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Abstract. Extending a recent suggestion for hyperon form factors to the nucleon case, dispersion theory is
used to relate the low-energy vector-isovector form factors of the nucleon to the pion vector form factor. The
additionally required input, i.e. the pion-nucleon scattering amplitudes are determined from relativistic
next-to-leading-order (NLO) baryon chiral perturbation theory including the nucleons and optionally the
Delta baryons. Two methods to include pion rescattering are compared: a) solving the Muskhelishvili-
Omnès (MO) equation and b) using an N/D approach. It turns out that the results differ strongly from
each other. Furthermore the results are compared to a fully dispersive calculation of the (subthreshold)
pion-nucleon amplitudes based on Roy-Steiner (RS) equations. In full agreement with the findings from the
hyperon sector it turns out that the inclusion of Delta baryons is not an option but a necessity to obtain
reasonable results. The magnetic isovector form factor depends strongly on a low-energy constant of the
NLO Lagrangian. If it is adjusted such that the corresponding magnetic radius is reproduced, then the
results for the corresponding pion-nucleon scattering amplitude (based on the MO equation) agree very
well with the RS results. Also in the electric sector the Delta degrees of freedom are needed to obtain the
correct order of magnitude for the isovector charge and the corresponding electric radius. Yet quantitative
agreement is not achieved. If the subtraction constant that appears in the solution of the MO equation
is not taken from nucleon+Delta chiral perturbation theory but adjusted such that the electric radius is
reproduced, then one obtains also in this sector a pion-nucleon scattering amplitude that agrees well with
the RS results.

1 Introduction and summary

The remaining big challenge within the standard model of
particle physics is to understand quantitatively how the
quarks and gluons form nucleons and other hadrons. Es-
pecially when light quarks are involved this means that
we have to understand the formation of composite ob-
jects from relativistic quantum states. In general, form fac-
tors parametrize the deviation from pointlike behavior [1].
Thus they encode by definition the information about the
intrinsic structure of an object. On the other hand, when
quantum objects are probed in relativistic reactions, quan-
tum fluctuations influence the measurement. In this sense
there are no truly pointlike objects in the realm of rel-
ativistic quantum physics. These quantum fluctuations
are nothing but the cross-channel equivalent of particle
production. On a technical level the analyticity of reac-
tion amplitudes enforces the presence of quantum fluctu-
ations whenever the optical theorem incorporates the cor-
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responding particle production. Dispersion theory is the
natural framework to establish these interrelations [2–4].

The lower the energy/momentum that one uses to
probe the object of interest, the less resolution one can
achieve. Consequently electromagnetic form factors coin-
cide in the low-energy limit with the properties that one
attributes already to a pointlike object, the electric charge
and magnetic moment. Proceeding to somewhat higher
energies one can measure the onset of an energy depen-
dence of a form factor. In a dispersive representation this
is related to the lightest particles that couple to the ob-
ject of interest and to electromagnetism. The impact of
heavier states is suppressed by the (square of the) ratio
between the resolution energy and the heavy mass of these
states. The lightest hadronic state that couples to electro-
magnetism is the two-pion state [5]. The dispersive frame-
work [6–9] that utilizes these interrelations is at the heart
of the present work.

Recently it has been proposed in [10] to determine the
low-energy electromagnetic form factors for the transition
of the Sigma to the Lambda hyperon by a combination
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of dispersion theory and relativistic octet+decuplet chi-
ral perturbation theory (χPT) at next-to-leading order
(NLO). A similar framework —with subtle differences that
will be addressed below— has been used in [11] based
on relativistic octet+decuplet χPT at leading order (LO).
In the latter work, peripheral transverse densities for the
whole ground-state multiplet have been determined. Re-
cently an extension of the framework of [11] to the scalar
form factor of the nucleon using NLO χPT has been pre-
sented in [12].

In [10] the use of χPT has been motivated by the
fact that there exist no direct pion-hyperon scattering
data. Clearly this situation is different for the nucleon
case. There a dispersive analysis based on Roy-Steiner
equations exists for the pion-nucleon scattering ampli-
tudes [13]. It can be used to pin down the subthreshold
t-channel p-wave pion-nucleon amplitudes. In turn these
subthreshold amplitudes provide the necessary input for
the vector-isovector form factors of the nucleon [9].

Thus one might use the nucleon case as a cross-check
of the formalism proposed for the hyperons in [10]. This
was the primary motivation to start the present work. In
addition the nucleon case is of course interesting in its own
right [9,14–16]. Finally it is worth comparing the two ap-
proaches [10] and [11]. Though both respect Watson’s the-
orem of the universality of final-state interactions [17] pion
rescattering is treated very differently. A Muskhelishvili-
Omnès (MO) problem [2,3] is solved in [10] while a variant
of the N/D method [18] is utilized in [11]. It will turn out
that the results are very different with the MO version
agreeing very well with the fully dispersive setup of the
Roy-Steiner analysis.

The analysis presented in the following supports the
ideas raised in [10] for hyperons: the explicit inclusion of
decuplet degrees of freedom (for the nucleon case the Delta
baryon) is mandatory. Undetermined parameters can be
fitted to data. Consequently the required input is

– once subtracted dispersion relations for the magnetic
and electric isovector form factors, the respective sub-
traction constant is fixed by the corresponding mag-
netic moment or charge;

– the by now very well known pion vector form fac-
tor [19–21] based on the pion p-wave phase shift [22,
23];

– the exchange diagrams of octet and decuplet baryons
with coupling constants adjusted to pertinent data on
pion-baryon interactions;

– for each sector (electric/magnetic) a constant —pion-
baryon contact interaction— that enters the solution
of the MO problem, this constant can be fitted to the
corresponding radius.

Thus, with value and slope at the photon point as in-
put, the shape of a form factor, e.g. its curvature can
be predicted. Alternatively one might use the obtained
dispersive representation with free parameters to fit form
factor data. This is similar in spirit to [24]1. In that way a
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parametrization superior to polynomial fits might be ob-
tained that correctly accounts for pion rescattering and for
close-by left-hand cuts. Of course, a description of data on
the scattering of electrons on protons or neutrons requires
the additional treatment of the isoscalar part of the elec-
tromagnetic form factors. This is beyond the scope of the
present work where I solely focus on the isovector part.

2 Dispersive framework

Essentially I follow the formalism described in [10]. To ap-
ply dispersion theory I formally study the (isovector part
of the) reaction N N̄ → γ∗ and saturate the intermediate
states by a pion pair. It can be expected that the satu-
ration of the inelasticity by a pion pair provides a good
approximation for the form factors at low energies.

The form factors can be defined (in the isospin limit)
by

〈0|jμ|(pp̄ − nn̄)/2〉

= e v̄N

(
γμ F1(q2) − iσμν qν

2mN
F2(q2)

)
uN , (1)

with

GE(q2) := F1(q2) +
q2

4m2
N

F2(q2),

GM (q2) := F1(q2) + F2(q2). (2)

q2 denotes the square of the invariant mass of the vir-
tual photon. With the conventions of (1) the photon
momentum q is given by the sum of the momenta of
the two baryons. In the following GE/M is called elec-
tric/magnetic form factor, i.e. I will not always stress ex-
plicitly that these are only the isovector parts of the com-
monly known electromagnetic form factors. It is worth
mentioning that GM is the helicity flip and GE the helic-
ity non-flip amplitude concerning the baryon spins in the
reaction N N̄ → γ∗ → e+e−; see also [25].

I will mainly use the subtracted dispersion relations

GM/E(q2) = GM/E(0)

+
q2

12π

∫ ∞

4m2
π

ds

π

TM/E(s) p3
c.m.(s)FV ∗

π (s)
s3/2 (s − q2 − iε)

.

(3)

The subtraction constants that appear in (3) can be ad-
justed to match the form factors at the photon point,
GE(0) = 1

2 , GM (0) = 1
2 (1 + κp − κn), where κp/n denotes

the magnetic moment of the proton/neutron.
In line with the names for the form factors I will de-

note the corresponding pion-nucleon amplitudes TE and
TM by electric and magnetic scattering amplitude, respec-
tively. These quantities are reduced amplitudes for the for-
mal reaction N N̄ → π+ π− projected on I = 1, J = 1.
For details I refer again to [10]. Yet, to make compar-
isons to other works easier I will relate TM/E to the am-
plitudes used in [9, 26, 27]. This matching is described in
appendix A.
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In (3) pc.m. denotes the pion momentum in the center-
of-mass frame of the two-pion system and FV

π the pion
vector form factor defined by

〈0|jμ|π+(p+)π−(p−)〉 = e (pμ
+ − pμ

−)FV
π ((p+ + p−)2).

(4)
Besides the once subtracted dispersion relation (3) I

will also examine an unsubtracted version,

GM/E(q2) =
1

12π

∫ ∞

4m2
π

ds

π

TM/E(s) p3
c.m.(s)FV ∗

π (s)
s1/2 (s − q2 − iε)

(5)
and explore to which extent the pion loop plus pion rescat-
tering saturates the isovector magnetic moment,

1
2
(1 + κp − κn) ?=

1
12π

∫ ∞

4m2
π

ds

π

TM (s) p3
c.m.(s)FV ∗

π (s)
s3/2

,

(6)
and to which extent the dispersively calculated isovector
charge is reproduced,

1
2

?=
1

12π

∫ ∞

4m2
π

ds

π

TE(s) p3
c.m.(s)FV ∗

π (s)
s3/2

. (7)

Concerning the quality of subtracted vs. unsubtracted dis-
persion relations I refer to the detailed discussion in [10]
and references therein. The synopsis is that a subtracted
dispersion relation is more reliable than an unsubtracted
one if one keeps from all possible intermediate states only
the ones that remain relevant at low energies, i.e. the two-
pion states; see also the corresponding discussion in [9].

In line with [9] I also introduce electric and magnetic
radii

〈r2
M/E〉 := 6

dGM/E(q2)
dq2

∣∣∣∣
q2=0

. (8)

These isovector radii are related to the standard electro-
magnetic radii 〈r2

M/E〉p/n for proton and neutron via

〈r2
M 〉 =

1
2

(
(1 + κp) 〈r2

M 〉p − κn 〈r2
M 〉n

)
, (9)

〈r2
E〉 =

1
2

(
〈r2

E〉p − 〈r2
E〉n

)
. (10)

As a consequence of (3) the dispersive representation of
the radii reads

〈r2
M/E〉 =

1
2π

∫ ∞

4m2
π

ds

π

TM/E(s) p3
c.m.(s)FV ∗

π (s)
s5/2

. (11)

To satisfy Watson’s theorem [17] the amplitudes TM/E

must contain the rescattering of pions. I will discuss two
unitarization methods how to account for this rescat-
tering. The solution of the Muskhelishvili-Omnès prob-
lem [2, 3] provides the basis of the first approach. I will
denote the results by TMO and suppress the labels M/E
until they become relevant again. The resulting form fac-
tors are denoted by GMO. This MO approach has also
been used in [10].

The second framework is a variant of the N/D
method [18]. It has been used in [11] and is based on a
further rewriting of the imaginary part of the form fac-
tors, i.e. of the numerators in (3), (5). I will denote the
solution by GN/D.

For the MO framework the amplitude TMO is decom-
posed into one part that contains all the left-hand cuts and
another that contains the right-hand cuts. The former is
denoted by K. For the problem at hand where there are
no overlapping cuts one finds

Im(TMO − K) = TMO e−iδ sin δ, (12)

with the pion p-wave phase shift δ. Equation (12) is solved
by the ansatz

TMO − K = Ω H (13)

with an auxiliary function H. The Omnès function

Ω(s) = exp

{
s

∫ ∞

4m2
π

ds′

π

δ(s′)
s′ (s′ − s − iε)

}
(14)

solves the homogeneous version of (12), i.e.

Im Ω = Ω e−iδ sin δ. (15)

Note that by construction both H and Ω have no left-
hand cuts, but only the right-hand cut from the two-pion
states. After some rewriting one obtains

0 = Im(TMO − K) − TMO e−iδ sin δ

= e−iδ (|Ω| ImH − K sin δ) (16)

and therefore
ImH =

K sin δ

|Ω| . (17)

Following still [10] I determine H from a subtracted dis-
persion relation by recalling that H has only a right-hand
cut (caused by the two-pion states)

H(s) = Pn−1(s)

+sn

∫ ∞

4m2
π

ds′

π

sin δ(s′)K(s′)
|Ω(s′)| (s′ − s − iε) s′n

. (18)

Here Pm is a polynomial of degree m. In practice I use
n = 1. Finally this yields

TMO(s) = K(s) + Ω(s)P0

+Ω(s) s

∫ ∞

4m2
π

ds′

π

sin δ(s′)K(s′)
|Ω(s′)|(s′ − s − iε)s′

. (19)

Though the whole setup deals with and aims at low-energy
quantities, it is nonetheless interesting to note that the
use of a constant P0 instead of a higher-order polynomial
Pn(s), n ≥ 1, has the following appealing feature. Assum-
ing Ω(s) ∼ 1/s (see, e.g., [28]) and K(s) dropping for
large s, then also TMO drops. This leads to a convergent
integral in (5) provided that the pion vector form factor
satisfies FV

π (s) ∼ 1/s [29].
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Fig. 1. Pion vector form factor (modulus squared) from (21)
as compared to Belle data [30].

Let us come back to low energies and spell out the
crucial approximation: the left-hand cut structure K is
determined from tree-level nucleon and (optionally) Delta
exchange diagrams. This is essentially relativistic leading-
order (LO) chiral perturbation theory (χPT) [27,31] with
or without explicit Delta degrees of freedom [32]. Exten-
sion to next-to-leading order (NLO) does not provide ad-
ditional diagrams with left-hand cuts. The effect can be
encoded in the subtraction constant P0. In other words
one has

TNLO χPT = K + P0. (20)

Note that a deviation of the Omnès function Ω from unity
encodes pion rescattering and is therefore a loop effect
in χPT. But NLO accuracy of baryon χPT means tree
level [31]. This justifies the result (20). Complementarily
the constant P0 can be determined from a fit to the ra-
dius [10]. I will come back to this aspect in sect. 3.

The final ingredient is the pion vector form factor FV
π

introduced in (4). Here I slightly improve on the approxi-
mation of [10] and use [9, 19,33]

FV
π (s) = (1 + αV s)Ω(s). (21)

In practice I use the pion phase shift from [22] smoothly
extrapolated to reach π at infinity [19]. The parameter αV

is determined from a fit to data on the pion vector form
factor from tau decays. A value of

αV = 0.12GeV−2 (22)

yields the curve shown in fig. 1. An excellent agreement is
achieved for energies below 1GeV. One should not expect
a good agreement at higher energies where other interme-
diate states (four pions, six pions, . . . ) also play an impor-
tant role. Note that in contrast to [9,19] isospin breaking,
in particular rho-omega mixing, is entirely ignored in the
present work.

I turn now to the second unitarization method. Ac-
cording to the optical theorem, at low energies the imag-
inary part of an isovector form factor is proportional to
the product T FV ∗

π , cf. (3), (5). Following [11] this can be

rewritten as

T FV ∗
π =

T

FV
π

|FV
π |2 ≈

(
T

FV
π

)
χPT

(
|FV

π |2
)
data

. (23)

The ratio of scattering amplitude and pion vector form
factor is approximated by χPT. Right-hand cuts cancel
out in this ratio. This construction resembles the N/D
method. In [11] the modulus square of the pion vector
form factor is taken from a fit to data. By construction it
contains the correct right-hand cut.

To compare this N/D approach to the MO scheme I use
in the following χPT at NLO, i.e. eq. (20) together with
the phenomenologically successful approximation (21) for
the pion vector form factor. The deviation of FV

π (s) from
unity encodes pion rescattering and is therefore a loop ef-
fect in χPT. It appears at order s. In this context it is
important to note a difference between pionic and bary-
onic χPT. While in purely pionic χPT the respective next
order in the power expansion is suppressed by s, baryonic
χPT order by order receives relative corrections of order√

s [31]. Thus at NLO accuracy of baryon χPT one can re-
place FV

π by unity. Consequently the N/D method of [11]
yields at NLO

(
T

FV
π

)
χPT

= P0 + K. (24)

In contrast the MO scheme gives for the same quantity
(

T

FV
π

)
MO

≈ TMO

Ω
=

P0 +
K

Ω
+ s

∫ ∞

4m2
π

ds′

π

sin δ(s′)K(s′)
|Ω(s′)| (s′ − s − iε) s′

, (25)

where I have replaced a factor (1 + αV s) by unity. Below
we will see that the results from MO and N/D deviate by
factors of more than 2 in the region below 1GeV. Thus
effects on the 10% level as caused by αV can be safely
neglected for the comparison.

Inspecting the MO expression (25) and the N/D ex-
pression (24) we see that polynomials (here the constant
P0) are treated in the same way whereas left-hand cut
structures are treated very differently. In general

K(s) 	≈ K(s)
Ω(s)

+ s

∫ ∞

4m2
π

ds′

π

sin δ(s′)K(s′)
|Ω(s′)| (s′ − s − iε) s′

=
K(s)
|Ω(s)|e

−iδ + s

∫ ∞

4m2
π

ds′

π

sin δ(s′)K(s′)
|Ω(s′)| (s′ − s − iε) s′

=
K(s)
Ω(s)

− s

∫ ∞

4m2
π

ds′

π

Im Ω−1(s′)K(s′)
(s′ − s − iε) s′

. (26)

I have provided several versions to display the MO struc-
ture to make sure that the analytic properties can be
fully appreciated. Note in particular that above the two-
pion threshold —the relevant region in the dispersive in-
tegrals (3), (5)— both the left- and the right-hand sides
of (26) have no imaginary parts. Thus only the real parts
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differ. Essentially this ensures that Watson’s theorem is
satisfied for both approaches. Thus it is analyticity, not
unitarity (the optical theorem) where the two approaches
differ.

Finally it should be stressed that in practice the dis-
persive integrals in (3), (5) and (19) are cut off at Λ2.
Similar to [10] I explore for Λ the values 1 and 1.8GeV.
Note that cutoff values above the NN̄ threshold would
not be reasonable.

3 Input from chiral perturbation theory

Before turning to the results I shall further specify the
input of the calculations. Formally the same Lagrangians
as in [10] are used. The pion-nucleon tree-level amplitudes
can be obtained from the expressions given in [10] by the
replacements mΣ ,mΛ → mN , mΣ∗ → mΔ, D F/

√
3 →

g2
A/4, and h2

A/
√

3 → 2h2
A/3 with gA = F + D = 1.26; see

also appendix A. The pion-Delta-nucleon coupling con-
stant hA is chosen such that the width of the Delta is
reproduced. I use hA = 2.88. Note that the value ob-
tained from hyperon decays and used in [10] is signifi-
cantly smaller (hA ≈ 2.3). However, the whole frame-
work that highlights the dominant role of the light pi-
ons and disregards kaons is not SU(3) symmetric anyway;
see also the corresponding discussion in [10]. Thus it ap-
pears most appropriate that the three-point coupling con-
stants that are required in exchange diagrams are deter-
mined from corresponding two-body decay widths. This
is the phenomenology-based philosophy followed here and
in [10]. Only in the absence of phenomenological input
flavor SU(3) is utilized as a fall-back option.

Following [10] I will discuss in the following three ap-
proximations for the χPT input:

1) “LO”: purely-nucleon χPT at LO, i.e. no explicit Delta
degrees of freedom; essentially these are the Born di-
agrams of nucleon exchange and a contact interaction
from the Weinberg-Tomozawa term [34,35].

2) “NLO”: purely-nucleon χPT at NLO; as pointed out
in [10] there is no modification for the electric case
while for the magnetic case there is a contribution from
a contact interaction of the NLO Lagrangian. In the
SU(2) χPT language of [27, 36] this term is propor-
tional to the low-energy constant c4.

3) “NLO+res”: nucleon+Delta χPT at NLO; the over-
all strength of the contact interaction is adjusted such
that at low energies the result matches to the previous
case, see [10] for details.

With the third case one can study to which extent a dy-
namical treatment of the Delta really matters.

For the N/D method it is not necessary to specify K
and P0 separately. According to (24) only the sum mat-
ters. However, in the MO formula (19) the two ingredients
P0 and K are treated differently. At NLO one can choose
K such that it contains only the left-hand cut structures
and vanishes at large energies. All polynomial structures

(at NLO these are constants) are then encoded in P0. In-
deed, to obtain the appealing high-energy behavior de-
scribed after (19) it is of advantage to keep a K that van-
ishes at large energies apart from the constant P0.

Thus it is necessary to specify K and P0 separately. In
addition, one might adopt a point of view that is some-
what complementary to chiral perturbation theory. The
importance of nucleon and Delta exchange as the most
relevant left-hand cuts can also be motivated on phe-
nomenological grounds. What remains to be determined
is then the constant P0, to be more specific: one constant
for the electric and one for the magnetic sector. This can
be achieved by a fit to the corresponding radius. Thus it
makes sense to fully specify K and P0 separately.

In general, a calculation of tree-level nucleon and Delta
exchange diagrams yields polynomials and left-hand cut
structures that cannot be further reduced by partial frac-
tion decomposition. Only the latter are subsumed in K.
As discussed in [10], K does not depend on the chosen
representation for the fields while in general the polyno-
mial does. One might dub this “offshell ambiguity”. In an
effective field theory this ambiguity is compensated by the
appearance of contact interactions [37].

For the case considered here, K consists of contribu-
tions from nucleon and from Delta exchange. I call these
contributions KBorn and Kres, respectively. Correspond-
ingly I introduce

TBorn/res(s) :=

KBorn/res(s) + Ω(s) s

∫ ∞

4m2
π

ds′

π

sin δ(s′)KBorn/res(s′)
|Ω(s′)| (s′ − s − iε) s′

.

(27)

Then the MO scattering amplitude (19) can be written as

TMO(s) = TBorn(s) + T res(s) + Ω(s)P0. (28)

Instead of determining P0 from χPT one might fit it
to the radius. Using (11) this reads for the MO scheme

〈r2
M/E〉 =

∫ ∞

4m2
π

ds

π

(TBorn
M/E(s) + T res

M/E(s)) p3
c.m.(s)FV ∗

π (s)

2π s5/2

+P0,M/E

∫ ∞

4m2
π

ds

π

Ω(s) p3
c.m.(s)FV ∗

π (s)
2π s5/2

. (29)

In the magnetic sector there is a contribution to P0,M

from the NLO Lagrangian. It is proportional to the low-
energy constant c4. Here one might turn the line of reason-
ing around and determine c4 from the isovector magnetic
radius of the nucleon.

The explicit expressions for K can be easily obtained
from the formulae given in [10] together with the replace-
ment rules specified in the beginning of this section. The
χPT expressions for P0 are as follows. At LO of purely-
nucleon χPT one obtains

PLO
0,M = PLO

0,E = −g2
A − 1
2F 2

π

. (30)
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At NLO of purely-nucleon χPT one finds the additional
contribution

PNLO
0,M =

2mN c4

F 2
π

. (31)

In the electric sector there is no NLO modification.
In the “NLO+res” approximation that includes dy-

namical Delta baryons the additional contributions to P0

depend on the representation for the Delta fields [10]. In
the electric sector this ambiguity is relegated to higher
orders. One gets

P res
0,E =

h2
A (mN + mΔ)2

36m2
Δ F 2

π

. (32)

In the magnetic sector this ambiguity persists, but is com-
pensated by the appearance of the NLO contact term
∼ c4. It makes sense to demand that the same low-energy
limit is obtained in the effective theories with and without
the Delta resonance. In the magnetic sector this requires
a modification of c4. Alternatively one can keep the value
of c4 and subtract the contribution from Kres

M (s) evalu-
ated at an appropriate low-energy point s. Following the
procedure outlined in [10] I choose

P res
0,M = − lim

s→0
lim

mπ→0
Kres

M (s)

= −h2
A(4mΔmN − m2

Δ − m2
N )(mΔ + mN )

36m2
Δ(mΔ − mN )F 2

π

. (33)

Purely-nucleon χPT at LO means to consider
only (30). Purely-nucleon χPT at NLO means to sum for
the magnetic sector (30) and (31). Nucleon+Delta χPT at
NLO (“NLO+res”) means to sum all contributions (30)–
(33).

4 Results

4.1 Magnetic sector

The deviations in the treatment of left-hand cut struc-
tures when comparing N/D and MO suggest that signif-
icant quantitative differences might appear for left-hand
cuts that start close to the threshold of the right-hand cut,
the two-pion threshold. Indeed the nucleon exchange dia-
grams provide a pole at s = 4m2

π − m4
π

m2
N

[6], i.e. very close
to threshold. As I will show below, significant differences
between the results of the two methods appear.

One might guess that the MO method should yield
more reliable results since it decomposes thoroughly the
analytic structure of the amplitudes. On the other hand,
it must be stressed that for both methods the input comes
from χPT and not directly from data. It is not guaran-
teed a priori which combination of input and unitarization
method is capable to provide the most reliable results. For
the case at hand the quality assessment will be provided
by a comparison to the results from a fully dispersive anal-
ysis of pion-nucleon scattering based on Roy-Steiner (RS)
equations [13]. I will compare the imaginary parts of the
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Fig. 2. The imaginary part of the magnetic (isovector) form
factor using various approximations: “MO” refers to (34),
“N/D” to (35), the labels “LO”, “NLO” and “NLO+res” refer
to the list of successive approximations specified in sect. 3. For
the non-color version of this figure the labels are assigned to
the line ordering: “MO LO”: bottom line; “MO NLO”: third
line from bottom; “MO NLO+res”: second line from bottom;
“N/D LO”: third line from top; “N/D NLO”: top line; “N/D
NLO+res”: second line from top. Λ = 1.8 GeV is used and the
constant P0 has been chosen such that the magnetic radius is
reproduced by MO NLO+res.

nucleon form factors in the region between the two-pion
threshold and 1GeV as obtained from the MO scheme,

Im GMO(s) =
p3
c.m.

12π
√

s
TMO(s) (1 + αV s)Ω∗(s), (34)

the N/D scheme,

ImGN/D(s) =
p3
c.m.

12π
√

s
(P0 + K(s)) |(1 + αV s)Ω(s)|2 ,

(35)
and the RS analysis [9].

The imaginary part of the magnetic form factor is
shown in fig. 2 for MO and N/D using the same input.
Obviously the results differ substantially in the rho-meson
region. The constant P0 is adjusted such that the mag-
netic radius used in [9] is reproduced in the MO scheme
using nucleon and Delta exchange2. Translated to purely-
nucleon χPT [36] this corresponds to an NLO low-energy
constant c4 = 2.99GeV−1. The low-energy constants of
pion-nucleon scattering have been determined in [13, 38]
by matching the dispersive RS representation to the χPT
representation in the sub-threshold region. The results for
c4 are: cNLO

4 ≈ 2.17GeV−1 and cNNLO
4 ≈ 3.56GeV−1.

Given that the MO scheme goes beyond NLO χPT by in-
cluding pion rescattering but does not provide a full one-
loop χPT calculation, it should be expected that the value

2 It is worth mentioning that the value for the isovector mag-
netic radius used in [9] deviates quite a bit from the value ex-
tracted from the data collected in [5]; see also the correspond-
ing discussion in [9]. Since I use the radius as an input, not as
an output, there is no point in a detailed investigation of this
disagreement for the present work.
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cutoff Λ. For both cutoffs the respective constant P0,M has
been chosen such that the magnetic radius is reproduced. The
band denotes the results from the RS analysis. Note that the
full red lines here and in fig. 2 show the same result.

of c4 lies between the values from NLO and NNLO. This
is indeed the case. If the cutoff Λ is changed from 1.8GeV
to 1GeV, then a slight readjustment of the value for c4

is required to reproduce the same value for the magnetic
radius, now c4 = 3.07GeV−1.

The MO results using nucleon+Delta χPT at NLO
for two different cutoffs Λ are compared to the RS result
of [9] in fig. 3. Obviously excellent agreement is obtained
between MO and RS up to the region where differences
caused by different cutoffs matter. This is only beyond
the rho-meson peak region. With the same input the N/D
result deviates already in the rho-meson region signifi-
cantly as shown in fig. 2. If one tried to obtain a spectrum
comparable to the ones of fig. 3 using N/D NLO+res,
then one would need c4 ≈ −1.1GeV−1, a value that dif-
fers in size and sign from the values extracted in [13, 38].
With realistic values for the low-energy constant c4 the
N/D spectrum is much larger than the RS spectrum in
the rho-meson region. Note that this is exactly what has
been found in [11]; see fig. 7 therein. In [11] the reasonable
agreement between N/D and RS below the rho-peak has
been stressed. It has been argued that the disagreement in
the rho-meson region is less important for the peripheral
transverse densities. However, the interesting point is that
a better agreement over a larger range can be achieved by
the use of the MO method instead of N/D. To substantiate
this further I compare in fig. 4 directly the magnetic am-
plitude for MO and RS [13]. Again impressive agreement
is achieved.

From now on I focus on the MO scheme. Returning
to fig. 2 one observes that the inclusion of NLO and of
dynamical Deltas both matters for the spectral informa-
tion. To see whether this also matters for the low-energy
quantities I turn now to the determination of magnetic
moment and radius based on (6) and (11), respectively.
Results are shown in table 1 for two values of the cutoff
Λ. Note that the NLO low-energy constant c4 has always
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Fig. 4. Real (top) and imaginary (bottom) part of the mag-
netic amplitude comparing RS [13] and MO NLO+res. Λ =
1.8 GeV and c4 = 2.99 GeV−1 have been used.

Table 1. Results for the isovector magnetic moment and ra-
dius for two different cutoffs. Data are taken from [5] for the
magnetic moment and from [9] for the radius.

GM (0) Λ = 1GeV Λ = 1.8 GeV

LO −0.37 −0.72

NLO 5.94 6.12

NLO+res 3.19 3.03

experiment 2.35

〈r2
M 〉 [GeV−2] Λ = 1GeV Λ = 1.8 GeV

LO 6.30 6.52

NLO 75.30 76.72

NLO+res 46.73 46.79

experiment 46.76

been chosen such that for NLO+res the correct radius is
obtained. As already pointed out the obtained values for
c4 are very realistic and lead to scattering amplitudes that
agree with the RS results (fig. 4).

One observes that LO alone, i.e. Born diagrams and
Weinberg-Tomozawa term, does not provide realistic val-
ues. With the inclusion of the NLO term the correct orders
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of magnitude for both quantities, magnetic moment and
radius, are achieved. The inclusion of dynamical Deltas
has also a non-negligible quantitative impact. It should
not be surprising that the magnetic moment is not fully re-
produced. The unsubtracted dispersion relation (6) is too
sensitive to the high-energy part of the integrand, which
is not fully under control; see also the discussion in [9].
The dependence on the cutoff Λ is of minor importance,
a reassuring result given that a low-energy theory is used.
In principle, one could also study the impact of changes in
hA and gA and in the pion phase shift. The results would
not change qualitatively and the low-energy constant c4

can always be readjusted to obtain the radius in the full
NLO+res approximation. For the electric sector I will
study the impact of a variation in the pion-Delta-nucleon
coupling constant hA in sect. 4.2. To summarize, I find
the very same pattern as for the hyperon case discussed
in [10] giving further credit to the ideas spelled out there.

In fig. 5 the (isovector part of the) magnetic form fac-
tor is compared to the Kelly parametrization [39]. The
latter was obtained from a fit to proton and neutron data.
The calculations are based on the subtracted dispersion
relation (3) using the MO scheme with nucleon and Delta
exchange, i.e. NLO+res. Variation of the cutoff turns out
to be fairly irrelevant. Note that the agreement of value
and slope at the photon point is by construction (adjusting
GM (0) and P0,M ), but the reasonable agreement between
the results and the Kelly parametrization extends much
further than a pure agreement of the slope would pro-
vide. The agreement between the low-energy calculations
of the present work and the Kelly parametrization up to
|q2| ≈ 0.4GeV2 is quite encouraging. A direct comparison
to proton and neutron data is hampered by the lack of
the isoscalar part of the nucleon form factors. I leave this
part to future investigations.

4.2 Electric sector

In the magnetic sector the combination of dispersion the-
ory and input from nucleon+Delta χPT at NLO seems

Table 2. Results for the isovector charge and isovector elec-
tric radius for two different values of the pion-Delta-nucleon
coupling constant hA. Λ = 1.8 GeV is used. Data are taken
from [5].

GE(0) hA = 2.88 hA = 2.67

LO −0.56

NLO+res 0.39 0.26

experiment 1/2

〈r2
E〉 [GeV−2] hA = 2.88 hA = 2.67

LO 0.29

NLO+res 7.91 6.84

experiment 11.02

to work very well, albeit one should be aware that pos-
sible shortcomings of the χPT input might be hidden by
the low-energy constant c4, which is to some extent ad-
justable. This is not possible in the electric sector where
LO and NLO agree (note that I always use physical val-
ues for the nucleon mass and for gA). In the electric sector
only the explicit inclusion of dynamical Delta degrees of
freedom makes a change. Yet, (N)LO+res does not pro-
vide a satisfying value for the electric radius, as can be
read off from table 2.

Before inspecting possible shortcomings of χPT I will
discuss the results of table 2 in more detail. Like for the
magnetic case, LO alone provides values for (isovector)
charge and radius that are off by an order of magnitude
(or even sign). The inclusion of dynamical Deltas delivers
the correct order of magnitude, but not an accurate value
for the electric radius. I note in passing that the much
smaller disagreement in the electric radius of the proton as
extracted from electronic versus muonic hydrogen [15,16]
is of no concern for the present discussion. Besides pre-
senting the results for LO and NLO+res (which coincides
with LO+res) I have also explored the impact of a vari-
ation in hA. The choice hA = 2.88 reproduces the width
of the Delta baryon in a tree-level calculation. This eval-
uation is consistent with the use of hA in the tree-level
exchange diagrams. The choice

hA = 3gA/
√

2 ≈ 2.67 (36)

is the value obtained for QCD in the limit of a large num-
ber of colors, Nc [10,40]. Table 2 shows that a variation of
hA in a reasonable range does not reproduce the isovec-
tor electric radius. The same is true for a variation in the
pion-nucleon coupling constant gA (not shown here).

It is worth inspecting the LO=NLO nucleon+Delta
χPT input in more detail. Actually there are large cance-
lation effects in the electric sector [41] that might cause
a sensitivity to unaccounted higher-order terms. I note in
passing that this cancelation does not happen in the mag-
netic sector. From a formal point of view the cancelation
can be best understood in the large-Nc limit [40, 42]. In
this limit the masses of Delta and nucleon are degenerate
and the pion-baryon three-point coupling constants are re-
lated by (36). As already demonstrated in [10], appendix
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Fig. 6. Real (top) and imaginary (bottom) part of the electric
amplitude comparing RS to MO with Λ = 1.8 GeV, nucleon
and Delta exchange and a constant that is adjusted to the
(isovector) electric radius.

A, the left-hand cut structures KBorn
E and Kres

E completely
cancel each other in this limit. A significant part of this
cancelation survives in the real world of Nc = 3. It is il-
luminating to discuss this cancelation effect also for P0,E .
According to (30), (32) there are three terms in LO=NLO
nucleon+Delta χPT originating from the Born diagrams,

PBorn
0,E := − g2

A

2F 2
π

≈ −93.GeV−2 ∼ Nc, (37)

from the Weinberg-Tomozawa term,

PWT
0,E :=

1
2F 2

π

≈ 59.GeV−2 ∼ 1
Nc

, (38)

and from the Delta-resonance exchange diagrams

P res
0,E =

h2
A (mN + mΔ)2

36m2
Δ F 2

π

≈ 84.GeV−2 ∼ Nc. (39)

I have provided numerical values for the real world of
three colors and the information how the terms scale with
the number of colors. Using mΔ → mN and (36) it is
easy to check that in the large-Nc limit the contribu-
tions (37) and (39) exactly cancel. Formally these con-
tributions are separately of order Nc and therefore much
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Fig. 7. The (isovector part of the) electric form factor of the
nucleon in the spacelike region from MO with nucleon and
Delta exchange and two subtraction constants (for the MO
and the form factor integral) that are adjusted to the isovector
charge and corresponding radius [5]. The Kelly parametriza-
tion [39] is obtained from a fit to proton and neutron data.

larger than the remaining Weinberg-Tomozawa contribu-
tion, which is Nc suppressed. By inspecting the numerical
values in (37), (38), (39) this ordering can still be seen
qualitatively for Nc = 3, albeit the Weinberg-Tomozawa
contribution is not the order of magnitude smaller that a
factor 1/N2

c might suggest.
Cancelations of large terms enhance the sensitivity to

small(er) corrections. Of course, LO=NLO nucleon+Delta
χPT is an approximation. (This remark refers now to chi-
ral corrections, not to large-Nc corrections.) In fact con-
vergence problems of nucleon χPT have also been ob-
served in [13, 27, 38]. Thus it might be worth exploring
an alternative approach already mentioned in sect. 3 (and
essentially used also in the magnetic sector). Keeping Born
and Delta exchange, but leaving P0,E as a free parameter,
I can use the experimental value for the electric radius to
determine P0,E from (29). What is needed in addition to
the sum of (37), (38), (39) is ΔP0,E ≈ 29.GeV−2. This
value is smaller than each of the values of the separate
contributions (37), (38), and (39), but quite important
for the total budget. The results for the scattering ampli-
tude TMO

E , given by (19), can be compared to the results
from the dispersive RS analysis of [13]. This comparison is
shown in fig. 6. Again an impressive agreement is observed
given the simplicity of the input. It appears that the rel-
evant physics contained in these helicity flip (magnetic)
and non-flip (electric) p-wave subthreshold amplitudes is
captured rather well by nucleon and Delta exchange uni-
tarized by the MO method and accompanied by one sub-
traction constant per channel.

Finally the resulting (isovector) electric form factor in
the spacelike region is depicted in fig. 7. A fair agreement
is achieved, though not quite as satisfying as for the mag-
netic case. Obviously the tension to χPT requires further
investigations.

The results of the present work suggest that a low-
energy isovector form factor of the transition from A to
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B can be calculated from a dispersion relation using the
dominant two-pion inelasticity and the solution of the MO
equation to account for pion rescattering. The required
input are the dominant left-hand cut structures, which
might be approximated by tree-level hadron exchange di-
agrams in the s and u channel of the reaction πA → πB.
This is similar in spirit to [28, 43, 44]. As further exper-
imental input the value of the form factor and its slope
at the photon point are needed to pin down the subtrac-
tion constants. A natural application of this framework
are Dalitz decays A → B e+e−. Concrete examples are
(A,B) = (Δ,N), (Σ,Λ) [10], (Σ∗, Λ), (Σc, Λc). These top-
ics will be addressed in the future. In addition it might be
worth exploring if the deviations between the MO and
N/D unitarization schemes are mitigated once the input
is extended beyond NLO by calculating the required pion-
nucleon scattering amplitudes at one-loop accuracy of rel-
ativistic nucleon+Delta χPT. In principle, one can expect
that at low energies the differences become smaller since
a better accuracy is achieved by both methods when in-
cluding higher-order corrections. The interesting question
is up to which energies this agreement holds.

I thank Martin Hoferichter and Bastian Kubis for many valu-
able discussions and for providing the results of their disper-
sive Roy-Steiner equations. I also thank Emilie Passemar for
inspiring discussions and creative suggestions on how to make
further use of the formalism developed here.

Appendix A. Comparing conventions for
pion-nucleon amplitudes

The reduced amplitudes TM/E used in [10] and here are
related to the corresponding amplitudes of [9, 26] via

f1
−(s) =

√
2

12π
TM (s), f1

+(s) =
mN

12π
TE(s). (A.1)

For practitioners it might be helpful to compare also
the expressions for the amplitudes before projecting on the
p-wave. In [10] and here the formal reaction baryon plus
antibaryon to two pions is studied. In [26] it is the time
reversed reaction while in [9, 27] it is elastic pion-nucleon
scattering. Correspondingly, the independent variables are
s and scattering angle in [10] and t and scattering angle
in [9,27]. Also in [26] the variable t is used. There it denotes
the square of the invariant mass of the two-pion system.
Thus it is s in [10] and here what is called t in [9, 26,27].

In principle, one could imagine that a slightly larger
complication than just rewriting s to t could emerge when
turning from baryon-antibaryon spinor structures v̄ . . . u
to ū . . . u. Depending on the definitions of v and u an an-
alytic continuation might not lead from v to u, but to u
times a sign or phase. However, such problems are avoided
in the formalism used in [10] and here. The reduced ampli-
tudes are deduced from ratios where the convention am-
biguities drop out.

The expression that enters the projection formula for
the magnetic (helicity-flip) sector is

M(s, θ,+1/2,−1/2)
v̄(−pz,−1/2) γ1 u(pz,+1/2) pc.m.

, (A.2)

the corresponding one for the electric (non-flip) sector is

M(s, θ,+1/2,+1/2)
v̄(−pz,+1/2) γ3 u(pz,+1/2) pc.m.

. (A.3)

For details see [10]. There the Feynman amplitude M is
always decomposed into a structure that is proportional
to v̄ u and another one that is proportional to v̄ γμkμu. For
the following matching procedure it is helpful to recall that
k = p+ − p− is the difference of pion momenta, chosen to
lie in the x-z plane.

I start with the decomposition

M =: AC v̄ u − 1
2

BC v̄ γμkμu, (A.4)

where AC and BC can be easily read off from the ex-
pressions given in [10] and translated to the nucleon case
via the replacement rules specified at the beginning of
sect. 3. I will show now that the two scalar structures AC

and BC defined in this way coincide with A− and B−

from [9, 26, 27], respectively (except for calling s then t).
The index C could be regarded as referring to crossing or
to the first name of the first author of [10].

For the magnetic sector only BC contributes. To eval-
uate the ratio (A.2) one needs k1 = −2 pc.m. sin θ. Then
the formula for TM , eq. (23) in [10], takes the form

TM (s) =
3
4

∫ π

0

dθ sin3(θ)BC . (A.5)

Identifying BC with B− this fits exactly to the relation
between f1

− and B− from [9,26].
In the electric sector both AC and BC contribute. To

evaluate (A.3) it is helpful to use k3 = −2 pc.m. cos θ and
the relation

v̄(−pz,+1/2)u(pz,+1/2)

= − pz

mN
v̄(−pz,+1/2) γ3 u(pz,+1/2). (A.6)

Then the formula for TE , eq. (22) in [10], becomes

TE(s)

=
3
2

∫ π

0

dθ sin θ

(
− pz

mNpc.m.
AC +BC cos θ

)
cos θ. (A.7)

The relation between f1
+ and A−, B− from [9, 26] is re-

covered if one identifies AC with A− (and again BC with
B−).

As further cross-checks of my calculations I have ex-
plicitly compared my results for the Born terms with [9]
and for the Weinberg-Tomozawa term (38) and the c4

term (31) with [27] (details not shown here).
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