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We present an iterative method for fixed point problems, generalized mixed equilibrium problems,
and variational inequality problems. Our method is based on the so-called viscosity hybrid
steepest descent method. Using this method, we can find the common element of the set of fixed
points of a nonexpansive mapping, the set of solutions of generalized mixed equilibrium problems,
and the set of solutions of variational inequality problems for a relaxed cocoercive mapping in a
real Hilbert space. Then, we prove the strong convergence of the proposed iterative scheme to the
unique solution of variational inequality. The results presented in this paper generalize and extend
some well-known strong convergence theorems in the literature.

1. Introduction

Throughout this paper, unless otherwise specified, we consider H to be a real Hilbert space
with inner product (-, -) and its induced norm || - ||. Let C be a nonempty closed convex subset
of H and let Pc be the metric projection of H onto the closed convex subset C. LetS: C — C
be a nonexpansive mapping, that is, [|Sx — Sy|| < ||x — y|| for all x,y € C. The fixed point set
of S is defined by

F(S)={xeC:Sx=x}. (1.1)
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If C ¢ H is nonempty, bounded, closed, and convex and S is a nonexpansive mapping of
C into itself, then F(S) is nonempty; see, for example, [1, 2]. A mapping f : C — Cisa
contraction on C if there exists a constant 77 € (0,1) such that || f(x) — f ()| < 5llx — y|| for all
x,y € C. In addition, let ¥ : C — H be a nonlinear mapping. Let ¢ : C — R U {+c0} be a
real-valued function and let © : C x C — R be a bifunction such that C N dom ¢ # @, where R

is the set of real numbers and dom ¢ = {x € C : ¢(x) < +c0}.
The generalized mixed equilibrium problem for finding x € C

O(x,y) + (¥x,y—x) +¢(y) —p(x) >0, VyeC. (1.2)
The set of solutions of (1.2) is denoted by GMEP(©, ¢, ¥), that is,

GMEP(©,9, %) = {x € C:O(x,y) + (¥x,y - x) +p(y) —p(x) >0, Yy € C}. (1.3)
We see that if x is a solution of a problem (1.2), then x € dom ¢.

Special Examples

(1) If ¥ = 0, then the problem (1.2) is reduced into the mixed equilibrium problem for
finding x € C such that

O(x,y) +¢(y) —p(x) 20, VyeC. (14)

The set of solutions of (1.4) is denoted by MEP (O, ¢).

(2) If p = 0, then the problem (1.2) is reduced into the generalized equilibrium problem
for finding x € C such that

O(x,y) +(¥x,y-x)>0, VyeC. (1.5)

The set of solutions of (1.5) is denoted by GEP(O, ¥).

(3) If ¥ = 0 and ¢ = 0, then the problem (1.2) is reduced into the equilibrium problem
for finding x € C such that

O(x,y) >0, VyeC. (1.6)
The set of solutions of (1.6) is denoted by EP(©).
4)If©=0,¢ =0,and ¥ = B, then the problem (1.2) is reduced into the variational
inequality problem for finding x € C such that

(Bx,y—x) >0, VyeC. (1.7)

The set of solutions of (1.7) is denoted by VI(C, B).
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The generalized mixed equilibrium problem is very general in the sense that it
includes, as special cases, fixed point problems, variational inequality problems, optimization
problems, Nash equilibrium problems in noncooperative games, the equilibrium problem,
and Numerous problems in physics, economics, and others. Some methods have been
proposed to solve problem (1.2); see, for instance, [3, 4] and the references therein.

Let B: C — H be a nonlinear mapping. Now, we recall the following definitions.

(d1) B is said to be monotone if for each x,y € C

(Bx-By,x-y) >0. (1.8)

(d2) Bis said to be p-strongly monotone if there exists a positive real number p such that

?, VYx,yeC (1.9)

(Bx-By,x-y)>pllx-y

(d3) B is said to be w-Lipschitz continuous if there exists a positive real number w such
that

|Bx - By|| <w|x-y|, Vx,yeC (1.10)

(d4) B is said to be ¢-inverse-strongly monotone if there exists a constant ¢ > 0 such that

(Bx - By,x - y) > ¢||Bx - By|’, Vx,yeC. (1.11)

(d5) Bis said to be relaxed (u, v)-cocoercive if there exist positive real numbers u, v such
that

(Bx-By,x-y) > (—u)||Bx—By||2+v||x—y 2 Vx,y € C. (1.12)

(d6) A set-valued mapping Q : H — 2H is called monotone if for all x,yy € H, f € Qx
and g € Qy imply (x -y, f - &) 2 0.

(d7) A monotone mapping Q : H — 2H is called maximal if the graph G(Q) of Q
is not properly contained in the graph of any other monotone mapping. It is well
known that a monotone mapping Q is maximal if and only if for (x, f) € H x H,
(x-y, f—-g)>0forevery (y,g) € G(Q) implies f € Qx.

For finding a common element of the set of fixed points of a nonexpansive mapping
and the set of solutions of variational inequalities for a ¢-inverse-strongly monotone mapping,
Takahashi and Toyoda [5] introduced the following iterative scheme:

xg € C chosen arbitrary,
(1.13)
Xns1 = YnXn + (1= ¥n) SPc(xyn — ayBx,), Vn >0,
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where B is a ¢-inverse-strongly monotone mapping, {y,} is a sequence in (0,1), and {a,} isa
sequence in (0, 2¢). They showed that if F(S) N VI(C, B) is nonempty, then the sequence {x; }
generated by (1.13) converges weakly to some z € F(S) N VI(C, B).

For finding an element of VI(C, B), Iiduka et al. [6] introduced the following iterative
scheme:

xo € C chosen arbitrary,
(1.14)
X1 = Pe(Ynxn + (1 = y) Po(xy — a4 Bxy)), Vn >0,

where B is a ¢-inverse-strongly monotone mapping, {y,} is a sequence in (-1,1), and {a,}
is a sequence in (0,2¢). They showed that if VI(C, B) is nonempty, then the sequence {x;}
generated by (1.14) converges weakly to some z € VI(C, B).

For finding a common element of F(S) N VI(C,B), let S: H — H be a nonexpansive
mapping. Yamada [7] introduced the following iterative scheme called the hybrid steepest
descent method:

Xp+1 = Sxp — ayuBSx,, VYn2>1, (1.15)

where x; = x € H, {a,} C (0,1),B : H — H is a strongly monotone and Lipschitz
continuous mapping, and y is a positive real number. He proved that the sequence {x,}
generated by (1.15) converges strongly to the unique solution of the F(S) N VI(C, B).

The hybrid steepest descent method is constructed by blending important ideas in the
steepest descent method and in the fixed point theory. The remarkable applicability of this
method to the convexly constrained generalized pseudoinverse problem as well as to the
convex feasibility problem is demonstrated by constructing nonexpansive mappings whose
fixed point sets are the feasible sets of the problems.

On the other hand, Shang et al. [8] introduced a new iterative process for finding a
common element of the set of fixed points of a nonexpansive mapping and the set of solutions
of the variational inequalities for relaxed (u, v)-cocoercive mappings in a real Hilbert space
by using viscosity approximation method. Let S : C — C be a nonexpansive mapping and
let f : C — C be a contraction mapping. Starting with arbitrary initial x; € C and define
sequences {x,} recursively by

Xn+1 = €nf (Xn) + PuXn + ¥nSPc(xy — ayBxy,), VYn>1. (1.16)

They proved that under certain appropriate conditions imposed on {e,}, {f.}, {y.}, and
{an}, the sequence {x,} converges strongly to z € F(S)NVI(C, B), where z = Pr(s)nvi(c,s) f (2).

For finding a common element of F(S)NGEF(©, ¥), let C be a nonempty closed convex
subset of a real Hilbert space H. Let ¥ be a ¢-inverse-strongly monotone mapping of C into
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H and let S be a nonexpansive mapping of C into itself. S. Takahashi and W. Takahashi [9]
introduced the following iterative scheme:

O(ttn, y) + (¥xn, vy — un) + %(y —Up, Uy —Xy) 20, VyeC,

Yn = anx + (1 —ay)uy, (1.17)

Xn+1 = YnXn + (1 - Yn)syn/

where {a,} c [0,1], {y.} C [0,1], and {r,} C [0,2¢] satisfy some parameters controlling
conditions. They proved that the sequence {x,} defined by (1.17) converges strongly to a
common element of F(S) N GEF(©, ¥).

Iterative methods for nonexpansive mappings have recently been applied to solve
convex minimization problems; see, for example, [7, 10-12] and the references therein.
Convex minimization problems have a great impact and influence in the development of
almost all branches of pure and applied sciences.

A typical problem is to minimize a quadratic function over the set of fixed points of a
nonexpansive mapping defined on a real Hilbert space H:

min 1(Ax,x) - (x,b), (1.18)
xeF 2

where F is the fixed point set of a nonexpansive mapping S defined on H and b is a given
point in H.

A linear bounded operator A is strongly positive if there exists a constant y > 0 with
the property

(Ax,x) >¥|lx|*>, VxeH. (1.19)

Recently, Marino and Xu [13] introduced a new iterative scheme by the viscosity
approximation method:

Xp+1 = ean(xn) +(1-€,A)Sxy. (1.20)

They proved that the sequence {x,} generated by (1.20) converges strongly to the unique
solution of the variational inequality:

(yfz-Az,x-z)<0, VxeF(S), (1.21)
which is the optimality condition for the minimization problem:

1
xrerllrl(r;) §<Ax,x> - h(x), (1.22)

where h is a potential function for yf.
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In 2008, Qin et al. [14] proposed the following iterative algorithm:

@(l«ln,y)+l<y—umun_xn>20’ V]/EH,
T (1.23)

Xn+1 = €nY f () + (I — €,A)SPc(uy — a,Buy,),

where A is a strongly positive linear bounded operator and B is a relaxed cocoercive mapping
of C into H. They proved that if the sequences {e,}, {a,}, and {r,} of parameters satisfy
appropriate condition, then the sequence {x,} defined by (1.23) converges strongly to the
unique solution z of the variational inequality:

(yfz-Az,x-z)<0, VxeF(S)nVI(C,B)NEP(®), (1.24)
which is the optimality condition for the minimization problem:

1
' 7 (A% x) = h(x), 12
XEF(S)H\I/QICI}B)mEP(@) 2< X, X) (x) (1.25)

where h is a potential function for yf.

In this paper, we introduce an iterative scheme by using a viscosity hybrid steepest
descent method for finding a common element of the set of solutions of a generalized mixed
equilibrium problem, the set of fixed points of a nonexpansive mapping, and the set of
solutions of variational inequality problem for a relaxed cocoercive mapping in a real Hilbert
space. The results shown in this paper improve and extend the recent ones announced by
many others.

2. Preliminaries

Throughout this paper, we always assume that H is a real Hilbert space and C is a nonempty
closed convex subset of H. For a sequence {x,}, the notation of x, — x and x, — x means
that the sequence {x,} converges weakly and strongly to x, respectively.

The following lemmata give some characterizations and useful properties of the metric
projection Pc in a real Hilbert space. The metric (or nearest point) projection from H onto C
is the mapping Pc : H — C which assigns to each point x € H the unique point Pcx € C
satisfying the following property:

e = Pex|| = inf - . 2.1)

Lemma 2.1. It is well known that the metric projection Pc has the following properties:

(m1) foreachx € Hand z € C,

z=Pex = (x-2z,y-2)<0, VyeC (2.2)
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(m2) Pc: H — C is nonexpansive, that is,

|Pcx - Pey|| < ||x-y|, VxyeH; (2.3)
(m3) Pc is firmly nonexpansive, that is,
| Pex = Pey||* < (Pex - Pey, x - y) Vx,y € H. (2.4)

In order to prove our main results, we also need the following lemmata.

Lemma 2.2 (see [2]). Let H be a Hilbert space, let C be a nonempty closed convex subset of H, and
let B be a mapping of C into H. Let x* € C. Then, for A > 0,

x* € VI(C,B) & x* = Pc(x* — ABx™), (2.5)
that is,
x* € VI(C,B) & x* € F(Pc(I - AB)), (2.6)

where Pc is the metric projection of H onto C.

Lemma 2.3 (see [15]). Let B be a monotone mapping of C into H and let Ncwy be the normal cone
to C at wy € C, that is,

Ncw;, = {w e H : (w —wy,w) >0, Vw, € C}, (2.7)

and define a mapping Q on C by

(2.8)

Bwy + Ncwy, wi €C,
Quw; =
0, w ¢ C.

Then Q is maximal monotone and 0 € Quw if and only if (Bw;, ws —wi) > 0 for all w, € C.

Lemma 2.4 (see [16]). Each Hilbert space H satisfies Opials condition; that is, for any sequence
{xn} C H with x, — x, the inequality

lim infl|x, — x|| <lim inf[|x, — y (2.9)

holds for each y € H with y # x.
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Lemma 2.5 (see [13]). Let C be a nonempty closed convex subset of H, let f be a contraction of H
into itself with coefficient n € (0,1), and let A be a strongly positive linear bounded operator on H
with coefficient y > 0. Then, for 0 <y <y /1,

(x-y, (A=yf)x=(A-yf)y) > F-nn)|lx-y|>, xyeH (2.10)

That is, A — y f is strongly monotone with coefficient y — ny.

Lemma 2.6 (see [13]). Assume that A is a strongly positive linear bounded operator on H with
coefficient y > 0and 0 < p < ||A[|™Y. Then ||I — pA|| <1 - py.

Lemma 2.7 (see [17]). Let {x,} and {y,} be bounded sequences in a Banach space X and let {y,}

be a sequence in [0, 1] with

0 <liminfy, <limsupy, < 1. (2.11)

n— oo n—oo

Suppose

Xn+l = (]- - Yn)yn + Ynxn, Vn 2 O,

212
limsup (|| yni1 = ¥a| = a1 = xall) 0. (212)

n—oo

Then, limy, _, oo ||y — xa|| = 0.

Lemma 2.8 (see [18]). Assume that {a,} is a sequence of nonnegative real numbers such that

ap1 < (1=Qu)an+0, n>0, (2.13)

where {9, } is a sequence in (0,1) and {0, } is a sequence in R such that
(1) 22190 =00,
(2) limsup,, _,_(0,/@n) <007 372 |04] < 0.

Then lim,, _, o, a, = 0.

For solving the generalized mixed equilibrium problem and the mixed equilibrium
problem, let us give the following assumptions for the bifunction ©, the function ¢, and the
set C:

(H1) ©(x,x) =0, Vx € C;
(H2) © is monotone, thatis, O(x,y) + O(y,x) <0, Vx,y € C;

)
)
(H3) foreach y € C, x — O(x,y) is weakly upper semicontinuous;
(H4) for each x € C, y — O(x,y) is convex;

)

(H5) for each x € C, y — O(x,y) is lower semicontinuous;
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(B1) for each x € H and r > 0, there exist abounded subsets D, C C and y, € C such
that for any z € C \ Dy,

O(z,yx) + 9(yx) - ¢(2) + %<]/x_zzz—x> <0; (2.14)

(B2) C is a bounded set.

Lemma 2.9 (see [19]). Let C be a nonempty closed convex subset of H. Let © : C x C — R bea
bifunction that satisfies (H1)—(H5) and let ¢ : C — R U {+oo} be a proper lower semicontinuous
and convex function. Assume that either (B1) or (B2) holds. For r > 0 and x € H, define a mapping

1% H — C as follows:
T (x) = {z €C:0(z,y) +o(y) —p(z) + %(y -z,z-x)>0,Vy e C} (2.15)

forall z € H. Then, the following properties hold:
(i) for each x € H, T,(@'(P) (x) #£0;
(ii) Tr(e’(”) is single-valued;

(iii) Tr(e'lp) is firmly nonexpansive; that is, for any x,y € H,

2
T -y || < (TP x - TPy, x -y ); (2.16)

(iv) F(T\®") = MEP(©, ¢);
(v) MEP(0©, y) is closed and convex.

Remark 2.10. If ¢ = 0, then Tr(e’q’) is rewritten as TP.

Lemma 2.11 (see [9]). Let C, H, ©, and T? be as in Remark 2.10. Then the following holds:

fo—Tt@x”2 < ST_t<T§9x—Tt@x,T?x—x> (2.17)

foralls,t >0and x € H.
The following lemma is an immediate consequence of an inner product.
Lemma 2.12. Let H be a real Hilbert space, let x and y be elements in H, and let A € [0,1]. Then

@) [Ax + (1= Vyl? = Mixl? + @ = Wyl - 20 = Vllx -yl
@) llx + ylI? < llxll + 2(y, x + ).
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3. Main Results

In this section, we will introduce an iterative scheme by using a viscosity hybrid steepest
descent method for finding a common element of the set of fixed points for nonexpansive
mappings, the set of solutions of a generalized mixed equilibrium problem, and the set of
solutions of variational inequality problem for a relaxed cocoercive mapping in a real Hilbert
space. We show that the iterative sequence converges strongly to a common element of the
three sets.

In order to prove our main results, we first prove the following lemmata.

Lemma 3.1. Let C, H, ©, ¢, and Tr(e’lp) be as in Lemma 2.9. Then the following holds:

2 s—t
TS(@"P) X — T:@"’J)x” < — <Té@"”)x - Tt(@"”) X, Ts(e"”)x - x> (3.1)
s

forall s,t >0and x € H.

Proof. By similar argument as in the proof of Lemma 2.11 in [9], for 5,t > 0 and x € H.
Observing that J = Tse’@x and 0 = Tt(e"’o)x, we have

1
O,y) +¢(y) -9+ (y-2,7-x)20, VyeC, (3.2)
1
O(8,y) +¢(y) ~p(®) + ;(y-8,8-x)>0, VyeC. (3.3)
Putting y = & in (3.2) and y = J in (3.3), we obtain

0(2,8) +9(8) - 9(3) + - (8-3,9-x) 20,

. (3.4)
O8,7)+¢((T) —p(d) + ?<3 -3,8-x)>0.
So, summing up these two equalities and using the monotonicity of © (H2), we get
1 1
g(ﬂ—jﬂ—x)+?<3—ﬁ,ﬂ—x>20, (3.5)
and hence
<3—&ﬂ;x—j;x>za (3.6)

We derive from (3.6) that

<3—19,19—x——(3—x)>20, (3.7)
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and so
t
—|7 -8 + <3’—19, (1— g>(3—x)> > 0. (3.8)
This indicates that
t
(1 - g><3 -8,7-x) >3- (3.9)
In other words,
~ 2 _S—t ~
3-8 < T<J—19,J—x), (3.10)
and thus the claim holds. O

Lemma 3.2. Let H be a real Hilbert space, let C be a nonempty closed convex subset of H,let S : C —
C be a nonexpansive mapping, and let B : C — H be an w-Lipschitz continuous and relaxed (u, v)-
cocoercive mappings with v > uw?. If 0 < a, < 2(v — uw?)/w?, then S — a, BS is a nonexpansive
mapping in H.

Proof. Let a, < 2(v — uw?®)/w?, v > uw?. Then, for every x,y € C, we have

(S - a,BS)x - (S - @,BS)y|*

= [|(Sx = Sy) ~ au(BSx - BSy) |’

= ||Sx - Sy||* - 2a,(Sx - Sy, BSx — BSy) + a2||BSx - BSy|’

<||Sx - Sy|? —Zan{—u”BSx - BSy||* + 0||Sx - Sy||*} + a2|| BSx - BSy||* a1
< [|5x = Sy||” + 2auco?||Sx = Sy||* - 2a0[|Sx ~ Sy||* + ahe? || Sx ~ Sy |*

= <1 + 20, uw* — 20,0 + cx%a)z) |Sx - Sy’

2 _ 2
< <1 - anwz[% - an]) B

Now, since (1 - a,w?[2(v - uw?)/w? - a,]) < 1, thus ||(S — a,BS)x — (S — a,BS)y/|| < [|x - y||.
Thus, S — a,BS is a nonexpansive mapping of C into H. O

Now we can prove that a strong convergence theorem is a real Hilbert space.

Theorem 3.3. Let C be a nonempty closed convex subset of a real Hilbert space H. Let ©; and ©, be
two bifunctions from C x C to R satisfying (H1)-(H5) and let ¢ : C — R U {+o0} be a proper lower
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semicontinuous and convex function with assumption (B1) or (B2). Let

(i) W1 : C — H be a é-inverse-strongly monotone mapping,

B: C — H be an w-Lipschitz continuous and relaxed (u, v)-cocoercive mappings,

)
(ii) W, : C — H be a p-inverse-strongly monotone mapping,
(iii)

)

(iv) f : C — C be a contraction mapping with coefficient n € (0,1) and let A be a strongl
ppmng i 8ty
positive linear bounded self-adjoint operator with the coefficient y > 0and 0 <y <y/7.

Let S: C — C be a nonexpansive mapping with F(S) # 0.
Assume that

¥ := F(S) NnGMEP (01, ¢, ¥1) N GMEP(©,, ¢, ¥>) N VI(C, B) #0. (3.12)
Let {xn}, {yn}, {20}, {vn}, and {u,} be the sequences generated by

Up = Tﬁnel’w (xn - rnlplxn)/
Uy = Ts(neyp) (un - Snlpzun)/
zy = Pc(Sv, — a,BSvy,), (3.13)
Yn = ean(xn) +,ann + ((1 _,Bn)I - enA)zn/
Xnit = YuXn + (L=yu)Yn, Yn2>1,
where {ry} C [a,b] C [0,2¢], {s.} C [c,d] € [0,2B], {y«} C [h,j] C (0,1), and {y.}, {€}, and
{Bn} are three sequences in (0, 1) satisfying the following conditions:

(C1) lim, s €, =0and 357 €, = oo,

(C2) 0 <liminf,_, o f, <limsup, _,  Pn <1, andlim, o B, =0,

)

)

(C3) 0 < liminf,_, o 1, <limsup,, 1, < 2&, and lim, _, ,|rpe1 — 1a] =0,

(C4) 0 < liminf, s, <limsup, s, <2f, and lim,,_, o, |Sp41 — 54| =
)

(C5) {a,} C[e,g] € (0,2(v - uw?)/w?), v > uw?, and lim, _, o, |ay41 — an| =0

Then, {x,} converges strongly to z = Pg(yf + (I — A))(z), which is the unique solution of the
variational inequality:

(yf(z) - Az,x-z) <0, Vxe¥. (3.14)

Proof. From the restrictions on control sequences, we may assume, without loss of generality,
that e, < (1 - B,)||Al|"! for all n > 1. Since A is a strongly positive linear bounded self-adjoint
operator on H, we have

[All = sup{[{Ax, x)[ : x € H, [|lx]| = 1}. (3.15)
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Observe that

((A=Bu)I-€enA)x,x) =1—- Py —en(Ax,x) > 1= B, — 4| A|| > 0. (3.16)

Thatis, (1 - f,)I — €,A is positive. It follows that

[[ (1= )T = enA|| = sup{[(((1 - fu)I - enA)x,x)| : x € H, ||| =1}
=sup{1 -, —e.(Ax,x) : x € H, ||x|| =1} (3.17)

Sl_,ﬁn_en?~

We will split the proof of Theorem 3.3 into six steps.

Step 1. We claim that the sequence {x,} is bounded.
Indeed, let x* € ¥, by Lemmas 2.2 and 2.9, we obtain

X" = Sx* = Po(x* — a,Bx*) = T (x* - 1, W1x*) = TS (x* = 5,¥,x7). (3.18)

n

Since u,, = Tr(nel"p) (xp — 1, ¥1x,) € dom ¢, ¥y is ¢-inverse-strongly monotone, and 0 < r,, < 2¢,

we know that, for any n € N, we have

. o, OLp) | N
it = 2117 = | T Gen = Wa2c) = T (" = 1020 |

<l = 1 ®rx) = (x = 1 ¥y x") |

= [[(otn = %) = (P20 — ¥rx*) |

= ||x, — x"‘||2 =21 {xy — X*, Wix, — Pix™) + 1’,21||‘P1x,1 - 1Plx"‘||2 (3.19)
< 2w = X7 = 278 W10 — Wi x| + 72| ¥ox, — Wy x|

= (1% — X*|* + 1 — 28) W1, — W1 x|

< [lxn = x|

Similarly, from (3.19), v, = Ts(f)z’q’) (uy — s, ¥ou,) € domg, and 0 < s, < 2, we can prove that

2
TS(?ZI(P)(un - anrZun) - Ts(,(?yp)(x* - sn‘PZx*) ||

[0, = x*1* =
(3.20)

<l = x| < floew = 7|1,

and hence

[on = 27| < llun = X*|| < fl2en = 7. (3.21)
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Let x* € ¥, and form Lemma 3.2 S — a,,BS is a nonexpansive mapping and from Lemma 2.2
x* = Pc(x* — a, Bx*), we have
Iz — x*|| = ||Pc(Sv, — 2y BSv,) — Po(x™ — a, Bx™")||
< |[(Svn — anBSvy,) = (x* = ay Bx™)||
= [|(5vn — anBSvy) - (Sx* - a,BSX™) ||
= [I(S = anBS)vy = (S - anBS)x7||
< llon = X7 <l = 27l
llyn =21 = llen(yf () = Ax") + BuCen = ) + (1= Pu) [ - exA) (za = 2| (3.22)
< (1= fn =€) llzn = X7 + Pullocn = x7|| + €n]|yf (xn) = AX7|
< (1= P = en¥)llxn = x"|| + Pullxn = x"|| + €nlyf (xn) - Ax7||
< (1= &) llxn = "l + eny[| £ (xn) = FO| + enlly £ (x7) = Ax7]|
< (1= eny) llaen = x"[| + enynlloen = x7|| + en|[y f(x7) - Ax”||
= (1= (F-m)en)llxn = [l + enlyf (") - Ax*

7

which yields that

%1 — x*||

< Yalln =%l + (1= 1)y - %]

< Yulltw =M+ (1= y) { (1= (¥ = my) €n) 120 = 7| + €|y f (x7) = Ax"|[}
= Yalltn = [+ (1= y)lloen = 21l = (1= ) (7 = ) enlloen = 271l + (1= p)enly f(x7) = Ax”|
= (1= =y) ¥ = nmy)en)llxn = x|+ (1= yu)enllyf(x*) = Ax"]|.

(3.23)

By mathematical induction, putting D = max{||lx; — x*||, |y f (x*) — Ax*||/¥ — 11y}, we have
that ||x, — x*|| < D for all n > 1. Indeed, we can easily see that ||x; — x*|| < D. Suppose that
|lxx — x*|| £ D for some positive integral k. Then we have that

e =27 < (1= (1= yi) (¥ = 7)) ok = x| + (1 =y e[|y f (x7) = Ax”|
<(1-A-y)F-m)e)D + (1-ye)exlyf(x") - Ax|

[lyf () - Ax|

= A= A=) F-me)D+ (=) (F-nr)e—— =

(3.24)

<S(A-QQ-y)GF-nr)e)D+ (1-ye) (¥ —ny)exD
=D.
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This shows that {x,} is bounded in H. From (3.21), we know that {u,} and {v, } are bounded
in C and so {y,}, {¥1u,}, {¥ax,}, {Sv,}, {BSv,}, and {f(x,)} are bounded sequence in H.

Step 2. We claim that lim,, _, o, [|+1 — x| = 0.
Since S — a,,BS is nonexpansive, we have

Zns1 = Znll = 1Pc(Svpi1 = @n1BSn11) = Po(Sv, — 2, BSvy,)||
< 1(Svns1 — @ns1BSvy41) = (Svp — ay BSwy,) ||
= |[(Svp+1 — ans1BSvn41) — (Svy, — a1 BSvy,) + (ay — ays1) BSoy|| (3.25)
< |1(Svni1 — @1 BSvR41) = (Svu — a1 BS,) || + |y — ania ||| BSw,|

< o = vall + |an — anal||BSoa|.

Next, we estimate ||t1,41—1,||. Observing that u,, = Tr(ne“‘p) (x,—1,¥1x,,) and u,,,1 = T,(S;"P) (Xpa1—

Tni1P1Xn41), we have

s = wall = | TS0 Gonor = P Wrnen) = T (= 7 Wr62)
= | Tffi"”) (Xne1 = Tn1 W1 Xna1) — Tr(Sll"p)(xn -1, ¥ix,)

+ T’S?llllp)(xn -1 ¥1xn) - Tr(,?l’w(xn -1, ¥1x,)
< | Trﬁl'@ (Xp41 = Tn1 1 Xpa1) — Tr(:?]l"p)(xn -1 ¥1x,)

+ Tr(glll(p)(xn =1 ¥1xy,) - Tr(,?l'(p)(xn -1, ¥1x,)

S ||(xn+1 - rn+1lplxn+1) - (xn - rnlplxn)”

O, Oy, .
T( ) (P)(xn - Tnlplxn) - Trf,, ' (P)(xn - Tnlplxn) (3 26)

Tn+1

‘|

= ”xn+1 = Xp = Tt (W1 X1 — W1xp) + (Fps1 — rn)quxn”

O, O,/
+ Tr(,,ﬂl (p)(xn - rnlplxn) - Tﬁn ' (p)(xn - rnlplxn)

< Hlxnar = Xn = Tt (F1 e — W1xn) || + [T — 7| P10

o, o,
+ Tr(m: (P)(xn -, ¥ix,) - Tr(n ! (P)(xn -1, ¥1x,)

< len+1 - xn” + |rn+l - rn|||lplxn||

T(el r‘P)

Tn+1

+ Tr(?l )

(xn — 1 W1xp) — (xn — 1 ¥1xp)
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Similarly, we can prove that

||Un+1 - Un” < ”un+1 - un“ + |5n+1 - Snlllw2unl|

(3.27)
9, ©,
+ | Ts(,,j 9 (un - an’zun) - Ts(n 29) (un - SanZun) .
Substitution (3.26) into (3.27), we derive
[0n1 = Oull < [1xns1 = Xnll + [rnr = Tul[F12n]] + [Spe1 = snll[Foun||
O, O,
+ | Tr(w1 D (xy = 1, W1x0) — Tr(n ) (= 1 W) (3.28)
9, O,
+ | T (1, — 5, Wou) = T (1, — 5, %) -

Since {¥1x,}, {¥,u,}, and {BSv,} are bounded, K is an appropriate constant such that

K2 maX{SUP{II‘P1xnII}/ sup{|[Wauall}, Sup{IIBSUnII}}- (3.29)

n>1 n>1 n>1

Substitution (3.28) into (3.25), we obtain

|zne1 = Zull < |Ons1 = Onll + lan — ania ||| BSv,||

S xnsr = Xull + [7ns1 = ul[¥1 20l + [Sne1 = Sul[F2unl| + |an — ans1|||BSv,|

O, O,
+ Tr(M; ¢) (xp — 1, ¥P1xy) — T,(n 14) (xp — 1, P1x,)

O, O,
+ |7 (- 5, W) = T (1 — 5, Wo1) (3.30)

< ||xn+1 - xn” + K(lrn+1 - rnl + |Sn+1 - Snl + |‘Xn - lxn+1|)

O, O,
+ Tr(m; 2 (2 — 1 P1x,) — Tr(n 1) (x — 1, P1x,)
+ Ts(g?w) (un - SanZun) - Ts(f)yp)(un - anrZun) .

From (3.13), we have
Yn = €nYf(xn) + Puxn + (1= Pu)] — €nA) zZn,
(3.31)

Yni1 = €n+1Yf(xn+1) + Pui1 Xns1 + ((1 - ﬁnH)I - €n+1A)Zn+1-
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Simple calculations show that

Yne1 = Yn = Ena1yY (f (Xns1) = f(xn)) + (€ns1 — €n)Y f (Xn) + Pt (Xns1 — X)
+ (,Brﬁ—l - ,Bn)xn + [(1 - ,Bn+1)1 - 6'n+114] (Zn+1 = Zn)
- (ﬁfﬁ-l - ,Bn)zn — (én41 — €2)Azy

(3.32)
= €ns1) (f (Xne1) = f(xn)) + (€ns1 = €2) (v f (xn) — Azy)
+ Bri1(Xns1 — Xn) + (Brse1 = Pu) (Xn — Zn)
+[(1 = Pui1)] = €nn1 Al (zZni1 — 2zn),
which yields that
lyne1 = yull < €naay || f Gensr) = Fen) || + l€nss — €nl||yf (xn) — Aza|
+ Bt l|%ne1 = Xnll + | Brr = Bu|1%n = zall + (1 = Brit — €n:1Y) 121 — Zal|
< €ns1 Yl %ne1 = Xull + |€ns1 — €nl||y f (xn) — Azy|
+ Bt l|%ne1 = Xnll + | Bur = Bu|l1%n = zaull + (1 = Brs1 — €n17) 1201 — Zall-
(3.33)

Substitution (3.30) into (3.33) yields that

| yni1 = yull < €naynllnes = xull + l€nss — €nl||yf (xn) = Aza|

+ ,Bn+1||xn+1 - xn” + |ﬂn+1 - ﬂn| ”xn - Zn” + (1 - ﬁn+1 - €n+17)
x{ent = xall + K(I7u1 = 7l + st = Sl + et = )

T(@Mﬂ)

Tn+1

+ _ Tyglel rlf)

(2 — 1, ¥1x,) (2 — 1, ¥1xy)

T(@z,tp)

Sn+1

; 7

(un - SnIPZun) - (un - anIZun)

}

= (1= €n1 (F = Y1) 1% = Xull + l€ns1 = €nl|ly f (xn) = Aza|
+|Bust = Bu|llxn = zull + (1 = Pus1 — €211Y) K
X (|Tns1 = Tul + [Sns1 = Sul + |atn = ania]) + (1 = Bus1 — €2117)
|

+ (1 - ﬂn+1 - €n+1?)

O, O,
T©19) (2 — 1 P1x,) — T,(n 1) (xn — 1 P1x,)

Tn+l

T(©29)

Sn+1

_ Ts(:)Zr‘l’)

(Un — 5, Wouy) (un — s, ¥ouy)
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< (1 ~ En+l (? - Yﬂ))”xnﬂ = x|
+ M(|€n+1 - €n| + |pn+1 _ﬂnl + Irn+1 - rnl + |5n+1 - Snl + |“n - “n+1|)

O, O,
TS (xy = 1 W120) = Too " (3 — 1 W1 %)

+ | Tnl
O, O,
+ | Ts(nj 2 (uy — 5, ¥ouy,) — Ts(n 24) (Uy — 8, ¥ouy)||,
(3.34)
where M is an appropriate constant such that
M > max{sup{ Iy f(xn) = Azu]|}, sup{llxn — zall}, K}. (3.35)
n1 n>1
Since Xp+1 = YnXn + (1 — Yu)yn and
||]/n+1 - ]/n” = %1 — xall < M(|€n+1 — €| + |,ﬁn+1 _ﬁnl +|Fue1 = Tul + [Sne1 = Sa| + |an = an+1|)
O, O,
+ Tr(,,ﬂl (P)(xn -1, ¥ix,) - Tr(,, ' [P)(xn -1, ¥P1xp)
O, O,
+ Téﬂj (P)(un -5, %ou,) - Ts(n : (p)(un -5, Wou,) ||,
(3.36)
next, we estimate
O, O,
T (xn = 1 Wax) = Tiy 7 (ot — 1 Wrxa) |- (3.37)

Note that liminf,_, . 7, > 0; there exists a constant ¥ > 0 such thatr, > 7 > 0 foralln > 1.
From Lemma 3.1, we get

T(Gl )

Tn+1

T}frfal )

(xn — 1 W1x,) — (xn — 1 W1xp)

Tr(:al )

(xn — 1a¥1x,) —

Tnsl — T
n+1 n <T(@1r‘l’) (xn - Tnlplxn)/

T+l
Tn+1

oL,
TS0 (x = 14 W12,) — (20 — rn‘l‘1xn)>

Tn+1

<rn+1 T (Tp? G = 1 Wa6) = i (0 = 1 Wrx)), (338)

Tn+l
Yns1

T(el"p)(xn -1, ¥1x,) — (x, - ranlxn)>

Tn+1

1, — T,
< M Tr(,(j;’lp)(xn ~ 1 ¥1x,) — Tr(?]’q))(xn -1, ¥1x,)
T+l
(©1,9)
Trmll ¢ (xn =1 ¥1x) = (30 = 1 ¥120) ||
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It follows that

T(@1 )

Tn+1

o,
(xtn = 1a®12) = Too (20 — 10 W1 %)

T(ellq’)

Tn+1

|rn+1 - Tn|
< Intl  nl

(30 = 1 ¥1x0) = (xn — 1 ¥12)

Since lim,, , o |[r,11 — 14| = 0, we obtain

. O, O,
nlgrolo Tr(m1 q’)(xn -1 ¥ix,) - Tr(" 14) (xp — 1, ¥1x,)|| = 0.
Similarly, we can prove that
. Y CH
B (| T (4 = 5, Wan) = T3 (1 = 5, %2)|| = 0.

Consequently, from (3.40), (3.41), and conditions in Theorem 3.3, we obtain
nlgr(}o(”ynﬂ - yn” = [|xns1 = xn”) <0.

It follows from Lemma 2.7 that

lim ||y, — x,|| = 0.

n— oo

In view of (3.13), we see that

%ne1 = xull = (L= yn) | Xn = yu], Ym>1,

which, combining with (3.43) and 0 < h <y, < j <1, yields that

lim ||xp41 — x5|| = 0.
n—oo

Step 3. We claim that lim,, . ,||Sz,, — z,| = 0.
Observing that v, = €,y f (xy) + Pnxn + ((1 = Bu)] — €n.A)zn, we have

”yn - Zn” < en”Yf(xn) - Azn” +ﬂn||xn - Zn”r
which, combining with the conditions (C1) and (C2), gives

lim ||y, — z.|| = 0.

n—oo

From (3.43) and (3.47), we have

lim ||x, — z,|| = 0.
n—oo

19

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)
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For any x* € ¥, we see that

1za = x*|* = | Pc(Svn — auBSvy) - Pe(x* — aBx*) |
< [(Sv, - @,BSv,) - (x* - a,Bx")||*
= [|(Sv, - x*) - ay(BSvy, - Bx™)|I*
= |1Sv, — x*||* - 2a,(Sv, - x*, BSv, — Bx*) + a2||BSv, — Bx*|)?
< lon = x*|I* = 22,(Sv,, — x*, BSv, — Bx*) + a2||BSv,, - Bx*|]*
< lxen = x| - Zan{—uHBSvn - Bx*||* +v||Sv, - x*||2} + a2||BSv, - Bx*|]?
< lxn = x*|1* + 2a,u||BSv,, - Bx*||* - 2a,v||Sv,, — x*||* + a?||BSv,, — Bx*||?

2
< 12t = x*|2 + 2a,11]| BSvy — Bx*|I* = 222||BSv,, — Bx*||* + a2||BSv, — Bx*||*

w?

2a,0
= |, — x*|* + <2anu +a’ - w’;

)||BSvn BxP,
(3.49)

llyn - x|
= [|((1= Bu)T = €nA) (20 = X*) + Pu(xn — x*) + € (yf (xa) = Ax")||?
= 1((1 = Bu) T = enA) (20 = x*) + Py = x7)||°
+ €|y f (xn) = AX||* + 2Buen(xn — X", v () — Ax”)
+2e,((1 = )] — €,A) (2 — x¥), 7 f (2xn) — Ax™)
< (1= P — V) lzn = 2" + Pullcn = x*1)* + 2|y f (xa) = Ax*|
+2Bpen(xn = X",y f (x0) = AX") + 2, (((1 = fu) I = €3 A) (20 = X7), Y f (x0) = Ax")
= (1= Bu— ) lza = X|* + Blln = x*I7 + 2(1 = B — €F) Bullza — X" |20 — x|
+€2||y f (xn) = Ax*||® + 2Buen(2n — X,y f (x0) — Ax™)
+2en( (1= Pu)] — € A) (20 = X*), ¥ f (xn) = AX")

—\2 * * = * *
< (1= o= &) llzn - %+ Rl = 17 + (1= B = )P 1z - 1P + 1, - x°IP)

+ 2|y f (xn) = Ax*||* + 2Bnen(xn — x*, Y f (2) — Ax*)
+ 26, (((1 = Pu)T = €4A) (20 — X"), Y f (xa) — Ax")

= |- eaF)* = 2(1 = e + i I120 = "I + Brlxa - x|
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IN

IN

+ (= e)Bu = B2) (120 = 21 + v = 2*117) + €2l f () = Ax*?

+ 2Bnen (X — X,y f () = AX*) + 26, ((1 = Bu) ] = €0 A) (2 = X*), Y f (x0) — Ax")
[(1- &) = (1= a2 = 2 IF + (1= e0F) Bullen - °I

+ 2|y f (xn) = Ax*||* +2Bpen(xn — x*, ¥ f (x0) — Ax*)

+2en(((1 = Pu)I - enA)(zn - x7), v f (xn) - AX)

(1= eaT) (1= Bu — a) lzn = x°IF + (1~ ea7) Pullocn - °[

+ 2|y f (xn) = Ax*||* + 2Bpen(xn — x*, ¥ f (x) — Ax*)

+26,(((1 = Bu)I — €nA) (zn — x*), y f () — AX™)

2a,,0

(1-€ny) (1= Pn - €aY) { 2, — x> + <2anu +al - — >||stn - Bx*||}

+ (1= €nY)Bullxn - x|+ efl”yf(xn) - Ax*”2 +2Pnen(xn — x*, 7 f (xn) — Ax™)
+2€,(((1 = Bu)I = €nA) (20 = x), Y f (x0) = AX")
(1= ea) (1= B — ex¥) 120 = x"|* + (1 = €aT) Bulln - x|

+(1-€ny) (1= Bn—e€ay) <2anu +a? - ZZ;Z)> IBSw, — Bx*|| + €2||y f (xn) — Ax*||?

+ Zﬁn€n<xn - x5, Yf(xn) - Ax")
+2e,(((1 = )] — €,A) (2 — x¥), 7 f (2xn) — Ax™)

(1= &)= 21+ (1= 07) (1= - enT) (2 + o - 222 Y B0, - x|

+ 2|y £ (xn) = AX||* + 2Buen(2n — X7,y f (x0) — Ax")
+26,(((1 = )] — €4 A) (20 — x¥), Y f(x4) — Ax™)

— — 2a,0 .
[0 = x*|1* + (1= &,7) (1 = B — €x7) <2anu +a’ - wr; >||BSvn - Bx*||

+enllyf(xn) = Ax"||* + 2B uen(0n = X, Y () = Ax")
+26,(((1 = u)I = aA) (20 = x7), Y f (xn) = AX).

(3.50)

Furthermore, from (3.13) and Lemma 2.12(1), we have

%41 = X7 = || ynxn + (1= Y)Y — x|

< Fullxn = 1P + (1= y) [l = x*||?

< Yallxn = X7+ (1 =)
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_ — 2a,v .
x {||xn x|+ (1= ey) (1= o — €aY) <2anu +al - wnz >||BSvn — Bx*|

+ @l f o)~ Ax* |+ 2fenlen ' yf () - Ax')

 26n((1= B - en )z = ), 1 ) = A4 }

< I =P+ (1= 32) (1= &07) (1= - eaT) (2 + o - 227 ) B0, - B

+ (L= p)erllyf Gen) = Ax|F+ 2(1 = y) Buen{n = 27,y f () = Ax)
+2(1 = yu)en(((1 = Bu) I — €nA) (20 — x¥), y f (xn) — AX™).
(3.51)

It follows that

; — _ [ 2ev y
(1=7)(1=eny) (L= P~ €nY) (g -2gu - g2> IBSv, - Bx"|

2,0

R 20,u — cxi) ||BSv, — Bx*||

< (1-n) (A -af) (1= -l

< Jln = = ensn =%+ (1= y) el f () - Ax*|?
+2(1 = Y) Bru€n(xn — X, 7 f (x0) — Ax*) (3.52)
+2(1=p)en( (1= Bu)T — €nA) (20 = x°), ¥ f () — Ax")
< 1 = 2netll 120 = 211+ ener = 7))
+ (L=y)enllyf o) = Ax||* +2(1 = 1) Buen(n = %7, ¥ f () = AX")
+2(1 = n)€n(((1 = Bu) I = €2 A) (20 — x*), ¥ f (x2) — Ax™).

From the condition (C1) and (3.45), we arrive at

nILIIC}OHBSU" - Bx*|| = 0. (3.53)

On the other hand, we have
lzn — x*”z = ||Pc(Sv, — a,BSv,) — Pc(x* - aan*)HZ
<{((Sv, - a,BSv,) - (x* — ay,Bx"),z, — x*)
1 * * *
= 5{11(Sn -~ @uBSvL) - (" = uBx) [ + |12 - x|

— |[(Svn — @,BSv,) — (x* — ayBx*) = (z, — x*)Ilz}
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1 * * *
< 5{llow =21 + llz0 = x"I = (S0 - 2a) - an(BSv, - Bx)|*}
1 * *
< {21 + llzo = 21 = IS0 = zal?
~ a%||BSv, - Bx*ll2 +2a,(Sv, — z,, BSv, — Bx*) },
(3.54)
which yields that
1zn = 2| < llxn = [ = [|Svn — zull* + 22t,]|Svw — zall|BSv, - Bx”]]. (3.55)

Substituting (3.55) into (3.50), we have

v =" [* < (1= ea¥) (1= B = ea?) 1z = X1 + (1 = €a7) Bulln = x°I
+ Iy ) — A | + 2Buen(on— 2, 7S () — Ax)
+2en{((1= )] — €nA) (zn = x°), ¥ f (xu) — Ax")

(1= ,7) (1= Bu— €nY) { 260 = %= 1STn = Zn|2+ 20]| ST — 2| BSTn - Bx*||}

IN

+ (1= enF)Bullxn = x*11” + €2y £ (n) = AX|[* + 2Buen(tn — x°, ¥ f () — Ax")
+ Zen<((1 = Pu)] — €, A) (20— x*), v f (xn) — Ax*>
= (1- &) ll2tn = %" = (1= €aT) (1 = B — €)1 Svn — zal*
+ (1= €2) (1 = Pu = €47) 20| S = 2| BSx, — Bx”||
+ ||y f(xn) = AX*||” + 2Buen(xn — X%,y f (x0) — Ax*)
+ 2€n<((1 —Pu) — €, A)(zn — x*), v f (xn) — Ax*)

IN

260 = x[1* = (1 = €2Y) (1 = B — €a7) I SOn — 2zl

+ (1= €n¥) (1= n = €4) 20| S0 = 24| BS0,, - Bx”|
+enllyf (o) = Ax"||* + 2Ben(xa = 7,y f (xa) = Ax")

+26n(((1= Pu)] — €nA) (zu = x7), ¥ f (xn) - Ax).

(3.56)
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Using (3.51) and (3.56), we have

e = x°I2 < Yallx = 1P + (1= ) [y = x|
< Yallxa =2+ (1~ 1)
(e =1 = (1 e07) (1~ s~ e 150, — 2l
+ (1= €nY) (1 = Bn — €nY)2a4||Svy — zu ||| BSv, — Bx*||

+ eft”Yf(xn) - AA-X'*”2 + 2,Bn€n<xn - x*, Yf(xn) - Ax*)
(3.57)

+ 26n(((1 = Bu)I - €4A4) (Sz4 = X*), 7 f () - Ax") }
= Jlotn = 277 = (1= ) (1 = €a7) (1 = o — €aT) |1S0n — 2all*
+2(1= 1) (1= €T) (1= u = €a7) @ullSvn — 2l BSvw — Bx'|
+ (1= ya)enllyf (e) = Ax|* +2(1 = ) Buen(xn = %",y f () = Ax")

+2(1 = yn)en(((1 = Bn)I — €4 A)(Svp — X*), y f (x) — AX™).
It follows that

(1= yu) (1 = €n¥) (1 = Pu = €n7) IS0 — 2ull”
< ot = %7 = [len = x|
+2(1=y4) (1 = €,¥) (1 = B — €Y ) @nl|Svy — zu ||| BSv, — Bx*||
+ (L=ya)enllyf Gen) = Ax||* +2(1 = 1) Bren(n = %7, ¥ f () = Ax")
+2(1 = yn)en(((1 = Bu)I — €4 A)(Szp — x¥), 7 f (2xn) — Ax™) (3.58)
< Nxn = xXpall (e = x| + X022 = x7)
+2(1=y4) (1 = €,Y) (1 = B — €Y ) @nl|Svy — zu ||| BSv, — Bx*||
+ (1= ya)enllyf(x) = Ax"[|* +2(1 =) Buen(xn = %",y f () = Ax")

+2(1 = yn)en(((1 = Bn)I — €4 A)(Szp — x*), 7 f (2n) — AX™).
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From condition (C1), (3.45), and (3.53), we obtain

lim ||Sv, — z,|| = 0.
n—oo

Consequently, from (3.50) we derive that

lyn = x*||" <

IN

IN

IN

IN

IN

(1= ea¥) (1= B — en¥) |20 = X°I* + (1 = €07) Bullxn — x*|I°
+ eallyf(xn) = Ax*||” + 2Buen(x = X, v f (x2) - Ax")
+2en(((1 = Pu) = €nA) (2 = X7), ¥ f (xn) = AX")

(1= ea¥) (1= B — en¥) o0 = x*|* + (1 = €aT) Bullxn — x|
+ 2|y f (xn) — AX||* + 2Buen (2w — X, 1 f (x2) — Ax")
+2en(((1 = Pu) = €nA) (2 = X7), ¥ f (xn) = AX")

2
(1-€.Y)(1-Pn—e€nY) | Ts(?z'q’) (uy — 5, ¥ouy,) — Ts(nez'(’)) (x* - 5, ¥rx*) ”

25

(3.59)

+ (1= €47 Bulln = x> + 2|y f (xn) = Ax||> + 2Bren(xn — x*, 7 f (30) — Ax™)

+ 26, (((1 = Pu) I = €nA) (20 = X7), ¥ f (xn) = AX")

(1 - en?) (1 - ,Bn - En?)”(un -5, ¥You,) — (x* - SnIPZx*)HZ

+ (1= e47) Bulln = x> + 2|y f (xn) = Ax||> + 2Bnen(xn — x*, 1 f (30) — Ax™)

+ 26, (((1 = Pu) I = €nA) (20 = X7), ¥ f (xn) = AX")

(1= ) (1= = &) { lttn = %I + 50 (50 = 26) [ W14 = Wox*|*}

+ (1= ) Bullen = 21 + €2y £ () = A" + 2Bnen(t = X7, 7 f (x0) — AX")

+ 26"(((1 - ﬂn)l - EHA) (zn = X7), v f(xn) = Ax*>

(1= ) (1 = B = enT){ o = "I + 50 (50 = 26) W = W |}

+ (1= &7 Bullcn = |7 + 2|y f () = AX"||* + 2Buen (0 = X, Y f (30) — Ax”)

+26,(((1= )] = €aA) (20 = x7), Y f () = AxX")

%0 = %P+ (1 = ) (1 = B — €xT) 5n (50 — 2B) [ ¥21t — ¥ax*|?
+ 2|y f (xn) = Ax*||” + 2Bn€n{2n — X*, ¥ f (x2) — Ax™)
+26n(((1 = Pu)T - €nA)(zn = x7), Y f (xn) = Ax").

(3.60)
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From (3.51) and (3.60), we obtain

%1 = 12 < Yl = 2+ (1= y) |y — x|
< Yn“xn - X*H2 + (1 - Yn)
x {||xn — x|+ (1 -€xY) (1 = PBn = €n¥)Sn(Sn — 2B) [ ¥ruy, — W, x*||?

€2l )~ Ax* I+ 2~ ¥ 1 1)~ AX')

(3.61)
+ 2en{((1=pu) T = end) (2n = "), 7 () = Ax") }
= [lxn =+ (1= ) (1 = €7) (1 = Bu = €aT) S (50 = 28) [ W21t = ¥ox*||*
+(L=ya)enllyf (o) = A%+ 2(1 = ) Baen(xn = %7, ¥ f () = Ax")
+2(1 = yn)en(((1 = ) — €4 A) (zn — x*), y f (x5) — Ax*).
So, we obtain
(1-7) (1 =€) (1= u = €7 )c(2f — d) [ ¥aun, - ¥ox|?
< (1=y2) (1= €a7) (1= P = €a7) 50 (2 = 50) [ Wt — ¥ox™||?
< laen = 17 = Iltwer = 27 + (1= ) €2l £ () — Ax*||?
+2(1 = yn) Bren(xn — x*, 7 f (x) — Ax™) (3:62)
+2(1 = yn)en(((1 = Bn)] — €4 A) (20 — X*), y f (x) — AX™)
< Notn = X [ (120 = |+ (21 = X¥]) + (1 = 1) €3]]y £ (20n) — Ax*||?
+2(1 = yu) Bren(xn — x*, 7 f(x,) — Ax™)
+2(1=yn)en(((1 = Pu)I — €nA) (zn = x*), 7 f (xn) — AX").
Since lim,, _, o || X441 — x|l = 0 and lim,, _, €, = 0, we obtain
Tim [[Wau, - Wox" = 0. (3.63)

Similarly, we can prove that

lim [[¥20, — W1 = 0. (3.64)
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In addition, from the firmly nonexpansivity of T,(n@] #) we have

2
Trgnehq)) (xn - rnlplxn) - T'En@h‘P) (x* - rnlplx*)”

= |1 = |
< {(xp =1 P1xy) — (X" =1, ¥ x™), up — x*)

1

= {1 = 1) = (" = 1P o+ ey - x|

~ Nl = 1 Wrx) = (" = 1 Wrx") = (1 = )P}

2 2 2
< 5 { Il = 1P Mt = 1P = ot = s = 10 (B120 — i)}

Nl— N

2 2 2
(e = 21+l = 21 = 1 =

2
+ 27 — thy, W12, — W1") = 2| W 0, - Wi ).

So, we obtain

[t = 2*|* < [0 = 2> = (|20 = thl* + 270126 — s ||| ¥1 20, — Wr26"]].

Similarly, we can prove that

l[on = %1% < 1 = %" 1* = [t = Onll* + 28|t = 0u [ [[¥22 = ¥2x7].

Substituting (3.66) into (3.50), we have

lyn = x11° < (1= ) (1= o = enl) 120 = X7 + (1 = €a]) fulln = x°I
+ 2|y f (xn) — Ax*||” + 2Buen (2w — X,y f (x2) — Ax*)
+2en(((1 = pu) = enA)(zn = x°), 7 f (xn) — AX)
< (1= ex7) (1= Bu = en¥) 1w = x> + (1 = €47) Pullocn — %"
+€2||y f (xn) — Ax*||* + 2Buen (2w — x*, y f (x2) — Ax*)
+2en(((1 = pu) = €nA)(zn = x°), 7 f (xn) — AX)

27

(3.65)

(3.66)

(3.67)

< (1= enF) (1= B = &) { 11w = "1 = v = sl + 270 = 0126, — "] }

+ (1= en)Pulln = 212 + €|y () = A + 2B (o0n = 2, 7 f () = Ax”)
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+2e,(((1 = )] — €,A) (2 — x¥), Y f (2xn) — AX™)

= (1= en?) % — 217 = (1= V) (1 = o — €aT) 120 — 11
+ (1= €n¥) (1= Pu = €aY) 21ull2tn = ta[[|[F10, = W17
+enllyfxn) = Ax||” + 2Buen(xa = X, v f (x2) - Ax)
+2€n(((1 = Pu)] - €nA) (zn = X), Y f (xn) — Ax")

<l =271 = (1= €a¥) (1= P = €n) 10 =
+ (1= €nY) (1= Pn — €xY) 2nll2tn = tn || [ ¥126 — Wr"|

+ 2|y f () = Ax*||* + 2Bren(xn — X",y f () — AX")
+ 26"(((1 - ﬂn)I - €nA) (Zn - X*)/Yf(xn) - Ax*).

(3.68)
Using (3.51) and (3.68), we have
st = 17 < Yalltw = 1P + (1= Ya) [lym - x|
< Yn“xn - x*Hz + (1 - Yn)
{1 =21 = (1= ) (1= B = €aF) 0 = P
+ (1= €n¥) (1= Pn — €nY)27ullxn — || 126, = F17
+€fl xp) — Ax* ) w€n{x, — x*,vf(x,) — Ax*
Il f (xn) I+ 2Pnen( ¥f (xn) ) (369)
+ 26, (((1 = Pu)] — €4 A) (2 — X*), 7 f (xn) — Ax*)}
= [lxn = x"|* = (1 = ) (1 = €07) (1 = Bu = €aT) 1% — ttal®
+ 2<1 - Yn) (1 - en?) (1 - ﬁn - €n?)rn”xn - un””lplxn - IP‘13('*”
b (1= 32 (o) = A%+ 201~ ) B (0 = ', Y (50) = Ax")
+2(1=yn)en(((1 = Pu)I - €nA)(zn = x7), 7 f (xn) - Ax").
It follows that
(1 - Yn) (1 - €n?) (1 - ﬂn - en?)”xn - un”Z
< lxen = Xl (o = 2| + 21 = x*[])
+ 2(1 - Yn) (1 - €n?) (1 ~Pn - EnT)Tn”xn = U |12, — P x*| (3.70)

+ (L= yn)enllyf (en) = Ax'[|* 4 2(1 = yi)uen(oen = 3,y f (xa) = Ax")
+2(1 = yn)en(((1 = Bu)I — €nA) (20 — x¥), y f (x) — AX™).
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Since lim,, _, o, €,, = 0, lim,, _, o || ¥1xn — ¥1x*|| = 0, and lim,, _, o ||x,,11 — x| = 0, we obtain
im [l = u | = 0. (3.71)
Similarly, we can prove that
Hm [l — o] = 0. (3.72)
Furthermore, by the triangular inequality, we also have
10 = nll < 120 = ttn| + |ty — 0n. (3.73)

Applying (3.71) and (3.72), we have

m [l — o[ = 0. (3.74)
Since
120 = Onll < 120 = Xull + X0 = ©ull, (3.75)
so we get
lim [z, — v, = 0. (3.76)

Also, observe that

1Sz = zull £ 11Szn — Svull + |STn — zal|

(3.77)
< iz = oull + 1Svn = 2all-
Consequently, we obtain
lim [|Sz, = zu[| = 0. (3.78)

Step 4. We prove that the mapping Pz (yf + (I — A)) has a unique fixed point.
Since f is a contraction of C into itself with coefficient 7 € (0,1), then, we have

1Pz (yf +(I=A)(x) = Pe(yf+ T =AW < [(rf + T - A)x) - (yf+T-A) W)l
<ylf @) = F@) I+ 1T = Alll|x -yl
<ynllx =yl + Q-7 |lx -yl

=(1-G-nm)llx-yll, vxyecC
(3.79)
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Since 0 < 1-(y-7ny) < 1, it follows that Pg(y f+(I-A)) is a contraction of C into itself. Therefore
by the Banach Contraction Mapping Principle, it has a unique fixed point, say z € C, that is,

z=Py(yf + (- A)(2). (3.80)

Step 5. We claim that limsup,, _, _(yfz— Az, x, —z) <0, where z is the unique solution of the
variational inequality (yf(z) - Az,x —z) <0, forall x € ¥.

Since z = Pg(yf + (I — A))(z) is a unique solution of the variational inequality (3.14),
to show this inequality, we choose a subsequence {x,,} of {x,} such that

limsup(yfz - Az, x, — z) = lim(yfz - Az, x,, — z). (3.81)

n— oo

Correspondingly, there exists a subsequence {z,,} of {z,} such that

limsup(yfz - Az, z, - z) = im(yfz - Az, z,, — z). (3.82)

n—oo

Since {z,,} is bounded, there exists a subsequence {zni]_ } of {z,,} which converges weakly to
w. Without loss of generality, we can assume that z,, — w. From ||Sz, - z,|| — 0, we obtain
Sz, — w.

Next, we show that w € F(S) N GMEP (04, ¢, ¥1) N GMEP(©,, ¢, ¥,) N VI(C, B).

First, we show that w € F(S).

Assume w ¢ F(S). Since z,, — w and w# Sw, it follows by Opial’s condition
(Lemma 2.4) that

liminf||z,, — w|| < liminf||z,, — Sw||
1— 00 1— 00
< Timinf{[12,, - Sz, || + 125, — Swl|}
1— 00
(3.83)

= lim inf||Sz,, — Sw||

< liminf||z,, — w]|.
1— 00

This is a contradiction. Thus, we have w € F(S).
Next, we prove that w € GMEP(Oy, ¢, ¥1).
For any y € C, we have

1
0 < @1t ) + () = ) + (¥ = 10) + 2= (y = 1y = )

! (Y = tn, Uy — xn) (3.84)

1
=01 (un, y) +(y) — p(un) + r—(rn‘Plxn,y —Uy) + -

1
=0, (un’ y) + (P(y) - (P(u") + r_<y —Up, Uy — Xy + Tnlplxn>r
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which yield that

1
©1(tn, y) +9(y) — o(uy) + T—(y = Up, Uy — (X — 1, ¥1x,)) >0, VyeC. (3.85)

It follows from Lemma 2.9 that u,, = Tr(n@1 ) (xy — 1, ¥1x,) foralln > 1.

Thus, we conclude that u, = T, """

(xy, — r,¥1x,) is equivalent to
1
O1(tn, v) + 9(v) — () + (P1X0, Y — n) + r—(y —Up, Uy —Xp) >0, VYyeC. (3.86)
From (H2), we also have

1
0(y) = @(un) + (P1xn, Yy — ty) + r—(y —Up, Uy — Xn) 2 —O1 (U, y) 201 (y,un).  (3.87)

Replacing n by n;, we obtain

Un; — Xn;

o(y) = @un,) + (P1xn, y — Up,) + <y ~ Un,, > > 04 (y, ;) (3.88)

n;

Letu; =ty + (1 -f)wforallt € (0,1] and y € C. Since y € C and w € C, we obtain u; € C. So,
from (3.88) we have

(up =y, Wrng) > (up =y, Crug) — () + () — (12X, s — Uy, )

Uy — Xp,
- <ut — Up,, ’r > + O (1, up,)

(3.89)
> (U — U, Cruty — Wiy, ) + (U — tny, Crtkn, — Pix,) — (1)

Un

- X,
1r n‘>+@1(ut,uni).

ni

+ (it - <ut ~ iy,

Since ||u,, — x4,|| — 0, we have ||¥iu,, — ¥ix,| — 0. Further, from the inverse strong
monotonicity of ¥;, we have

(up — up,, Yruy — Cruy,,) > 0. (3.90)

So, from (H4), (H5), and the weak lower semicontinuity of ¢, (u,, — xp,)/1n, — 0, and u,, —
w, we have

(ur —w, Prus) > —p(us) + (w) + O1(uy, w), asi — oo. (3.91)
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From (H1), (H4), and (3.91), we also get
0 =01 (s, ur) + o) — p(ur)
<01 (u, y) + (1 - 1)1 (1, w) + tp(y) + (1 - H)p(w) — (us)
= t[01(ur,y) + 9(y) — ()] + (1= ) [O1 (s, w) + p(w) - (ur)] (3.92)
<O (ur,y) + 9 (y) — p(u)] + (1= ) (us — w, ¥ruy)
= t{O1(ur, y) +¢(y) - p(un)] + (1 = Oy - w, ¥1ur).

Dividing by t, we get
O1(u, y) +9(y) — (ur) + (1 - t){y —w, ¥ruy) > 0. (3.93)
Letting t — 0 in the above inequality, we arrive that
O1(w,y) +¢(y) - p(w) + (y - w, ¥1w) > 0. (3.94)

Thus, w € GMEP(©;, ¢, ¥1). Similarly, we can prove that w € GMEP(©,, ¢, ¥>).
Finally, now we prove that w € VI(C, B).
We define the maximal monotone operator:

Bwy + Ncwy, wi € C,
Quw, = (3.95)
@, wy ¢C.
Since B is relaxed (u, v)-cocoercive and condition (C5), we have
(Bx - By,x - y) > (-u)||Bx - By|* + v||x - y||* > <v - uw2> lx-v|>>0, (3.96)

which yields that B is monotone. Thus, Q is maximal monotone. Let (w1, w») € G(Q). Since
wy — Bwy € Ncw; and z, € C, we have

(w1 — zy, wy — Bwy) > 0. (3.97)

On the other hand, from z, = P-(Sv, — a,BSv,), we have

(w1 — zy, zn — (Sv, — a,BSvy)) >0, (3.98)

and hence

<w1 _ g, TS0, BSvn> > 0. (3.99)

n
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It follows that

(w1 — zy, W) 2 (W1 — 2y, Bwy)

Zn = S0n; + BSv >
a i

> (w1 — zp, Bwy) - <w1 — Zn,,
n;

~—Sv,.
= <w1 — Zy,, Bw1 — BSvy,, — u>

Ay,
(3.100)
= (w1 — zp,;, Bw1 — Bz,,) + (w1 — zy,, Bz, — BSvy,)
< Zy, — SUp, >
- w1 — Zni/ -
ay,
. —So,,.
> (w1 — zy, Bzy,, — BSvy,) — <w1 ~ Zn,, u>
ni
which implies that
(w1 —w,wy) > 0. (3.101)

Since Q is maximal monotone, we obtain that w € Q~'0. From Lemma 2.3, we get that w €
VI(C, B). Thatis, w € ¥. Since z = Pg(yf + (I — A))(z), we have

limsup(yfz - Az, x, — z) = limsup(yfz — Az, x, — z)

n—oo n—oo

= lim(yfz - Az, x,, — z) (3.102)

=(yfz-Az,w-z) <0.
On the other hand, we have

(yf2= Az, o~ 2) = (yf2 = Az, Y= x) + (yf2 = Az, 3, ~ 2)

(3.103)
<llyfz = Azlllgn —xall + (r 72 - Az, - 2)
From (3.43) and (3.102), we obtain that
limsup(yfz - Az, y, — z) <0. (3.104)

n— oo
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Step 6. Finally, we show that {x,} converges strongly to z = Pg(yf + (I — A))(z). Indeed, by
(3.13) and using Lemmas 2.6 and 2.12(2), we observe that

v = 2[” = leayf Cen) + Buren + (1= Bu)] ~ enA) 2z — 2|
= 1((1 = )T — €aA) (20 — 2) + Pu( — 2) + €n (¥ f () — A2) ||
<|I((1 = Bu)I - €nA) (20 = 2) + Pu(n — 2)|
+ 2€n(yf(xn) - Az, (1= Bn)] — €,A)(zn — 2) + Pu(xn — 2) + €n(y f (xn) — Az))
= (1= B)] - €nA) (20 = 2) + Buxa = 2) ||
+ Zen(yf(xn) — Az, ey f(xn) + Puxn + ((1 —pn)I - enA)zn - z)

>((1 —Pa)I = end)

2

= H(l—ﬂn =) (zn = 2) + Pu(xn—2)|| +2€x(yf(xn) — Az, yn — z)
2
<) |2 B | b

+2exy(f (xn) = f(2), Yn = 2) + 2ex(y f(2) = AZ, Yu - 2)

((1-Bu)] - €aA) ’

1_ﬁn (zn — 2) +ﬂn”xn_z||2

+2exy1ll%n = 2ll||yn — 2|| + 22{y f(2) — Az, yu - 2)

. ||(1- ﬂln)_Iﬂ— e,,A”z ”

+earn(lxn = 21 + [l = 2I") + 26a(yf (=) - Az yu -~ 2)

g1 - eul?
MA=pt

+earn(lxn = 2l + [lya = 2I") + 260 (yf () - Az yu ~ 2)

=<«rwa—%»2

< (1=Fn)

Zp — 2”2 + ﬁn“xn - Z”2

%0 = 21> + Bullxn — =]

1-p,

+ enynl|yn — z||* + 2en(yf (2) - Az, yu - 2)

—2 9
= <1 -2y -ny)en+ 1Y_€§n>llxn - z|?

+enyllyn — 2| + 2ea(yf (2) - Az, yu - 2),

+Pn + €nYﬂ> ll2cn — Z”Z

(3.105)
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which implies that
2(Y —my)en
=1 (1- 2705 Y, -2
Nyén

€n

"1 nyen

P
On the other hand, we have

| 2ps1 — Z“2 = ”Yn(xn -z)+ (1 - Yn) (yn - Z) ”2

< Ylln = 2l + (1= ya) lyn = 2 1"
Substituting (3.106) into (3.107) yields that

e = 21 < Yallxw = 217 + (1= y) |y = 2I|°

< Yn“xn - 2”2 + (1 - Yn)

2(y - n
% { <1 _ (Y ﬂY)E >”xn _ Z”Z
1T-nyen

—2
- [ Lo ey = 22 + 2(y £ (2) - Az, —z>]}

1-nye,|1-Pn
2(1=v,)(y - €n
=<1_ ( 1Y_)(Y 1y) >”xn_2”2
NYé€n

+ en(l - Yn) ?2€n
1-nyen |1-Pnu

Taking

_ 20 =y) (Y= my)en
L-nyen

n

_en(l-1)
o 1-nyen

1-pn
then, we can rewrite (3.108) as

ll2xn+1 — Z”2 < (1 - Qn)”xn - Z||2 + On,

—
[1)’_611 [l2cn — z||2 + 2<yf(z) - Az, Y, - z>]

lIxn = 2I1* + 2(y f (2) = Az, yn - Z>]-

—
{ Y n %, — 2| +2(yf(z) - Az, yn —z)},

35

(3.106)

(3.107)

(3.108)

(3.109)

(3.110)
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It follows from condition (C1) and (3.104) that

lim ¢, =0, > on = oo (3.111)
Since
limsup(yfz - Az, y, —z) <0. (3.112)

and {x, — z} is bounded, we have

limsup o, = limsup en(1-
n— oo ! n—oo 1_ NYé€n

){ 5 2 lx, — 2|2 +2(yf(z) - Az, y, - z)} (3.113)

Applying Lemma 2.8 to (3.110), we conclude that {x, } converges strongly to z in norm. This
completes the proof. O

Corollary 3.4. Let C be a nonempty closed convex subset of a real Hilbert space H. Let ©; and ©; be
two bifunctions from C x C to R satisfying (H1)—(H5) and let ¢ : C — R U {+oo} be a proper lower
semicontinuous and convex function with assumption (B1) or (B2). Let

(i) ¥, : C — H be a ¢-inverse-strongly monotone mapping,
(ii) ¥, : C — H be a B-inverse-strongly monotone mapping,

(iii) f: C — C be a contraction mapping with coefficient n € (0,1).

Let S : C — C be a nonexpansive mapping with F(S) # 0.
Assume that

F:=F(S)Nn GMEP(@l, Q, lP‘l) N GMEP(@Z, ¥, Ipz) # 0. (3.114)
Let {xn}, {yn}, {vn}, and {u,} be the sequences generated by

O,
n = Tﬁn 1) (xn - rnlplxn)/

(©2,9)
Uy = Tsn v (un - Snlpzun)l

(3.115)
Yn = €nf(xn) + ,ann + 6nSUn/
Xn+l = YnXn + (1 - Yn)yn/ Yn>1,
where {r,} C [a,b] C [0,2¢], {sn} C [c,d] C [0,28], {y.} C [h,j] C (0,1), and {y,}, s ABnl,

and {6, } are three sequences in (0,1) satisfying the following conditions:

(Cl) ep+Pn+6n=1,
(C2) limy s €, =0and 357, €, = oo,
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(C3) 0 < liminf, . B, <limsup, ,  Pp <1landlim,_ . B, =0,
(C4) 0 < liminf, 71, <limsup, , 1, <2&and lim, 4| — 14| =0,

(C5) 0 < liminf, .o s, <limsup, , s, <2fand lim, _, |Sy+1 — 5u| = 0.

Then, {x,} converges strongly to z = Pgf(z), which is the unique solution of the variational
inequality:

(f(z)-2zx-2z)<0, Vxe¥. (3.116)

Proof. In Theorem 3.3, put A=1,y =1,and 6, =1 — ¢, — f3,. Let B = 0 in Theorem 3.3; then
we have VI(C, B) = C and

zn = Pc(Sv, — ay,BSv,) = Sv,, (3.117)

and we can obtain the desired conclusion from Theorem 3.3 immediately. O

Corollary 3.5. Let C be a nonempty closed convex subset of a real Hilbert space H. Let ©1 and O, be

two bifunctions from C x C to R satisfying (H1)-(H5) and let ¢ : C — R U {+oo} be a proper lower

semicontinuous and convex function with assumption (B1) or (B2). Let f : C — C be a contraction

mapping with coefficient 1 € (0,1) and let S : C — C be a nonexpansive mapping with F(S) # (.
Assume that

F = F(S) N MEP(©y,9) N MEP(©y, ¢) #0. (3.118)

Let {x,}, {yn}, {vn}, and {u,} be the sequences generated by

1
O1(un, y) + 9(y) — p(uy) + r—(y —Un, Uy —Xy) 20, VyeC,

1
@2 (vn/ y) + (P(y) - (P(v‘rl) + ;(y —Un,Un — un) > 0/ Vy € C/ (3119)

Yn = €nf (Xn) + PuXxy + 6,50y,
Xn+1 = YnXn + (1 - Yn)yn/ Vn>1,
where {r,} C [a,b] C (0,), {s.} C [c,d] C (0,0), {y.} C [h,j] C (0,1), and {yu}, {€n}, {Bn},
and {6,} are three sequences in (0, 1) satisfying the following conditions:

(Cl) ep+Pn+06n=1,

(C2) limy o €, = 0and X574 €, = o0,

)

)
(C3) 0 < liminf, . B, <limsup, ,  Pn <1landlim, ., f, =0,
(C4) 0 < liminf, 7, <limsup, , 1, < coand lim, 4| — 14| =0,
)

(C5) 0 < liminf, o s, <limsup, , s, < coand lim, ., |su41 — 5, = 0.
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Then, {x,} converges strongly to z = Pgf(z), which is the unique solution of the variational
inequality:

(f(z)-z,x-2z)<0, Vxe¥. (3.120)
Proof. In Theorem 3.3, put u, = Tr(n@l’(”) (xy — r,¥1x,) to be equivalent to
O1(tn, y) +9(y) — @(un) + (¥1X0, y — ) + %(y —Up, Uy —Xy) 20, VyeC, (3.121)

and put v, = Ts(?z,w)

(un — s, ¥ou,) to be equivalent to
©2(vn, ¥) +9(v) — p(vn) + (Poxn, y — Un) + Sl<y — Uy, Uy —U,) >0, VyeC.  (3.122)

Now, put ¥; = ¥, = 0. Then, it follows that

1
O1 (n, y) +¢(y) = @n) + =y = ttn, Un = xn) 20, Vy €C,

. (3.123)
(v, y) +9(y) — @(vn) + S—(y — U, Uy —Uy) >0, VYyeC.
Observe that for all ¢ > 0, we see that
(W1x - Woy,x - y) > ¢[|¥1x - Coy|’, Vx,yeC. (3.124)

Thus, let {r,} be a sequence satisfying the restriction: a < r, < b, where a,b € (0,00) with
0 < liminf, .7, < limsup,_, 7, < oo. Similarly, we obtain ¢ < s, < d, where ¢, d €

(0,00) with 0 < liminf,_ s, < limsup, s, < oo, and we obtain the desired result by
Corollary 3.4. O
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