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Abstract

In this thesis, two particle filter (PF) based visual tracking approaches are designed

for maneuvering target tracking from X-band nautical radar images: a PF-only based

approach and a combined particle-Kalman filters (PF-KF) based approach. Unlike

existing Kalman filter (KF) based target tracking algorithms used by nautical radar,

these two proposed tracking methods both employ a kernel-based histogram model to

represent the target in the radar image, and a Bhattacharyya coefficient based similar-

ity distance between reference and candidate target models to provide the likelihood

function for the particle filtering. However, the PF-KF method applies a sampling

importance resampling (SIR) particle filter to obtain preliminary target positions,

and then a Kalman filter to derive refined target positions and velocities. Moreover,

several strategies are also proposed to improve the tracking accuracy and stability.

These strategies include an enhanced reference target model construction method,

updating reference target model, and adaptive KF for maneuver. Comparison of

the target information obtained by the proposed PF-KF method from various field

X-band nautical radar image sequences with those measured by GPS shows the pro-

posed approach can provide a reliable and flexible online target tracking for nautical

radar application. It is also shown that, in the scenario of strong sea clutter, the

proposed approach outperforms the PF-only based approach and the classical track-

ing approach which combines order-statistics (OS) CFAR processing and the Kalman

filter.
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Chapter 1

Introduction

1.1 Background of Study

Target tracking is a process to extract the kinematic information of targets (e.g. target

position, velocity or acceleration) from the data collected by various sensors, such as

radar, infrared sensors, and optical devices. Automatic target tracking is important

for both civilian and military applications. The most typical civilian applications

include air traffic control (ATC) and maritime navigation, while military applications

include air defense, fire control and interceptor guidance [1].

Target tracking plays an especially important role in nautical applications, such

as sea surface ship tracking, iceberg tracking [2], trajectory planning [3], search and

rescue [4], and autonomous marine craft navigation [5]. Around busy harbors or

traffic lines, target tracking can provide essential information for the vessel traffic

service (VTS) to manage the traffic and avoid collisions [3]. In the vessel traffic

service zones of the Canadian Pacific region, Canada’s Marine Communications and

Traffic Services (MCTS) has deployed multiple shore based radars to track vessels [6].

In military applications, the identification and tracking of a friendly or hostile target

1
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is critical for maritime border control [7].

Sensors, such as X-band nautical radar, high-frequency (HF) radar, and the global

navigation satellite system (GNSS), have been used for target tracking for nautical

applications. HF (3-30 MHz) radar has a long coverage range (more than 200 kilo-

meters), but it is difficult to be installed due to large antennas [8, 9]. GNSS-based

target tracking only requires a GNSS signal receiver, but it has relatively low tracking

accuracy due to its low resolution [10]. X-band nautical radar (working in 8-12 GHz)

has widely been used for ship navigation and weather avoidance [9]. It can be easily

installed on ships of various sizes since its antenna is small. The X-band nautical

radar can also provide accurate and real-time detection and tracking of sea surface

small targets with higher resolution (e.g. general range resolutions: 5 m for X-band

radars, 1 km for HF radars, 5 km for the GNSS-R).

Although X-band radar has been accepted as a useful tool for sea surface tar-

gets tracking, it is still found challenging due to various factors such as noise, clutter

and interference. In this thesis, different algorithms for target tracking from X-band

nautical radar images are investigated to improve the tracking performance of a ma-

neuvering target under different levels of sea clutter.

1.2 Literature Review

In classical X-band nautical radar applications, target tracking is usually performed

through target detection from temporal radar images [1]. The target is detected us-

ing detection techniques such as the constant false alarm rate (CFAR) method [9],

time-frequency (TF) analysis technique [11] or neural network processing [12]. As the

classical detection algorithm, the CFAR detector, which sets the threshold adaptively

based on local image information to realize a constant rate of false detection, has been
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studied thoroughly and adopted widely in various practical radar systems due to its

effectiveness and simplicity. Different CFAR schemes, such as cell-averaging (CA)

CFAR, order-statistics (OS) CFAR, trimmed-mean (TM) CFAR, and log-t CFAR,

can be used under different clutter environments [13, 14]. However, it is difficult to

maintain constant performance by one CFAR scheme as the sea clutter may not follow

any assumed single distribution (e.g. Rayleigh, Weibull, Lognormal, K distributions)

under all conditions [15]. The TF technique typically employs various time-frequency

transforms (e.g. Fourier and chirplet transforms) to provide additional insights into

the radar signals. This technique can improve the performance of moving targets de-

tection, especially for the HF over-the-horizon radar (OTH) radar [16–18]. However,

the disadvantage of this technique is that it cannot work well for the detection of

a low-speed small target [19]. The neural network (NN) technique, inspired by the

animal nervous system, has experienced great research development since the intro-

duction of the back propagation algorithm by Rumelhart in 1986 [20] [21]. Different

NN architectures (e.g. multilayer perceptrons (MPL), radial basis function (RBF),

convolutional neural networks (CNN)) have been studied for sea-surface target detec-

tion due to their good performance for nonlinear signal processing [22–24]. However,

their application to target detection under varying and complicated environments is

still limited since the algorithm requires pre-training using a large amount of data

collected under different scenarios.

The scheme for target tracking is to employ a tracking filter based on the mea-

surements obtained from target detection. The underlying mathematical principle of

target tracking can be considered as an estimation and filtering problem of a dynamic

tracking system in modern system theory [25]. The tracking filter processes the target

measurements to extract the target’s kinematic information, reduce the radar mea-

surement error, and predict next target state. Typical tracking filters include fixed-
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coefficient filters (e.g. α-β filter), the Kalman filter [26], and the extended Kalman

filter (EKF) [27] (or unscented Kalman filter (UKF) [28]) for nonlinear filtering [1,29].

Although the fixed-coefficient α-β filter is still being used in some ATC tracking sys-

tems for its simplicity, it does not work well for maneuvering target tracking as it

assuming the target is moving with constant speed and constant scan interval [30].

The Kalman filter is optimal for a dynamic system with linear functions and Gaussian-

distributed noise, which has wide applications in radar tracking systems. The EKF or

UKF is widely used when the dynamic system is nonlinear or non-Gaussian. However,

these KF-related filters may not adequately obtain accurate estimation if the linearity

of the system functions is weak or the noise distributions are significantly different

from the Gaussian distribution [31]. Among nonlinear filters, the particle filter (PF),

a sequential Monte Carlo method to recursively estimate the system state [32], works

particularly well. It has been successfully applied to target detection and tracking

with radar applications [33] or computer vision applications [34]. The PF employs

the principle of importance sampling to approximate probability densities by using a

set of random samples (or particles) with associated weights, and it is theoretically

superior to the EKF or UKF in approximation accuracy but with high computational

cost.

In 1993, Gordon [32] proposed the novel particle filter (called Bootstrap filter)

approach for nonlinear/non-Gaussian Bayesian state estimation. In [31], a compre-

hensive study of different particle filters (e.g. the sampling importance resampling

(SIR) filter, the auxiliary sampling importance resampling (ASIR) filter, and regu-

larized particle filter (RPF)) and other optimal and suboptimal algorithms, such as

the KF, EKF, and approximate grid-based methods, are provided [35–38]. Gustafs-

son [33] introduced the application of the particle filter for target positioning and

tracking in various applications, such as car positioning, integrated navigation sys-
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tems, and target tracking for ATC and collision avoidance. Furthermore, the PF can

be combined with other tracking algorithms. For example, it can be integrated with

the widely used mean-shift algorithm to improve object tracking accuracy in video

data [39–41]. It has been combined with the KF to provide better tracking continuity

for beam aspect targets [42], or reduce the computational complexity of target po-

sitioning with multiple sensors [43]. A combined UKF-PF algorithm can be used to

distinguish group targets using a surface radar [44].

Visual tracking is also a critical target-tracking task in computer vision applica-

tions, in which an object is usually tracked from images in real time. It also uses a

tracker (e.g. the mean-shift procedure, KF, EKF, and PF) to track an object from

images based on a target representation model. Different from typical target mea-

surements by radar system, the target is usually represented by a feature space (e.g.

color features, texture features or shape features) in the visual tracking area. The

visual tracking could be quite challenging due to various factors, such as variance in

the scene (e.g. illumination, occlusion, camouflage, background clutter), variance of

target’s appearance (e.g. scale, pose, deformation of non-rigid objects), bad image

quality, online processing requirement, changing camera, and so on [45]. In order

to provide robust long-term tracking under the situation with complicated change of

target appearance and background, several state-of-the-art algorithms can be used,

including the multiple instance learning (MIL) tracking, visual tracking decomposi-

tion (VTD), and ensemble tracking. The MIL tracking uses a positive bag consisting

of several image patches to update a MIL classifier in applications such as face detec-

tion [46]. The VTD uses multiple observation models, multiple basic motion models

and multiple basic trackers to deal with scenarios with severe pose variation, abrupt

motions, occlusion, and illumination changes [47]. Ensemble tracking combines an

ensemble of weak classifiers into a strong classifier to better distinguish the object
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and background [48].

In 2000, an algorithm with a kernel-based histogram model and a Bhattacharyya

coefficient based similarity function was proposed by Comaniciu [49] for real-time

tracking of non-rigid objects using the mean shift method. In 2002, Perez [50] inte-

grated this color-based model and the Bhattacharyya coefficient-based function into

the probabilistic framework of PF to improve tracking robustness and versatility. In

2002, Nummiaro [51] improved this PF based visual tracking method using an adap-

tive reference target model. Since then, this PF based visual tracking algorithm that

employs the color histogram based target model and Bhattacharyya coefficient based

similarity distance has been much studied in the literature [52–58]. Although this

PF-based visual tracking approach has been studied widely in different aspects for

computer vision applications, it has not been used in target tracking from nautical

radar images.

In this thesis, a PF based visual tracking method is sought to provide a reliable

and effective target tracking from the nautical radar images. Different from the gen-

eral visual tracking application, the change of the target appearance and the clutter

(sea clutter) background is usually not that severe in nautical radar tracking. The

size, shape or intensities of the radar target changes slowly through the radar image

sequence. The target is usually quite small in terms of the number of pixels. Thus, a

computationally efficient algorithm is preferred, satisfying the requirement of track-

ing accuracy and robustness in the meantime. Instead of using the above-mentioned

sophisticated algorithms such as MIL and VTD, the proposed PF based visual track-

ing algorithm employs the kernel-based histogram model to represent a target in the

radar images, and the Bhattacharyya coefficient based similarity function between ref-

erence and candidate target models to provide the likelihood function for the particle

filtering.
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1.3 Scope of Thesis

In this thesis, the scope of the study is limited to tracking a single maneuvering target

from scan-converted X-band nautical radar images with limited scenarios and envi-

ronments. This study focuses on the implementation of the basic tracking process

with the particle filter based visual tracking strategy. In order to evaluate the perfor-

mance of the proposed algorithms, a simple implementation of the classical tracking

approach is also employed for comparison. Furthermore, the tracking results are also

compared with GPS data.

In Chapter 2, a classical approach for target tracking from nautical radar images

is presented. This tracking approach employs the order-statistics CFAR processing

to detect target signals from the radar images, and the Kalman filter to estimate

target position and velocity based on a constant-acceleration (CA) motion model in

the linear Gaussian dynamic tracking system. In addition, an adaptive KF algorithm

is integrated to deal with the maneuvering target motion.

In Chapter 3, a visual tracking strategy is integrated in a particle filter framework

to design a particle filter-only based target tracking method from X-band nautical

radar application. The tracking method employs a kernel-based histogram model

to represent the target, and a Bhattacharyya coefficient based distance to provide

the likelihood function for the particle filtering. Two algorithms are developed to

implement the PF-only based tracking approach: one can only estimate target position

[59, 60] and the other one can extract both position and velocity [61, 62].

In Chapter 4, a combined PF-KF approach is designed to estimate both target

position and velocity [63]. With this approach, the dimension of state vector for

PF sampling is reduced. In order to improve the tracking accuracy, stability, and

flexibility, multiple methods such as enhanced target model construction, updating

reference target model, and adaptive KF filtering for maneuvers, are also proposed.
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In Chapter 5, the tracking performance of the above-mentioned KF-based classical

tracking approach, the proposed PF-only and PF-KF based visual tracking approaches

is analyzed using the scan converted nautical images collected by a land-based X-band

nautical system. These tracking results are compared with shipborne GPS data during

the experiments.

The overall conclusions from the research in this thesis are presented in Chapter

6, in which some suggestions for future work are also outlined.



Chapter 2

KF Based Classical Tracking

Approach

In this chapter, the classical target tracking process used by a nautical radar is first

introduced briefly. Next, the target detection techniques based on OS-CFAR and the

Kalman filter tracking method are described. Finally, the detailed design of a KF

based classical tracking approach for nautical radar application is presented.

2.1 Introduction

In nautical radar applications, target tracking can be performed after targets are

detected from the radar data. This process can be demonstrated by three successive

modules (signal processor, data extractor, and data processor) in the receiving phase

of a modern monostatic radar system (see Fig. 2.1) [1]. In the signal processor module,

the target and clutter signals are first discriminated by some basic operations (e.g.

constant false alarm rate (CFAR)). Then the data extractor module provides the radar

measurements (typically called “plot” for radar tracking applications), such as target

9
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range, azimuth. With the obtained target measurements, the data processor module

employs a tracking filter to provides refined target information (e.g., target position,

speed and heading) on the radar display (e.g., plan position indicator (PPI), etc.).

Figure 2.1: Data flow in the receiving phase of a monostatic radar system.

In the past, the target position was marked by the radar operator manually, which

has obvious limitations in tracking accuracy and capacity. In modern radar tracking

systems, the tracking process needs to be automatically performed based on several

basic tracking steps, including track initialization, track smoothing (or track filtering),

and track maintenance (or track termination) [64]. In the track initialization step,

a track is established with the initial state of the target being determined. Then,

the target’s kinematic parameters are estimated, in the track smoothing step, by a

tracking filter based on the track prediction with target motion model and updated

measurements (plots). If the target is not seen in several consecutive scans, the track

could be dropped in the track maintenance step. As an example, the track-while-scan

(TWS) system, incorporating the above basic steps, is a typical tracking system in

providing tracks of a single target or multiple targets while maintaining radar scanning

simultaneously [65].

In this thesis, a relatively simple implementation of the above classical tracking

strategy is designed to obtain position and velocity of a single target from scan-

converted (Cartesian) X-band nautical radar images. It is used as a comparison

method for the proposed PF based algorithms in the following chapters. For this

simple implementation, only OS-CFAR processing in the signal processor module is
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employed to process the radar images to obtain target signals. Then the centroid of

the target signals is used to provide the specific target center coordinates in the data

extractor module. In the data processor module, the Kalman filter is used to estimate

the target position and velocity based on a constant-acceleration (CA) target motion

model. Moreover, the approximate initial position of the target is assumed to be

known, and the target is assumed to exist throughout the radar image sequences.

2.2 Target Detection

The constant false alarm rate (CFAR) detector is widely used to perform target detec-

tion in radar signal processing systems. Conventionally, the cell-average CFAR (CA-

CFAR), as a one-parameter CFAR, is the simplest CFAR scheme. In the CA-CFAR,

the average of the reference cells surrounding the cell under test (CUT) multiplied by

a scale factor, the resultant value is compared with the pixel intensity of the CUT

in the radar image. If the CUT has higher intensity than the threshold, it implies

the presence of a target signal. For the CA-CFAR processing of a radar image, the

reference cells are set as a moving squared window with the CUT in the center. Each

pixel in the radar image would be treated as the CUT and processed by CFAR pro-

cessing. However, the detection performance of this conventional CA-CFAR scheme

would be degraded significantly when an interfering target or abrupt clutter change

is present in the reference window. In order to deal with this problem, some other

CFAR schemes have been proposed, including the greatest-of (GO) CFAR, smallest-

of (SO) CFAR, ordered-statistics (OS) CFAR and the trimmed-mean (TM) CFAR.

Among these CFAR schemes, the OS-CFAR is considered to perform best in dealing

with interfering targets and the clutter change problem [13]. Thus, the OS-CFAR

scheme is adopted in this thesis to represent target detection for the classical tracking
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approach.

Firstly, the OS-CFAR sorts the reference elements surrounding the CUT in the

window in an ascending or a descending order. Then, the kth element, instead of the

average of reference cells in CA-CFAR scheme, is selected for the CFAR threshold de-

termination. This scheme can effectively alleviate the impact of large target, multiple

targets or abrupt clutter. In this research, the median element of the reference cells

is selected.

The setting of the scale factor will affect the detection performance and the prob-

ability of false alarm. Basically, a large scale factor would decrease the probability of

false alarm and probability of detection. On the contrary, a small scale factor would

increase the probability of false alarm and probability of detection. In order to eval-

uate the performance of the CFAR schemes and determine appropriate thresholds,

an experimental method is used to evaluate the performance of the CA-CFAR and

OS-CFAR detectors with the probability of detection Pd against the probability of

false alarm Pfa, by using varied scale factors (i.e. varied thresholds). As the detec-

tion problem could be treated as a binary statistical test problem with hypothesis H0

(target is absent) and hypothesis H1 (target is present), Pfa and Pd could be expressed

as joint probability density functions

Pfa = P (X > XT |H0) (2.1)

Pd = P (X > XT |H1) (2.2)

where X denotes the intensity of a pixel in the radar image and XT is the threshold.

The probability of false alarm rate and the probability of detection can be evaluated
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experimentally using

Pfa =
False Target Cells Detected

Total Clutter Cells
(2.3)

Pd =
Correct Target Cells Detected

Total Target Cells
(2.4)

After the target signals are detected in the radar images by CFAR processing, the

target center position is calculated as a weighted centroid of detected target signals

in a square region around the predicted position. The definition of the centroid is

xm
k =

N
∑

i=1

xi
k,th

i
k,t

N
∑

i=1

hi
k,t

(2.5)

ym
k =

N
∑

i=1

yi
k,th

i
k,t

N
∑

i=1

hi
k,t

(2.6)

where xm
k and ym

k are calculated target center coordinates along the x axis and y axis

of the scan-converted radar image at time k, N denotes the number of detected target

signals here, xi
k,t and yi

k,t denote the x and y coordinates of a detected “target” signal,

respectively, hi
k,t denotes the intensity of the target pixel.

2.3 Kalman Filter

The tracking filter in the Data Processor module is a fundamental function in Radar

Data Processing systems. It processes the target radar measurements (e.g. range,

azimuth) to reduce the measurement errors, estimate the target velocity and predict

future target position.
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In order to help understand the concept of a tracking filter in radar applications,

an α-β filter, as a preliminary algorithm for practical radar tracking applications, is

introduced here. This filter is the simplest tracker, for which the target is assumed to

move along a straight line (along the x axis for simplicity) with a constant speed. It

can be described by [9]

xs
k = xp

k + α(xm
k − xp

k) (2.7)

ẋs
k = ẋs

k−1 + β(xm
k − xp

k)/T (2.8)

xp
k+1 = xs

k + ẋs
kT (2.9)

where xs
k is the smoothed position, ẋs

k is the smoothed velocity, xp
k is the predicted

position, xm
k is the measured position, T is a fixed radar scanning period, and α and

β are the system gains, which usually take value between [0, 1]. From the above

equations, it can be found that filtering behavior depends on the determination of

the α and β. In the extreme cases, the filtered position and velocity approach the

measured position when both gains are set to 1, and approach the predicted results

when they are set to 0. This α-β filter is limited to track a maneuvering target, but

it can still be found in practical applications on account of its simplicity. The α-β

filter does not require a system model and is a simplified Kalman filter [64].

In oder to introduce the Kalman filter, the general dynamic system for a tracking

problem can be modeled as

sk = fk(sk−1, uk−1) (2.10)

zk = hk(sk, vk) (2.11)

where f k(·) and hk(·) denote the state transition function and measurement function,

respectively, sk is the state vector at time k (k ∈ N), zk is the updating observation,

and u and v represent process noise and measurement noise with known distributions,
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respectively [66].

If the state transition function f k(·) and the measurement function hk(·) are

linear, and the process noise u and measurement noise v are mutually independent

Gaussian noise with zero mean and known variances, this dynamic system is called

a linear-Gaussian system. The optimal solution of this linear-Gaussian system based

on the mean square error (MSE) estimation criteria is the Kalman filter, which can

be given by [1]

sk|k = sk|k−1 + Kk(zk − Hksk|k−1) (2.12)

P k|k = P k|k−1 − KkHkP k|k−1 (2.13)

with

sk|k−1 = F ksk−1|k−1 (2.14)

P k|k−1 = Qk−1 + F kP k−1|k−1F
T
k (2.15)

Kk = P k|k−1H
T
k (HkP k|k−1H

T
k + Rk)−1 (2.16)

where F k and Hk are the linear state transition function and measurement func-

tion, respectively. P k|k−1 and P k|k are the covariance matrix of the estimation error

before and after the measurement zk is processed, Q and R are the covariances of

the noise u and v, respectively. K denotes the Kalman gain, which influences the

filtering amplitude, and is determined by the ratio between the process noise and the

measurement noise [1].
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2.4 KF Based Tracking Algorithm

2.4.1 State space models

First, the system state and motion models are defined for the state transition function

in Eq. (2.10). As the target position and velocity are required in the tracking system,

the state vector for the tracking problem in scan-converted (Cartesian) radar images

is defined as

sk = [xk, ẋk, yk, ẏk]T (2.17)

where xk and yk denote the target’s center coordinates along the x- and y-axis in the

radar image, and ẋk and ẏk denote the target’s velocities along the x- and y-axis,

respectively.

In order to model the maneuvering of a target here, a constant-acceleration motion

model is employed as the state transition function [33],

sk =

























1 T 0 0
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0 0 1 T

0 0 0 1












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









sk−1 +

























T 2/2 0

T 0

0 T 2/2

0 T

































ax,k

ay,k









(2.18)

where T denotes the scan interval between successive observations, ax,k and ay,k denote

the target acceleration along the x- and y-axis, which are treated as independent

zero-mean Gaussian noise. The initial center coordinates of the target x0 and y0 can

be determined manually or in an automatic initialization scheme, while the initial

velocities ẋ0 and ẏ0 are set to zero. From the definition of the function in Eq. (2.18),

it can be found that the state transition function is linear with Gaussian noise.

Next, the measurement function in Eq. (2.11) can be defined based on the obtained
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target observation (xm
k and ym

k ) from CFAR processing and measurement noise vk with

known distribution. Thus, the measurement function of the dynamic system is chosen

as

zk = Hksk + vk (2.19)

with zk = [xm
k , ym

k ]T and

Hk =









1 0 0 0

0 0 1 0









(2.20)

where Hk is the projection matrix from the current state to current measurement,

which is linear. The observation noise vk is also set as Gaussian-distributed with zero

mean and variance σ2
v , which is set to 4 empirically since too small or too large value

would cause large error in the position and velocity estimation from our experiments.

Based on the above definitions of the state transition and measurement functions,

it can be found that the dynamic system is linear and Gaussian. As a result, the

Kalman filter would be a natural option as an optimal solution to this system.

2.4.2 Adaptive tracking for maneuvering target

In practical radar applications, the maneuvering of the target could be very uncertain

as the acceleration of the target could vary significantly in an unpredictable way.

In order to improve the tracking performance and stability, an adaptive algorithm

is required to deal with the maneuvering target. This adaptive algorithm usually

includes two basic steps: maneuver detection and a mean of achieving adaptivity

when a maneuver is detected. Different methods can be used for both steps [67].

First, the target maneuver needs to be detected. A simple maneuver detection

algorithm [1] is based on using an innovation term νk at each iteration of the Kalman

filter

νk = zk − Hksk|k−1 (2.21)
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where the covariance Θk of the innovation term is defined as

Θk = HkP k|k−1H
T
k + Rk (2.22)

The innovation sequence νk is assumed to have a Gaussian distribution with zero

mean and covariance matrix Θk for a straight-line constant-speed moving target.

If any (e.g. i-th) component of the innovation matrix is out of its corresponding

interval [−C
√

Θk(i, i), C
√

Θk(i, i)] (C is a positive constant, and it is set to 1 in our

experiments), a maneuver is considered to be happening.

Another maneuver detector used in many adaptive tracking algorithms is based

on the normalized square residual of the innovation sequence [68]

δk , νT
k Θkνk (2.23)

where, δk is the square residual of the innovation sequence. Since the innovation term

is assumed as normally distributed, the δk will be chi-square distributed with m degree

of freedom (m is the dimension of the measurement or νk).

With δk, the fading memory average over the sliding window [k − ∆ + 1, k] of the

square residual sequnce can be obtained using

gk = ρwgk−1 + δk (2.24)

where ρw is the coefficient to determine the effective length of the fading memory ∆

(∆ = (1 − ρw)−1).

If gk is larger than a certain threshold, a maneuver is thought to exist sometime

between the time k − ∆ + 1 to current time k.

After the maneuver is detected, a variety of techniques can be used for the adaptive
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filtering, including adaptive process noise [69], augmentation of the state vector [68],

multiple filters, or the interacting multiple model (IMM) algorithm [70]. In this thesis,

the adaptive process noise method is used. When a target maneuver is detected, the

variance of the process noise uk is increased to make the estimated result approach

the measured observation more, instead of the past history, i.e. the predicted state,

which is considered to be relatively less reliable in that case. If the process noise is

not increased, the estimated results would be less accurate based on the MSE criteria.

Both the innovation term νk based detection and the residual δk based detec-

tion methods have been tested for use in the KF-based classical tracking approach.

Comparison of results from two maneuver detection methods shows similar tracking

performance. Thus, only the innovation term-based maneuver detection method is

adopted in this thesis for its smaller computational load.

2.4.3 Summarization of the algorithm

The proposed classical tracking approach based on the Kalman filter defined above

can be implemented by the following iterative steps:

Determine the initial target center coordinates and velocities in the first radar image;

FOR k=2:ImageNumber

1. Predict next positions and velocities based on Eq. (2.18);

2. Detect the maneuver based on Eq. (2.21), and adjust the measurement function

if maneuver is detected;

3. Estimate target center coordinates xk, yk and velocities ẋk, ẏk based on ob-

tained measurements in a new radar image using Eq. (2.19) and Eqs. (2.12)-

(2.16);

END
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The test results from this KF-based classical tracking approach using practical

X-band nautical radar image sequences will be illustrated in Chapter 5, in which the

tracking results will also be compared with those of the proposed PF-based visual

tracking approaches and GPS data.



Chapter 3

PF-only Based Visual Tracking

Approaches

In this chapter, a particle filter only based visual tracking approach is proposed to

estimate target position and velocity from nautical radar images. The formulations

of the SIR particle filter are first introduced briefly. Then, a PF-only based tracking

approach is designed for estimation of target position only, using an auto-regressive

motion model [59, 60]. Furthermore, an improved PF-only based visual tracking ap-

proach is developed to estimate both target position and velocity using a constant-

acceleration motion model [61, 62].

3.1 SIR Particle Filter

The particle filter, employing the sequential importance sampling technique to approx-

imate relevant probability distributions with a set of random samples, is particularly

useful to deal with a recursive Bayesian state estimation (filtering) problem for a non-

linear non-Gaussian dynamic system [32]. As shown in Chapter 2, the evolution of

21
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the dynamic system states can be defined as

sk = fk(sk−1, uk−1) (3.1)

where f k(·) denotes a system state transition function, sk denotes a state vector at

current time step k (k ∈ N), uk−1 denotes process noise vector with known Gaussian

or non-Gaussian distribution. The measurement function is defined as

zk = hk(sk, vk) (3.2)

where hk(·) denotes a linear or nonlinear measurement function, zk denotes the ob-

servation measurements up to current time k, vk is the measurement noise vector

with known distribution [66]. For a radar target tracking problem, the state vector

typically denotes kinematic information of the target, such as target position, velocity

and acceleration, while the measurements are typically range, bearing, elevation or

bearing rate (Doppler measurement) [25]. It is assumed that the current state for the

system dynamics is only related to the previous state, and not future or other past

states. Meanwhile, the measurement up to current time is only a function of the state

up to the current time.

The filtering problem is equivalent to estimating the conditional posterior proba-

bility density function (PDF) p(sk|z0:k) based on a sequence of consecutive updating

observations z0:k and the system state-space models with state transition and mea-

surement functions, assuming that the initial PDF p(s0|z0) = p(s0) is available. The

recursive Bayesian state estimation method for this filtering problem generally con-

sists of two steps: prediction and updating.

The prediction step involves obtaining the predicted state density p(sk|z0:k−1) us-

ing the available posterior density p(sk−1|z0:k−1) at time k −1 and the state transition



23

function through the Chapman-Kolmogorov equation [31]

p(sk|z0:k−1) =
∫

p(sk|sk−1)p(sk−1|z0:k−1)dsk−1 (3.3)

For the updating step, the required density p(sk|z0:k) conditional on measurement

up to time k is obtained via Bayes rule

p(sk|z0:k) =
p(zk|sk)p(sk|z0:k−1)

p(zk|z0:k−1)
(3.4)

With the obtained posterior density p(sk|z0:k), the moments of the state vector

could be estimated. For example, the mean of the states is calculated by

ŝk = E(sk|z0:k) =
∫

skp(sk|z0:k)dsk (3.5)

The Kalman filter is the optimal solution for the filtering problem assuming the

state transition function and measurement function are linear and the process noise

and measurement noise are additively Gaussian distributed with zero mean and known

covariances [31]. In real-world situations, this assumption is rarely valid. As a result,

improved Kalman filters with some approximation techniques, such as the extended

Kalman filter (EKF) and unscented Kalman filter (UKF) algorithm, could be em-

ployed as suboptimal solutions. However, these Kalman filter-based methods could

not adequately approximate relevant probability distributions when the linearity of

the functions are weak or the noise distributions are greatly different from the Gaus-

sian distribution.

The particle filter, as a sequential Monte Carlo method, can effectively approxi-

mate the desired probability distributions using the importance sampling principle. It

describes the posterior density p(sk|z0:k) with discrete weighted samples {si
k, wi

k}Ns

i=1

p(sk|z0:k) ≈
Ns
∑

i=1

wi
kδ(sk − si

k) (3.6)
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where si
k denotes a sample with an associated weight wi

k, and Ns is the number

of samples. Note that the weights of the samples should be normalized to ensure
Ns
∑

i=1
wi

k = 1. Asymptotically, these random samples with associated weights of particle

filter could approach the true probability density if the sample number approaches

infinity.

As the posterior density is difficult to draw samples from, the importance sam-

pling principle of the Monte Carlo approach is employed with an importance density

q(s0:k−1|z0:k−1) for the density p(s0:k−1|z0:k−1) at time k−1. Then, the weights update

at time k for the filtering problem would be derived as [31]

wi
k ∝ wi

k−1

p(zk|si
k)p(si

k|si
k−1)

q(si
k|si

k−1, zk)
(3.7)

Consequently, the sequential importance sampling (SIS) algorithm of the particle filter

could be described with two steps: firstly drawing samples si
k from the importance

density q(sk|si
k−1, zk), and secondly updating weights wi

k according to Eq. (3.7).

In this thesis, the sampling importance resampling (SIR) particle filter is applied,

choosing the prior p(si
k|si

k−1) as the importance density q(si
k|si

k−1, zk), which is one

of the most frequently used densities [66]. Accordingly, the weights are updated from

Eq. (3.7) as

wi
k ∝ wi

k−1p(zk|si
k) (3.8)

Furthermore, the systematic resampling method [31] for each iteration is adopted

for the SIR filter to mitigate the particle degeneracy problem, where a large portion

of particles are associated with negligible weights.
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3.2 Target Position Estimation

3.2.1 State transition model

The state transition function defines the evolution of system states. For a typical

target-tracking application, a constant-velocity (CV) model is commonly used with

the system state vector of interest denoting the motion characteristics of the moving

target, including target position and velocity [33]. In this approach, only the target

center position is estimated. Thus the state vector in Eq. (3.1) is defined as

sk = [xk, yk]T (3.9)

where [xk, yk]T denotes the target center position’s x and y coordinates in the Carte-

sian radar image at time k, respectively.

Since the main purpose here is to estimate the target positions, an auto-regressive

state transition function [50, 58] is used for Eq. (3.1)

sk = sk−1 + ∆sk−1 + uk−1 (3.10)

where ∆sk−1 = sk−1 − sk−2 denotes the moving distance of the last two states with

initial ∆s0 = (0, 0)T , uk−1 denotes the zero-mean Gaussian white-noise sequence with

a predefined covariance Qk−1 = σ2
uI [66]. The I is a 2 × 2 identity matrix, while the

process noise standard deviation σu is set to 10 from the moving velocity of the target

empirically since too large or small value would cause large error in the position

estimation from our experiments.

3.2.2 Measurement model

Unlike the classical target tracking problem, the measurement model employs com-

parison between the reference target model and the target candidate as the state
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measurement for this nautical radar visual tracking task. The target can be rep-

resented by a normalized B-bin histogram q̂ = [q̂1, q̂2, ..., q̂B] (u is the index of the

histogram) of a square region around the target in the radar image with
B
∑

u=1
q̂u = 1.

The bin number B is related to the feature of the target and set to 16 in this paper

empirically since useful target feature information could be lost if the bin number is

too small or too large. This number can be different for a different target in different

radar data.

The Bhattacharyya coefficient based histogram similarity distance D(p̂, q̂), mea-

suring the difference of the reference target model and target candidate, can be defined

as [71]

D(p̂, q̂) =
√

1 − ρ[p̂, q̂] (3.11)

where p̂, q̂ are normalized histogram models of the candidate and reference target

region, respectively, and ρ[p̂, q̂] denotes the Bhattacharyya coefficient with

ρ[p̂, q̂] =
B

∑

u=1

√

p̂uq̂u (3.12)

The Bhattacharyya coefficient can be interpreted as the cosine of the angle between
√

q̂ and
√

p̂ [72]. This Bhattacharyya coefficient based similarity distance can be used

as a metric, as it is symmetric, simple to compute, bounded between [0, 1], avoids

singularity when a empty histogram exits, and obeys the triangle inequality [71].

Based on the defined similarity distance between the reference target model and

each target candidate, the likelihood probability p(zk|si
k) of the measurement function

of the particle filter is then defined as

p(zk|si
k) =

1

σm

√
2π

e−D2/(2σ2
m

) (3.13)
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where D is the above-defined similarity distance. The variance of the white noise of

the measurement function σ2
m is set to 1/60 to provide sufficient discrimination.

In order to construct the target model for the particle filter, the kernel-based

histogram and background-weighted histogram distribution models are used.

3.2.3 Kernel-based histogram target model

The procedure is as follows: The kernel-based histogram scheme in [71] is first used

to model the target. Assuming that pixel intensities far from the center position are

less reliable, the target window of interest is masked with an isotropic kernel function

in order to integrate the position information in the histogram of the target model.

This kernel-based histogram is defined as [71]

q̂u = C
M
∑

i=1

k





∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

l − li

h

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2


 δ(b(li) − u) (3.14)

where k(·) denotes a kernel function (a Gaussian kernel function is selected in this

paper), l denotes the center of the target (x, y)T , li denotes the position of a pixel

within the square target window of interest, M denotes the total pixel numbers of

the square or rectangle region surrounding the target, h denotes the bandwidth of the

kernel function, involving the scale of the target window, δ(·) is the Kronecker delta

function, b(li) denotes the assignment of a pixel in the target window to corresponding

bin index, and C denotes the normalization constant. In this approach, a square

region with width W , instead of the elliptical region in [71], is used to formulate the

histogram as the target appearance could change in different radar images. Thus,

the kernel bandwidth h is set as h =
√

2W/2 to provide the range [0,1] for the

kernel function. An example of the kernel-based reference target model construction

is illustrated in Fig. 3.1.
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Figure 3.1: Kernel-based reference target model construction: (a)A reference target
region; (b)Constructed normalized reference target model.

3.2.4 Background-weighted histogram target model

As the kernel-based histogram model integrates the geometry information in the tar-

get model, the determination of the center position and size of the reference target

region is critical for the accuracy and stability of the tracking algorithm. In order

to alleviate this dependence and improve the flexibility of the tracking algorithm, a

background-weighted histogram model can also be proposed for the target represen-

tation. The model removes the bins of the original histogram that are lower than

a threshold, which represents the information of clutter background surrounding the

target. Equivalently, only pixels that have a larger intensity than the threshold are

used to construct the target histogram model. As the background in nautical radar

images is simple sea clutter, the threshold is indicated by the median intensity of the

pixels within a square window surrounding the target. This pre-processing method

for target model is similar to the OS-CFAR processing for target detection, as the

median value is a good indicator of the background information compared with the

mean value in the CA-CFAR. Then, the same similarity distance D(p̂, q̂) is used to

form the likelihood probability of the measurement function for the particle filter.
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By comparing the kernel-based model and the background-weighted model in [60],

it is found that the kernel-based target model can help locate the center position of

the radar target with a better tracking accuracy in target position estimation when

the initial reference target model is determined accurately. However, the background-

weighted histogram target model is more stable even when the reference target region

is set inaccurately with inaccurate target center position or excessively large size.

Thus, the kernel-based reference target model is adopted for the proposed visual

tracking algorithms in this thesis.

3.2.5 Summarization of the algorithm

Based on the above-mentioned state transition function and measurement function,

the SIR particle filter method is implemented to recursively estimate the target posi-

tion, with the following steps for each estimation iteration:

Determine the initial target center coordinates and the reference target model from

the reference target region in the first radar image, manually;

FOR k=2:ImageNumber

1. Predict next positions with the sampling of the prior density p(si
k|si

k−1) based

on Eq. (3.10);

2. Update particle weights using Eq. (3.8) based on the likelihood function Eq.

(3.13) and normalize the weights;

3. Resample weights with the systematic method [31];

4. Estimate the target center coordinates from the weighted samples {si
k, wi

k}Ns

i=1;

END
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3.3 Target Position and Velocity Estimation

The previously proposed approach can only estimate the target position. However,

the velocity information of the target is usually required in practical nautical radar ap-

plications. As a result, the PF-only based visual tracking approach is further modified

for estimating both target position and velocity [61, 62].

3.3.1 State transition model

The second-order autoregressive function in [60] is not used anymore since target

velocity also needs to be estimated, and it should be included in the state vector.

Thus, the state vector in Eq. (3.1) is defined as

sk = [xk, ẋk, yk, ẏk]T (3.15)

Then, a constant-acceleration model is employed as the state transition function

to describe the maneuvering motion of the target [33].
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(3.16)

where ax,k and ay,k denote the target acceleration along the x- and y-axis, which are

treated as independent zero-mean Gaussian noise. The initial center coordinates of

the target x0 and y0 are determined automatically with the initial velocities ẋ0 and

ẏ0 set to zero.
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3.3.2 Measurement model

As in Section 3.2.2, the observation model of this approach also employs the kernel-

based histogram models for the reference and candidate targets using Eq. (3.14).

Thus, the same likelihood function p(zk|si
k) (i.e. Eq. (3.13)) from the Bhattacharyya

coefficient based histogram similarity distance D(p̂, q̂) (Eq. (3.11)) between the ref-

erence and candidate target models is also used.

3.3.3 Improved reference target model

In [60], it is suggested that the target geometry be integrated into the histogram model

since the tracking performance significantly depends on the accuracy of the reference

target model. In [60], the reference target model was determined manually by setting a

rectangular target region to closely cover the target. In order to increase the flexibility

of the tracking algorithm, an automatic initialization scheme of the reference model is

implemented based on a CFAR operation. Assuming a target exists in the initial radar

image, CFAR processing is used to determine the target signals within a coarse target

region surrounding the target. Then the centroid of target signals is used as the initial

center position, and the width of the square reference target region is determined by

calculating the amount of the target signals. With the initial center position and the

size of the target region determined, the reference target model can be constructed

using Eq. (3.14). Furthermore, an enhanced reference target model is proposed to

exclude the influence of the clutter signals that fall in the determined reference target

region. Due to unknown shape of the target, the size of the reference region, which

is determined in the automatic scheme, needs to be set large enough to cover the

reference target. Thus, unwanted clutter may still be included in the reference target

region. The enhanced reference target model is constructed by only the target signals,
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which are determined by CFAR processing. In Fig. 3.2, an example of the enhanced

reference target model is shown. The reference target region used is the same as that

in Fig. 3.1, but some clutter signals have been removed using CFAR processing.

(a) Reference Target Region
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Figure 3.2: Enhanced kernel-based reference target model construction: (a)Reference
target region without clutter signals; (b)Enhanced reference target model.

Within an image sequence, the appearance of the target may change gradually

due to the change of the distance between the target and radar. In order to deal with

this target’s appearance change, the reference target model q̂k is updated using [34]

q̂k = q̂k−1(1 − αr) + p̂kαr (3.17)

where p̂k is the current target model based on current estimation, and αr is an adaptive

coefficient, which is between 0 and 1. This adaptive coefficient needs to be set small

(e.g. 0.1) since large αr (e.g. 0.5) may cause divergence in target tracking (drift

problem) due to the accumulation of inaccurate estimation of new target models p̂k,

especially for nautical radar applications with unknown background sea clutter.
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3.3.4 Summarization of the algorithm

With the above-mentioned modification, the complete implementation procedure of

this PF-only based procedure for position and velocity estimation approach can be

summarized as

Determine the initial target center coordinates and velocities, and the kernel-based

reference target model from the reference target region in the first radar image;

FOR k=2:ImageNumber

1. Predict next positions and velocities with the sampling of the prior density

p(sk|si
k−1) based on Eq. (3.16);

2. Update particle weights using Eq. (3.8) based on the likelihood function Eq.

(3.13) and normalize the weights;

3. Resample weights with the systematic method;

4. Estimate the target center coordinates xk, yk and velocities ẋk, ẏk from the

weighted samples {si
k, wi

k}Ns

i=1;

END

In Chapter 5, this approach will also be tested based on field nautical radar image

sequences and compared with other tracking algorithms.



Chapter 4

Combined PF-KF Based Visual

Tracking Approach

As the PF method usually needs large computational cost, closely related to the

number of the samples for particle filtering, a combined PF-KF method is proposed

to reduce the computational cost and the risk of divergence by reducing the dimension

of the state vector for particle filtering [63]. In this chapter, the detailed design of the

combined PF-KF filter for the target position and velocity estimation is first presented.

Then, modifications such as the enhanced reference target model construction and

updating, and the adaptive KF method for dealing with maneuvers, are integrated to

improve the tracking flexibility, robustness, and accuracy of the algorithm.

4.1 Target Tracking Problem Formulation

As in Chapter 3, the dynamic system for a tracking problem can generally be modeled

as

sk = fk(sk−1, uk−1) (4.1)

34
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zk = hk(sk, vk) (4.2)

Target tracking is to estimate the time-varying state vector sk for the above dy-

namic system. It can be equivalent to estimating the conditional posterior probability

density function (PDF) p(sk|z0:k) on sequential observations z0:k, assuming that the

initial PDF p(s0|z0) = p(s0) is available. This recursive Bayesian state estimation

process generally consists of two steps: prediction and updating [31]. The prediction

step obtains the predicted state density p(sk|z0:k−1) using the previous posterior den-

sity p(sk−1|z0:k−1) at time k − 1 based on the state transition function. Then the

updating step obtains the required density p(sk|z0:k) conditional on measurement up

to time k via the Bayes rule

p(sk|z0:k) =
p(zk|sk)p(sk|z0:k−1)

p(zk|z0:k−1)
(4.3)

4.2 State Transition Model

For nautical radar target tracking, which requires estimation of the target position and

velocity from the Cartesian (scan-converted) radar image sequence, the state vector

of the dynamic system in Eq. (4.1) is also chosen as

sk = [xk, yk, ẋk, ẏk]T (4.4)

where xk, yk denote the target center position’s x and y coordinates in the Carte-

sian radar image at time k; ẋk, ẏk denote the target velocity along the x axis and y

axis, respectively. For our combined PF-KF tracking method, the target coordinates

[xk, yk]T in the defined state vector are first estimated by the PF (in the following

text sPF

k = [xk, yk]T ).

In this approach, the state transition function also employs the constant-acceleration
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(CA) model to describe the motion of the maneuvering target [33]

sk =

























1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1

























sk−1 +

























T 2/2 0

0 T 2/2

T 0

0 T

































ax,k

ay,k









(4.5)

where ax,k and ay,k denote the target acceleration along the x axis and y axis, which

would be treated as independent zero-mean Gaussian noise to represent the uncertain

movement of the target. Within the state transition function, the velocities can be

obtained from the KF estimation after the PF estimation of target position in the

combined PF-KF method.

4.3 PF Measurement Models

As in Chapter 3, the Bhattacharyya coefficient based histogram similarity distance

D(p̂, q̂) between the reference target model q̂ and the candidate target model p̂ is

also used for the measurement model in Eq. (4.2).

The candidate and reference target histogram model p̂ and q̂ are constructed using

the kernel-based function in Eq. (3.14). Since this kernel-based model integrates the

geometry in the target histogram model, the determination of the center position and

size of the reference target region is critical for the accuracy and stability of the track-

ing algorithm. The automatic determination of the reference target region based on

the CFAR processing in Chapter 3 is also implemented here. Then, the enhanced ref-

erence target model is constructed using Eq. (3.14) based on the determined reference

target region with clutter signals removed.

Although the proposed histogram target model is relatively robust to the change
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of target’s pose and scale [52], and this target’s appearance change through the radar

image seuquence is usually not that severe as the general visual tracking application

[45], the appearance of the target can still change gradually due to the change of

the distance between the target and radar. Thus, the reference target model update

method based on Eq. (3.17) is also used to deal with the target’s change in appearance.

4.4 PF and KF Combining Procedure

As the measurement function described above is nonlinear, the particle filter method

is employed to solve this non-linear system. The particle filter can approach the

optimal Bayesian solution by approximating the posterior density p(sk|z0:k) in Eq.

(4.3) with a set of discrete weighted samples {s
PF,i
k , wi

k}Ns

i=1. Thus,

p(sPF

k |zPF

0:k) ≈
Ns
∑

i=1

wi
kδ(sPF

k − s
PF,i
k ) (4.6)

where s
PF,i
k denotes a PF sample with an associated weight wi

k and is a random posi-

tion here, and Ns is the number of samples. Asymptotically, these weighted random

samples (particles) can approach the true probability density when Ns approaches

infinity.

Assuming the samples for the posterior density at time k − 1 are available, the

weight update for time step k at each iteration can be obtained with [31]

wi
k ∝ wi

k−1

p(zPF

k |sPF,i
k )p(sPF,i

k |sPF,i
k−1)

q(sPF,i
k |sPF,i

k−1, zPF

k )
(4.7)

where, q(.) is the importance density.

In this approach, the standard SIR particle filter is applied for our application. It

chooses the prior p(sPF,i
k |sPF,i

k−1) as the importance density q(sPF,i
k |sPF,i

k−1, zPF

k ), which is
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one of the most frequently used densities [66]. Then the weights are updated with

wi
k ∝ wi

k−1p(zPF

k |sPF,i
k ) (4.8)

Furthermore, the SIR particle filter resamples the particles at each iteration to

mitigate the particle degeneracy problem, where a large portion of particles are asso-

ciated with negligible weights after the weight update.

Compared with other tracking filters for nonlinear system, such as EKF and UKF,

the particle filter usually requires high computational cost, which is related to the

dimension of the state vector for sampling. More particles are required when a state

vector of higher dimension is used [33]. In order to reduce the computational cost

and the risk of divergence, only the target position [xk, yk]T of the state vector sk in

Eq. (4.4) is sampled and estimated by the particle filter. After the preliminary target

position is obtained, the Kalman filter can be used to further estimate the full state

vector at each iteration.

In the proposed PF-KF procedure, the preliminary PF-estimated target coordi-

nates xk,z and yk,z at each iteration can serve as the new observation zKF

k = [xk,z, yk,z]
T

for the dynamic models of the Kalman filter to further estimate the target velocities

in the state vector and refine the target positions. For the Kalman filter, the same

state vector (Eq. (4.4)) and state transition function (Eq. (4.5)) are used but with a

different measurement function

zKF

k = Hksk + vk (4.9)

in which

Hk =
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(4.10)
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where Hk is the projection matrix from the current state to current measurement.

The observation noise vk is also set as Gaussian-distributed with zero mean and

variance σ2
v , which is set to 4 in our experiment. With the the linear-Gaussian system

defined above, the analytic formulation of the Kalman filter to obtain the state vector

can be found in Chapter 2.

4.5 Adaption for Maneuvering

In order to deal with the uncertain motion of the maneuvering target, the same

adaptive filtering algorithm as in the classical KF-based approach (see Chapter 2)

is employed in the KF estimation used in the combined PF-KF procedure. This

algorithm employs the KF innovation term-based maneuver detection method and

adaptive process noise to achieve adaptivity. For the maneuver detection method, it

assumes the innovation sequence νk of the Kalman filter has a Gaussian distribution

with zero mean and covariance matrix Θk for a straight-line constant-speed moving

target. If any component of the innovation term is outside of its corresponding interval

([−C
√

Θk(i, i), C
√

Θk(i, i)]), a maneuver is considered to be happening. After the

maneuver is detected, the variance of the process noise uk is increased to put more

weight on the measured observation, instead of the past history, i.e. the predicted

state.

4.6 Implementation of the Combined PF-KF Al-

gorithm

With scheme presented above, the combined PF-KF procedure for estimating target

position and velocity can be implemented through the following iterative steps:
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1. Determine the initial target center coordinates, velocity and the modified refer-

ence target model from the automatically determined reference target region;

2. Predict next positions by sampling the prior density p(sPF

k |sPF,i
k−1) from the process

noise in Eq. (4.5) and the initial velocity (set as zero here) for the first iteration

or the velocities obtained by KF in step (6) for other iterations;

3. Update particle weights using Eq. (4.8) and normalize the weights;

4. Resample weights with the systematic method;

5. Calculate preliminary target coordinates from the weighted samples {s
PF,i
k , wi

k}Ns

i=1;

6. Estimate the new target coordinates xk, yk and velocities ẋk, ẏk using the KF;

7. Return to step 2 and update time k = k + 1.

The results of this PF-KF based visual tracking approach using field nautical radar

images will be presented and discussed in Chapter 5, in which comparison with the

PF-only based visual tracking approach, the classical KF based tracking approach

and GPS data will also be provided.



Chapter 5

Experimental Results and

Discussion

In this chapter, the tracking results of the classical KF based approach, the proposed

PF-only and PF-KF based visual approach using field nautical radar data are illus-

trated and compared with GPS data. First, the field nautical radar images and the

GPS data for testing are described. Then, the tracking performance of these three

algorithms is evaluated and discussed.

5.1 Experiment Data

5.1.1 Radar image sequences

In order to evaluate the performance of the proposed PF-KF and PF-only based visual

tracking approaches for nautical radar application, seven sequences of scan-converted

radar images, which were collected by a land-based X-band nautical radar system on

the Canadian East Coast in March, 2010, are tested. These data were collected under

varying sea clutter levels, different range resolutions and antenna rotation periods

41
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with varying target distances (see Table 5.1). The data, in which the target (a ship)

is moving with a piecewise constant radius and speed around the radar, is denoted

as “CRT”, while the data with the ship moving with an abrupt turning is denoted as

“ACC”.

Table 5.1: Specifications for the X-band Nautical Radar Images.

Data Antenna Rotation Range Resolution Target Image

set Period (second) (m/pixel) Range (m) Number

ACC1 1.31 7.51 1800-2500 172

ACC2 1.31 7.51 1800-2900 232

ACC3 1.31 7.51 900-2000 140

ACC4 1.31 7.51 900-1900 201

CRT1 2.10 7.51 1750-1950 283

CRT2 2.10 3.76 900-1150 173

CRT3 2.10 3.76 850-1100 139

5.1.2 GPS data

During the above trials, a GPS device was installed on the ship to collect the ship

moving information for validating the tracking results of the proposed approaches.

The raw GPS data contains target position, speed and course. The raw GPS

data is recorded in a format following the NMEA 0183 standard [73], which includes

multiple sentences such as recommended minimum specific GPS data (GPRMC), ge-

ographic position - latitude/longitude (GPGLL), global positioning system fix data

(GPGGA), course over ground and ground speed (GPVTG), time & date (GPZDA).

Among these sentences, only the GPRMC sentence is used since it contains the re-

quired information for retrieving the target and velocities. In the GPRMC sentence,

important parameters are delimited by comma and with the checksum in the end. For



43

example, the information contained in the GMRMC sentence “$GPRMC,144738,A-

,4717.3421,N,05359.5329,W,0.1,258.9,090310,20,W*5D” is listed in Table 5.2.

Table 5.2: GPRMC Sentence.

Example Name Description

$GPRMC Sentence identifier GPS RMC header

144738 UTC time hhmmss.sss

A Data status A = valid, V = warning

4717.3421 Latitude ddmm.mmmm

N N/S indicator North/South latitude indicator

05359.5329 Longitude ddmm.mmmmm

W E/W indicator East/West longitude indicator

0.1 Speed over ground Target speed in knots

258.9 Course over ground True course in degree

090310 Date ddmmyy

20 Magnetic Variation

W E/W indicator East/West indicator

*5D Checksum Covering previous values

Based on the retrieved coordinates (latitude and longitude) of the moving target

and the measured coordinates of the fixed marine radar, the target range and bearing

with respect to the radar can be calculated. The calculation of the great-circle distance

between two points around the Earth’s surface with respective latitudes and longitudes

follows the Haversine formulas [74],

d = R · c (5.1)

c = 2 arctan(
√

a,
√

1 − a) (5.2)

a = sin2(∆lat/2) + cos(lat1) cos(lat2) sin2(∆long/2) (5.3)
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where a is the square of half the chord length between two points, c is the angular

distance in radian, R is the radius of the Earth(the mean radius value of 6731 km

for the slightly ellipsoidal Earth), ∆lab and ∆long are the latitude and longitude

differences between the two points.

The bearing of the target can be calculated as [74]

θ = arctan(sin(∆long) cos(lat2), cos(lat1) sin(lat2)

− sin(lat1) cos(lat2) cos(∆long)) (5.4)

The complete target tracks of the trials (“ACC” and “CRT”) are depicted in

Fig. 5.1 and Fig. 5.3, respectively. The corresponding target kinematic parameters

retrieved from the GPS data are shown in Fig. 5.2 and Fig. 5.4. These figures give

an idea about the target moving modes. The seven radar image sequences used for

tracking performance analysis are truncated data from these two trials.

5.2 Tracking Results

5.2.1 Parameter optimization for tracking filters

In order to validate the choice of the OS-CFAR for the KF based classical tracking

approach, the detection performance of the OS-CFAR and CA-CFAR is compared in

terms of Pd and Pfa. The experimental results using these two CFAR schemes from

the datasets ACC1 and CRT1 are shown in Figs. 5.5-5.6. It can be found that the

OS-CFAR outperforms the CA-CFAR detector since it can achieve higher probability

of detection with the same probability of false alarm.

Moreover, the influence of the size of the OS-CFAR reference window on its de-

tection performance is also investigated. From the Pd and Pfa curves (Fig. 5.7 and
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First Radar Image and GPS Track

Figure 5.1: Complete target track during the ACC trial.
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Figure 5.2: Variation of the target kinematic parameters during the ACC trial.
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First Radar Image and GPS Track

Figure 5.3: Complete target track during the CRT trial.
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Figure 5.4: Variation of the target kinematic parameters during the CRT trial.
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Figure 5.5: Comparison of Pd-Pfa curves of OS-CFAR and CA-CFAR from ACC1.
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Figure 5.6: Comparison of Pd-Pfa curves of OS-CFAR and CA-CFAR from CRT1.
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Figure 5.7: Pd-Pfa curves with different CFAR reference window sizes of OS-CFAR
from ACC1.
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Figure 5.8: Pd-Pfa curves with different CFAR reference window sizes of OS-CFAR
from CRT1.
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Fig. 5.8) obtained from datasets ACC1 and CRT1, it can be found that increasing

the CFAR reference window width W can improve the detection performance to some

extent. However, if the reference window size is too large, the assumption of homo-

geneity for the reference cells will not be valid and a higher computational cost is

required. On the other hand, it could also be shown that the effectiveness of the de-

tection improvement due to the reference window size would be significantly decreased

when the size reaches a certain value. As a result, the width and length W of the

reference window are chosen as 21 pixels in the KF based classical tracking approach

to achieve an acceptable detection performance with reasonable computational cost.
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Figure 5.9: Innovation process without adaptive KF filtering from ACC1.

In order to validate the proposed innovation term based adaptive KF algorithm

for maneuver, the variation of the innovation terms of the classical KF tracker are

shown in Fig. 5.9 and Fig. 5.10 based on the results from the dataset ACC1, in

which the target moves with a 90◦ abrupt turning. Fig. 5.9 shows the variation of the

innovation term νk along the x axis and y axis for the KF based tracking approach

without the adaptive KF algorithm, while Fig. 5.10 shows the results of the approach

using the adaptive KF algorithm. Comparison of these two figures shows that the
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adaptive KF algorithm can effectively reduce the amplitude of KF innovation terms.

Thus, the tracking performance can be improved as smaller innovation terms imply

that estimated results are closer to practical results.
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Figure 5.10: Innovation process with adaptive KF filtering from ACC1.

In order to determine the optimal values of the parameters used in the PF based

visual tracking approaches, tracking performances are evaluated using the retrieved

GPS data as the ground truth. Then, the root mean square error (RMSE) is employed

to quantify the tracking accuracy. Here, the position RMSE is defined as

RMSE =

√

√

√

√

1

N

N
∑

i=1

((x1,i − x2,i)2 + (y1,i − y2,i)2) (5.5)

where x1,i and y1,i denote the estimated target coordinates using the particle filter

based methods, x2,i and y2,i represent the reference target position coordinates from

the GPS data, and N is the number of the target positions through an image sequence.

Generally, a larger number of PF samples would result in more accurate approx-

imation of distributions in the Bayesian estimation, and more stable tracking per-

formance. In order to investigate the influence of the number of PF samples on the

tracking performance and computational cost, the variations of target position RMSE
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and computational time against the PF sample numbers from dataset ACC1 are il-

lustrated in Fig. 5.11 (a) and (b). It is clear that a large number of samples would

stabilize the tracking performance, while the computational cost would increase nearly

linearly with the increase of the number of samples. As a result, a proper number

of samples should be determined to achieve an acceptable tracking performance with

reasonable computational burden. In this thesis, number of samples Ns=300 is se-

lected to assure stable tracking performances for the PF-KF based approach, while

the number of samples for the PF-only based approach is set to 600.

Moreover, in order to verify the benefit of the enhanced reference target model

(see Chapter 3) on the tracking performance, the tracking results using original and

enhanced reference target models are also evaluated against the size of the square

reference target region surrounding the target. More clutter will be included in the

original reference target model when the size of the target region increases, which

would undermine the tracking accuracy and stability. However, with the enhanced

reference target model, good and stable tracking performance is secured with different

sizes of the square reference regions (see Fig. 5.11(c)). Thus, this enhanced reference

target model is adopted for both the PF-only and PF-KF based visual tracking ap-

proaches.

5.2.2 Tracking performance comparison

Among the seven available image sequences, datasets CRT1 and ACC1-4 are collected

in a relatively low sea clutter environment, in which the target is relatively far from the

radar. The tracking results, obtained by the classical approach (denoted as “CFAR-

KF”), the PF-only based approach (denoted as “PF”) and the combined PF-KF

based approach (denoted as “PF-KF”) from these images sequences, are illustrated

as follows.



52

0 500 1000
1.5

2

2.5

3
(a)

Particle Number

R
M

S
E

 o
f T

ar
ge

t P
os

iti
on

0 500 1000
0

0.01

0.02

0.03

0.04

0.05

0.06
(b)

Particle number

C
om

pu
ta

tio
na

l t
im

e 
(s

ec
)

5 10 15
0

2

4

6

8
(c)

Width of reference target region

R
M

S
E

 o
f T

ar
ge

t P
os

iti
on

 

 
Original ref model
Enhanced ref model

Figure 5.11: Tracking evaluation from CRT1: (a)Position RMSE against number
of PF samples; (b)Computational time against number of PF samples; (c)Position
RMSE against target region width using original and enhanced reference target mod-
els.

The tracking trajectories obtained from dataset CRT1 using the above three ap-

proaches are shown in Fig. 5.12, where the target was moving around the radar with

a nearly constant speed and range. From the Figure, it can be found that the ob-

tained trajectories agree well with that of the GPS data. The position RMSEs for

these approaches are all approximately 2 pixels (15 m, also see Table 5.3). These

values are considered to be acceptable as the size of the target is approximately 24

pixels in the radar image. Furthermore, from the states xk, yk, ẋk, ẏk, the target range

(
√

(xk − xr)2 + (yk − yr)2, where xr and yr are the Cartesian radar position coor-

dinates), bearing (π/2 − arctan((yk − yr)/(xk − xr))), speed (
√

ẋ2
k + ẏ2

k) and course

(π/2 − arctan(ẏk/ẋk)) can be derived. These derived target parameters are also com-

pared with the raw GPS data as shown in Fig. 5.13. It can be found in Fig. 5.13 that

the derived ship kinematic parameters using the three tracking approaches all agree

fairly well with the GPS data.

For the dataset ACC1, where the target moved with an acceleration at the begin-

ning, then a 90◦ sharp turn, and a deceleration in the end, the tracking trajectories

and variations of kinematic parameters are illustrated in Fig. 5.14 and Fig. 5.15,
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Figure 5.12: Target tracks obtained by CFAR-KF, PF, PF-KF estimation and GPS
from CRT1.
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Figure 5.13: Variations of target information obtained by CFAR-KF, PF, PF-KF
estimation and GPS from CRT1: (a)Target range; (b)Target bearing; (c)Target speed;
(d)Target course.
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Figure 5.14: Target tracks obtained by CFAR-KF, PF, PF-KF estimation and GPS
from ACC1.
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Figure 5.15: Variations of target information obtained by CFAR-KF, PF, PF-KF
estimation and GPS from ACC1: (a)Target range; (b)Target bearing; (c)Target speed;
(d)Target course.
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Figure 5.16: PF-KF estimated target with trajectory history in frame 60, 100, 120
for: (a)ACC1; (b)CRT1.

respectively. From Fig. 5.15 and the RMSE values of the kinematic parameters in

Table 5.3, it can be found that all the three approaches can obtain similar tracking

accuracy in target position estimation. However, the PF-only based approach per-

forms worse in the target velocity estimation than the classical KF-based approach

and the PF-KF based approach. In Fig. 5.15 (c), the speed curve obtained by the

“PF” approach shows large deviation from the GPS result. Thus, the PF-only based

visual tracking approach may not work well for tracking maneuvering target. In or-

der to show the results more clearly, Fig. 16 depicts selected frames showing tracked

target marked with a white box from datasets ACC1 and CRT1. In conclusion, it is

found the performances of the “PF-KF”, “PF” and “CFAR-KF” methods are similar

due to low sea clutter from the above results.

Similar tracking results can be found from datasets ACC2-4 (see Figs. 5.17-5.22),

in which the target motion also contains a 90◦ turning, an acceleration (and/or a
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Figure 5.17: Target tracks obtained by CFAR-KF, PF, PF-KF estimation and GPS
from ACC2.

deceleration). The only difference of these datasets is that the target motion changes

happened at different ranges. From these datasets, all the three methods can obtain a

fairly good position estimation (including the derived range and bearing estimation).

However, the KF based classical approach (“CFAR-KF” ) and the proposed PF-KF

based approach (“PF-KF”) perform better than the proposed PF-only based approach

(“PF”) in velocity estimation.

Under strong clutter background, the tracking performance of the proposed visual

tracking approaches and classical approach degrade since more false target signals are

detected or real target signals are lost due to the decrease of discrimination between

the target and clutter signals. In order to analyze the performance of the proposed

method under strong clutter environment, the CRT2 and CRT3 sequences, in which

targets are about 850-1150 meters away from the radar and surrounded by quite

strong clutter, are tested.

The tracking results from CRT2 are depicted in Figs. 5.23-5.24, from which it can
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Figure 5.18: Variations of target information obtained by CFAR-KF, PF, PF-KF
estimation and GPS from ACC2: (a)Target range; (b)Target bearing; (c)Target speed;
(d)Target course.
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Figure 5.19: Target tracks obtained by CFAR-KF, PF, PF-KF estimation and GPS
from ACC3.
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Figure 5.20: Variations of target information obtained by CFAR-KF, PF, PF-KF
estimation and GPS from ACC3: (a)Target range; (b)Target bearing; (c)Target speed;
(d)Target course.
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Figure 5.21: Target tracks obtained by CFAR-KF, PF, PF-KF estimation and GPS
from ACC4.
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Figure 5.22: Variations of target information obtained by CFAR-KF, PF, PF-KF
estimation and GPS from ACC4: (a)Target range; (b)Target bearing; (c)Target speed;
(d)Target course.
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Figure 5.23: Target tracks obtained by CFAR-KF, PF, PF-KF estimation and GPS
from CRT2.
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Table 5.3: Comparison of target parameters RMSE obtained by CFAR-KF, PF and
PF-KF from ACC1-4 and CRT1.

Data Approach Position Range Speed Bearing Course

sets (pixel) (m) (knot) (degree) (degree)

ACC1 CFAR-KF 2.57 19.7 1.65 0.87 16.0

ACC1 PF 1.64 17.1 2.63 0.64 18.9

ACC1 PF-KF 1.54 21.1 1.91 0.19 10.8

ACC2 CFAR-KF 2.05 20.3 1.23 1.44 6.30

ACC2 PF 1.76 12.6 1.38 0.88 8.47

ACC2 PF-KF 1.70 14.2 1.71 0.90 9.35

ACC3 CFAR-KF 2.40 15.7 1.36 0.47 5.34

ACC3 PF 2.40 12.6 3.60 0.73 5.56

ACC3 PF-KF 1.77 13.7 2.60 0.63 8.82

ACC4 CFAR-KF 2.15 17.2 1.22 0.99 7.85

ACC4 PF 2.99 10.2 1.67 0.91 7.43

ACC4 PF-KF 2.11 8.34 1.43 0.90 9.73

CRT1 CFAR-KF 1.80 7.56 1.25 0.35 5.99

CRT1 PF 1.56 11.0 1.07 0.26 5.16

CRT1 PF-KF 1.53 10.5 1.05 0.27 6.41

Table 5.4: Comparison of target parameters RMSE obtained by CFAR-KF, PF and
PF-KF from CRT2-3.

Data Approach Position Range Speed Bearing Course

sets (pixel) (m) (knot) (degree) (degree)

CRT2 CFAR-KF 3.75 7.36 1.70 0.71 13.5

CRT2 PF 2.42 5.88 1.10 0.54 8.56

CRT2 PF-KF 2.04 4.22 0.81 0.40 10.8

CRT3 CFAR-KF - - - - -

CRT3 PF 4.01 9.50 2.16 0.96 11.6

CRT3 PF-KF 3.89 6.03 1.53 0.81 7.39
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Figure 5.24: Variations of target information obtained by CFAR-KF, PF, PF-KF
estimation and GPS from CRT2: (a)Target range; (b)Target bearing; (c)Target speed;
(d)Target course.
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Figure 5.25: Target tracks obtained by CFAR-KF, PF, PF-KF estimation and GPS
from CRT3.
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Figure 5.26: Variations of target information obtained by CFAR-KF, PF, PF-KF
estimation and GPS from CRT3: (a)Target range; (b)Target bearing; (c)Target speed;
(d)Target course.

be seen that the proposed visual tracking approaches show better tracking perfor-

mance than the classical approach. Especially in the later part of the dataset CRT2

(scans 100-173, or 210-363 seconds), the position RMSE is large as 6 pixels using the

classical approach, but less than 2 pixels with the proposed visual approaches. From

the CRT3 estimation results shown in Figs. 5.25-5.26, it is found that the classical

approach even fails to detect the target in several consecutive images due to the high

clutter background and fails to provide correct track, while the proposed PF-only

and PF-KF based visual tracking approaches are still able to generate a satisfactory

track but with a larger position RMSE (≈ 4 pixels). More detailed statistics of track-

ing results with the proposed “PF-KF” approach, “PF” approach and the classical

“CFAR-KF” approach are listed in Table 5.4, from which the proposed PF-KF based
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approach is also shown to outperform the PF-only based approach and classical ap-

proach in the estimation accuracy of the target position and velocity. Although the

performances of the PF-KF, PF and CFAR-KF methods degrade under strong sea

clutter, the superiority of the PF-KF based approach is more obvious. It should be

noted that the GPS data is considered to be ground truth with error in this thesis.

The interpretation of the experimental results are based on the comprehensive analysis

of the RMSE errors of different kinematic parameters and tracking trajectories.

Under relatively weak sea clutter, the “PF-KF” approach performs similarly to the

classical “CFAR-KF” approach in tracking accuracy of target position and velocity.

From the above analysis on the seven datasets, it is also found that the PF-only based

approach performs worse in the velocity estimation when the target maneuvers more

often. When the sea clutter is relatively strong, the proposed PF-KF and PF-only

based visual tracking approaches outperform the classical KF based approach.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

For maneuvering target tracking from X-band nautical radar images, two particle

filter based visual tracking approaches are designed to automatically obtain the target

position and velocity in this thesis: a PF-only based approach and a combined particle-

Kalman filters (PF-KF) based approach. Moreover, a Kalman filter based classical

tracking approach is also presented in order to evaluate the tracking performance

of the proposed PF based algorithms. These three tracking approaches have been

tested in seven practical X-band radar image sequences, which are collected under

different radar parameters, different target moving modes, and different sea clutter

environments.

In developing the KF based classical tracking approach, the OS-CFAR processing

is first employed for detecting target signals since it shows better detection perfor-

mance than the CA-CFAR. Then, the Kalman filter is used for recursively estimat-

ing the target position and velocity as the optimal solution to a constructed linear

and Guassian tracking system. This linear-Gaussian system employs the measured
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target center coordinates along the x and y axis of the scan converted radar im-

ages as the measurements, and a constant acceleration motion model as the state

transition function. Moreover, an adaptive KF algorithm is also integrated into the

KF-based approach to deal with target maneuvering. It is shown that the designed

KF-based classical tracking approach can effectively track the target with different

moving modes, under relatively weak sea clutter environments. However, the tracking

performance of the KF-based classical tracking approach would degrade significantly

when the sea clutter becomes relatively strong.

In order to address this problem, a visual tracking method is first integrated into

the SIR particle filter framework to track the maneuvering target from the nautical

radar images. This PF-only based visual tracking strategy employs the kernel-based

histogram model to represent the target, and Bhattacharyya coefficient based distance

to provide the likelihood function for particle filtering. It is found the kernel-based

histogram target model is relatively robust to the change of target’s pose and scale,

and is computationally efficient. The kernel function helps locate an accurate target

center position. The Bhattacharyya coefficient based distance can provide a suitable

metric for target position and velocity estimation by the PF. As the accuracy of the

reference target model is critical to the tracking accuracy and stability of the PF

based algorithm, the modifications made on the reference target model, including the

automatic reference target model initialization, enhanced target model construction,

and updating reference model, can effectively improve the tracking accuracy, stability

and flexibility.

As the particle filter usually requires high computational cost, which is closely

related to the number of the samples for particle filtering, a combined PF-KF based

visual tracking approach is further proposed. The combined PF-KF procedure reduces

the dimension of state vector for PF sampling, which can effectively reduce the risk
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of tracking divergence and reduce the computational cost. The modifications of the

reference target model is also integrated. The automatic reference model initializa-

tion helps improve the flexibility of the tracking algorithm. The enhanced reference

target model construction can improve the tracking stability. The updating reference

target model can deal with possible target’s appearance change through the tracking

process although the change in this experiment is slow. Moreover, the adaptive KF

algorithm that is integrated into the combined PF-KF method can effectively improve

the tracking accuracy and stability when target maneuvers.

Based on the test using field nautical radar data which accounts for different radar

parameters, different target moving modes, and different sea clutter background, it

is found that the PF-KF based visual tracking can outperform the PF-only based

visual tracking approach in velocity estimation, and outperform the KF based clas-

sical tracking approach when the sea clutter is quite strong. In conclusion, through

the experiment with practical field data, the proposed PF-KF based visual tracking

approach can reliably and effectively estimate position and velocity of a maneuvering

target directly based on the nautical radar images.

6.2 Future Work

In this thesis, the proposed PF-KF visual tracking approach is only designed for single

target tracking and tested in the available nautical radar image sequences collected

under certain radar configurations and environments. In the future, this approach

needs to be improved to address the multiple targets tracking problem. More prac-

tical nautical radar data can be used to test the robustness and performance of the

tracking algorithm. In order to deal with target tracking under more complicated sit-

uation, more sophisticated visual tracking algorithms (e.g., MIL tracking, VTD, and
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Ensemble Tracking) may be considered in the future work. Moreover, the approxi-

mate initial target position is assumed to be available before tracking, an algorithm

for automatically detecting the initial target should be designed and integrated into

the proposed algorithm in the future.
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