
Eur. Phys. J. C (2015) 75:192
DOI 10.1140/epjc/s10052-015-3426-5

Regular Article - Theoretical Physics

Cosmological birefringence due to CPT-even Chern–Simons-like
term with Kalb–Ramond and scalar fields

Shih-Hao Ho1, W. F. Kao1,a, Kazuharu Bamba2,3,b, C. Q. Geng3,c

1 Institute of Physics, National Chiao Tung University, Hsinchu 300, Taiwan
2 Division of Human Support System, Faculty of Symbiotic Systems Science, Fukushima University,

Fukushima 960-1296, Japan
3 Department of Physics, National Tsing Hua University, Hsinchu 300, Taiwan

Received: 4 December 2014 / Accepted: 21 April 2015 / Published online: 5 May 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract We study the CPT-even dimension-six Chern–
Simons-like term by including dynamical Kalb–Ramond and
scalar fields to examine the cosmological birefringence. We
show that the combined effect of a neutrino current and a
Kalb–Ramond field could induce a sizable rotation polariza-
tion angle in the cosmic microwave background radiation
polarization.

1 Introduction

The Lorentz and CPT invariance are foundations of particle
physics. Testing the validity of these two invariance princi-
ples has been a topic of the highest significance in the field.
One of the tests is to use cosmological birefringence [1,2],
which is an additional rotation of synchrotron radiation from
the distant radio galaxies and quasars. Since it is wavelength-
independent, it is different from Faraday rotation. The first
indication of cosmological birefringence was claimed by
Nodland and Ralston [3]. Unfortunately, it has been shown
that there is no statistically significant signal [4–8]. Never-
theless, this provides a new way to search for new physics in
cosmology. In recent years, there are many groups using com-
bined data to constrain this small violation effect. In particu-
lar, the analysis by Feng et al. [2] gives �α = −6.0 ± 4.0◦,
while the Wilkinson Microwave Anisotropy Probe (WMAP)
group �α = −1.7 ± 2.1◦ with 5 year data [9]. In addition,
the Combined WMAP 5 year data with the BOOMERanG
data leads to �α = −2.6 ± 1.9◦ [10–13], and an improved
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result by the QUaD Collaboration is �α = 0.64 ± 0.5 ±
0.5◦ [14,15]. Combined QUaD, WMAP7, B03 and BICEP
data indicates �α = −0.04 ± 0.35◦ [16]. In a recent paper,
the constraint �α = −0.8 ± 2.2◦ has been reported [17].
It has been pointed out that the Planck Surveyor [18] will
reach a sensitivity of �α at levels of 10−2–10−3 [19], while a
dedicated future experiment on the cosmic microwave back-
ground radiation polarization would reach 10−5–10−6 �α-
sensitivity [19].

It is well known that this phenomenon can be used to
test the Einstein equivalence principle as was first pointed
out by Ni [20,21]. Another theoretical origin of the bire-
fringence was developed by Carroll et al. [1,4]. They mod-
ified the Maxwell Lagrangian by adding a CPT violating
Chern–Simons term [1], which results in numerous subse-
quent works [22–44]. In Ref. [45], a CPT-even dimension-six
Chern–Simons-like term was considered, in which the four-
vector pμ is related to a neutrino current [45] and there is a
Kalb–Ramond field as an auxiliary field to maintain general
gauge invariance. It is clear that the observation of the cosmo-
logical birefringence may not imply CPT violation [46,47]
but parity violation.

In this paper, we extend the study in Ref. [45] by con-
sidering the dynamics of a Kalb–Ramond field and a scalar
field. We consider the flat Friedmann–Lemaître–Robertson–
Walker (FLRW) space-time with the metric: ds2 = −dt2 +
a2(t)dx2, where a(t) is the scale factor. We use the signa-
ture convention for the metric tensor g = diag(−,+,+,+)

and εμναβ = (
1/

√
g
)

eμναβ , where eμναβ is the Levi-Civita
tensor normalized by e0123 = +1. We also use units of
kB = c = h̄ = 1.

The paper is organized as follows. In Sect. 2, we explain
the model and derive the equations of motion. We explore the
cosmological birefringence in Sect. 3. Finally, conclusions
are given in Sect. 4.
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2 The model

We start with the string-inspired action [48]

S0 =
∫

d4x
√
g

[
−1

2
εφ2R − 1

2
gμν∂μφ∂νφ − V (φ)

− ξ1

6φ2 HμναH
μνα+ ξ2

φ2 jμ

(
Aν F̃

μν + 1

2
εμναβ∂νBαβ

)

−1

4
FμνFμν

]
, (1)

where φ is the scalar field with the potential V (φ), jμ =
f̄ γμ f ≡ ( j0, j) is the fermion current, Hμνα ≡ ∂ [μBνα] is
the Kalb–Ramond field strength, Fμν = ∂ [μAν], and F̃μν =
(1/2)εμναβFαβ with the electromagnetic vector field Aμ; the
parameters ε, ξ1, and ξ2 are unknown constants.

Note that the cosmological birefringence due to a Kalb–
Ramond field has been studied in Refs. [49,50]. The major
difference with our model is the introduction of a complete
fermion current with a nontrivial gauge coupling. Indeed, it is
well known that Eq. (1) is not gauge invariant under a gauge
transformation because of the interaction ξ2

φ2 jμ
(
Aν F̃μν +

1
2εμναβ∂νBαβ

)
. We note that, under the gauge transformation

Aμ −→ Aμ + ∂μθ , one obtains

ξ2

φ2 jμ

(
Aν F̃

μν + 1

2
εμναβ∂νBαβ

)

−→ ξ2

φ2 jμ

(
Aν F̃

μν + 1

2
εμναβ∂νBαβ

)

+1

2
jμεμναβ

[
(∂νθ)Fαβ + ∂νδBαβ

]
. (2)

The extra term in Eq. (2) from the gauge transformation
should be zero, i.e.,

1

2
jμεμναβ [(∂νθ)Fαβ + ∂νδBαβ ]

= 1

2
jμεμναβ [∂ν(θ)Fαβ + ∂νδBαβ ] = 0, (3)

which leads to δBαβ = −θFαβ . Therefore, we have to modify
the field strength tensor of Bμν as

H̃μνα ≡ Hμνα + A[μFνα]. (4)

As a consequence, the gauge invariant action becomes

S0 =
∫

d4x
√
g

[
−1

2
εφ2R − 1

2
gμν∂μφ∂νφ − V (φ)

− ξ1

6φ2 H̃μνα H̃
μνα − 1

4
FμνFμν

+ ξ2

φ2 jμ

(
Aν F̃

μν + 1

2
εμναβ∂νBαβ

)]
. (5)

Note that the scalar–tensor coupling considered in this paper
was in fact initiated by Brans and Dicke [51–55], motivated

by Mach’s principle. The Brans–Dicke theory relates the
gravitational constant to a dynamical scalar field. The idea
that the gravitational constant is a dynamical variable is also
coherent with the large number hypothesis proposed by Dirac
[56]. Dirac found that a simple combination of some univer-
sal constants is close to the age of the universe. It was hence
conjectured by Dirac that these constants could be dynami-
cal fields. This also agrees with the original idea of the Weyl
invariant theory [57,58]. All coupling constants in a Weyl
invariant theory have to be dimensionless if local or global
scale invariance is to be preserved. Therefore, in a Weyl
invariant theory all dimensionful constants are replaced by
dynamical fields with proper order to account for the dimen-
sions of various constants. A dimension-one scalar field is
a popular candidate for this purpose. The dimension of a
“constant” then emerges as a symmetry breaking effect. Our
model is therefore based on the original idea of Weyl, Dirac,
and Brans–Dicke.

When a system is in its high energy phase, scale symme-
try is preserved. A spontaneous symmetry breaking (SSB)
potential is induced in the low energy phase to account for
the scale symmetry breaking. The masses of various fields as
well as the dimensions of various constants are thus induced
when the system grows into its low energy phase. There are a
number of ways to introduce a symmetry breaking potential.
One simple method is to introduce a φ4 SSB potential of the
form V (φ) = λ(φ2 −φ2

0)2 +V0 with λ a dimensionless con-
stant.

When the system is in its low energy phase, the scalar
field will roll down to the local minimum at φ = φ0. This
SSB potential is parity even (it has φ → −φ symmetry)
and hence has been a popular candidate for the purpose of
introducing the proper dimension of a parity conserving sys-
tem. This potential will, however, be plagued by the domain
wall problem [59], which requires some more efforts to be
settled. We can instead consider a parity odd potential like
V = λ(φ − φ0)

4 + V0 that is free of the domain wall com-
plex.

Alternatively, one of the other most popular candidates
is the Coleman–Weinberg potential of the form that is in
agreement with the WMAP observation: V (φ) = λ

4 φ4
0 +

λφ4
[

ln
( φ

φ0

)− 1
4

]+V0, with φ0 denoting the vacuum expec-
tation value (VEV) of φ at the minimum φ0. Note that
V (φ = φ0) = V0, and the vacuum energy density at the ori-
gin is given byV0+λφ4

0/4 [60–64]. The Coleman–Weinberg-
like potential takes the radiative correction as the origin of
SSB. This theory is thus backed up by a convincing dynam-
ical motivation. Note that the form of the potential is not
essential in the prediction when the system has settled down
to the low energy phase when the scalar field loses its dynam-
ics and sits still at its VEV.

By varying the action with respect to φ, gμν , Bμν , and Aμ,
we can have a set of equations of motion as follows:
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εφR = Dμ∂μφ − ∂V

∂φ
+ ξ1

3φ3 H̃
2

−2
ξ2

φ3 jμ

(
Aν F̃

μν + 1

2
εμναβ∂νBαβ

)
, (6)

εφ2Gμν =
[

1

2
(∂αφ)2+V (φ)

]
gμν −∂μφ∂νφ + ξ1

6φ2 H̃
2gμν

+
(

1

4
F2gμν − FμαF

α
ν

)
− 1

φ2 H̃μαβ H̃
αβ
ν

+ ε(DνDμφ2 − Dσ Dσ φ2gμν), (7)

Dμ

(
ξ1

φ2 H̃
μνα + ξ2

2φ2 εμναβ jβ

)
= 0, (8)

DνF
νμ − Dν

(
2ξ1

φ2 H̃ ναμAα + ξ2

φ2 εβανμ jβ Aα

)

= ξ1

φ2 H̃
μναFνα − ξ2

φ2 jν F̃
νμ . (9)

Since H̃μνα is a totally antisymmetric tensor, we can write
H̃μνα = εμναβTβ , where Tβ is a vector with mass dimension
three.

Thus, Eq. (8) is rewritten

εμναβ∂μ

(
ξ1

φ2 Tβ + ξ2

2φ2 jβ

)
= 0. (10)

Focusing on the space–time manifold with first trivial homol-
ogy group, any closed one-form is an exact one-form. There-
fore, from Eq. (10), we can express the torsion field as

1

φ2

(
ξ1Tβ + ξ2

2
jβ

)
= ∂β�, (11)

where � is a dimensionless pseudo-scalar. With the help of
Eq. (11), we can further simplify the equations of motion to

εφR=Dμ∂μφ − ∂V

∂φ
− 2φ

3ξ1
(∂μ�)2 + ξ2

2

2ξ1φ3 ( jμ)2, (12)

εφ2Gμν =
[

1

2
(∂αφ)2 + V (φ)

]
gμν

−∂μφ∂νφ + ε(DνDμφ2 − Dσ Dσ φ2gμν)

+ 1

ξ1φ2

[

φ4 (∂α�)2−ξ2φ
2 jα∂α�+ ξ2

2

4
( jα)2

]

gμν

−2
ξ1

φ2

(
φ2

ξ1
∂μ� − ξ2

2ξ1
jμ

) (
φ2

ξ1
∂ν� − ξ2

2ξ1
jν

)

+
(

1

4
F2gμν − FμαF

α
ν

)
, (13)

DμF
μν = −4

(
∂μ�

)
F̃μν. (14)

3 Cosmological birefringence

For the present purpose, we need not specify the form of the
potential for the scalar field. Therefore, we simply consider
the potential to be the cosmological constant V0 when the

scalar field is at its VEV φ0. Taking all the φ fields in the
equations to be φ0, the equations of motion become

εφ0R=−2
φ0

ξ1
(∂μ�)2 + ξ2

2

2ξ1φ
3
0

( jμ)2, (15)

εφ2
0Gμν = V0gμν +

(
1

4
F2gμν − FμαF

α
ν

)

+ 1

ξ1φ
2
0

[

φ4
0 (∂α�)2 − ξ2φ

2
0 jα∂α� + ξ2

2

4
( jα)2

]

gμν

−2
ξ1

φ2
0

(
φ2

0

ξ1
∂μ� − ξ2

2ξ1
jμ

)(
φ2

0

ξ1
∂ν� − ξ2

2ξ1
jν

)

.

(16)

Taking the trace of Eq. (16), we have

− εφ2
0 R = 4V0 + 2

φ2
0

ξ1
(∂μ�)2 − 2

ξ2

ξ1
jμ∂μ�

+ ξ2
2

2ξ1φ
2
0

( jμ)2. (17)

By combining Eqs. (15) and (17), we obtain

4V0 − 2
ξ2

ξ1
jμ(∂μ�) + ξ2

2

ξ1φ
2
0

( jμ)2 = 0. (18)

In the FLRW universe, it is reasonable to assume a homo-
geneous and isotropic fermion current and torsion field [45],
i.e., jμ = ( j0(t), 0) and Tμ = (T0(t), 0). From Eq. (18), we
have the evolution equation for the dimensionless pseudo-
scalar �:

4V0 + 2
ξ2

ξ1
j0(∂0�) − ξ2

2

ξ1φ
2
0

( j0)
2 = 0. (19)

The solution of Eq. (19) can easily be derived as

∂0� = −2
ξ1V0

ξ2 j0
+ ξ2

2φ2
0

j0. (20)

Similar to the calculation in Ref. [45], the change in the
position angle of the polarization plane �α at the redshift
z ≡ 1/a − 1 is given by

�α = 2
∫

(∂0�)
dt

a(t)

= 2
∫ 1100

0

(

−2
ξ1V0

ξ2 j0
+ ξ2

2φ2
0

j0

)
dz

H0 (1 + z)n
(21)

where H0 = 2.1 × 10−42hGeV is the Hubble constant with
h � 0.7 at present and we have assumed our universe is
flat and n = 3/2, 2, 0 correspond to a matter-, radiation-,
and vacuum-dominated universe, respectively. To estimate
�α in Eq. (21), we take the zero component of the fermion
current j0 to be the (lightest) neutrino asymmetry, say, the
electron neutrino in our universe,
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j0 = �nνe = 1

12ζ(3)

(
Tνe

Tγ

)3

π2ξνenγ

= 2

33
ξνe T

3
γ0

(1 + z)3, (22)

where Tγ0 is the CMB temperature at present, ξνe is the degen-
eracy parameter for the electron neutrino, and (Tνe/Tγ )3 =
4/11 is assumed. In Ref. [65,66] the bound on the degener-
acy parameter is −0.046 < ξνe < 0.072 for a 2σ range of
the baryon asymmetry.

Inserting Eq. (22) into Eq. (21), we have

�α = 2 f (z)|1100
0 (23)

where f (z) is given by

f (z) =
(

33ξ1V0

(n + 2)ξ2ξνe T
3
γ0
H0

)

(1 + z)−(n+2)

+
(

ξ2ξνe T
3
γ0

33(n − 4)φ2
0 H0

)

(1 + z)(4−n). (24)

Therefore, there is a bound on the function | f (z)|

| f (z)| ≥ 2

[
ξ1V0

(n + 2)(n − 4)φ2
0 H

2
0 (1 + z)2(n−1)

]1/2

, (25)

which can be thought of as a bound on the contribution
of the effective cosmological constant V0. The parameters
in our model have constraints from observations, which
gives us | ξ1V0

ξ2
| ≤ 10−85 GeV4 and | ξ2

φ2
0
| ≤ 10−8 GeV−2;

| ξ1V0
ξ2

| ≤ 10−85 GeV4 and | ξ2

φ2
0
| ≤ 10−7GeV−2, and

| ξ1V0
ξ2

| ≤ 10−86 GeV4 and | ξ2

φ2
0
| ≤ 10−13 GeV−2 for a

matter-, radiation-, and vacuum-dominated universe. Note
that the effective coupling constant φ2

0 is constrained to be the
reduced Planck mass M2

pl = 1/8πG because of the Einstein–

Hilbert action. By taking ε = 1,V0 ∼ 10−85 (GeV)4, ξ1 = 1,
ξ2 = 1, ξνe ∼ 10−3, and n = 3/2 for a matter-dominated
universe, we get �α ∼ −9.7 × 10−2, which could explain
the results in Refs. [2,9–15].

4 Conclusions

In the present paper, we have studied the CPT-even
dimension-six Chern–Simons-like term in Ref. [45] by
including dynamical torsion and scalar fields to explain the
cosmological birefringence effect. The combined effect of
the Kalb–Ramond field and the neutrino current induces a
sizable rotation polarization angle in the CMB data provided
that there is a non-zero neutrino number asymmetry.

It is interesting to note that the effect induced by the Kalb–
Ramond field is the inverse of the one due to the neutrino
current, as shown in Eq. (24). In contrast to the model in

Ref. [45], in which a similar dimension-six interaction with
an undetermined effective coupling constant was examined,
we consider, however, the dynamical scalar fields in terms of
the coupling constants of the Ricci scalar, the Kalb–Ramond
field, and in interaction terms. Namely, the effective coupling
constant φ2

0 is related to Mpl in the Einstein–Hilbert action.
Because of this limitation, the contribution to the angle �α is
highly suppressed to O(10−32), and the correspondingV0 has
to be around 10−85 (GeV)4 to match the current observational
constraint.

Finally, we remark that there should be other interesting
cosmological phenomena in this model [67], which will be
studied elsewhere.
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