree with inde-
pendent results of the sector decomposition implementation
FIESTA [31].

6 Conclusion

In this article we presented a new technique to construct MB
representations. The approach is based on a reformulation of
the Method of Brackets. Our modified Method of Brackets
yields not only one but many possible MB representations
where every single one is a valid representation of the full
Feynman integral. This is a major improvement to the origi-
nal Method of Brackets, where the question which solutions
contribute to the full result was sometimes hard to answer.

A crucial part of the method is the optimization procedure.
Here, one has to analyze the graph polynomials for common
sub-expressions. With this optimization, the method is able
to produce low-dimensional MB representations. A simple
algorithm for this purpose is given in appendix.

The presented method can easily be implemented in a
computer code.

Besides the practical applications, the reformulation of the
Method of Brackets might help to deepen the understanding
of the original Method of Brackets. It seems to be possible
to relate the solutions of the original Method of Brackets in
terms of multi-fold sums to the sums over residues of the MB
representations obtained from our modified version.
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Appendix: Common sub-expressions

In this appendix, we present a possible algorithm to find
common sub-expressions in a given list of polynomials. The
recursive algorithm shown in Algorithm 1 is far from being
optimal but it proved nevertheless successful for all our tests.

The main function of the algorithm is commonBinomi-
als starting at line 46. The argument P is an array of poly-
nomials. Polynomials are in turn represented as arrays of
terms (monomials). Arrays all start at index one. The func-
tion commonBinomials should be called with p0 = t0 = 1
and an empty set r . The best optimization found by the algo-
rithm is returned in the global variables P̂ and r̂ , where r̂ is
a set of rules which, when repeatedly applied to the array of
polynomials P̂ , leads back to P .

The quality of an optimization is measured by the rank ρ

calculated by the function calcRank starting at line 6. The
rank ρ minus the number of propagators gives the number
of MB integrals in the result. The goal of the algorithm is,
therefore, to find an optimization, where ρ is minimal.

The first part (lines 48–78) of the algorithm fills an array J
with all possible optimizations which can be performed at the
current level of the recursion. In this step we scan for bino-
mials appearing in P more than once. The actual scan starts
at term t0 in polynomial p0. These arguments to the func-
tion commonBinomials are used to prevent scans of regions
already completed at a lower recursion-level. Lines 55 and
70 find all occurrences of the binomial b in all polynomials
in P . These occurrences are stored as triplets (p, t1, t2) in
the set B, where the first term of the binomial is found at
P[p, t1] and the second term at P[p, t2], and t2 > t1.

If the polynomials in P do not have common binomials
anymore, J is empty at line 80. In that case the optimization
is complete. If the rank ρ of this optimization is the lowest
so far, the optimization is stored in the global variables.

If J is not empty, there are still common binomials in
P . In principle, we could now try out all optimizations in J
one-by-one and then recursively call commonBinomials.

Unfortunately, for large polynomials the algorithm would not
terminate in a feasible time. For that reason, we only try out
the first N optimizations with the largest number of common
binomials. For a finite N < ∞, it is therefore not guaranteed
that the algorithm finds the best possible optimization. In
most test cases even very small values of N , e.g. 3 or 4, were
sufficicient to find very good obtimizations in only a few
seconds.

The lines 87 and 91 cause an early exit, if the optimization
at the current state is, even in the best-case scenario, not capa-
ble of producing a final optimization with a new minimum
rank.

The function commonBinomials only returns rules with
binomials on the right-hand side. In case, a symbol intro-
duced by the algorithm does not appear in the returned list
of optimized polynomials and only once on the right-hand
side of one rule, it can be re-substituted without changing
the rank of the optimization. This re-substitutions leads then
to new rules where the right-hand sides have more than two
terms.

Algorithm 1 Algorithm to find common binomials in a list
of polynomials

1: global variables
2: ρ̂ ← ∞
3: P̂ ← ()

4: r̂ ← {}
5: end global variables

6: function calcRank(P, r ) → ρ

7: in: P: an array of polynomials P
r : a set of rules

8: out: ρ : an integer
9: ρ ← |r | − 1
10: for all p ∈ P do
11: ρ ← ρ + |p|
12: end for
13: return ρ

14: end function

15: function replaceBinomials(P, B) → (P ′, r, p0, t0)
16: in: P: an array of polynomials

B: a set of triplets (p, t1, t2)
17: out:P ′: an array of polynomials

r : a rule
p0: an index to a polynomial in P ′
t0: an index to a term in P ′[p0]

18: (p0, t0) ← undef
19: P ′ ← an array with |P| empty elements
20: m1 ← P[B[1, 1], B[1, 2]]
21: m2 ← P[B[1, 1], B[1, 3]]
22: b ← m1 + m2

gcd(m1,m2)
23: ξ ← a new symbol name
24: r ← the rule “ξ → b”
25: D ← {}
26: for p ← 1 to |P| do
27: for t ← 1 to |P[p]| do
28: if (p, t) /∈ D then
29: if ∃(p, t1, t2) ∈ B : t = t1 ∨ t = t2 then
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30: m1 ← P[p, t1]
31: m2 ← P[p, t2]
32: append ξ · gcd(m1,m2) to P ′[p]
33: if (p0, t0) = undef then
34: (p0, t0) ← (p, |P ′[p]|)
35: end if
36: D ← D ∪ {(p, t1), (p, t2)}
37: else
38: append P[p, t] to P ′[p]
39: D ← D ∪ {(p, t)}
40: end if
41: end if
42: end for
43: end for
44: return (P ′, r, p0, t0)
45: end function

46: procedure commonBinomials(P, r, p0, t0, N )
47: in: P: an array of polynomials

r : a set of rules
p0: an index to a polynomial in P
t0: an index to a term in P[p0]
N : an integer

48: D ← {}
49: J ← ()

50: for t ← 1 to t0 − 1 do
51: if (p0, t, t0) /∈ D then
52: m1 ← P[p0, t]
53: m2 ← P[p0, t0]
54: b ← m1 + m2

gcd(m1,m2)
55: B ← set of all occurrences of binomial b in all

polynomials in P
56: D ← D ∪ B
57: if |B| > 1 then
58: add B to J
59: end if
60: end if
61: end for
62: for p1 ← p0 to |P| do

63: t ′0 =
{
t0 if p1 = p0

1 else

64: for t1 ← t ′0 to |P[p1]| do
65: for t2 ← t1 + 1 to |P[p1]| do
66: if (p1, t1, t2) /∈ D then
67: m1 ← P[p1, t1]
68: m2 ← P[p1, t2]
69: b ← m1 + m2

gcd(m1,m2)
70: B ← set of all occurrences of binomial b in all

polynomials in P
71: D ← D ∪ B
72: if |B| > 1 then
73: add B to J
74: end if
75: end if
76: end for
77: end for
78: end for
79: ρ ← calcRank(P, r)
80: if |J | = 0 then
81: if ρ < ρ̂ then
82: ρ̂ ← ρ

83: P̂ ← P
84: r̂ ← r

85: end if
86: else
87: δ ← 0
88: for all j ∈ J do
89: δ ← δ + | j | − 1
90: end for
91: if ρ − δ < ρ̂ then
92: sort J by the length of the elements. Longest element first.
93: if |J | > N then
94: resize J to length N
95: end if
96: for all j ∈ J do
97: (P ′, r ′, p′

0, t
′
0) ← replaceBinomials(P, j)

98: call commonBinomial(P ′, r ∪ {r ′}, p′
0, t

′
0, N )

99: end for
100: end if
101: end if
102: end procedure
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