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ABSTRACT 

This PhD research project aims to develop a better understanding of how physical 

seafloor reworking and macrofaunal bioturbation control the lithofacies variability of 

mudstones deposited under high-energy seafloor conditions. To address this aim, 

bioturbated and unbioturbated mudstones from two natural laboratories in Newfoundland, 

Canada and Baja California, Mexico were investigated. Sections of interest were logged 

at a cm-scale and organic and inorganic geochemical measurements were performed on 

bioturbated and unbioturbated mudstones within both successions. To improve the 

fidelity of paleoenvironmental reconstructions these geochemical measurements were 

combined with high-quality sedimentological and ichnological datasets at a range of 

length scales. Unbioturbated mudstones in the Early Ordovician Bell Island Group, 

Newfoundland, previously reported to have been deposited under anoxic conditions, 

instead, most likely originated as hyperpycnal flows and wave-enhanced sediment gravity 

flows. The proximity to a fluvial source and residence time of rock components in the 

near-surface zone are interpreted to be the primary control on the compositional 

heterogeneity of mudstones within this Ordovician mud-dominated shoreface 

paleoenvironment. Following this, high-energy seafloor conditions are a more realistic 

explanation for the high presence of unbioturbated mudstones in the heterolithic Bell 

Island Group. Additionally, the formation mechanism of shrinkage (‘synaeresis’) cracks, 

which are sedimentological prime indicators for salinity fluctuations in marginal-marine 

environments, has been re-evaluated. Sediment cracking is proposed to form as an 

exclusively intrastratal process, independent of fluctuations of pore water salinity. Spatial 

rheological inhomogeneities associated with microbial mat decay shortly after burial are 
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proposed to produce intrastratal shrinkage cracks. The effect of bioturbation on the 

geochemical variability of mudstones has been investigated within mudstones and fine-

grained sandstones of the Rosario Formation, Mexico. The spatial distribution of organic 

carbon and redox-sensitive trace elements is controlled by the feeding activity of grain-

size selective vermiform animals and associated in-vivo alteration of weathering-

susceptible minerals. The reactivity of organic carbon is proposed to be a critical variable 

controlling pathways of diagenesis in bioturbated mudstones. It is imperative that 

paleoenvironmental analyses consider the long-term effects of bioturbation and high-

energy seafloor processes to fully understand the compositional variability of mudstones 

within a basin-wide context.  
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CHAPTER 1 

 

MUDSTONE SEDIMENTOLOGY: INTRODUCTION AND 

OVERVIEW 

 

 

1.  Project overview and problem statement 

 

Mudstones (sedimentary rocks with a median grain size of < 62.5 µm; Folk 1974) are 

the most important part of every petroleum system (Tissot and Welte 1978). Mudstones 

are the volumetrically most abundant (>65%) sedimentary rock type exposed on the 

modern Earth surface, but the controls on their lithofacies variability are relatively poorly 

understood in comparison to coarse clastics and carbonates (Aplin et al. 1999). They 

serve as source rocks (Katz 2005), seals (Watts 1987), and even, in certain geological 

situations, as a regionally important reservoir (Passey et al. 2010; Aplin and Macquaker 

2011 and references therein). Marine mudstones accumulate across a wide variety of 

water depths and hydrodynamic regimes. Thick successions of mudstones accumulate in 

silled basins (Demaison and Moore 1980), wave-dominated shorefaces (Plint et al. 2012) 

and deltaic environments (Hovikoski et al. 2008), as well as deep marine environments 

(Faugeres and Stow 1993).  

Classic diagenetic theory emphasizes that the underlying lithofacies variability of 

mudstones reflects a combination of (a) the starting composition of the parent material, 

(b) the weathering history of the unconsolidated, highly reactive mixture of minerals and 
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grains (Aplin 2000) and (c) pressure- and temperature-driven mineralogical changes 

during deep burial (Wilson & Pittman 1977; Bjørlykke 1998). The effect of burial 

diagenesis is comparatively well understood because this process operates on geological 

time scales and is readily reconstructed from the rock record (Potter et al. 2005). A great 

deal of textural and compositional variability within mudstones however cannot be 

explained by variations in initial starting composition or burial diagenetic processes. 

 Studies on hydrocarbon sealing efficiency reveal that porosity relationships, mineral 

surface area and organic matter richness (expressed as total organic carbon, TOC wt%) all 

can vary by at least one order of magnitude between mudstones across wide range of 

water depths and paleoenvironmental settings (Schlömer and Kroos 1997; Bohacs et al. 

2005; Heath et al. 2011). The impact of geologically ‘instantaneous events’, such as 

biological and physical seafloor reworking are rarely incorporated into modern 

conceptual models of sediment generation, diagenesis and provenance (Ingersoll 1990; 

Weltje 2012). Hydraulic sediment transport processes and bioturbation might in fact be an 

important, yet little considered ‘bottleneck’ that preconditions the (long-term) 

compositional and geochemical changes of fine-grained sediment during late burial 

diagenesis. To date, the role of biological and physical seafloor reworking as a potentially 

important modifier of mudstone composition is not well understood. As opposed to 

sandstones or carbonates, problems arise in almost all cases when water depth, seafloor 

energy regime or oxygenation state of the bottom-water are to be reconstructed. These 

uncertainties arise, because fine-grained sedimentary rocks often do not exhibit sufficient 

hand-specimen variability to determine the underlying physical and biogenic processes 

that led to their formation (Schieber 1998). In mudstones diagnostic sedimentary 
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structures as well as mudstone ichnofabrics are often very small (<1 mm in diameter) and 

difficult to observe if hand specimens are not polished or examined via petrographic 

methods (Schieber 1998; Wetzel and Uchman 1998). In order to increase the fidelity of 

paleoenvironmental reconstructions, and to formulate reasonable geological models for 

mud-dominated systems, an integrated approach is needed. The analytical approaches 

within this thesis encompass descriptions of sedimentological and ichnological 

relationships at the sub-hand specimen scale (scales of 10-1 to 10-3 m) and integrate these 

datasets with conventional whole-rock geochemical techniques (Potter et al. 2005; 

Schieber et al. 2007; Ratcliffe et al. 2012). A well-defined process-sedimentological 

framework combined with geochemical and petrophysical rock properties allows the 

development of more realistic geological models that improve exploration efforts in a 

wide range of depositional environments.  

 

 

1.1 Lithofacies variability in fine-grained sedimentary rocks: Classic 

conceptual models  

 

During recent decades, the study of mudstone petrology and geochemistry was 

chiefly driven by the needs of the North American petroleum industry, who sought to 

develop an understanding about the mechanisms that underlie organic matter production 

and preservation in fine-grained sedimentary rocks (Yergin 2011). In order to predict the 

location and basin-wide extent of petroleum source rocks (organic rich mudstones with 

>2 wt% total organic carbon; Tissot and Welte 1978) research efforts were targeted in 
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modern settings towards bottom sediments and the water column, where processes that 

likely control organic carbon preservation are most easily observed (reviews in Katz et al. 

2005; Bohacs et al., 2005; Harris 2005). The most celebrated examples of potential 

modern day source rock formation include the periodically anoxic borderland basins of 

California (Berner 1964; Thunell 1998), the Black Sea (Demaison and Moore 1980; 

Pedersen and Calvert 1990), the dynamic coastal upwelling systems with seasonally well-

developed oxygen minimum zones along the western margins of continents (Helly and 

Levin 2004), and highly productive meromictic lakes (Hollander et al. 1992). After 

decade-long research, converging evidence from modern as well as ancient systems 

indicate that the preservation of marine organic carbon is maximized when relative to 

inert dilution by siliciclastic particles (a) sufficient amounts of reactive organic carbon 

reach the sea floor and (b) when the contact time of organic carbon with potential 

oxidants, such as oxygen or sulfate is limited (Henrichs and Reeburgh, 1987). The 

importance of bottom-water anoxia was at that time rooted in the (now discredited) 

assumption (Pompeckj 1909; Woolnough 1937) that anaerobic bacteria, the most 

important decomposers of organic carbon, are less efficient in remineralizing organic 

carbon than aerobic bacteria (summarized in Wignall 1994).  

  

1.2 Shallow-marine mud-dominated systems: The motivation for extending 

existing facies models 

 

In the light of the above, it is often difficult to rank anoxia, salinity fluctuations and 

frequent physical seafloor reworking as potential reasons for unbioturbated mudstones 
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when the majority of mudstones within a shallow-marine depositional paleoenvironment 

are bioturbated. A possible solution to this problem is the rigorous sedimentological 

description at a range of spatial scales (as undertaken in chapter 2 and 3) could for 

example help to eliminate persistent water-column anoxia as one candidate for 

unbioturbated mudstones when sediment structures (e.g., ripples, grooves and other 

erosional features) instead indicate the influence of surface gravity waves and bottom 

currents during mud deposition (e.g., Hollister and McCave 1984). 

On the modern Earth, restricted basins and truly anoxic quiet water environments 

make up only a very small proportion of the environments that accumulate mud (Parrish 

1995; Trabucho-Alexandre et al. 2012). Instead, the volumetrically highest percentage 

(>50%) of organic-rich mud-grade material accumulates in shallow-marine depocenters 

such as estuaries, deltas and wave-dominated coastlines (Burdige 2005; Walsh and 

Nittrouer 2009; Blair and Aller 2012). Mud-dominated successions accumulating in the 

vicinity of fluvial sources with high suspended sediment load are currently not well 

understood and integrated into existing shallow-marine siliciclastic facies models (Plint 

2010). In these environments, the accumulation of mud is highly dynamic. Weathering-

derived clay minerals, which are drained in large amounts from river mouths into the 

world’s oceans, are able to develop opposing surface charges when negatively charged 

clay surfaces come into contact with positive charged ions in seawater (e.g., Na+, K+; 

Potter et al. 2005). Resulting ‘face to edge attraction’ of clay minerals leads to formation 

of card house fabrics, allowing clay minerals to flocculate and deposit quickly in shallow 

water in close proximity to the shoreline (e.g., Windom 1976).  Storm-induced, offshore-

directed surge-currents operate in combination with alongshore-directed, geostrophic 
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currents as the main dispersal mechanism of fine-grained material (Hill et al. 2000; 

Mulder and Syvitski 1995; Allison et al. 2007). Furthermore, wave- and gravity-driven 

combined flows are capable of transporting high volumes of flocculated clay and organic 

carbon away from river mouths beyond the nearshore wave-induced 'littoral fence' which 

tends to trap sand close to the shoreline (Elliott 1989) and resuspend sediment along and 

oblique to the shoreline (Keil et al. 1997; Allison et al. 2000; Friedrichs & Wright 2004). 

On low-slope (<0.5%) wave-dominated shelves, wave-advected sediment gravity flows of 

fluid mud (suspended solid concentration >10g L-1; Kirby & Parker 1983; Mehta & 

McAnally et al. 2002) are the major sediment transport mechanisms. The energy required 

to hinder floc and grain settling and maintain sediment in suspension is augmented by 

near-bed currents and the superimposed orbital motion of surface gravity waves 

(Traykowski et al. 2000). If the supply of sand to the shelf is restricted, the shoreface can 

be the locus of mud accumulation (e.g., Amazon-Orinoco coastline; Rine and Ginsburg 

1985; Anthony et al. 2010).  

Understanding shallow-marine depositional environments of mud has potentially 

significant implications for fully characterizing the facies variability of mudstones 

deposited on the entire margin to basin transect. Modern conceptual models of marine 

sediment generation predict that freshly deposited river borne sedimentary layers will 

exhibit a strong compositional connection to sources of mud production up-dip (Xu et al. 

2009; Weltje 2012). Energetic shelves down drift from large rivers with high suspended 

sediment load accumulate thick successions of mud – preferentially after pulsed discharge 

events (i.e., flash floods; Ogston et al. 2000). Compositionally, these mud layers are 

dominated by the chemical breakdown products of primary Al-silicates (e.g. feldspars) 
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and are delivered as river borne flocculated clay from soil profiles up dip (Langmuir 

1997; Nesbitt and Markovics 1997). The weathering history of the parent rock in the 

hinterland and its position with respect to regional climate (Milliman and Syvitski 1992) 

determines the grain size distribution as well as the “freshness” of the fine-grained 

material (e.g., Ingersoll 1990). In regions dominated by physical weathering, mud layers 

can contain a high contribution of unaltered feldspar, pyroxene and amphibole that are 

introduced as glacial rock flour or volcanic ash (Potter et al. 2005). During deep burial, 

unweathered high-temperature crystalline debris will produce late diagenetic quartz 

cement and characteristic clay mineral assemblages (e.g., higher contributions of chlorite) 

(Chamley 1989; Fedo et al. 1995; Kennedy et al. 2005). The importance of unweathered, 

highly reactive mud-grade material versus highly weathered clay-rich mud as a control on 

lithofacies variability is not well described in current compositional studies of ancient 

mud-dominated depositional environments (Potter et al. 2005).   

The source composition and mixing history of the organic carbon fraction of 

sedimentary layers that are deposited on shorelines within the vicinity of rivers will differ 

systematically from mudstones that originate in offshore regions with high marine water-

column productivity. The former lithologies accumulate terrestrial organic matter that is 

successively replaced by marine organic carbon further offshore (Goñi et al. 2003; 

Miserocchi et al. 2007). Seasonal and diurnal wave- and tidal reworking in nearshore 

muddy surface sediment results in frequent re-oxidation of anoxic sediment layers and the 

prevalence of microbially-mediated, suboxic diagenesis (Aller 1998). Frequent wave 

resuspension also causes the freshly entrained organic carbon to be exposed longer to 

suboxic microbial degradation (high availability of oxygen or sulfate) and potentially lose 
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its attractivity as a food source to macrofaunal bioturbators (Leithold and Hope 1999). 

Classic facies models incorporate periodic hyposaline and hypoxic bottom-water 

conditions as a major reason for spatio-temporal changes in bioturbation intensity in 

ancient marginal-marine depositional environments (Demaison and Moore 1980; Gingras 

et al. 2011). The chapters 2 and 3 of this thesis investigate this postulated relationship and 

evaluate the different potential reasons that might be responsible for the generation of 

unbioturbated mudstones.  

 

1.3 Bioturbation: an important control on the composition of solids in the near 

surface zone 

 

Chapter 4 of this thesis investigates the effect of bioturbation, as an important 

modifier of solids below the sediment-water interface. At the sediment surface the 

transformation of primary minerals to simpler phases occurs under low-temperature and 

low-pressure conditions (Aplin 2000). The processes necessary to degrade this highly 

reactive mixture are chiefly driven by a diverse microbial community whose catabolic 

activity is fueled by a mixture of bioavailable organic matter (as the most commonly 

occurring renewable reductant) and an assemblage of inorganic oxidizing agents such as 

O2, NO3
-, MnO2, Fe(OH), SO4

2-, PO4
3- (Tyson 1995). The core of this concept, commonly 

referred to as early diagenesis, is that all diagenetic reactions are vertically structured 

(Fig. 1A), (Froelich et al. 1979; Canfield 1993). When considered in detail, however, this 

model is only valid for certain geological situations and highly complicated in sediments 

where (a) wave reworking (Aller et al. 2004), and (b) meio- and macrofaunal particle 
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redistribution (Zhu et al. 2006) modify primary bedding relationships. Unfortunately, the 

majority of classic geological models marginalize the role of animals as predominantly 

“physical disturbance” (e.g. Boudreau and Jorgensen 2000) of an initially vertical 

microbial reaction geometry  that quickly re-equilibrates to stratified conditions (sensu 

Froelich et al. 1979) once bioturbation ceases. While this is true to some degree for the 

concentration of fluids and gases (Zhu et al. 2006), modern research has demonstrated 

that meio- and macrofauna are powerful modifiers of the mineralogical and geochemical 

variability of solids in fine-grained sediment (McIlroy et al. 2003; Needham et al. 2005, 

2006:  

 

a) The hostile gut environment of polychaetes accelerates the alteration of high-

temperature crystalline debris and produces neo-formed clay minerals faster than 

naturally occurring chemical weathering reactions (McIlroy et al. 2003). Biological 

(in-vivo) weathering has the potential to be a significant vector in mineral 

transformations prior to long-term burial. 

    

b) It is long accepted that animal feeding alters the molecular composition of organic 

carbon (e.g., DeNiro and Epstein 1979; Checkley and Entzeroth 1985) and imparts 

significant shifts on the isotopic ratios of residual organic carbon. The preservation 

potential of a macrofaunal (not microbial) influence on sedimentary organic matter 

is to date poorly understood (e.g., Pratt et al. 1986). 
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c) A large number of redox-sensitive divalent and trivalent transition metals are 

commonly applied as proxies for the reconstruction of biogeochemical processes in 

ancient water-columns and sediment (e.g., oxygenation state of the water column or 

productivity indicator for ancient seas). These elements have been demonstrated to 

show specific isotopic fractionation behavior or component-specific concentrations, 

depending on the oxygenation state, pH and Eh conditions in pore waters 

(Tribovillard et al. 2006). The construction and irrigation of permanent burrows by 

bioturbating macrofaunal invertebrates (e.g., bivalves, crustaceans and polychaetes) 

increases the downward diffusion of oxygen below the sediment-water interface 

and skews the geometry and the dynamics of a vertically stratified microbial 

zonation (Aller 1982; Grossmann and Reichardt 1991; McIlroy and Logan 1999; 

Zhu et al. 2006; Stockdale et al. 2010). To date little is known about how 

macrofaunal activity controls the distribution of redox sensitive trace elements in 

sedimentary rocks. Chapter 4 examines the spatial variability of organic carbon and 

trace elements in bioturbated sand- and mudstones from a well-preserved 

depositional environment.  
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1.4  Physical and biological seafloor reworking as a major control on the 

geochemistry and composition of fine-grained sediment: Three working 

hypotheses.  

 

The contribution of physical and biological sea floor processes and their role in 

controlling diagenetic patterns in modern seafloor sediment is undisputed. However, the 

extent to which these processes control the textural and geochemical attributes of rocks 

has, to date, not been completely integrated into sedimentological facies models. Using 

two well-preserved mud-stone rich successions  `from Newfoundland and Mexico, 

this Ph.D. thesis aims to help bridge this knowledge gap by a) investigating the vertical 

and lateral facies distributions of mudstones deposited under a wide range of paleo 

seafloor conditions; b) re-examining the role of previously postulated relationships 

between salinity and oxygen as a prime control on bioturbation intensity, and c) defining 

the ability of vermiform animals to manipulate both the organic carbon and redox-

sensitive major element characteristics of fine-grained siliciclastic rocks during foraging 

and feeding. Within this thesis three hypotheses were tested:   

 

a) Laminated mudstones are commonly the depositional products of high-energy 

seafloor processes rather than being associated with low energy bottom water 

anoxia. (Chapter 2)  

 

Shallow-marine systems close to river mouths periodically experience high-

suspended riverine sediment discharge, off-shore directed mud density flows, and 
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seasonal wave- and current-driven reworking of previously emplaced semi-consolidated 

deposits (e.g., Young and Southard 1978). These dynamic seafloor conditions can 

manifest themselves in stark lateral fluctuations of bioturbation intensity (sensu Taylor 

and Goldring 1993), and consequently produce a high volume of unbioturbated mud 

layers (Aller and Stupakoff 1996). In paleoenvironmental studies, unbioturbated 

mudstones are often used as critical indicator of the inability of most marine endobenthic 

animals to tolerate even small deviations from oxygen and salinity conditions that are 

‘normal’ for a given species (e.g., Whitfield et al. 2012). Alternative interpretations, such 

as high sedimentation rate or repetitive sediment reworking, are often not employed in 

paleoenvironmental reconstructions as they require detailed sedimentological description 

of the mud-dominated interbeds. The presence of cm- and mm-scale erosional features 

(e.g., gutter casts, continuous mud-on-mud and mud-on-sand erosional contacts), mm-

thick graded beds, and silt- and sand-sized intraclasts with variable composition are 

diagnostic recognition criteria for periodic wave-reworking and bed load transport of 

sand-sized mud aggregates (Plint et al. 2012).  

Chapter 2 integrates the sedimentology and geochemistry of previously unstudied 

mud-dominated sections of the well-exposed Ordovician Beach Formation on the eastern 

Avalon Peninsula of Newfoundland. Sedimentological and lithofacies data obtained from 

bioturbated and unbioturbated mudstones are used to develop a combined 

sedimentological-geochemical facies model that accounts for high-energy seafloor 

processes, and allows the identification of muddy coastlines from the rock record. 

Specific preference was given to unbioturbated mudstones, as they were previously 
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interpreted as having been deposited under hypoxic and periodically hyposaline 

conditions (Brenchley et al. 1993).  

 

 

b) Salinity fluctuations are not necessarily a major control on the bioturbation 

intensity and style in marginal-marine mudstones (Chapter 3)  

 

The presence of intrastratal shrinkage (‘synaeresis’) cracks in unbioturbated marine 

mudstones is commonly regarded as key evidence for a salinity-stressed near-shore 

environment (e.g., Wightman et al. 1987; Pemberton and Wightman 1992). Intrastratal 

shrinkage cracks are common in shallow-marine depositional environments prior to the 

Devonian (Pratt 1998), and are commonly employed as marginal-marine facies indicators 

in the subsurface, especially when other diagnostic criteria are lacking. However, to date, 

their origin, formation mechanism, and relationship to paleoenvironmental conditions has 

not been fully and convincingly described. One popular model favors the fragmentation 

of semi-lithified, heterolithic strata during seismic events (Pratt 1998). Another popular 

model favors the cracking of mud as a result of the contraction of clay-mineral lattices 

under fluctuating pore-water salinities (Jüngst 1934). By integrating ichnological, 

sedimentological, petrographic and geochemical data chapter 3 investigates a third 

previously hypothesized, but to date never tested model, that describes the shrinkage of 

mud and subsequent sediment cracking as a passive process that occurs during organic 

matter decay.   
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c) Bioturbation exerts a significant control on the small-scale (<10 mm) spatial 

distribution of organic matter and trace elements in fine-grained siliciclastic 

sediments (Chapter 4) 

 

The two-dimensional distribution of organic carbon and trace elements in moderately 

bioturbated mudstones is virtually unknown. Building on previous morphological studies 

of the common mudstone trace fossil Phycosiphon isp. (Bednarz and McIlroy 2009, 2012) 

chapter 4 chapter specifically investigates if the spatial distribution of clay minerals, 

organic carbon concentration, and redox-sensitive trace metals co-varies with the spatial 

distribution of phycosiphoniforms, and if compositional differences exist between single 

burrow elements (i.e., halo and core) and the unbioturbated host sediment. It is 

hypothesized that endobenthic, grain-size selective deposit feeders directly alter sediment 

composition, that goes beyond a pre-compaction disturbance of primary sedimentary 

fabric. Phycosiphoniform trace fossils have a wide ecological occurrence and are 

produced by grain size-selective deposit feeders. They are a common trace fossil in 

mudstones and are regularly encountered together with Chondrites isp. and Zoophycos 

isp. throughout a wide variety of depositional environments (e.g., Savrda and Bottjer 

1991). Previous studies revealed that bioturbated mudstones contain a different organic 

carbon composition than unbioturbated mudstones (e.g., Pratt et al. 1986). This 

conclusion, deduced from whole rock biomarker analyses carried out on the cm-scale 

between laminated and unbioturbated mudstones, show significant differences when 

compared to bioturbated mudstones from the same succession. In this study Pratt et al. 

(1986) proposes that in bioturbated mudstones the altered organic matter is the result of 
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increased oxygen exposure time and enhanced microbial decomposition (Pratt et al. 

1986). To date, the direct connection between bioturbation and organic carbon quality in 

sedimentary rocks has not been fully understood. This chapter investigates the quality of 

organic matter in bioturbated versus unbioturbated sediment within the same bed. In order 

to reconstruct all potential material fluxes between bioturbated and unbioturbated 

sediment, the analytical approach within this chapter also incorporates the analyses of 

redox-sensitive trace elements and clay-minerals.  

 

 

 2. Objectives and analytical approach 

 

In order to test the hypotheses above, this PhD project was designed with two 

objectives: (1) to characterize the vertical and lateral facies heterogeneity of the 

mudstone-dominated parts of the Beach Formation in order to resolve the functioning of 

this ancient shallow-marine mud-dominated system; (2) to understand how common 

black shale bioturbators such as phycosiphoniforms control the organic carbon and the 

distribution of trace elements in fine-grained sandstones.  

 

The following analytical approaches were used to address these objectives: 

 

a) To develop a better understanding of the sea-floor conditions during deposition of 

mud-dominated Beach Formation, bioturbated and unbioturbated mudstones were 

visually examined for their sedimentary structures and grain size trends across all 
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available length scales. Sedimentary structures and trace fossils were described on 

the cm- and mm-scale from polished hand sample surfaces and polished 

petrographic thin sections.   

 

b) Total organic carbon (TOC, wt %) and δ13Corg (‰) analyses were performed, as 

whole-rock and as mm-scale measurements, from both bioturbated and 

unbioturbated intervals to test whether the organic carbon characteristics within 

mudstones vary as a function of sedimentological characteristics (i.e., event bed 

deposition versus repetitive seafloor reworking) or bioturbation.   

 

c) To better understand the role of bioturbating animals in controlling the 

compositional diversity of mudstones, the composition of clay minerals and 

organic matter with respect to biogenic fabric were determined from both 

bioturbated and unbioturbated intervals. Two-dimensional trace element maps 

were produced for planar rock surfaces to image the spatial distribution of trace 

and major elements of bioturbated and unbioturbated portions of the same bed. 

Component-specific geochemical analyses (elemental ratios) were measured from 

individual phycosiphoniform burrow elements (i.e., halo and core) and compared 

to unbioturbated host sediment within the same bed.  
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 3. Study areas  

 

The best places to test these hypotheses are fine-grained sedimentary archives that 

contain ample evidence for mudstone deposition under periodically high-energy seafloor 

conditions and lateral variability in bioturbation. Two localities that meet these 

requirements are: 1) the Ordovician storm-dominated muddy coastline, preserved within 

the Beach Formation of Bell Island, Newfoundland and 2) fine-grained gravity flow 

deposits within an submarine channel belt exposed in the Late Cretaceous Rosario 

Formation (Baja California, México).  

 

 3.1 The Beach Formation, Bell Island Group, Newfoundland 

 

Mudstone-rich rocks of the Bell Island Group outcrop on coastal exposures and in inland 

quarries on Bell Island on the eastern Avalon Peninsula, Newfoundland (Fig. 2). The 

Beach Formation is approximately 450 m thick (Ranger 1979) and consists 

predominantly of bioturbated, ripple-, and hummocky-cross-stratified sandstones, 

interbedded with bioturbated and unbioturbated silty mudstones (Ranger et al. 1979, 

1984). Heterolithic, meter-thick packages of mudstones and sandstones are completely 

exposed along tall (~60 m) vertical cliffs around the island – with ten well-accessible 

outcrops that cover ~30% of the exposed stratigraphy in the Bell Island Group (Ranger et 

al. 1984). Previous research has focused on the geometry and lateral variability of thick 

shoreface sandstones. (Brenchley et al. 1993). To date, the sedimentology, ichnology and 

geochemistry of the mudstones have not been investigated. 
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Figure 1-1. A) Distribution of Cambro-Ordovician rocks on the Northeast Avalon Peninsula
Newfoundland, including the working area, which is located on Bell Island (red arrow). B)
Stratigraphic Column showing the Bell Island and Wabana groups. The working interval in
the Beach Formation is indicated with a red arrow.   
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 3.2 The Rosario Formation, Baja California, México 

 

Trace fossils from well-characterized deep-marine gravity flow deposits of the Late 

Cretaceous (Maastrichtian) Rosario Formation (Dykstra and Kneller 2009; Kane and 

Hodgson 2011; Callow et al. 2012) were used in this research to test the role of 

bioturbation in controlling organic and inorganic geochemical properties of fine-grained 

event deposits. The Late Cretaceous Rosario Formation is the youngest unit of a belt of 

Cretaceous sedimentary rocks that are exposed along the Pacific coast of southern 

California and Baja California (e.g., Gastil et al. 1975). The Rosario Formation comprises 

a deep-marine turbidite system that includes submarine channels and canyons with an 

overlying channel levee complex. The sedimentary units have previously been interpreted 

as slope deposits that were delivered as mass flows in 1500 to 3000 m water depth 

(Dykstra and Kneller 2009; Kane and Hodgson 2011). 

At Pelican Point a small number of outcrops expose conglomerates, sandstones and 

mudstones belonging to the lower paleo-canyon fills of the Canyon San Fernando 

complex (Dykstra and Kneller 2009). Material analyzed within this study was collected 

from channel belt turbidites exposing cm- to dm-thick, parallel-bedded, weakly to 

moderately bioturbated siltstones and very fine-grained sandstones (Callow et al. 2012). 

These rocks contain large (up to 10 mm diameter) trace fossils suitable for geochemical 

analyses. The same trace fossils are also present in basinal black shales, but in much 

smaller size (less than 5 mm; Wetzel 1991). The deep marine, fine-grained event bed 

deposits at Pelican Point are therefore an ideal natural laboratory for comparison studies, 

because levels of late diagenetic alteration are generally low. Bioturbation constitutes 
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Figure 1-2. A) The Baja California peninsula in western Mexico. B) shows a simplified
stratigraphic column of Cretaceous rocks exposed on the Baja California peninsula,
including the Maastrichtian Rosario Formation (red arrow). C) shows the investigated
outcrops north of Cajiloa (red arrow). Location map adapted from Dykstra and Kneller
(2009).    
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essentially the only post-depositional modification of primary sedimentary texture and 

mineralogy at Pelican Point.  
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1. Abstract 

A determination of the suitability of mudstones to function as either source, reservoir 

or seal rocks depends on an interdisciplinary integration of all physical, biological and 

chemical rock attributes - preferably within a basin-wide framework. This study presents 

the sedimentology, ichnology and geochemistry of exceptionally preserved hyperpycnal 

flow and wave-enhanced sediment gravity flow deposits, the dominant depositional 

mechanisms of mud in the Early Ordovician Bell Island Group, Newfoundland. Seven 

mudstone facies are described, based on textural, compositional and ichnological 

characteristics. Mudstones originating from hyperpycnal flows are well-cemented, exhibit 

high chlorite-illite ratios, and contain well-developed grain size breaks with a tripartite-

subdivision. Conversely, mudstones deposited in association with wave-enhanced 

sediment gravity flows exhibit decimeter-sized combined-flow structures as well as 
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laterally discontinuous, unbioturbated mudstone layers with abundant mud-on-mud and 

mud-on-sand erosional contacts. These latter mudstones are composed of predominantly 

illite and are poorly indurated. The compositional diversity of mudstones within this 

heterolithic shoreface succession is interpreted to be controlled by proximity to a fluvial 

source and residence time of rock components in the oxic and suboxic diagenetic zone. 

Low organic carbon loading from a non-vegetated Early Paleozoic hinterland, combined 

with a potentially high reworking frequency are inferred to result in a low preservation 

potential of organic carbon in this muddy shoreface environment. Two master variables, 

burial efficiency and availability as food for macrofaunal bioturbators, are proposed to be 

critical and exert a significant control on macrofaunal colonization patterns and 

bioturbation intensities within this mud-dominated shoreface paleoenvironment.  

 

2. Introduction 

 

Laminated, organic carbon-rich (>2 wt% TOC; Tissot and Welte 1978), unbioturbated 

mudstone successions are typically interpreted to be deposited in low-energy basinal 

settings, where bottom waters develop dysoxia or even persistent anoxia (Demaison and 

Moore 1980; Katz 2005). If unbioturbated and possibly laminated mudstones are 

interbedded with bioturbated and cross-laminated or cross-bedded sandstones, a 

reasonable interpretation is that sandstones were deposited during rare storms disrupting 

otherwise low energy basinal or deeper shelf systems. The precept underlying this 

paradigm is that mud, and associated organic matter is delivered to the sea floor by 
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suspension settling during times when bottom currents are weak or completely absent 

(Aigner and Reineck 1982; O’Brien 1990; Cuomo and Bartholomew 1991; Arthur and 

Sageman 1994; Pancost et al. 2004; Algeo and Lyons 2006).  

 Modern research in ancient mud-dominated successions has provided data that 

contradict these assumptions (Plint et al. 2012). Mud introduced by rivers flocculates due 

to electrostatic forces and settles quickly to the sea-floor as bottom-hugging layers of 

fluid mud, typically within a few tens of kilometers of the river mouth (e.g.,Wolanski and 

Gibbs 1995; McCave 1984; McIlroy 2004; Hill et al. 2007). This research demonstrates 

that at ocean-continent boundaries large quantities of river borne, fine-grained sediment 

are introduced via post-storm surge currents (Mulder and Syvitski 1995). On low-slope 

(<0.5%) continental shelves freshly introduced mud is advected alongshore via 

geostrophic currents (Wright and Friedrichs 2006). During storms, previously emplaced 

mud layers are resuspended by large surface gravity waves, resulting in the formation of 

near-bed suspensions of fluid mud (suspended solid concentration >10g L-1; Kirby and 

Parker 1983; Mehta and McAnally et al. 2002). Such wave-advected sediment gravity 

flows have the ability to transport mud over low-angle shelves and effectively shift the 

locus of mud deposition away from the vicinity of a river mouth, to parts of the shelf 

which are never affected by typical deltaic processes (Keil et al., 1997; Allison et al., 

1998; Friedrichs and Wright 2004; Plint et al. 2009). While en-route to offshore 

depocenters, multiple cycles of (seasonal) resuspension, transport and deposition are 

predicted to generate large volumes of mud with geochemical (Wheatcroft and Drake 

2003) and sedimentological (Martin et al. 2008) characteristics that drastically differ from 

mudstone deposited on low-energy shelves. Mud-dominated coastlines are rarely 
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preserved in the stratigraphic record since they are mostly developed during sea-level 

high-stand and commonly removed during sea-level fall. The textural and geochemical 

characteristics of the resulting sedimentary layers are poorly known to date (Keen et al. 

2006; Schieber 2011). 

From a geological perspective one question arises: What are suitable environmental 

conditions for the deposition of fine-grained mud layers in heterolithic successions? Some 

authors have claimed that fine-grained units in heterolithic successions are the 

sedimentary products of low-energy suspension settling in predominantly low-energy 

distal offshore environments (Aigner and Reineck 1982), whereas others have proposed 

that muddy intervals can potentially result from high-energy seafloor processes in a 

storm-dominated shoreface succession (e.g. Rine and Ginsburg 1985).  

Understanding the origin and dispersal mode of fine-grained sediment has 

implications for the origin and preservation of organic carbon as well as implications for 

the compositional diversity of inorganic and organic components in mudstones. For 

example, at presently high sea-levels approximately 50% (Blair and Aller 2012) of all 

terrestrially entrained and marine organic carbon is effectively deposited in near-shore 

position, and reworked via several classes of seafloor processes. Such processes include 

wave-advected sediment gravity flows, tidal processes and hyperpycnal currents that 

occur shortly after river floods (e.g., Hastings et al. 2012). A combination of biochemical 

proxies in the water column and the shallow sea bed indicate that on high-energy shelves 

the organic fraction is subjected to long periods of microbially-dominated decomposition 

under suboxic conditions, thus yielding deposits dominated by refractory terrestrial 
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organic matter and a relative dominance of microbial biomass (Leithold and Hope 1999; 

Aller 2004; Aller et al. 2010). 

Investigating the origin of fine-grained mud-dominated sediment is not straightforward. 

The traditional, hydrodynamically controlled onshore-offshore trend of offshore fining 

from high-energy coastal sands to low-energy offshore mudstones (Aigner and Reineck 

1982; Yoshida et al. 2007) is not always expressed in a predictable fashion close to 

riverine systems with high input of fine-grained sediment (Rine and Ginsburg 1985). 

Especially where large-scale oceanographic currents disperse fine-grained sediment 

alongshore, considerable stacking pattern variability can obscure classic sequence and 

parasequence development (e.g., Catuneanu and Zecchin 2013). The low-power (scales of 

10-1 to 10-2 m) petrographic analysis (e.g., Schieber 1998) of sedimentary fabrics in 

mudstones can be used to unravel the physical seabed processes that operated during the 

dispersal and burial of fine-grained sediment and to separate mudstones deposited in 

nearshore regions from mudstones that were deposited further offshore in quiet water 

settings. 

 

3. Aims of the study 

 

This study aims to develop a better understanding about the compositional and textural 

characteristics of Lower Paleozoic mudstones that were deposited under high-energy, 

shallow marine conditions. It is hypothesized that the textural and compositional diversity 

of mudstones deposited in shallow-marine conditions differs from typical organic-rich 

mudstones preserved in deep-water, offshore depocenters (cf. Demaison and Moore 1980; 
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O’Brien 1990; Ghadeer and Macquaker 2012). The sedimentological attributes of 

mudstones deposited under combined-flow conditions are currently not well known (Plint 

et al. 2012). Establishing an understanding of the seafloor conditions that govern 

sediment transport is key to developing a reasonable geological model that accounts for 

the shelf-wide distribution of silt- and clay-sized rock components and to understand the 

underpinning controls on the preservation of kerogen along the entire onshore-offshore 

gradient.  

The Cambro-Ordovician Beach Formation is an ideal natural setting to investigate 

these research questions, because it contains meter-thick packages of weakly bioturbated 

to unbioturbated mudstones (with up to 3.4 wt% TOC; Harazim et al. 2013) interbedded 

with bioturbated, ripple- and hummocky cross-stratified sandstones (Ranger et al., 1984; 

Fillion and Pickerill 1990). The periodic absence of bioturbation in some mud-rich, but 

demonstrably shallow-marine parts of the succession has been attributed to either 

periodically anoxic bottom-water conditions or salinity fluctuations (Ranger 1979; Fillion 

and Pickerill 1990).  

This study investigates the sedimentological processes responsible for the deposition of 

heterolithic strata, and investigates the relationships between mudstone dispersal 

mechanisms, burial conditions, organic carbon characteristics and bioturbation style / 

intensity.   
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4. Geological Framework of the Beach Formation   

 

The Lower Ordovician (Tremadocian, ~485 Ma) Beach Formation (Fig. 2-1) is well-

exposed in sea cliffs around Bell Island. Cambrian-Ordovician sediments of Bell Island 

are organized into the Bell Island and Wabana groups. The whole succession is 

approximately 1500 m thick in total, of which the Beach Formation of the Bell Island 

Group comprises approximately 440 m (Ranger et al. 1984). The Beach Formation at 

Freshwater Cove  (47°35'49.53"N; 53° 0'43.98"W) is composed of stacked upward 

thickening and upward coarsening parasequences of mudstones and interbedded 

sandstones. Previous research has proposed eustatically-controlled parasequence-scale 

cyclicity at several localities (Brenchley et al. 1993). Each of the shallowing upward 

shoreface cycles has dark grey mudstones at its base and partially amalgamated 

hummocky-cross stratified sandstones at its top. The associated vertical changes in 

diversity of trace fossil assemblages have been interpreted to indicate a bathymetric shift 

from a deep-shelfal, anoxic environment to one above storm-wave base (Fillion and 

Pickerill 1990).  

 

5. Material and Methods  

 

 5.1 Characterization of sedimentary fabric 

 

To obtain rock descriptions at the necessary resolution, and to characterize the mud-

dominated lithologies of the heterolithic Beach Formation, mudstones at Freshwater Cove  
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Figure 2-1. (A) Early Ordovician (~485.0 Ma) paleogeographic reconstruction of the 
northern margin of Gondwana. Avalonian terranes and studied section (labeled with green 
star) are located at ~65° S during Tremadocian times (modified from Stämpfli et al., 
2002) (B) Stratigraphic position of the Beach Formation within the Bell Island Group 
(simplified after Ranger et al., 1984). (C) Simplified geological map of Bell Island with 
study location at Freshwater Cove (green star) (modified after Ranger et al., 1984).  
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(Parsonville) were logged at cm-scale (Fig. 2-2). Oriented, unweathered samples 

collected from the logged sections were slabbed in the laboratory perpendicular to 

bedding to study the variability of sedimentary textures, mineralogy and ichnology. The 

burrowed area within one bed was described using the bioturbation index (BI; Taylor and 

Goldring 1993). The BI has six grades. Each grade is allocated a numerical value ranging 

from BI 1 (no bioturbation and sharp bed boundaries, 0%) to BI 6 (complete 

homogenization of bed boundaries, 100%). The BI classifies bioturbation in terms of 

burrow density, amount of burrow overlap and sharpness of the original sedimentary 

fabric (Reineck 1963). These hand-specimen descriptions were supplemented by 

petrographic descriptions (summarized in Table 1). The mineralogical characteristics of 

the individual rock components were imaged using a FEI Quanta FEG 650 ESEM 

equipped with an energy dispersive X-Ray microanalytical system (EDS). Field, hand-

specimen, petrographic and mineralogical data were combined to produce composite 

facies descriptions of mudstones (Table 2-1; following Folk, 1980; Macquaker and 

Adams 2003). The scheme of Campbell (1967) has been employed to describe the 

geometry of bounding surfaces of beds and bedsets. Textural observations made from 

polished slabs and thin sections form the base of this facies classification. 

 

 5.2 Geochemical measurements 

 

Samples were also collected for bulk rock TOC and δ13Corg analyses (Fig. 2-2). 

Approximately 5 to 10 mg of unweathered, carbonate-free sample material (determined 

thorugh a combination of XRD, FTIR, and ESEM analyses) were analyzed for weight  

2-10



 
 

 

 

 

 

 

 

 
  
 
 
 
 

Figure 2-2. Generalized stratigraphic log and whole-rock record of TOC and δ13Corg as 
measured from sedimentary organic matter in the Beach Formation at Freshwater Cove 
(Parsonville) (discussion see text).   
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percentage (wt%) of Total Organic Carbon (TOC) using a Carlo Erba Elemental 

Analyzer. A Gas Bench II® (Thermoquest) connected to the continuous flow inlet system 

of a Delta V plus gas source mass spectrometer (Thermo Fisher Scientific, Waltham, MA, 

USA) has been used to run δ13Corg analyses. Certified reference material (G-33/MUN 

Sulfanilamide, MUN-CO-1, MUN-CO-2, B2153; Coplen et al. 2006) was analyzed with 

the samples to demonstrate accuracy and precision. Samples and standards reproduced 

within ±0.18‰ for δ13Corg analyses and ±0.01% for TOC analyses. Carbon isotope values 

are reported relative to the Vienna Pee Dee Belemnite standard (V-PDB ‰).  

 

6. Facies descriptions 

 

 6.1 Facies M1 – Stratified mudstone 

 

Mudstones of this facies comprise dm-thick, unbioturbated to weakly bioturbated (BI 

1-2; 0-30%) sand-, silt- and clay-bearing mudstones interbedded with decimeter-thick, 

fine- to medium-grained sandstones of facies S2. Mudstone beds contain distinct grain-

size breaks with either bi- or tripartite subdivision (Fig. 2-3). Decimeter-wide, mud-filled 

gutters are common within this facies. Ichnofabrics comprise shallow tier, sand-filled 

Planolites, Trichophycus and rare Arenicolites (Fig. 3A). The framework is comprised of 

moderately sorted, subrounded fine-grained quartz and feldspar, whereas the matrix is 

dominated by chlorite and illite cement, with accessory biotite and muscovite (Figs 2-3C 

and D). Average TOC is 0.56% and δ13Corg values are on average -28.7‰ within this 

facies. 
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Table 2-1. This table summarizes the sedimentological, ichnological and geochemical 
attributes of mudstones and sandstones within the Beach formation at Freshwater Cove 
(Parsonville) (see text for detailed explanation).  
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 6.2 Facies M2 – Dark grey mudstone 

 

Dark grey mudstones are relatively uncommon (<5 % of the beds) and have only been 

observed in the lower and middle part of the studied succession (Fig. 2-4). The mudstones 

are interbedded with thick-bedded, coarse-grained sandstones of Facies S1 (Fig. 2-4A). 

The bioturbation intensity in this unit is low (BI 1; <10 %), comprising sand-filled 

compressed, shallow-tier burrows with elliptical cross section up to 3 mm wide (Fig 5A – 

white arrows). Facies M2 consist of structureless, centimeter-thick ungraded, silt-bearing, 

clay-rich mudstones with subrounded, ‘floating’ grains of silt-sized quartz and minor 

feldspar (Figs 2-4B and C). The mudstones are well-cemented by post-compaction 

chlorite cement. The chlorite-dominated matrix contains subordinate illite and pyrite (Fig. 

2-4D). This facies has an average TOC value of 0.37%, and δ13Corg values are -28.8‰ on 

average.  

 

 6.3 Facies M3 – Sandy mudstone 

 

Sandy mudstones are composed of cm-thick beds with eroded tops (Fig. 2-5A – yellow 

dashed line). In some cases bedding interfaces are siderite-cemented (Fig. 2-6A). This 

facies is burrow-mottled and highly (BI 4-5; 61-99%) bioturbated (Fig. 2-5B). The 

framework components include predominantly quartz, plagioclase and altered mafic 

grains, embedded in a Fe-rich chlorite matrix with minor contributions of illite/muscovite 

and biotite (Figs 2-5C and D). Framboidal pyrite is a common authigenic accessory 

mineral. Average TOC is 0.60% and δ13Corg values are on average -28.9‰. 
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Figure 2-3. Facies M1 is regularly interbedded with facies S2. Graded bedding is 
uncommon this facies; instead, at least one grain-size break is developed in almost all 
cases through the sandstone-siltstone-mudstone transition; (P, Planolites; Tr, 
Trichophycus) (B) Thin- section scan (perpendicular to bedding) showing the tripartite 
subdivision characteristic for this facies (red arrows). (C) shows a low-power thin section 
micrograph (plane-polarized light). Mudstones of facies M1 are composed of 
predominantly illite/chlorite matrix with floating silt- and very-fine sand grains. (D) 
Backscattered SEM image of a representative region of facies M3 (Qz, quartz; Py, pyrite; 
Bio, biotite; Fsp, feldspar).    
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Figure 2-4. Facies M2 comprises structureless and ungraded silt-bearing, clay-rich 
mudstones. The upper mudstone-sandstone contact is uneven (yellow dashed line), and 
muddy and flattened rip-up clasts are incorporated into the overlying sandstone of facies 
S1 (red arrows). (B) Thin section scan, perpendicular to bedding. (C) Low-power thin-
section micrograph showing floating silt-grains (Qz) within clay-dominated matrix 
(illite/chlorite); plane-polarized light. (D) Backscatter SEM image showing composition 
of rock components within this facies (Qz, quartz; Chl, Chlorite; Py, Pyrite).  
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Figure 2-5. This figure shows sandy mudstones of facies M3. These mudstones contain 
cm-thick, wavy and even continuous beds. Sandy mudstones are commonly bioturbated; 
the tops contain occasionally small shrinkage cracks (sc). (B) Thin section scan of facies 
M3, showing burrow-mottled fabric of sandy mudstones. (C) Thin section micrograph, 
perpendicular to bedding; plane-polarized light. This facies shows very fine-grained and 
fine-grained sand grains floating in a clay-dominated matrix. (D) Backscatter SEM image 
shows floating quartz grains (Qz), partially replaced Feldspar (Fsp) as well as abundant 
chloritized lithic (mafic?) clasts in an iron-rich chlorite matrix (Fe-chl). Authigenic pyrite 
(Py) and detrital mica (Biotite; Bio) and illite occur within the matrix.  
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 6.4 Facies M4 – Thick, unbioturbated mudstone 

 

This facies contains silt- and clay-rich mudstones. Unbioturbated mudstones are up to 

15 cm-thick and interbedded with minor, cm-thick, discontinuous sandstone lenses. Mud-

on-mud erosional contacts are common in this facies. This facies is usually unbioturbated, 

except by deep tier burrows that originate from other facies (Fig. 2-6A and B). The silt-

sized fraction includes quartz, lithic fragments and minor feldspar in a chlorite/illite 

matrix which contains biotite, muscovite, and framboidal pyrite and finely dispersed Ti-

rich minerals as accessory components (Figs. 2-7C and D). Average TOC is 0.30% and 

δ13Corg values are approximately 28.7‰ within this facies. 

 

 6.5 Facies M5 – Thin-bedded mudstone 

 

This facies is composed of sand-bearing, silt- and clay-rich mudstone. The mud-

dominated units contain centimeter-long starved, combined-flow ripples of fine-grained 

sandstone with erosional bases (Fig. 2-7A unit I). The starved ripples are sharply overlain 

by laminated silt (Fig. 7A unit II), and draped by unbioturbated mudstone (Fig. 2-7A unit 

III). A cross section 30° oblique to surface shown in Fig. 2-7A shows in unit I centimeter-

sized, vertically stacked starved ripples with elongated, biconvex flanks (Fig. 2-7B). In 

this facies the majority of beds are mm-thick, discontinuous and normally graded with 

occasionally mm-sized starved ripples with erosional bases (Fig. 8A). This facies contains 

millimeter-sized, sand-filled, unlined, shallow-tier Planolites (P) and Diplocraterion (D) 

as well as mm- to cm-sized, funnel-shaped traces (aff. Rosselia, Ro) cross-cutting several  
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Figure 2-6. (A) This figure shows a slab of thick, unbioturbated mudstone (facies M4). 
Mudstones of this facies comprise centimeter-thick unbioturbated to sparsely bioturbated 
beds (indicated as arrowed intervals), which sometimes contain thin, normally-graded 
lags composed of silt and very fine-grained sand (yellow dashed line). (B) Thin-section 
scan perpendicular to bedding. Mudstones of this facies contain silty bases and tops are 
usually unbioturbated and contain mm-sized (diameter) occurrences of pyrite (blue 
arrows). (C) shows a thin-section micrograph (perpendicular to bedding; plane-polarized 
light) of M4 mudstones. Floating silt-sized quartz and feldspar are in clay-dominated 
matrix. Bioturbation comprises post-depositionally emplaced soft-ground burrows with 
elliptical cross-section. (D) Backscatter-SEM image of the clay-dominated matrix of 
facies M4 (Qz, quartz; Fsp, feldspar; Chl, chlorite; Py, pyrite).  
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Figure 2-7. (A) Hand sample of facies M5, interbedded with facies S2. Mudstones 
contain starved combined-flow ripples, truncated by overlying silt- and clay-rich 
mudstone Yellow dashed lines outline either gas escape structures or vertical escape 
burrows. Locations for figures 9A and B are indicated with yellow bars.  (B) Mudstones 
of this facies show combined flow structures with tripartite subdivision (I,II and III) and 
small Planolites, P. (C) shows an oblique cross section (30°) to imaged sample surface 
(A). This view shows vertically stacked and laterally displaced cross-ripples (green 
arrows) interpreted to be sand-clay combined flow deposits. This latter unit is underlain 
by previously reworked deposits containing palimpsest ichnofabrics (Ro, Rosselia; P, 
Planolites).  
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Figure 2-8. (A) Thin section scan (perpendicular to bedding) showing sparsely 
bioturbated (BI 1; 1-4%), mm-thick, normally graded beds with mm-sized starved ripples 
of siltstone in the base (white arrow). (B) Thin-section scan (perpendicular to bedding) 
showing mm-sized traces (P, Planolites; Ro, Rosselia; D, Diplocraterion) in thin-bedded 
mudstones from Fig. 8A.       
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thin beds (Fig 2-8B – yellow dashed line). Within this facies the overall bioturbation 

intensity is low (<10%) and depth of infaunal tiering is less than 5 cm. Mudstones within 

this facies contain “floating”, subrounded grains of quartz and feldspar, embedded in a 

illite/chlorite matrix with subordinate biotite, muscovite and finely-dispersed aggregates 

of pyrite. Sand- and silt-sized lithic fragments and altered volcanic clasts are common. 

Average TOC values recorded from this facies are 0.53% and δ13Corg values are on 

average -28.8‰.  

 

 6.6 Facies M6 – Sediment-starved mudstone 

 

The cm-thick, laterally discontinuous, curved and non-parallel silt- and clay-rich 

mudstones of this facies contain sharp, irregular bases that cut into underlying beds of 

mudstone and sandstone. Interbedded sandstones contain discontinuous sediment-starved, 

combined-flow ripples (Fig. 2-9A). Bioturbation is sparse (BI 0-2; 0-30%), and where 

present consists of millimeter-sized, shallow-tier, sand-filled burrows (Fig. 2-9B). The 

chlorite- and illite-dominated mudstones of this facies contain accessory biotite and 

muscovite and silt-sized quartz, feldspar, framboidal pyrite, Ti-bearing minerals and 

dispersed siderite cement (Figs 2-9C and D). Within this facies the average TOC values 

are 0.28% and average δ13Corg values are -28.6‰.  
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Figure 2-9. Mudstones of facies M6 are interbedding with cm-thick, starved combined-
flow ripples. Bedding contacts contain abundant evidence for erosional events (red 
arrows) and shallow-tier bioturbation with high lateral variability. (B) shows a thin 
section scan of facies M6. The mudstones in this facies are composed of mm-thick beds 
with silty bases (dashed lines) and contain mm-sized sand-filled gutters (red arrows). 
Bedding tops are bioturbated by mm-sized, shallow-tier Planolites (P). (C) Thin-section 
micrograph showing a silt-bearing, clay-rich matrix with sand-sized, authigenically-
formed siderite (yellow arrows). (D) Backscatter SEM image of illite and chlorite-
dominated portion of facies M6 showing silt grains (Qz) and microconcretions of siderite 
(Sd), closely associated with Fe-rich mica (Bio). Pyrite (Py) is not common within this 
facies.      
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 6.7 Facies M7 – Bioturbated mudstone 

 

 The centimeter-thick, bioturbated silty mudstones of this facies are interbedded with 

erosionally based sandstones. Trace fossils include Planolites, Trichophycus, Gyrolites 

and escape traces (Figs. 2-10A and B). Several sediment layers within facies M7 are 

burrow-mottled under soft-ground conditions. Mudstones of facies M7 are chlorite and 

illite dominated, with dispersed biotite, muscovite, pyrite and Ti-bearing minerals. This 

facies has TOC values averaging at 0.23% and average δ13Corg values of -28.5‰.  

 

 6.8 Facies S1 – Thick-bedded sandstone 

 

Sandstones of this facies consist of moderately sorted, subrounded, coarse-grained 

well-cemented quartz arenite. This facies contains continuous beds and bedsets of long-

wavelength (m-scale) bedforms which contain very low-angle cross-stratified and planar 

bedded sandstones at the base. The upper part of the majority of beds within this facies 

contains low-angle bedforms with mm-spaced, tabular or sigmoidal cross-lamination. 

Sandstones of facies S1 are commonly unbioturbated (0-5%) and only contain rare 

Arenicolites. 
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Facies 2-10. This figure shows two representative polished slabs of facies M7. This facies 
contains highly variable sedimentary textures and mudstone of variable clay content. It is 
characterized by higher bioturbation intensities and more complicated tiering patterns. (B) 
Slab showing thin, even, discontinuous beds of facies M7 with shallow, sand-filled 
Planolites (P).   
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 6.9 Facies S2 – Thin-bedded sandstone 

 

This facies makes up the majority of the sand-dominated lithologies within the Beach 

Formation at Freshwater Cove (Parsonville). This facies consist of poorly to moderately 

sorted, fine- to medium-grained sandstone, interbedding with mudstones of Facies M1 to 

M7. Thin-bedded (~10 cm-thick) sandstones are planar bedded with wave- and 

interference ripples at bedding tops. Beds and bedsets are discontinuous. This facies may 

also be composed of laterally continuous, 10 cm-thick hummocky cross-stratified 

sandstones. Bedding planes often contain Microbially-Induced Sedimentary Structures 

(Hagadorn and Bottjer 1997; Harazim et al. 2013) and internally, layers with broken and 

poorly rounded inarticulate brachiopod shell debris. Sandstones of this facies sandstones 

are composed of quartz and lithic fragments embedded  in a matrix of silt-sized detrital 

mica (muscovite and biotite). Quartz grains are well-cemented via point and long 

contacts. The preserved inter-granular porosity is infilled with post-compaction chlorite 

and illite cement (Table 1). In rare cases thin-bedded sandstones contain thin layers of 

phosphate cement and isolated patches of inter-granular ferroan carbonate. This facies 

contains shallow-tier Planolites, Trichophycus, Diplocraterion, Schaubcylindrichnus and 

Skolithos. Sandstones of this facies are weakly to well-bioturbated (BI 2-6; 5-100%). The 

tiering depth is variable and cross-cutting relationships are simple. In rare cases sandstone 

bedding planes contain monogeneric suites of mud-filled Skolithos. Arthropod scratch 

marks (Monomorphichnus) and Cruziana are common on sandstone bedding planes 

(Fillion and Pickerill 1990; Harazim et al. 2013). 
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 6.10 Facies S3 – Bioturbated sandstone 

 

Bioturbated sandstones are composed of poorly to moderately sorted, fine- to medium-

grained sand- and mudstone. Beds and bedsets are continuous and sedimentary structures 

are rarely preserved due to high bioturbation intensity. Mineralogically this facies is 

composed of quartz and lithic fragments and contains abundant silt-sized detrital mica 

and illite. Quartz grains are predominantly floating within an illite matrix and  

subordinate isolated patches of ferroan carbonate. Bioturbation consists of shallow-tier 

Planolites, Trichophycus and Skolithos. The facies is well-bioturbated (BI 5-6; 91-100%) 

and cross-cutting relationships are complex. The average TOC values are 0.29 wt% and 

δ13Corg values average at -28.5‰.  

 

7. Discussion 

 

 7.1 Mechanisms of mud transport in the Beach Formation 

 

At the sub-cm scale the mudstones investigated within this study are non-

homogeneous. The presence of normally-graded beds with erosive bases, small burrows 

and ripple-lamination (Figs 2-3 to 2-9; Table 1) is inconsistent with deposition by 

suspension fall-out from buoyant plumes or hemipelagic settling. Instead, based on grain 

size trends and fabrics, mudstones M1 to M4 are proposed to be deposits resulting from 

various classes of river borne density flows with varying deceleration times and clay 

concentrations. During storm events combined with significant fluvial discharge, large 
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quantities of fine-grained sediment can be discharged from rivers and estuaries to the 

shallow-marine shelf as dense, hyperpycnal flows that range from being turbulent to 

laminar (Hill et al. 2001; Baas et al. 2009; Kane and Ponten 2012). Even small amounts 

of cohesive mud can significantly influence flow rheology and settling dynamics since it 

affects the yield strength (Coussot 1997) and modulates turbulence (Baas et al. 2004). 

Within this study it has therefore been regarded as reasonable to focus on the interaction 

of high-density flows with the substrate and classify deposits based on their fraction of 

mud, bed boundary geometry and nature of sedimentary structures.  

Facies M1 is characterized by stratified mudstones that often contain a tripartite 

subdivision (Fig. 2-3). Stratified mudstones exhibit a laterally continuous basal lag of 

coarse- to medium-grained sand, which is overlain by a largely unsorted, silt-rich 

mudstone. The grain size distributions result from turbulence modulation and differential 

settling of non-cohesive sand, silt and flocculated clay. The presence of coarse sand in the 

base and well-preserved, continuous grain size contacts has previously been inferred to 

represent the sedimentary products of rapidly decelerating, hyperconcentrated flows 

(Sumner et al. 2009; van Maren et al. 2009). Longer deceleration times would necessarily 

involve the formation of coarse- to medium-grained sand ripples and subsequent 

incorporation of clay into the sand ripple (Baas et al. 2011). This has not been observed 

within facies M1. Additionally, the fact that the top within M1 contains “floating” silt and 

fine sand within a clay-rich matrix, indicates that during the waning phase, a reduction in 

particle support in the top layer (as both, coarse and fine sand settle out of the flow) is, in 

turn, compensated by increased cohesive matrix strength that prevents silt from settling 

out of the flow. Bipartite beds form under transitional flow conditions where the vast 
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majority of flocculated clay and silt and a small amount of sand were in suspension and 

were deposited without developing a graded bed (Baas et al. 2011). 

It appears that bedform development during flow deceleration is strongly controlled by 

the grain-size distribution of material in suspension as well as the density of the flow 

(Ozdemir et al. 2011). This part of the Beach Formation also contains rare occurrences of 

silt-bearing, clay-rich mudstones, interbedded with cross-stratified sandstones (facies S1 

and S2; Table 1). Mudstones of facies M2 were most likely deposited as cohesive, near-

shore marine muds via pulsed discharge events from rivers and estuaries that contained 

less sand (Fig. 2-4). In Facies M3 sand-sized grains are incorporated into a clay-rich 

matrix.  A grain size break is less well developed, although grain separation is clearly 

visible at the hand specimen scale (Fig. 2-5A). The latter mudstones might have resulted 

as quickly decelerated, river borne, hyperpycnal flows that contained a relatively low clay 

concentration (cf Baas et al. 2011). Given the high number of chloritized grains it might 

be possible that a large abundance of clay minerals have formed during deep diagenetic 

in-situ alteration of unstable mafic minerals (cf. Hower et al. 1976). Given the lateral 

continuity of bounding surfaces, well-developed grain-size contacts and absence of ripple 

bedding and lamination, mudstones of facies M1 to M4 most likely originate as deposits 

of flood events with less evidence for wave-influenced processes during deposition (cf. 

Mulder et al. 2003; Bhattacharya and MacEachern 2009; Chang and Chun 2012; Figs 2-3 

to 6). 

Another class of mudstones with contrasting sedimentary structures and a different 

inferred mode of deposition is represented by Facies M5. The sedimentary structures (i.e., 

muddy beds with basal erosion surfaces), observed in facies M5 (Fig. 2-7A) are 
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comparable with structures that have previously been interpreted as the distal deposits of 

wave-enhanced sediment gravity flows of fluid mud (Bentley and Nittrouer 2003; Keen et 

al. 2006; Macquaker et al. 2010a). Such combined flow deposits show a distinct 

succession of sedimentary structures from pronounced erosionally-based units, initially 

overlain by upward-curved laminae, and capped by normally-graded laminae of silt- and 

clay-rich mudstone (Fig. 7). Exceptionally large discharge events in shallow-marine 

conditions can coincide with wave reworking of the sea floor (Mulder and Syvitski 1995; 

Kineke et al., 1996; Lamb and Parsons 2005). It is predicted, that under the combined 

force of large, shore-parallel surface gravity waves and gravity (as the down-slope 

component), sediment can be transported offshore on very low-gradient slopes via 

combined wave- and gravity-driven flows (cf. Traykovski et al. 2000; Friedrichs and 

Wright 2004; Ozdemir et al. 2011). The presence of combined-flow structures in muddy 

lithologies of the Beach Formation (Fig. 2-7C) indicates that mud was dispersed 

advectively, possibly as concentrated near-bed slurry at the sediment-water interface via 

combined flows and did not just accumulate as a continuous rain of particles from 

buoyant plumes. The presence of sedimentary structures indicating high-energy sea-floor 

processes are inconsistent with all previously proposed paleoenvironmental models for 

the Beach Formation, that relate these mudstones to anoxic and low-energy conditions at 

the sediment-water interface (cf. Fillion and Pickerill 1990).  

Mudstones belonging to facies M6 are more common above 15 m stratigraphic height. 

Based on a high lateral variability of bedding geometry (e.g., starved combined-flow 

ripples) and bedding thickness in sand- and mudstones, it is possible to infer that 

mudstones in facies M6 indicate less frequent deposition of fine-grained sediment and a 
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comparatively higher importance of wave-reworking of previously deposited mud. Mud-

on-mud erosional surfaces (Figs 2-9A and B) in facies M6 indicate physical reworking of 

pre-existing, partially consolidated mud deposits. Modern experiments have demonstrated 

that temporal modulation of shear-generated turbulence in unidirectional sand-mud flows 

on muddy sand often results in scours which are often ‘healed’ by triangular patches of 

sand (Baas et al. 2013). Additionally, in these latter experiments sandstone ripples are 

deposited on the mud-dominated bed. However, these experimentally produced sandstone 

ripples mostly occur on mudstone tops and exhibit angle-of-repose cross-lamination. 

Within this study winnowed patches of sand also have the tendency to heal mud scours 

(Fig. 2-9B – red arrow); however, the sandstones internally exhibit combined-flow 

structures instead of current lamination. The occurrence of sand-sized aggregates of 

siderite (Figs 9C and D) is only confined to this facies and indicates both periodic 

reworking and wave-dominated dispersal of previously semi-consolidated mudstone with 

early diagenetic crusts, or, alternatively in situ, diagenetic growth of siderite under 

prolonged conditions of anoxic diagenesis (Curtis et al. 1986).  

Bioturbated mudstones (M7) are interpreted to represent sufficiently long bed 

exposure times. Palimpsest ichnofabrics indicate that exposure times are long enough to 

allow for sediment to become completely colonized. Cross-cutting relationships reveal 

that most of the trace fossils pre-date the deposition of overlying sandstone beds. Even 

though most of the mudstones contain ample evidence for bioturbation (i.e., partial 

homogenization of entire beds by predominantly shallow-tier Planolites; Fig. 2-10), 

compelling evidence for fluid sediment swimming (i.e., ‘mantle and swirl’ structures; 

Lobza and Schieber 1999), is absent. This relationship indicates that the soupground stage 
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was either not preserved (as a result of winnowing), or that the mudstones became re-

colonized at later stage after the mud was partially dewatered. Well-bioturbated, 

heterolithic beds of facies M7 and S3 (Bioturbated sandstones) indicate that these beds 

experienced lower accumulation rate and were most likely not within the range of 

frequent down-drift supply of fine-grained sediment. 

 

 7.2 Organic matter characteristics 

  

Stratigraphic intervals that are inferred to have been deposited by gravity-dominated 

flow types under low net reworking rates (facies M1, M2, M3, M4) have overall slightly 

higher TOC values (~0.5%), whereas mudstones that have spend longer periods in a 

wave-dominated regime (facies M5, M6 and M7) close to the sediment surface (M5, M6) 

exhibit overall lower (~0.2%) TOC values (Fig. 2-11). The latter mudstones however 

contain isolated beds that exhibit peak TOC values of up to 3.4% (Table 1; Harazim et al. 

2013). 

Given the overall evidence that mud-dispersal occurred above storm-wave base, it can 

be argued that exposure time to oxygenated bottom-water, reworking frequency of bottom 

sediment and frequency of fine-grained sediment deposition played a significant role in 

the preservation of organic carbon. The entire whole-rock δ13Corg dataset reveals a 

relatively narrow isotopic range (-27.5 to -29.5‰; Figs 2-2 and 2-11A) with only a weak 

facies-dependent correlation (Fig. 2-11C). Facies M1 records δ13Corg values which span 

this entire range, whereas other facies plot in a narrower window never exceeding 1‰ 

(Fig. 2-11C). The reasons for this low spread might be due to mixing of different organic  
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Figure 2-11. (A) shows a cross-plot of TOC and δ13Corg values for whole-rock 
measurements. (B) Box-and-whisker plots displaying maximum, minimum, median and 
1st and 3rd quartile (if available) for whole-rock TOC values within a facies at Freshwater 
Cove. Note the light positive correlation between TOC values measured from event beds 
(M1, M2, M3, M4 and M5) versus TOC values measured from units that experienced 
more reworking prior to burial (M6 and M7). Bioturbated sandstones (facies S3) have 
been included in this correlation and show equally low TOC values. (C) Box-and-whisker 
plots for δ13Corg values show similar values for all mudstone facies M1, M4, M5, M6, 
M7, and S3. The wide range of data within facies M1 seems to indicate a modified 
organic matter composition (see text for discussion).     
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carbon sources, or alternatively mirror the residual remineralized end-member buried 

within a higher-energy seafloor regime. Petrological assessment of the preserved organic 

fraction (Harazim et al. 2013) revealed little net preservation of the common constituents 

of modern sedimentary organic matter, such as fecal pellets (Rhoads and Boyer 1982; 

Cuomo and Bartholomew 1991) or marine snow (Arthur et al. 1994). Instead, the visible 

organic carbon fraction of shallow-marine mudstones consists of benthic microbial 

kerogen within both sandstone- (Hagadorn and Bottjer, 1997) and mudstone-dominated 

facies (Harazim et al., 2013). This latter organic carbon has been demonstrated to be 

generated at or below the sea-floor under conditions of suppressed bioturbation resulting 

in locally elevated TOC values (>1%) preferably in facies M1 (Figs 2-2 and 2-11). The 

possible contribution of a land-dominated portion of organic carbon is considered to be 

unlikely given the (a) old geological age of this succession and (b) no conclusive 

petrological evidence for cellular woody or plant remains within any of the studied 

material. The high presence of unbioturbated mudstones might therefore not only be 

attributed to the quick removal of event beds out of the zone of bioturbation (facies M1 to 

M4), but also to the remineralization efficiency of sedimentary organic matter within a 

high-energy sea-floor regime. Since any entrained bioavailable organic carbon is quickly 

remineralized through microbial reworking in a wave-dominated seafloor regime, the 

residual organic matter is proposed to be altered and progressively unattractive to 

bioturbating infauna the longer its residence time in the oxic and suboxic zone (cf. Aller 

2004). 
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 7.3 Pore-water conditions during sediment burial 

 

The petrological analysis of inorganic rock components reveals that mudstones of 

facies M1 to M4 were initially immature and contained a significant contribution of 

unstable mafic minerals and feldspar (Fig. 2-5D). The unusual thickness (>10cm) of 

unbioturbated mudstone beds within facies M1 (Fig. 2-3), combined with a high 

abundance of post-compaction grain alteration and replacement, preferably in facies M2 

and M3 (Figs 2-4 and 2-5) lends to support a relatively short time period between 

production of fine-grained sediment up-dip (i.e., via mechanical weathering), transport 

and burial. The rock components susceptible to weathering (e.g., mafic minerals, Ca-rich 

feldspar) were probably delivered to the shelf via pulsed discharge events (i.e., as flash 

floods from a non-vegetated early Paleozoic hinterland) that were not subjected to 

significant weathering along the terrestrial portion of the dispersal path (cf. Hillier 1995).  

Evidence for sea-floor reworking in mudstone facies M6 suggests that the reactivity 

of organic carbon exerted an important control on the early diagenetic mineral inventory. 

Specifically, the formation of significant amounts of siderite, instead of pyrite, within 

open-marine facies M6 (Fig. 2-9D) is taken as evidence to infer episodic non-steady 

diagenetic conditions that favor the formation of Fe-rich minerals other than pyrite (cf. 

Aller 2004). Previous research has demonstrated that in shallow-marine, mud-dominated 

environments with high supply of iron oxides and iron (oxy) hydroxides microbial iron 

reduction is the energetically more favorable diagenetic pathway (instead of sulfate 

reduction; Berner 1984) and might result in the precipitation of iron-rich phases from  
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Figure 2-12. Conceptual summary diagram showing important parameters considered for 
the generation of unbioturbated mudstones and the role of waves and gravity-dominated 
processes. In order to preserve unbioturbated mudstones within a shallow-marine, 
heterolithic environment three master variables are considered. Those are (a) frequency of 
disturbance, (b) duration of low-energy intervals, and (c) reworking depth (see text for 
discussion).  
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pore waters (Aller et al. 1986; Raiswell 2011). The frequent remobilization of the sea-

floor under relatively slow net accumulation and presumably low organic carbon 

reactivities is significant in these systems. First, the low amounts of liberated hydrogen 

sulfide produced by bacterial sulfate reduction might not be sufficient to remove all 

reactive ferrous iron from pore waters in the form of pyrite. Secondly, prolonged periods 

of microbial iron reduction result in net acid-consumption followed by a relative increase 

of pore water pH (Taylor and Curtis 1995). Within the Beach Formation siderite might 

have preferably precipitated in regions of the shelf that experienced frequent wave 

reworking and persistently high pH conditions. Mudstones of facies M1, instead, contain 

locally elevated TOC values (>1 wt%) and higher contributions of framboidal pyrite and 

an absence of siderite (Harazim et al. 2013). The exact origin of these microconcretions 

requires further research, because at present it is not possible to determine if ferroan 

carbonate precipitated as products of suboxic diagenesis or if these microconcretions 

represent are the result of methanogenesis later during burial (Taylor and Curtis 1995; 

Taylor and Macquaker 2000).   

 The well-bioturbated beds of facies M7 and S3 (Bioturbated sandstone) most likely 

represent depositional environments that experienced less frequent reworking by wave- 

and gravity-driven processes and probably experienced more intense nutrient cycling (cf. 

McIlroy and Logan 1999) and therefore more ideal paleo-environmental conditions that 

allowed bioturbators to rework sediment completely (Fig. 2-12).     

Combining sedimentological, ichnological and geochemical evidence is of paramount 

importance to understand the first-order controls on organic carbon preservation and 

compositional diversity in mudstones that were deposited from high-energy sea-bed 
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processes. Early Paleozoic shallow-marine, muddy depositional environments are under-

represented in the geological literature. Integrated sedimentological and geochemical 

approaches provide more realistic models on the preservation of organic carbon in 

heterolithic depositional environments and a more complete picture on the first-order 

controls on compositional and textural diversity of mudstones and black shales deposited 

along the entire margin-to-basin transect.  

 

 

8. Conclusions 

 

1. Combined sedimentological, ichnological and geochemical evidence reveals that 

hyperpycnal flows were the primary delivery process for fine-grained sediment in 

the Tremadocian Beach Formation of Bell Island. Mud layers investigated 

shoreface setting also contain textural evidence for subsequent reworking by 

wave-enhanced sediment gravity flows.   

2. This interpretation contrasts with previous interpretations of the Beach Formation, 

which explained the preservation of unbioturbated mudstone beds by a 

combination of periodically anoxic, low-energy conditions, or by periodic salinity 

fluctuations in a tidal paleoenvironment. Instead, it is proposed that shoreface 

mudstones in the Beach Formation accumulated in a high-energy seafloor regime, 

under fully oxygenated, normal marine bottom waters.   

3. The retention of organic carbon in this Early Ordovician muddy shoreface 

environment is most likely a function of residence time of organic material in the 
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oxic and suboxic zone of the sediment. A delicate interplay between the three 

master variables (a) frequency of physical disturbance, (b) duration of exposure, 

and (c) depth of erosion will most likely be the first-order control on the 

preservation potential of organic carbon in the Beach Formation.  

4. Burial efficiency and bioavailability of organic matter is inferred to be a critical 

variable that might control bioturbation intensities within wave-reworked 

mudstones in the Beach Formation than oxygen or salinity changes.    
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CHAPTER 3 

 

Microbial mats implicated in the generation of intrastratal  

shrinkage (“synaeresis”) cracks 
 

 
Dario Harazim, Richard Callow, Duncan McIlroy 

 
(Published in Sedimentology 6 JUN 2013)  

 

1. Abstract  

 

Intrastratal shrinkage (often termed ‘synaeresis’) cracks are commonly employed as 

diagnostic environmental indicators for ancient salinity-stressed, transitional fluvial-

marine or marginal-marine depositional environments. Despite their abundance and use 

in facies interpretations, the mechanism of synaeresis crack formation remains 

controversial and widely-accepted explanations for their formation have hitherto been 

lacking. Sedimentological, ichnological, petrographic and geochemical study of shallow 

marine mudstone beds from the Ordovician Beach Formation of Bell Island, 

Newfoundland has revealed that crack development (cf. synaeresis cracks) on the upper 

surface of mudstone beds is correlated with specific organic, geochemical and 

sedimentological parameters. Contorted, sinuous, sand-filled cracks are common at 

contacts between unbioturbated mudstone and overlying sandstone beds. Cracks are 

absent in highly bioturbated mudstone, and are considered to pre-date firmground 

assemblages of trace fossils that include Planolites and Trichophycus. The tops of 
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cracked mudstone beds contain up to 2.1 wt% Total Organic Carbon (TOC, wt%), 

relative to underlying mudstone beds which contain around 0.5 wt% TOC. High-

resolution carbon isotope analyses reveal low δ
13

Corg values (-27.6‰) on bed tops, 

compared to sandy intervals lacking cracks (-24.4 to -24.9‰). Cracked mudstone facies 

show evidence for microbial matgrounds, including microbially induced sedimentary 

structures on bedding planes and carbonaceous laminae and tubular carbonaceous 

microfossils in thin section. Non-cracked mudstone lacks evidence for development of 

microbial mats. Microbial mat development is proposed as an important prerequisite for 

intrastratal shrinkage crack formation. Both microbial mats and intrastratal shrinkage 

cracks have broad palaeoenvironmental distributions in the Precambrian and early 

Phanerozoic. In later Phanerozoic strata, matgrounds are restricted to depositional 

environments that are inhospitable to burrowing and surface-grazing macrofauna. Unless 

evidence of synaeresis (i.e. contraction of clay mineral lattices in response to salinity 

change) can be independently demonstrated, the general term 'intrastratal shrinkage crack' 

is proposed to describe sinuous and tapering cracks in mudstone beds. 

 

2. Introduction 

 

The process of synaeresis is defined as a loss of volume and shrinkage of a material 

as a function of dehydration or phase change. Synaeresis is well-documented in a variety 

of non-geological materials such as foams, polymers and cement pastes (Tanner, 2003). 

The first geological investigations of synaeresis processes invoked crack generation by 
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changing the pore-water salinity of artificial clay–cement mixtures (“Synäretische 

Prozesse”; Jüngst 1934). The term synaeresis has since become entrenched within the 

geological literature, where it used to describe vertically compacted, sand-filled cracks 

(‘synaeresis cracks’) in vertical cross-section, that show sinuous, doubly tapering 

geometries on bedding planes. Such cracks typically occur in successions of alternating 

sandstone and mudstone and are mostly developed at mudstone–sandstone interfaces 

within siliciclastic successions deposited in subaqueous depositional environments (e.g., 

Tanner 2003). The irregular network pattern that is characteristic of ‘synaeresis cracks’ in 

plan-view, along with their highly contorted vertical cross-sections, distinguishes them 

from desiccation cracks, which are polygonal, and have straight sides in vertical cross-

section (Peron et al. 2009). Desiccation cracks form exclusively in subaerial settings. 

Intrastratal shrinkage cracks (a generalized term for sediment-filled cracks regardless of 

origin), and the similar crack-like structures in sandstone, including “Rhysonetron” and 

“Manchuriophycus” (Endo, 1933; Hofmann, 1967, 1971; Parizot et al. 2005; Eriksson et 

al. 2007) are well documented from a range of subaqueous siliciclastic 

palaeoenvironments throughout the rock record (Tanner, 2003). They are most common 

during the Proterozoic and Cambrian, and decrease in abundance after the Early 

Ordovician (Pratt 1998). 

 

Two principal hypotheses have been proposed to explain subaqueous crack formation 

in heterolithic sediments. The first model is based on the contraction of the mineral lattice 

in swelling clay (smectite) in response to a change in pore-water salinity (i.e., synaeresis; 
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Jüngst 1934; Weiss 1958; White 1961; Burst 1965). The second model suggests that 

seismic shock can cause the rapid dewatering and upward injection of water-laden sand 

into overlying unconsolidated mud-rich sediment (Pratt 1998; Cowan and James 1992). 

Given the uncertainty surrounding the mechanism of crack formation, the generic term 

‘intrastratal shrinkage crack’ should be used to avoid implying a mechanism of crack 

generation in fine-grained, siliciclastic sediment. 

The salinity change and seismic shock models do not easily explain a number of 

geological observations. For example:  

1) Intrastratal shrinkage cracks are not known from modern salinity-stressed 

environments (Allen 1984; Tanner 2003).  

2) Intrastratal shrinkage cracks exist in ancient successions that lack independent 

evidence for salinity change (cf. Bhattacharya and MacEachern 2009).  

3) The comparatively low recurrence frequency of seismic events does not account for 

the presence of abundant intrastratal shrinkage cracks in tectonically stable cratonic 

settings (Fyson 1962; Hughes and Hesselbo 1997). 

4) The seismic shock model, as proposed by Pratt (1998), predicts the upward-injection 

of sand into unlithified mud. However, observations of intrastratal shrinkage cracks from 

many shallow-marine facies suggest that the cracks are more commonly filled by sand 

from above.  

5) Despite good evidence throughout the geologic record for sand injection in association 

with seismic shock (in the form of seismites), structures resembling synaeresis cracks 

have not been unambiguously linked to either modern seismites (Obermeier 1996) or 

their ancient equivalents (Hurst et al. 2011).  
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‘Synaeresis cracks’ are commonly used as indicators for marginal-marine facies and 

are regularly employed as diagnostic environmental indicators for salinity-stressed, 

transitional fluvial-marine, or marginal-marine depositional environments (e.g., 

Wightman et al. 1987; Pemberton and Wightman 1992; Bhattacharya and MacEachern 

2009; Buatois et al. 2011). Despite their abundance and importance in 

palaeoenvironmental interpretations, the sedimentary prerequisites and mechanisms for 

shrinkage crack formation in subaqueous environments remain controversial (Donovan 

and Foster 1972; Plummer and Gostin, 1981; Astin and Rogers 1991; Cowan and James 

1992; Pratt 1998; Tanner 1998, 2003).  

Since no single model is able to explain unequivocally the formation of contorted 

intrastratal shrinkage cracks, a detailed study of their sedimentological context was 

undertaken. This case study of Lower Ordovician strata from Bell Island, Newfoundland 

includes the study of cracks at the scale of the ‘deformational event’ itself (millimetre to 

centimetre scales), and focuses on the distribution of cracked mudstone with respect to: i) 

ancient depositional environment; ii) ichnology; iii) the biogeochemical characteristics of 

preserved organic matter; and iv) distribution of microbially induced sedimentary 

structures (MISS; sensu Noffke et al. 2001).  

 

3. Sedimentological and stratigraphic context  

 

The Lower Ordovician (Tremadocian, ~ 485 Ma) Beach Formation at Freshwater 

Cove, Bell Island, Newfoundland (Fig. 3-1), is a storm-dominated, heterolithic succession 

characterized by alternations between thin (~10 cm) beds of hummocky cross-stratified  
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Figure 3-1. (A) Location map of Bell Island, Newfoundland. (B) Stratigraphic position of 
the studied interval of the Beach Formation within the Bell Island Group (simplified after 
Ranger et al. 1984). (C) Simplified geological map of Bell Island with study location at 
Freshwater Cove (red arrow).  
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Figure 3-2. (A) Field photograph showing the study locality at Freshwater Cove (see Fig. 
3 for stratigraphic log). The studied succession shows a change from lower shoreface to 
offshore transition zone environments. (B) A representative interval exhibiting abundant 
intrastratal shrinkage cracks (white arrows), overlain by wave-rippled storm sandstones. 
(C) A representative interval containing abundant muddy sediment-gravity flow deposits. 
Rapid mud deposition and frequent reworking of the seafloor is indicated by 
discontinuous lenses of sandstones and erosional mud-on-sand and mud-on-mud contacts 
(yellow dashed lines). 
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and planar-stratified sandstone and mudstone. The succession has been interpreted as 

lower shoreface and offshore transition zone deposits (Fillion and Pickerill 1990; 

Brenchley et al. 1993). The studied interval is 9 m thick, and consists of two mudstone-

rich, upward-coarsening successions, interpreted to represent the distal expression of 

shoreface parasequences (Figs 3-2 and 3-3). The interval was selected for detailed study 

due to the abundance of mudstone units with well-developed cracks, in a succession 

otherwise dominated by similar mudstones lacking cracks. The ichnodiversity and 

bioturbation intensity throughout the studied interval are low relative to other parts of the 

Beach Formation (Fillion and Pickerill 1990).  

The lower parasequence consists of medium-to coarse-grained, cross-stratified and 

planar-stratified sandstone with oscillation ripples. The interbedded mudstone units 

consist of three distinct facies: i) unbioturbated dark mudstone without intrastratal 

shrinkage cracks; ii) unbioturbated, sharp-based dark mudstone with intrastratal 

shrinkage cracks and wrinkle-marked upper surfaces, the latter interpreted as evidence for 

microbial matgrounds (Fig. 3-4A; e.g., Hagadorn and Bottjer 1997); and iii) bioturbated 

grey silty mudstone without intrastratal shrinkage cracks.  

The upper parasequence has a lower sandstone-to-mudstone ratio, compared with the 

lower parasequence and is interpreted to record a more-distal lower shoreface 

palaeoenvironment (Figs 3-2 and 3-3). Field observations provide no sedimentological or 

ichnological evidence to suggest deposition in anything but fully-marine depositional 

environments (Ranger et al. 1984; Fillion and Pickerill 1990). The studied succession 

contains hummocky cross-stratification (HCS) and interbedded mudstone, indicating a 

storm-dominated subtidal depositional setting (Brenchley et al. 1993). Post-storm  
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Figure 3-3. Generalized stratigraphic log and bulk geochemical data (TOC and δ13Corg) 
from the studied interval at Freshwater Cove. Bulk δ13Corg values plot between -27.4‰ 
and -29.5‰. TOC values are usually below 1.0 wt%, but outliers from intervals 
containing shrinkage cracks show TOC values up to 3.4 wt%. Bioturbation index (BI; see 
Taylor and Goldring, 1993) is generally low within the lower shoreface of this succession 
(BI 0-2), while sediments in the offshore transition zone facies are more intensely 
bioturbated (BI 5-6) (c = claystone, s = siltstone, vfs = very fine-grained sandstone, fs = 
fine-grained sandstone, ms = medium-grained sandstone, cs = coarse-grained sandstone). 
Mudstones are all lithologies with a median grain size finer than 62.5 µm (i.e., siltstone 
and claystone) (Folk 1954, 1956).  
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deposition of mud from suspension during the slack-water stage of a tidally influenced 

environment has previously been invoked as the main sediment delivery mechanism for 

the mudstones of the Bell Island Group (Ranger et al. 1984; Fillion and Pickerill 1990). 

However, close observation of mudstone facies of the Beach Formation reveals abundant 

erosion surfaces within, and at the base of, unbioturbated mudstone beds (Fig. 3-2C). 

New paradigms for mudstone deposition suggest that dense suspensions of ‘fluid mud’ 

(suspended sediment concentration >10 g l-1; Kirby and Parker 1983; Mehta and 

McAnally 2002), sourced from estuarine systems, can be rapidly deposited in shallow 

marine settings via hyperpycnal currents and dispersed via wave-advected, cross-shelf 

transport (Wolanski and Gibbs 1995; McIlroy 2004; Macquaker et al. 2010). Input of 

mud as fluid mud is therefore considered likely in the Beach Formation. 

Independent evidence for syn-sedimentary tectonic activity (which would help 

corroborate a seismic model for the formation of intrastratal shrinkage cracks; Pratt 1998) 

has not been documented in the Bell Island and Wabana Groups. Neither sand-injection 

features parallel to bedding, nor multilayered sand intrusions (Obermeier 1996; Hurst et 

al. 2011) were observed in the succession.  

 

4. Methodology 

 

An integrated sedimentological, petrographic and geochemical approach is used 

herein to study mudstone facies with intrastratal shrinkage cracks. The studied section at 

Freshwater Cove (Fig. 3-2) was logged on a cm scale and both physical sedimentological 

and ichnological fabrics were documented through the section. Samples were collected 
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for bulk rock TOC and δ
13

Corg analysis, as well as for laboratory study of 

sedimentological and ichnological fabrics (Figs 3-2 and 3-3). The sampling strategy 

incorporated collection of material from both crack-bearing and non-crack-bearing beds. 

 

 4.1 Analysis of sedimentary fabric  

 
Oriented, unweathered samples of heterolithic facies were collected from the field 

and slabbed in the laboratory. Thin sections were manufactured perpendicular to bedding 

to study mineralogy and sedimentary fabrics, and to determine the relative chronology of 

biological and physical sedimentary processes. Bedding-parallel/oblique thin sections 

were also prepared to search for bedding-parallel microbial filaments that were suspected 

from the observation of MISS on bedding planes (Fig. 3-4A). Thin sections were studied 

using both a flatbed 35 mm film scanner and a petrographic microscope to study cm-scale 

to mm-scale fabrics. Detailed study of sedimentary fabrics was undertaken using a FEI 

Quanta FEG 650 Environmental Scanning Electron Microscope (SEM) equipped with an 

energy dispersive X-Ray micro-analytical system (EDX). The SEM was also operated in 

backscattered mode to image the distribution of clay and kerogen.  

 

 4.2 Geochemical measurements 

 

Unweathered, carbonate-free mudstone samples (ca 10 mg) were analysed for weight 

percentage of TOC and δ13Corg using a Carlo Erba Elemental Analyser, connected to the 

continuous-flow inlet system of a Delta V plus gas-source mass spectrometer (TERRA 

3-14



facility, Memorial University of Newfoundland). The USGS 24 standard was analysed 

with the samples to demonstrate accuracy and precision (Coplen et al. 2006). The values 

reported herein are relative to the Vienna Pee Dee Belemnite standard (V-PDB ‰).  

 

 

5. Results  

 
 

 5.1 Ichnology  

 
Mudstone beds with intrastratal shrinkage cracks are characterized by a near-absence 

of softground trace fossils (<1% bioturbated) in an otherwise bioturbated succession (Fig. 

3-3). Bioglyphs (scratch marks preserved in partially indurated or cohesive sediment) are 

common at mudstone–sandstone interfaces, and define trace fossils such as Cruziana and 

Monomorphichnus that were produced at the sediment–water interface (Fig. 3-4D). These 

surficial trace fossils post-date deposition of the mudstone, but pre-date deposition of the 

overlying sandstone. Similarly, bioglyphs are also found on the burrow walls of deeper-

tier, post-compaction (and post-cracking) Trichophycus/Planolites assemblages (Figs 3-

4C and 3-5C) developed in buried mudstone (concealed firmgrounds; Bromley 1996).  

 

 

 5.2 Crack morphology  

 
Bedding plane expressions of intrastratal shrinkage cracks consist of straight to curved,  
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Figure 3-4. (A) Abundant wrinkle structures in fine sandstones and siltstones that are 
interpreted as microbially-induced sedimentary structures (MISS). (B) Bedding plane 
exposure of intrastratal shrinkage cracks. Note the absence of polygonal patterns. (C) 
Bioturbated facies from the Beach Formation showing a Planolites (P) and Trichophycus 
(Tr) ichnofabric, characteristic of non-crack-bearing mudstones. (D) Surficial trace fossils 
Cruziana (Cr) and Monomorphichnus (M) preserved in convex hyporelief associated with 
shallow-tier Planolites (P) and Lockeia (L), attesting to the fully marine, euryhaline 
character of the succession.   
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often doubly-tapering structures, which are typically between 1 and 5 mm in width (Fig. 

3-4B) and around 10 mm in depth. Unlike polygonal desiccation cracks, sand-filled 

intrastratal shrinkage cracks do not form regular polygons, but instead produce irregular, 

poorly-organized networks with limited lateral connectivity, which are 10 to 20 cm in 

length (Fig. 3-4B). Due to a common lack of bedding plane exposure it is difficult to give 

a range of values for crack length. Observations of cracks in cross-section on polished 

slabs and thin sections demonstrate that the cracks are typically filled with siltstone 

and/or very fine-grained sandstone derived from the overlying bed. Cracks that vertically 

connect sandstone layers (as inferred by Pratt, 1998) are very rare (Figs 3-5 and 3-6). 

 

 5.3 Mudstone fabric 

 

The upper surfaces of sandstone-mudstone interfaces are commonly covered by a variety 

of wrinkle structures that are comparable with the suite of microbially induced 

sedimentary structures (Fig. 3-4A; Hagadorn and Bottjer, 1997; Noffke et al. 2001; 

Schieber et al. 2007). The inference of ancient microbial matgrounds at the sediment-

water interface is also supported by observations of an array of microstructures in 

petrographic thin section and SEM (Figs 3-6 and 7). Thin sections perpendicular to 

bedding show that all of the studied crack-bearing mudstone horizons contain wavy to 

anastomosing laminae of amorphous organic matter with abundant ‘floating’ silt- and 

sand-sized quartz grains in a fine-grained, clay-dominated matrix (Fig. 3-6A and B). 

Other microtextures at mudstone to sandstone interfaces include abundant vertically-

aligned mica flakes and convex upward-domed clay minerals in wavy, clay-dominated 
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matrix (Fig. 3-7). Pyrite framboids are common at mudstone–sandstone interfaces, and 

may provide evidence for sulphate reduction and decay of organic matter at shallow 

depths within the sediment, possibly beneath a microbial matground (Fig. 7; cf. Gehling 

1999).  

Thin sections from cracked mudstones prepared parallel to bedding contain 

carbonaceous, tubular, filamentous structures (~5 µm in diameter and 300 to 400 µm in 

length), at and immediately below the interface between shrinkage cracked mudstone and 

the overlying sandstone (Fig. 3-6C and D). These organic filaments are comparable with 

published examples of fossil and modern microbial sheaths (Fig. 3-6C and D; Visscher 

and Stolz 2005; Franks and Stolz 2009).  

SEM-EDX analyses demonstrate that the clay mineral assemblage of all the studied 

mudstone is predominantly chlorite and illite, with a detrital contribution of biotite and 

muscovite (Fig. 3-7C and D). SEM backscatter imaging confirms observations made 

from thin sections, that, relative to uncracked mudstone, intrastratal shrinkage cracks 

have increased abundances of: ii) detrital mica; ii) amorphous organic matter (in the form 

of elongated, anastomosing layers); iii) ‘floating’ silt and sand grains; and iv) vertically 

oriented clay minerals (Fig. 3-7).  
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Figure 3-5. Thin-section micrographs showing the cross-cutting relationships between 
sandstones, mudstones and shrinkage cracks, vertical to bedding; plane-polarized light. 
(A) Highly contorted sand-filled cracks indicate bed shortening of up to 80%. (B) 
Intrastratal, sand-filled shrinkage cracks cross-cutting originally emplaced sand laminae 
(arrowed). (C) Association of deformed intrastratal shrinkage cracks and undeformed 
burrow indicates that the mud dewatered prior to bioturbation by shallow-tier burrows, 
such as Planolites (P) (see also Noffke, 2000). 
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Figure 3-6. Thin-section micrographs of microbial fabrics in the Beach Formation, 
vertical and parallel to bedding; plane-polarized light. (A) Cross-section through a 
microbial mat in the Beach Formation, showing typical wavy, anastomosing fabric with 
characteristic alternations between silt-rich layers (S) and layers composed of organic 
matter and clay minerals (org). (B) High-magnification view of mudstone-sandstone 
interface from a shrinkage crack-bearing horizon. Note the presence of similar microbial 
fabrics to (A), with scattered silt grains and aggregates of framboidal pyrite (Py). (C and 
D) Bedding-parallel thin sections from an interval containing shrinkage cracks containing 
elongated, hollow, tubular sheaths that are interpreted as microfossil (cyanobacterial?) 
remains (arrowed). 
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 5.4 Geochemistry (TOC and δ13C) 

 

Total organic carbon contents (TOC as wt%) were measured from 32 unweathered 

samples, collected from throughout the whole studied succession (Fig. 3). TOC values 

from mudstone beds are typically 0.5 wt%, with two outliers of 1.4 wt% and 3.4 wt%. 

Both outliers were from crack-bearing mudstone. One oriented sample was selected from 

the latter horizon, and sampled for high-resolution, millimetre-scale geochemical analysis 

(TOC and δ
13

Corg; Fig. 3-8).  

Total organic carbon values were found to vary significantly within this single 

mudstone bed. The TOC values are 2.1 wt% TOC at the top of the bed, relative to the 

lower part of the mudstone bed which only contains TOC values of around  0.5 wt% (Fig. 

3-8). The δ
13

Corg values were also found to vary through the studied mudstone horizon. 

The most positive δ
13

Corg values (-24.4‰) were recorded immediately above the upper 

mudstone to sandstone interface, while the most negative values (-27.6‰) were measured 

from a sample a few millimetres below the top sandstone-mudstone contact (Fig. 3-8).  

The top of the mudstone bed thus has an elevated TOC content, with an isotopically light 

carbon isotope composition.  
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6. Discussion of petrographic and geochemical evidence for microbial mats in 

the Beach Formation.  

 

 6.1 Petrographic evidence for microbial mats 

 

The observed association of sedimentological and biogenic (organic) 

components/fabrics confirms the presence of ancient microbial mats (in accordance with 

the criteria of Schieber 1998; Noffke 2009). Following this, it is considered that 

matgrounds formed on a mud-rich sea floor at, and just beneath, the sediment-water 

interface, prior to being smothered by the deposition of sand.  

 

Petrographic analysis has demonstrated both the presence of filamentous organic 

microfossils and the presence of non-hydrodynamically oriented grains (e.g., micas) in 

the shrinkage crack-bearing mudstone of the Beach Formation (Noffke et al. 1997; Figs 

3-6 and 3-7). Such fabrics are conventionally interpreted to result from sediment baffling 

and trapping of detrital grains in microbial matgrounds (Gerdes 2007).   

Textural evidence from observations in siliciclastic successions elsewhere 

demonstrate that the presence of ancient microbial mats can be inferred from 

observations of distinctive MISS, such as wrinkle structures on sandstone bedding planes 

(cf. Pflüger 1999; Schieber 1999; Gerdes et al. 2000; Noffke et al. 2001; Schieber et al. 

2007; Noffke 2010). MISS have also been described in association with microbial sheaths 

and organic-rich laminae in petrographic thin sections, further reinforcing the inference 

of ancient microbial matgrounds (cf. Peat 1984; Pflüger 1999; Noffke et al. 1997, 2006; 
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Callow and Brasier 2009a, b).   

Wrinkle structures were described from sandstone bedding planes of the Beach 

Formation by Hagadorn and Bottjer (1997; figs 3-1D to F). The wrinkly carbonaceous 

laminae and tubular microfossils identified from Beach Formation thin sections, are 

described here for the first time. Taken together, the assemblage of wrinkle structures 

(Fig. 4A) and microbial sheaths (Figs 3-6 and 3-7) provide strong evidence that the upper 

surface of the cracked mudstone beds were bound by microbial mats prior to smothering 

by the overlying sandstone. 

 
 6.2 Geochemical evidence for microbial mats 

 

Light organic carbon isotope compositions (-21.5‰ to -35‰) have been used to 

support a microbial interpretation of putative MISS from Proterozoic strata (Noffke et al. 

2006). A negative isotopic signal is the expected result of microbial degradation of 

organic matter and the selective preservation of resistant, isotopically light, bacterial 

cellular remains (the ‘carbohydrate effect’; Dean et al. 1984; Parkes et al. 1993; Tyson 

1995; Pacton et al. 2007, 2008). Phytodetritus falling onto the same sediment-water 

interface would be remineralized within the water column, a process that would most 

likely result in higher carbon isotope values. The elevated TOC values immediately 

below the upper mudstone-sandstone interface (Fig. 3-8) indicate that the increase in 

organic matter was most likely post-depositional (i.e. grown at the sediment-water 
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interface). Negative δ
13

Corg values provide evidence for post-depositional growth of 

microbes (e.g., Logan et al. 1999).  

Very isotopically light organic carbon could also be a product of sulphide oxidation by 

sulfur bacteria close to the sediment–water interface (‘dark CO2 fixation’). This 

microbially-mediated, anaerobic redox reaction can generate significant amounts of 

microbial organic carbon in the form of microbial mats and microbially-bound surface 

layers at the sediment–water interface (Tuttle and Janasch 1973; Sarbu et al. 1996; Taylor 

et al. 2001; Gilhooly et al. 2007; Bailey et al. 2009; Glaubitz et al. 2010), which may also 

contribute to the organic matter preserved in units dominated by intrastratal shrinkage 

cracks. High concentrations of organic carbon with isotopically low δ
13

Corg values, MISS, 

and associated microbial filaments in the upper part of cracked mudstone beds confirm 

the development of microbial mats upon and within the mud prior to its burial by storm-

transported sand.  
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Figure 3-7. (A) Thin section micrograph perpendicular to bedding through interbedded 
fine siltstones and sandstones containing intrastratal shrinkage cracks (Sc); plane-
polarized light. Evidence for microbial binding is shown by mudstone rip-up clasts 
incorporated within the sandstone (R). (B) High magnification image of microbially-
bound siltstone from the same interval as in previous figure (A). Filament-like textures, 
i.e., black anastomosing, continuous stringers - yellow arrows, engulf larger silt and mica 
grains (see also Noffke 2000; Noffke et al. 2002; 2003; 2006; 2008). The black regions 
are interpreted as the carbonaceous remnants of microbial mats. (C and D) SEM 
backscattered images taken from a mudstone containing contorted shrinkage cracks. 
Convex, upward-domed clay minerals and vertically-stacked micas, which are common 
within the sediment prior to compaction (red arrows). Organic matter (black regions), 
typically consists of elongated, wavy stringers which may represent remnants of 
horizontally organized microbial films (yellow arrows). Vertically oriented biotite (Bio) 
with wavy layering of illite/chlorite minerals (Chl) between floating silt grains (Qz) and 
muscovite (Mu). Pyrite (Py) and rutile (Ru) are dispersed throughout the matrix as minor 
components.    
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Figure 3-8. Millimeter-scale variations in TOC and δ13Corg from a vertical profile through 
a cracked interval. Enriched values of TOC (2.1 wt%) are recorded from the top of 
mudstone beds, and low TOC values (<1 wt%) are measured from the base of the 
mudstone and from sandstones. δ13Corg data indicate the concentration of isotopically 
light organic carbon in mudstone bed tops (associated with high TOC values), and 
isotopically heavier organic carbon in sands and in the base of the mudstone.  
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7. Matground development in mud-rich marine settings  

 

Microbial matgrounds will naturally develop wherever: i) the substrate is stable and 

not subject to erosion; ii) the rate of sediment accumulation is not so fast that it smothers 

the mat and kills the microbes; iii) the rate of metazoan grazing is less than the 

productivity of the microbiota; and iv) there is a continuously replenished source of 

nutrients (Madrid, 2006).  

 

The combination of ichnological observations indicates that: 

 
1 The absence of compacted trace fossils indicates that little, if any, deposit-feeding 

activity was present in the mud-rich substrate below the firmground/matground after 

deposition of the mud and before lithification. Surficial scratch-rich trace fossils (Fig. 3-

4D) do not penetrate deeply into the underlying mud-rich substrate, but are preserved on 

what is considered to be a surficial firmground, which was possibly microbially-bound 

(sensu Seilacher 2008). 

2 The surficial firmground rested on water-rich mud. This is evidenced by the 

compaction and contraction of the originally broadly vertical and planar cracks (Figs 3-

2B and 3-5). The compression is estimated to have been up to 80%, based on the 

deconvolution of the sand-filled cracks.  

3 After shrinkage crack development, a later firmground trace fossil assemblage was 

developed in the previously pore-water rich mud (Figs 3-4C and 3-5C). These burrows 

cut the surface microbial matground, and were excavated into a firm mud, as evidenced 
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by the preserved bioglyphs on Trichophycus and Planolites burrows. Since this last 

assemblage of burrows is not compressed (Figs 3-4C and 3-5C), this assemblage is 

considered to have formed after the mud was already dewatered/compacted.  

Microbial mats were common in normal-marine settings until intense bioturbation 

became widespread in the late Cambrian to Ordovician (Seilacher and Pflüger 1994; 

McIlroy and Logan, 1999; Seilacher 1999). From the Ordovician onwards, microbial 

mats in marine settings are increasingly confined to sedimentary facies with some 

evidence of palaeoenvironmental stress (Hagadorn and Bottjer, 1999). Proterozoic and 

lower Palaeozoic shallow-marine deposits, such as the Beach Formation, are thus non-

uniformitarian in nature (e.g., Jensen et al. 2005). No suitable modern analogue exists in 

which marine matgrounds exist in normal marine facies, such as storm-influenced 

continental shelves. 

Most mud in marine depositional settings is deposited along with abundant 

terrigeneous organic matter, and thus becomes the substrate upon which endobenthic 

deposit feeders thrive. Macrofaunal reworking of upper sediment layers increases oxygen 

levels through irrigation and particle movement, thus promoting nutrient cycling and 

bacterial activity in deeper sediment layers. Following this, bioturbation has been 

considered to create a positive feedback loop, which further increases endobenthic 

productivity (McIlroy and Logan 1999). Consequently, mudstones in the rock record are 

seldom completely unbioturbated, except when they were deposited under extreme 

environmental stress (e.g., persistent anoxia, hyposalinity and hypersalinity). An 

important exception to this norm is fluid mud deposited in well-oxygenated estuaries and 

fluvially influenced nearshore environments (McIlroy 2004; Ichaso and Dalrymple 2009). 
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Comparison with modern mud-dominated coastlines, such as the Amazon Shelf (e.g., 

Aller and Blair 2006), indicates that a lack of bioavailable nutrients may be the reason for 

a lack of bioturbation, rather than environmental stresses such as hypersaline events or 

hypoxia.  

In general, if metazoan grazing/bioturbation is suppressed for any reason in marine 

settings, micro-organisms can develop into a surface-attached community (i.e., microbial 

mat or biofilm). Mat development is facilitated by the production of a cohesive matrix of 

extracellular polymeric substances (EPS; Decho 1990; Bhaskar and Bhosle 2005). The 

binding effects of microbial filaments and EPS between sediment grains play an 

important role in the ecology and physiology of mat-building organisms by increasing the 

shear strength and rigidity of the microbially-stabilized sediment layer (Wachendörfer et 

al. 1994; Yallop et al. 1994, 2000; Mayer et al. 1999; Tolhurst et al. 2002, 2008).  

Microbial matgrounds present numerous challenges to burrowing macrofauna. The 

sediment-binding effects of filamentous microbial mats are a significant biomechanical 

and biogeochemical (i.e., sporadically elevated H2S) challenge to infaunal bioturbation 

(Meyers 2007). Furthermore, the abundant organic matter associated with microbial mats 

encourages surface and near-surface grazing activity (e.g., Seilacher 1999), rather than 

bulk sediment deposit feeding. This form of amensalism further excludes the 

development of burrowing macrofauna.  
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8. Discussion  

 

It has been demonstrated that MISS and elevated levels of isotopically light, organic 

carbon are associated with unbioturbated Early Ordovician mudstones containing 

intrastratal shrinkage cracks. Beds without MISS have low organic carbon contents and 

are devoid of cracks. Thus, microbial matgrounds likely played a key role in the 

formation of ancient intrastratal shrinkage cracks. Observations of deformed cracks and 

undeformed trace fossils enable us to propose a sequence of events for mud that 

developed intrastratal shrinkage cracks (Fig. 3-9):  

Sediment was rapidly deposited as a nutrient-poor fluid mud (Fig. 9A; cf. Aller and 

Blair, 2006). Following deposition of the mud, the sediment-water interface was 

stabilized by microbial mats (Fig. 3-9B). While at the sediment-water interface, the 

cohesive surface of the mats was marked or scratched by organisms, producing surficial 

trace fossils (e.g., Monomorphichnus). It is proposed here that the underlying mud then 

underwent volume reduction without significant compaction as a consequence of the 

removal of fluids (e.g., pore water) or perhaps microbially generated gas. This allowed 

the mud to become more cohesive by partitioning particulate grains and fluids (i.e., gas 

and water). Two possible scenarios are proposed for the timing of shrinkage crack 

development. In the first scenario, internal volume reduction is predicted to have 

generated irregular, planar, sub-vertical, fluid-filled vacuities prior to burial by sand (Fig. 

9C). After burial by sand (Fig. 9D) the matground was smothered and began to decay. 
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The decaying matground then ruptured and the pre-existing sub-vertical vacuities 

(shrinkage cracks) were filled with sand from the overlying bed (Fig. 9E).  

In the second scenario, it is proposed that the internal vacuities (shrinkage cracks) 

were not present prior to burial by sand (Fig. 9F). In this model, the vacuities formed as 

the matground became compromised by mat decay during burial (Fig. 9F), and then 

became filled by the overlying sand. In both scenarios, continued burial led to compaction 

of the crack-bearing mudstone. During compaction the less-compressible, sand-filled 

cracks became sinuous and contorted due to plastic deformation of the surrounding mud 

(Fig. 9G). The dewatered mud was subsequently colonized by infaunal bioturbating 

organisms that penetrated downwards from the overlying sand. Firmground burrows (e.g., 

Trichophycus and Planolites) with rather low aspect ratios attest to the cohesive nature of 

the mud prior to bioturbation (Fig. 5C).  

It is important to note that our observations of cracks in thin section indicate that the 

process of cracking must have been largely passive and without creation of overpressure 

such as can be created by burial or seismic shocking underneath an impermeable 

‘topseal’. Creation of overpressure would likely have resulted in the creation of mud-

volcanoes and fragmentation of sedimentary layers rather than generation of shrinkage 

cracks (Pratt 1998; Hurst et al. 2011), and such features were not observed. Although 

dewatering would reduce total volume of the fluid-rich mud, this would not be sufficient 

to generate intrastratal shrinkage cracks unless sediment cohesiveness was increased by 

microbial binding. 
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Figure 3-9. Summary diagram showing the geological pre-requisites for the generation of 
intrastratal shrinkage cracks within microbially-bound mudstones. The stages shown here 
allow us to consider the effects of sediment exposure time, bioturbation intensity, and the 
binding effects of microbial mats on the generation of cracks. A) Sediment is delivered as 
nutrient-poor fluid mud. B) The upper surface of the mud is stabilized by microbial mats 
and organisms marked the mat to generate surficial trace fossils (e.g. Monomorphichnus). 
C) Volume reduction occurs within the mud, either prior to, or shortly after sand 
deposition. This volume reduction produces irregular, planar, sub-matground vacuities.  
D) Burial by sand smothers the matground. E) During matground decay sand fills the 
linear vacuities (shrinkage cracks) from above. Alternatively, shrinkage cracks might 
have formed after burial by sand during mat decay. (F). Continued burial leads to 
mudstone compaction of up to 80%, while incompressible, sand-filled cracks become 
sinuous and contorted (G). Colonization by firmground burrows (e.g. Trichophycus) 
occurs after mudstone compaction, prior to burial below the maximum burrowing depth 
of Trichophycus (c. 10 cm). 
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Microbial mat development is a common feature of all the studied examples of mudstone 

with intrastratal shrinkage cracks, but absent in mudstone beds that lack such features. It 

is therefore likely that matground formation is a necessary precursor to the preservation 

of the intrastratal shrinkage cracks that subsequently developed. It is hypothesized that 

matgrounds are important in stabilizing the upper parts of mud deposits. Furthermore, 

matgrounds isolate underlying mud from contact with the water column, thus protecting it 

from the erosive action of currents caused by shear stress at the sediment-water interface 

(Tolhurst et al. 2002, 2008).  

In cross-section, cracks exhibit contorted morphology and are typically filled by sand 

sourced from the overlying bed. It is therefore possible to infer cracking and subsequent 

filling by sand at a very early stage, namely prior to burial and lithification. Irregular 

fractures of variable length develop where inhomogeneities in the sediment composition 

and rheology allow the horizontal stresses to exceed material strength (see Figs 3-4A and 

3-5).   

Microbial mats develop in marine settings where metazoan bioturbation is 

suppressed either by ambient palaeoenvironmental conditions such as persistent anoxia, a 

lack of available organic matter, or, in extreme cases, salinity stress. Whether microbial 

mats were present in association with fluid mud deposits containing intrastratal shrinkage 

cracks during deposition of younger Phanerozoic deposits remains to be determined.  
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9. Conclusions 

 

1. Contorted, sinuous, sand-filled cracks are common at the junction between 

unbioturbated mudstone and overlying storm sandstone beds in the Early Ordovician 

Beach Formation, Bell Island, Newfoundland. Integrated sedimentological, 

ichnological, petrographic and geochemical study of shallow marine mudstone reveals 

that crack development (cf. synaeresis cracks) on the upper surface of mudstone beds 

occurs in conjunction with specific organic biogeochemical and sedimentological 

parameters.  

 

2. Cracks are absent in highly bioturbated mudstones. In sparsely bioturbated mudstones, 

cross-cutting relationships indicate that the cracks pre-date firmground assemblages of 

trace fossils that include horizontally to obliquely oriented Trichophycus. The tops of 

cracked mudstone horizons show evidence of microbial matground development, 

including microbially-induced sedimentary structures on bedding planes and 

carbonaceous laminae and tubular carbonaceous microfossils visible in thin sections. 

Non-cracked mudstones lack evidence for development of microbial mats. It is 

proposed that microbial-binding of surface sediment is an important prerequisite for 

intrastratal shrinkage crack formation.  

 

3. Data from the Ordovician of Bell Island indicate that cracking may develop during: i) 

rapid deposition of a nutrient-poor fluid mud; ii) stabilization of the upper part of the 

mud by microbial communities to form a cohesive surface layer (microbial mat); iii) 
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volume reduction of the microbially stabilized mud via fluid removal. iv) The volume 

reduction might occur prior or during subsequent burial of the matground by storm-

generated sands. This stage is followed by degradation of the matground, causing 

passive infill of cracks by sand from the overlying bed. v) The subsequent compaction 

of the mudstone that hosts the sand-filled cracks produces the typical contorted 

morphologies of intrastratal shrinkage cracks. While the term ‘synaeresis crack’ is 

commonly used to describe sinuous and tapering cracks in mudstone beds, the use of 

the non-genetic term ‘intrastratal shrinkage crack’ is proposed, unless evidence of 

synaeresis (i.e. contraction of clay mineral lattices in response to salinity change) can 

be unequivocally demonstrated.  

 

Future work to determine the mechanism by which mud undergoes intrastratal 

shrinkage should focus on experimental studies of clay–pore water mixtures in sub-

matground conditions and varying composition of microorganisms involved (cf. Ross et 

al. 2011). Such work would be challenging, but is going to be key to unravelling the 

conundrum of intrastratal shrinkage crack (“synaeresis crack”) formation. Until such a 

time as the mechanism is fully understood, it is recommended that sedimentologists and 

ichnologists refrain from using intrastratal shrinkage cracks as indications of 

palaeoenvironmental settings with fluctuating pore water salinity. 
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1. Abstract 
 

The distribution of organic matter and partitioning of trace elements in fine-grained 

siliciclastic rocks is here demonstrated to be systematically controlled by trace making 

organisms. Detailed petrographic analyses of well-connected silty, illitic/chloritic burrow 

halo and illite/smectite bearing clay-rich fecal core at a range of spatial scales reveal that 

phycosiphoniform trace makers sort sediment grains irrespective of both mineralogy and 

shape. Illite/smectite enrichment of the burrow core is inferred to result from a 

combination of selective physical sorting and biological (in-vivo) weathering. The fecal 

burrow core is composed of a dense organo-clay matrix critically enriched in TOC (1.8 

wt%) compared to host sediment TOC values (0.6 wt%). A newly developed synchrotron 

rapid scanning x-ray fluorescence (SRS-XRF) technique combined with conventional 

inductively coupled plasma mass spectrometry (ICP-MS) revealed that some redox-

sensitive elements (Mn, Fe, Co, Cu, Zn and S) are enriched by several orders of 
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magnitude in the burrow core compared to unbioturbated host sediment. Some 

biologically important elements (e.g. Sr and Ba) are depleted in both the burrow halo and 

core relative to the host sediment. Elements (i.e., Zr and Rb) which have no known 

function in biological systems show simple redistribution with depletion in the burrow 

halo being equivalent to enrichment in the burrow core. Despite a significant enrichment 

in organic matter by ~1.1 wt%, the absence of high amounts of early diagenetic pyrite in 

close association with organic matter indicates that the fecal organic carbon in bioturbated 

mudstone was of potentially low reactivity. 

 

2. Introduction 
 

This research aims to unravel the effects of deposit feeding organisms on the spatial 

patterns and characteristics of organic carbon and trace elements within bioturbated 

siliciclastic mudstones. Understanding the biogeochemistry of deposit feeding is of 

importance, because of its prevalence in marine sediments and the effect of bioturbation 

on the balance of solutes and gases in the bioturbated zone (Aller 1982; Jørgensen 2000). 

Bioturbation is a first order control on all microbially-mediated biogeochemical reactions 

below the sediment-water interface (Aller 1982; Grossmann and Reichardt 1991; 

Seilacher and Pflüger 1994; McIlroy and Logan 1999) and influences the reaction 

geometry, rate and intensity of both solid (Herringshaw and McIlroy 2013) and dissolved 

pore-water species (Zhu et al. 2006; Cao et al. 2010; Volkenborn et al. 2012). 

Bioturbation affects early diagenesis and authigenesis and regulates the formation rates 

and chemical composition of the earliest formed diagenetic minerals associated with 
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biogenic fabric (Aller et al. 2010; Virtasalo et al. 2010, 2012). Bioturbation has 

previously been considered predominantly as a "physical disturbance" that leads to the 

oxidation of organic matter and reduces previously formed metal sulfides, thereby putting 

trace elements into solution (Aller and Rude 1988). The dissolved, inorganic by-products 

of organic matter remineralization (i.e., Mn2+, Fe2+, HCO3
-
, S2-) accumulate in early 

diagenetic minerals such as carbonates, silicates, phosphates and metal sulfides (e.g., 

Froehlich et al. 1979). Popular box models (e.g., Canfield 2004) incorporating the 

repartitioning of both major and trace elements between all biological and geological 

reservoirs insufficiently account for reflux relationships, rates and geometries at complex, 

three-dimensional boundaries associated with biogenic structures (Aller et al. 2010).  

Incorporating the impact of deposit feeding into diagenetic modeling suffers from a 

lack of data, perhaps because geochemical data are difficult to collect from trace fossils 

preserved in the rock record. Many mudstone trace fossils are morphologically complex 

and small (<5 mm; Wetzel 1991). Most researchers gather “whole-rock” data using 

sampling techniques that homogenize sedimentary components of dissimilar origin, thus 

producing mixed “whole-rock” datasets without appreciation of the heterogeneities 

imparted on the sediment by bioturbating organisms (see Stockdale et al. 2010).  

While the mineralogical products of early diagenesis are diverse, they can be  identified 

via electron beam imaging and quantified via non-destructive spectroscopic 

measurements and (Wogelius et al. 2011; Edwards et al. 2012). This work focuses on the 

impact of grain size-selective deposit-feeding with respect to: 1) sediment mineralogy; 2) 
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the composition and abundance of organic matter; and 3) the distribution of major and 

trace elements. 

The incomplete knowledge on the role of bioturbation that acts to control the 

compositional diversity of organic-rich mudstones (e.g., black shales) on a range of scales 

is a major shortcoming in geological models regularly used in the study of hydrocarbon 

systems and ancient oceanic anoxic events (Demaison and Moore 1980; Pedersen and 

Calvert 1990; Klemme and Ulmishek 1991; Arthur and Sageman 1994; Pancost et al. 

2004; Jarvis et al. 2011; Owens et al. 2012). The chemical properties of sediments are 

commonly documented as one-dimensional geochemical measurements from logged 

sedimentological sections (e.g., Berner 1964; Froelich et al. 1979; Berner 1980; Jenkyns 

2010). Sedimentary microenvironments are characterized by complex redox conditions 

and competing bacterial populations (Jørgensen and Boudreau 2001; Zhu et al. 2006). 

The geometry and duration of these microbially mediated biogeochemical redox reactions 

(and their mineralogical products) in bioturbated sediments are strongly controlled by 

infaunal organisms (Aller 1994; McIlroy & Logan 1999), but their distribution and effect 

on long-term storage of geochemical information in fine-grained sedimentary rocks 

remains poorly understood to date. This study investigates in detail the geochemistry of 

mm-scale trace fossils of deposit-feeding organisms that are homogenized by most bulk-

sampling techniques.   
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3. Material and Methods 
 

 3.1.  Background to sample material and sampling strategy 
 

Phycosiphoniform trace fossils (including Phycosiphon isp. and Nereites isp.) are 

common in mudstones and sandstones in a wide variety of post-Ordovician marine 

paleoenvironments (Ekdale and Lewis 1991; Wetzel and Uchman 2001; Taylor et al. 

2003; Bednarz and McIlroy 2009). The makers of phycosiphoniform burrows are 

considered to be opportunistic, grain-selective deposit feeders that colonize and ingest 

freshly deposited sediment (e.g., Goldring et al. 1991; Savrda et al. 2001; Wetzel and 

Uchman 2001; McIlroy 2004; Bednarz and McIlroy 2009).  

The samples used in this study were collected from Late Cretaceous (Maastrichtian) 

age turbidites of the Rosario Formation, Baja California, Mexico. Within the Rosario 

Formation phycosiphoniform burrows occur within several ichnofabric associations 

containing phycosiphoniform traces, which are regularly found together with Chondrites, 

Planolites and Paleophycus (Callow et al. 2012). The typical ‘frogspawn’ ichnofabric of 

Phycosiphoniform burrows has been observed to be the earliest ichnofabric developed 

within a turbidite event bed in the Rosario Formation (Callow et al. 2012).  

Large-scale sedimentological and ichnological characteristics and patterns of the 

deep-marine Canyon San Fernando channel-levee complex have previously been 

described by Dykstra and Kneller (2007) and Callow et al. (2013). Coastal outcrops of a 

submarine slope channel system at Pelican Point (Dykstra and Kneller 2009) reveal 

evidence for laterally migrating and sinuous submarine channels, and their channel- 
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Figure 4-1. The study area near Cajiloa, located on the Pacific Coast of Baja California, 
Mexico. The major roads are marked in red, dashed lines indicate unpaved roads. Dry 
river valleys are shown as continuous blue lines. Adapted from Callow et al. (2013). (B) 
shows the investigated outcrops north of Cajiloa. Location map adapted from Dykstra and 
Kneller (2009).    
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associated, thin bedded overbank sediments (Fig. 4-1B) at this locality contain very 

fine-grained sandstone and mudstone interbedded with coarse-grained (partly 

conglomeratic) lithologies. Large (ca. 5 kg) hand samples containing phycosiphoniform 

trace fossils were collected from fresh sandstone and mudstone outcrops from channel 

overbank facies just south of the locality Pelican Point (see Bednarz and McIlroy 2009; 

Dykstra and Kneller 2009; Fig. 4-1B). Rocks containing phycosiphoniform burrows from 

Pelican Point (Fig. 4-2A) were slabbed to remove weathering artifacts. Additionally, trace 

fossils are of sufficient size (~5 mm burrow core diameter; Fig. 4-2). To allow sampling 

of sufficient amounts of material from bioturbated and unbioturbated sediment for 

compositional analyses, powder samples were obtained for geochemical measurements 

using a rotary, handheld sampling device (DREMEL® 4000). All geochemical analyses 

(except ICP-MS analyses) were carried out on the same aliquot. Powder samples were 

obtained from fresh surfaces with sub-millimeter precision using a stationary high-

precision Merchantek Micromill (New Wave®) microsampling device. Sample powder 

collected from host sediment, burrow halo and burrow core was analyzed separately using 

well-established laboratory techniques (see below).  

 

 3.2 Petrographic description 

 

Polished thin sections were prepared from host sediment, burrow halo and core. Thin 

sections were examined via a petrographic microscope in transmitted and reflected light. 

The composition of framework and matrix components was examined with a FEI Quanta 

650 Environmental Scanning Electron Microscope (SEM), equipped with an energy  
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Figure 4-2.  (A) Representative outcrop from the Pelican System showing terrace 
sediments. The sandstone beds show little bioturbation, while the fine-grained beds are 
dominated by phycosiphoniform traces. (B) Photograph of planar surface showing a 
representative sample including Phycosiphon ichnofabric and its characteristic burrow 
elements halo and core that were analyzed with respect to host sediment. The light, sand-
rich halo is usually located beneath the dark, clay-rich fecal core. The diameter of the 
burrow core is ~5 mm. (C) Schematic sketch showing the foraging mechanism and 
production of halo and core by an unknown vermiform organism (schematically 
represented in red) (modified from Bednarz and McIlroy 2009).  
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dispersive X-Ray (EDX) analytical system. The SEM was operated in backscatter 

mode.  

 

 3.3 Chemical Imaging via Synchrotron Rapid Scanning X-Ray Fluorescence  

          (SRS-XRF)  

 

Non-destructive synchrotron X-Ray fluorescence imaging was performed to reveal the 

elemental distributions within the samples. Analyses were performed at wiggler beam line 

6-2 at the Stanford Synchrotron Radiation Lightsource (SSRL, CA, USA). Elemental 

maps were acquired with incident beam energies of 12 and 3.15 KeV for imaging of high 

and low atomic weight elements (respectively) and a beam spot size of 100 microns.  For 

low atomic weight elements element imaging, samples were enclosed within a helium 

atmosphere to avoid the X-Ray absorption and scattering effects of air at lower incident 

beam energy. Photon flux was within1010 and 1011 photons s−1. Samples were mounted on 

a computer-controlled x-y raster stage (see Popescu et al. 2008 and Bergmann et al. 2010) 

which rasters the sample in front of the fixed X-Ray beam. The elemental intensities were 

plotted for each element as two dimensional maps using Interactive Data LanguageTM 

(ITT Visual Information Systems). The fluorescence was normalized during 

measurements to account for fluctuations in the intensity of the X-ray beam.  

 Elemental maps have been quantified using both ICP-MS and SRS-XRF point 

analyses. For element quantification, point data were obtained from host sediment, halo 

and burrow core by driving the rapid scanning stage to locations of interest defined by the 

previously acquired maps. A full energy dispersive spectrum was obtained for 100  
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Figure 4-3. (A) Shows a thin section micrograph (crossed polarizers) of primary rock 
components typical for the host-sediment. The feldspar-quartz ratio is approximately 2:1 
(see text for discussion). (B) shows a backscatter SEM image of the host sediment. Qz = 
Quartz; K-Fsp = K-Feldspar; Na-Fsp = Na-Feldspar; M = Mica. (C) Thin section 
micrograph (plane-polarized light) of the burrow halo-host sediment boundary. Note the 
sharp boundary between the burrow halo and host sediment. (D) Backscatter SEM image 
of the burrow halo. Note the significantly increased porosity within the burrow halo and 
rare presence of pyrite (green arrows). The halo is predominantly composed of feldspar 
and quartz. (E) Shows a thin section micrograph (plane-polarized light) of the burrow 
core. Note the high concentration of clay-sized components and organic matter. (F) 
Backscatter SEM image of the burrow core. The burrow core contains predominantly 
grains with components smaller than 40 µm (see text for discussion) and a larger (> 50 
µm in length) dense mass of organic carbon (yellow arrows).  
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seconds at points of interests. Due to the significant compositional heterogeneity of most 

geological materials errors are 30 % for high atomic number elements and 50 % for 

light elements. The measured point analyses are comparable to yields at the same pixel 

for Mn, Fe, Co, Cu, Zn, As and S. Elemental concentration obtained through SRS-XRF 

point measurements are listed in Appendix G. Given the large uncertainties associated 

with the spatial distribution of elements in geological materials, these latter point 

measurements were only treated qualitatively.  

 

 3.4 Elemental quantification 

 

Point analyses were obtained from host sediment, halo and burrow core by driving the 

rapid scanning stage to locations of interest defined by the previously acquired maps. 

Separate counts were obtained (~200 seconds) acquiring a full energy dispersive 

spectrum. Elemental maps have been quantified using both ICP-MS and SRS-XRF point 

analyses. The quantification of individual point spectra performed post scanning using the 

newly collected elemental images as a guide. Due to the significant compositional 

heterogeneity of most geological materials errors are 30 % for high atomic number 

elements and 50 % for light elements. The measured point analyses are comparable to 

yields at the same pixel for Mn, Fe, Co, Cu, Zn, As and S (see supplementary 

information). 
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Figure 4-4. (A) Altered (green arrows) ferromagnesian minerals (biotite) in co-
occurrence with feldspar-dominated, very fine-grained sand of the burrow halo. (B) 
Shows illite/chlorite-coated (green arrows) feldspar grains. (C) The halo shows  high 
abundances of threadlike, curvilinear assemblages of silt- and clay-sized rock fragments 
and clay minerals (red arrows) (cf. Needham et al., 2005) coating and occupying pore 
space within the burrow halo. (D) Shows altered lithic grains (white arrows) within a 
dense clay matrix containing higher amounts of organic matter (yellow arrows). (E) 
shows lithic grains (possibly feldspar) within an illitic/chloritic matrix (a) which are 
partially replaced (red arrow) replaced by fibrous illite/smectite (b).    
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 3.5 X-Ray Diffraction (XRD) 

 

In order to identify the mineral phases present in different portions of the burrowed 

sediment, samples were obtained from the host sediment, halo and core and analysed with 

a Rigaku Ultima IV X-Ray diffractometer (Rigaku Systems®, Tokyo, Japan) using 

monochromatic Cu–Kα radiation. The X-Ray diffractometer was operated at 40 kV and 

44 mA current, using a scintillation counter (1 mm divergent slit, 0.6 mm detector slit, 1.0 

mm anti-scatter slit and a graphite monochromator). Samples were scanned with a step 

size of 0.03° and a count time of 2 s per step. All samples were analyzed in air-dried state.  

 

 3.6 Organic geochemistry (TOC and δ13Corg) 

 

Unweathered, carbonate-free samples (5 to 10 mg) of host sediment, halo and core 

were analyzed for weight percentage (wt%) of Total Organic Carbon (TOC) using a Carlo 

Erba Elemental Analyzer. A Gas Bench II® (Thermoquest) connected to the continuous 

flow inlet system of a Delta V plus gas source mass spectrometer (Thermo Fisher 

Scientific, Waltham, MA, USA) has been used to run δ13Corg analyses. Certified reference 

material (Coplen et al. 2006) was analyzed with the samples to demonstrate accuracy and 

precision. Samples and standards reproduced within ±0.1‰ for δ13Corg analyses and 

±0.02% for Total Organic Carbon (TOC) analyses. Carbon isotope values herein are 

reported relative to the Vienna Pee Dee Belemnite standard (V-PDB ‰) (Fig. 4-4). 
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 3.7 Fourier Transform Infrared Spectroscopy 

  

Fourier Transform Infrared Spectroscopy (FTIR) was performed on powder samples 

of host sediment, halo and core (Fig.4-7). Samples were ground in an agate mortar for ~1 

minute. The sample material was diluted with KBr (Sigma Aldrich, FTIR-grade). The 

sample-KBr mixture was then pressed at 10 tons to allow KBr and sample to crystallize 

as an IR transparent matrix (see Blanch et al. 2007 and Poduska et al. 2011). Infrared 

spectra have been obtained using a Bruker® Alpha FT-IR Spectrometer (Bruker 

Corporation, Billerica, MA, USA). The FT-IR measurements were carried out in 

transmission geometry (Nicolet 380, 4 cm-1 resolution).  

 

 3.8 Inductively coupled Plasma-Mass Spectrometry (ICP-MS) 

 

Approximately 0.1 g of sample were dissolved using HF and HNO3  in a screw-top 

Teflon® bomb (Savillex®) to ensure complete dissolution of resistant silicate and oxide 

minerals. After evaporation of the HF-HNO3 mixture, the sample was dissolved in HNO3. 

After having evaporated to dryness, the sample was taken up in 2-3 ml of 8 N HNO3, 

transferred to a 125-ml bottle and diluted with water to 90 g. Reagent acids were prepared 

in two-bottle Teflon® stills and diluted with either quartz-distilled or high-quality 

Millipore®-prepared water. The sample solution was sprayed into the inductively coupled 

argon plasma (~8000°C) of a HP 4500 plus mass-spectrometer, allowing all analyte 
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species to be atomized, ionized and thermally excited in order to be detected (see also 

Jenner et al. 1990 for detailed procedure).    

 

4. Compositional analyses of bioturbated sandstones and mudstones from the 

Pelican System (Rosario Formation)  

 

 4.1 Unbioturbated host sediment 

 

Compositional analyses determined the unbioturbated host sediment as a fine- to 

medium-grained feldspathic wacke (sensu Folk 1965) with ~50% clay-sized components 

of various composition (Fig. 4-3A). The framework grains are poorly-sorted and 

subangular to angular. Combined SEM (Fig. 4-4), XRD (Fig. 4-5) and FTIR (Fig. 4-6) 

analyses reveal that the framework grains are composed at equal proportions of Ca- and 

Na-rich plagioclase, comprising together each ~20% of the total composition. K-feldspar 

and quartz make up less than 20% of the total composition. The host sediment is matrix-

supported and is predominantly composed of illite and iron- and magnesium-rich chlorite 

(Fig. 3B). Combined XRD and FTIR analyses did not detect significant amounts of 

kaolinite. EDX-based elemental mapping also revealed quartz  and feldspar in the clay-

sized fraction. The sediment does not contain any post-compaction carbonate or silica 

cement. Detrital zircon, titanium-bearing minerals and minor amounts of small (<10 µm), 

dispersed framboidal pyrite are common within the clay mineral-dominated matrix (Fig. 

4-3B). Visible organic matter is rare and occurs together with clay-minerals located in 

pore  
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Figure 4-5. X-Ray diffractograms of host sediment, burrow halo and core from 
phycosiphoniform burrows analyzed in this study (see text for discussion). Each burrow 
element was analyzed in triplicates. Within this figure all three triplicate measurements 
are presented for the burrow core (core, core d1, core d2).   

 

 

 

 

 

 

 

 

 

 

 

4-20



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4-21



 

 

 

 

 

 

 

 

 

 

 

Figure 4-6: Shows FTIR measurements of host sediment, burrow halo and core of 
phycosiphoniform burrows analyzed within this study (see text for discussion).  
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spaces between grains. The visually estimated porosity is very low (0-5%; Fig. 4-3A). 

The average δ13Corg values are -24.1‰ (n = 2) and average TOC values of 0.73 wt% (n = 

2) (Fig. 4-7). Combined SRS-XRF (Fig. 8) and ICP-MS quantification are presented in 

Fig. 4-9 and Table 4-1. 

 

 4.2 Burrow halo 

 

The burrow halo is composed of very fine-grained and silt-sized Ca- and Na-Feldspar at 

approximately equal proportions (20%). K-Feldspar and quartz are both present at ~20% 

each. The grains are subangular to angular and moderately to well-sorted (Fig. 4-3C). The 

burrow halo shows no evidence for post-compaction cementation. The halo is 

compositionally a feldspathic arenite (sensu Folk, 1965) with minor amounts (<10%) of 

clay-sized components (Fig 3D). Combined SEM and XRD analyses reveal that the 

composition of the clay-sized components is illite and iron- and magnesium-rich chlorite, 

which are coating the majority of silt- and sand-sized framework grains, irrespective of 

mineralogy (Fig. 3D). Combined XRD (Fig. 4-5) and FTIR analyses (Fig. 4-6) do not 

reveal any significant amounts of kaolinite within the burrow halo and show a high 

compositional similarity. Detrital Zr and Ti-bearing minerals occur as accessory 

components within the fine-grained fraction of the burrow halo. Intergranular pores are 

filled with minor (<5%) framboidal pyrite as well as single pyrite microcrysts (Figs 4-4C 

and D). The burrow halo does not contain structured organic matter. The average TOC 

values from the halo are 0.58 wt% (n = 2) and average δ13Corg values are -23.8‰ (n = 2) 

(Fig. 4-6). Combined SRS-XRF and ICP-MS analyses reveal that the burrow halo is 
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depleted in iron by 0.2 wt% compared to unbioturbated host sediment. The redox-

sensitive trace elements are depleted by ~30 ppm compared to host sediment. Rb and Zr 

are depleted by ~20 ppm compared to host sediment. The concentration of Sr and Ba are 

~60 ppm below host sediment values (Table 1). Visual estimates of porosity from 

backscatter SEM images shows visually estimated post-compaction porosities of up to 

30% in the burrow halo (Figs 3D).  

 

 4.3 Burrow core 

 

The burrow core is composed of predominantly clay-sized components, mainly illite 

and Fe- and Mg-rich chlorite (Figs 4-3E, F and Figs 4-4D, E). XRD data show a slight 

increase in peak-height and breadth in the 5 to 10° as well as a significant increase in 

peak intensity in the 12.4° and the 18-19° 2θ region indicates an enrichment in chlorite 

and possibly hydrated dioctahedral mica within the core (Fig. 4-5). A well-developed 

peak at 3622 cm-1 (Fig. 4-6) confirms the presence of illite/smectite in the core relative to 

host sediment. Disappearance of peaks in the core region (26.5 and 28° 2θ) mirror most 

likely the absence of Ca-rich feldspar in the burrow region as a combination of either in-

vivo weathering (Fig. 4-4E) or grain size selective separation of clay-sized components. 

Combined XRD, FTIR and SEM analyses did not reveal any kaolinite within the core. No 

significant enrichment of pyrite and its precursor phases mackinawite and greigite has 

been recorded. The TOC values for the core were determined to be on average 1.8 wt% (n 

 

 

4-25



 

 

 

 

 

 

 

 
 
 
 
 
Figure 4-7. TOC (wt%) and δ13Corg values for host sediment, burrow halo and core, 
analyzed within this study. Samples were analyzed as duplicates. Error bars report the 
analytical precision. Samples were obtained from an entire hand sample. The aliquot 
comprised ~20 burrows.    
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= 2) and average δ13Corg values were found to be -24.4‰ (n = 2) (Table 4-1). Combined 

SRS-XRF and ICP-MS analyses indicate a significant enrichment in Fe by ~15,300 ppm, 

Ca by ~10,000 ppm and Ti by ~1800 ppm compared to values measured for 

unbioturbated host sediment (Table 4-1). The measured suite of the redox-sensitive 

elements shows significant enrichment (Fig. 4-8) between 10 to 100 ppm whereas the 

high atomic number elements Sr and Ba are depleted by ~50 ppm compared to values 

measured for host sediment and burrow halo (Fig. 4-9). SRS-XRF measurements also 

indicate higher amounts of sulfur in the burrow core (Fig. 4-8). Backscatter SEM analysis 

reveals that the clay-dominated burrow core has higher concentrations of organic matter 

including larger, wavy to elongated aggregates of concentrated organic matter, ranging 10 

to 300 µm in length (Figs 4-3F and 4-4D). EDX analyses indicate that at least some of 

these larger aggregates have higher amounts of sulfur (Fig 4-10F).  

 

 

5. Discussion 

 

 5.1 Modification of  primary texture and mineralogy by the trace maker 

 

The preferential removal of silt- and clay-sized components <40 µm from the host 

sediment and concentration within the burrow core has two implications for sediment 

texture. First, it produces burrow halo with a higher porosity (Bednarz and McIlroy, 

2012) that exhibits significantly higher permeability. Second, previous research has 
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Figure 4-8. SRS-XRF elemental scans resolving details of elemental distributions with 
respect to biogenic structures. (A) shows optical photograph of a prominent sample 
containing large (>5 mm) phycosiphoniform traces as well as Paleophycus isp. containing 
well-preserved phycosiphoniform traces. SRS-XRF map of (B) iron, (C) copper, D), 
manganese (E), calcium and (F) sulfur  (G). (B) to (F) Data collected at beam line 6-2 at 
SSRL; beam energy/size/flux/detector distance = 12 keV/100 microns/ 1011 photons s-1/ 
~120 mm. (G) Data collected at beam line 6-2 at SSRL; beam energy/size/flux/detector 
distance =  3keV/100 micron/109 photons s-1/ ~10 mm. Active area ~800 mm2. 
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Figure 4-9. (A) Whole-rock ICP-MS data collected from host sediment (sample A and 
B), showing the absolute concentration of Ca, Ti and Fe. (B) is showing the concentration 
of Ca, Ti and Fe as difference between host sediment and burrow halo and core. (C) This 
figure shows the absolute concentration of redox-sensitive elements measured within this 
study. (D) This figure shows the concentration of the same elements as in (C) for the 
burrow halo and core, plotted as difference between host sediment. Concentrations are 
given as ppm values. Error is presented as 1σ. Open and closed circles represent two 
analyses of the unbioturbated host sediment (Sample 1 and 2, see Appendix D for sample 
locations).     
 

 

 

 

 

 

 

4-31



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4-32



 

 

 

 

 

 

 

 

 

 

Table 4-1: ICP-MS and SRS-XRF point quantification for analyzed host sediment (Host 
sediment 1-open circle and 2-closed circle), halo and burrow core. All elements were 
quantified via SRS-XRF point analyses (see Appendix) and ICP-MS (except sulfur). 
Analyses for sulfur were obtained from the halo of Paleophycus isp. via SRS-XRF point 
analyses (*). For details see Appendix.  
 

 

 

 

 

 

 

 

 

 

4-33



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4-34



demonstrated that the feeding activity of macrobiota such as worms is capable of 

degrading unstable ferromagnesian minerals, such as chlorite and muscovite (McIlroy et 

al. 2003). This process results in the formation of grain coating iron- and magnesium-rich 

minerals such as berthierine, which upon burial can be replaced by chlorite and inhibit the 

cementation of quartz grains up to anomalously high burial depths (Aagaard et al. 2000; 

Gould et al. 2009; Karim et al. 2010). The presence of abundant illite- and chlorite-coated 

grains (Figs 4-3D and 4-7C) in close associations with polymineralic, threadlike 

curvilinear structures might modify porosity-permeability relationships upon deeper 

burial (cf. Needham et al. 2005). The organo-clay dominated core (Figs 4-3 and 4-4) 

highlights the contribution of biological in-vivo weathering and authigenic formation of 

illite/smectite (Fig. 4-4E). Integration of the XRD and FTIR data from the host sediment 

versus core lends support to infer that at least some of the authigenesis is attributed to the 

feeding activity of the phycosiphoniform trace maker. This observed in-situ replacement 

of feldspar and unstable lithic clasts by probably mixed-layer illite/smectite in the burrow 

core is very common and highlights the production of new clay minerals in close 

association with phycosiphoniform ichnofabric. Given that lattice expansion experiments 

were not performed in this study due to small available sample amounts, it currently 

remains difficult to estimate the overall contribution of neo-formed ‘bio-clays’ to overall 

clay-mineral production. Biogenic alteration of primary rock components is virtually 

absent in the burrow halo and the unbioturbated host sediment. It appears that although 

the majority of clay-grade material in the burrow core has been mechanically enriched by 

grain-selective deposit feeding, there is most likely also a to date unknown contribution to 

clay mineral content that can be attributed to the role of infaunal deposit feeding 
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organisms (Fig. 4-4E). At present it remains unknown whether this biological 

contribution results from in-situ weathering within the animal’s gut or from post-

defecation weathering in the burrow core microenvironment. Regardless of timing of 

formation this research demonstrates the universal relationship between animal feeding 

activity and clay mineral production and extends the concept of biogenic weathering 

(McIlroy et al. 2003) to fine-grained siliciclastic rocks containing phycosiphoniform 

burrows.  

 

 5.2 Organic carbon in bioturbated mudstones 

 

Phycosiphoniform trace makers are among the first endobenthic colonizers of turbidite 

beds of inner levee/terrace settings in the Rosario Formation (Callow et al. 2013). Given 

that the phycosiphoniform trace maker is found to have only ingested selectively particles 

smaller than 40 µm (Fig. 4-3D), it is considered that organic particles bound to the clay-

and silt-sized fraction were the food sought by the trace maker (Fig. 4-3E).  

There is typically a close relationship between grain size of siliciclastic material and 

organic matter content in depositional settings dominated by upwelling and seasonally 

high water column productivity (e.g., Deuser et al. 1983). In such environments the 

organic carbon content of settling particles and their size are inversely correlated to each 

other (Oliveira et al. 2007; Kennedy and Wagner 2011). Organic matter adsorbed onto 

clay-sized siliciclastic particles and clay minerals, increases the burial efficiency of 

organic carbon (Hedges and Keil 1995; Wetzel 2010; Kennedy et al. 2002; Blair and 

Aller 2012).   
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In experimental food web studies biogeochemists have demonstrated that a 

relationship exists between δ13Corg composition of ingested food, animal body and 

residual feces (DeNiro and Epstein 1979). It is predicted that kinetic fractionation 

operating during remineralization of ingested organic matter, 12C preferably bound to 

CO2, resulting in relative enrichment of 13C in the residual organic carbon (Hayes et al. 

1993). In some copepods (Checkley and Entzeroth 1985) and small terrestrial animals 

such as milkweed bugs (DeNiro and Epstein 1979) the predicted metabolic effect has 

been proven to yield residual fecal matter with significantly heavier δ13Corg values of +1 

to +2‰. However, the opposite is just as common and indicates kinetic fractionation by a 

variety of fractionation processes along the metabolic path. Food web experiments with 

copepods (Breteler et al. 2002), shrimp (Landrum and Montoya 2009) as well as 

amphipods (Macko et al. 1982) demonstrated that fecal organic matter is persistently 

lighter by -0.5 to -2‰ compared to the ingested food (phototrophic algae). Utilizing 

compound-specific isotope analyses (Breteler et al. 2002) it has been recognized that the 

selective digestion of compounds with different δ13Corg values can in certain situations 

yield lighter residual organic matter with compositions that deviate from values expected 

from kinetic isotope fractionation effects alone (cf. Hayes 1993). 

The use of stable isotope ratios is a powerful tracer to establish trophic level and track 

changes in organic matter composition in complex food webs, but it also requires detailed 

knowledge of all underlying conditions (i.e., length of digestion) (Harris 1993; 

McCutchan et al. 2003). Within this study only isotopic fractionation between bioturbated 

and unbioturbated portions of the same bed have been considered. A fractionation of -

0.3‰ between host sediment and core might indicate a relative loss of CO2-bound 12C 
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from host sediment organic matter during digestive processes. Alternatively, a physical 

separation of two distinct organic carbon sources (background marine organic carbon 

versus mineral surface-bound microbial films) is supported by the fact that the value of 

isotopic depletion in the core (~ -0.3‰) mirrors the amount of enrichment within the halo 

(~ +0.3‰) (Fig. 4-7). To date it is not known if this fractionation between host sediment, 

halo and core might be amplified or reduced in beds with higher bioturbation intensity 

and/or trace fossil diversity. Three-dimensional reconstructions of phycosiphoniform 

burrows from the same locality demonstrate that fecal material is not reingested or cross-

cut by other phycosiphoniform trace makers (cf. Bednarz and McIlroy 2012). The most 

likely reason for avoidance of already bioturbated, carbon-rich sediment is that the 

bioavailable portion of the mineral-hosted organic matter has previously been utilized 

(Deming and Baross 1993) and therefore rendered unattractive to bioturbators. The 

absence of significant amounts of pyrite within the burrow core and specifically at the 

halo-core boundary (cf. Stockdale et al. 2010), provides additional evidence that the 

reactivity of this residual, core-hosted organic carbon most likely was too low to fuel the 

formation of pyrite during early diagenesis (cf. Jørgensen 1977; Widerlund and Davison 

2007). 

 

 5.3 The spatial organization of trace elements in bioturbated mudstones 

 

The formation of pyrite (and its precursor minerals mackinawite and greigite) marks the 

final stage of iron cycling in surficial sediment (Berner 1984; Schoonen 2004). A higher 

abundance of pyrite in the burrow core correlates with a relative enrichment of Co, Ni, Cu 
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and Zn. These latter elements are known to be preferably incorporated into the pyrite 

lattice by the common process of trace metal pyritization (Tribovillard et al. 2006). It 

remains however unclear how much pyrite has been formed within the core and how 

much pyrite has been added from the host sediment by mechanical grain size separation. 

Given the low reactivity of the residual organic carbon in the burrow core (Fig. 4-6B); 

trace metal pyritization is unlikely to have been the dominant pathway of trace metal 

enrichment within the burrow core. High concentrations of Fe in the burrow core (Fig. 4-

8B) are mainly associated with the presence of chlorite and some smectite. Since ferrous 

Fe-bearing silicate minerals are known to be least reactive with H2S (Canfield 1989a; 

Canfield et al. 1992), they are regarded unlikely to constitute an important source of Fe 

for the neo-formation of pyrite in the burrow core. Elements like V and Cr could 

alternatively be located in V- and Cr-rich phyllosilicates, possibly as roscoelite (Brigatti 

et al. 2003) and fuchsite (Reddy et al. 2003). Preferable enrichment of mica and illite in 

the burrow core is indicated by the XRD and SEM data (Fig 4-5). This process is also 

used to explain the relative enrichment of elements Zr and Rb, which have no known 

biological importance. These latter elements show an enrichment within the burrow core 

that roughly matches the amount (in ppm) of depletion of those same elements in the 

burrow halo (Fig. 4-9). This relationship is taken to indicate simple physical redistribution 

of Zr and Rb in association with a mineral phase during grain-size selective deposit 

feeding.  

The measured distribution of Sr and Ba reveals a significant negative mass balance of 

60 to 80 ppm for both burrow core and halo relative to the host sediment (Figs 4-8B and 

D) that cannot be explained by simple spatial re-distribution or neo-formation of new  

4-39



 

 

 

 

 

 

 

 

 

Figure 4-10: Combined Backscatter SEM images and EDX elemental maps of iron and 
sulfur within host sediment, burrow halo and core. The color yellow is a false color 
overlay of sulfur (red), and iron (green). (A) Shows the transition between host sediment 
and burrow halo. (B) shows the sulfur and iron distribution for the same region. (C) 
Backscatter SEM image of the transition between burrow halo and core. (D) The same 
region as EDX elemental map. (E) Magnified backscatter SEM image of structured 
organic carbon (F) EDX elemental map of the same small region showing that sulfur does 
not only occur as pyrite, but seems to be incorporated within kerogen to some degree (see 
text for discussion). 
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minerals. In paleoceanographic studies Ba is used as an important paleoproductivity 

proxy (Martin et al. 2010). Ba is important in the metabolism of planktonic algae and its 

abundance is linked to the flux of Ba-hosted particulate organic matter to the sea floor in 

association with algal bloom events (Lea and Boyle 1989; Dymond and Collier 1996). 

The relative depletion of Ba and Sr within the burrow halo and core might be explained 

by the fact that the vermiform trace maker potentially utilizes these latter elements as 

essential micronutrients for secondary metabolic processes (e.g. biomineralization; 

Lowenstam 1981). Alternatively, feldspar grains are the only plausible inorganic storage 

site for Sr and Ba (Drake and Weill 1975). Given the high amount of altered lithic 

fragments to chlorite and smectite within the burrow core, Sr and Ba might have been 

released to pore waters during alteration (weathering) within the burrow core. Such a 

scenario is supported by decreasing peak intensities and poor peak definitions of 

characteristic plagioclase peaks within the 20° to 30° 2θ region (Fig. 5). 

Spatial elemental mapping at a range of scales (Figs 8 and 11) indicates an abundance 

of sulfur within large organic matter aggregates that do not contain any pyrite (Figs 3E 

and F). In such organic material, sulfur might be preserved as organically-bound sulfur 

(Sinninghe Damste and De Leeuw 1990; Sinninghe et al. 1998).  

The relationship between bioturbation and diagenetic processes, as proposed in this study 

of course only provides a glimpse into the potential impact of animal-sediment 

interactions on diagenetic pathways in mudstones. In order to build sound geological 

models future work should include high-resolution analysis of the organic fraction at a 

molecular level with respect to different trace fossils not just phycosiphoniform traces. 

Subsequently such data could be integrated into models to understand the effect of a 
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variety of traces in different sedimentary facies and could be related to relative 

abundances as well. Subsequently such data need to be upscaled onto the bedset and the 

formation scale. With increasing experience, researchers will gain further insight into 

how animal behavior not only translates into a measurable compositional modification, 

but also how this impacts, for example, the elastic and petrophysical properties of fine-

grained sedimentary rocks (e.g., Dewhurst et al. 2008). An integrated sedimentological 

and geochemical approach will create a more complete understanding on how 

bioturbation controls the lithofacies variability of mudstones - the rock type that makes up 

>65% of all rocks exposed on the surface of the modern earth (Aplin 2000).  

 

6. Conclusions 

 

A. Geochemical analysis revealed that producers of phycosiphoniform burrows 

influence the sorting rock of components irrespective of mineralogy or shape. 

Particles smaller than ~40 µm are partitioned from the sediment matrix and 

mechanically concentrated within the burrow core. The mineralogical composition of 

the burrow core varies from host sediment and burrow halo, and is proposed to be a 

combination of weathering of primary rock components through gut and authigenic 

weathering in the burrow microenvironment.  

B. Carbon isotope and elemental analyses reveal that the burrow core is significantly 

enriched in organic carbon by ~1.1 wt% TOC above background values from the host 

sediment, which only contains ~0.6 wt% TOC. Changes in δ13Corg values of ~0.6‰ 
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between the burrow core and host sediment might indicate some modification of the 

core-hosted organic matter. The absence of cross-cutting by other individuals 

indicates that the organic carbon is of low reactivity and unattractive to other 

individuals or the same individual producing phycosiphoniform trace fossils.  

C. The significant enrichment of Ca, Ti, and redox-sensitive transition metals found in 

the burrow core compared to the halo and the host sediment suggest that the main 

storage site of these elements are Fe-bearing silicates, pyrite and possibly organic 

matter. To date it is not clear if the core-hosted pyrite represents neo-formed pyrite or 

simply relative mechanical concentration. Given the largely unreactive nature of 

residual, core-hosted organic matter the latter scenario is regarded as more realistic.   

D. Sr and Ba are depleted within both the burrow halo and core with respect to host 

sediment. This net deficiency might be explained by two processes:  Sr and Ba are 

incorporated into the vagile endobenthic organism itself and are used by the trace 

marking organism in biomineralization. Alternatively, the selective removal of these 

elements from the burrow core is might result from accelerated in-vivo weathering of 

unstable feldspar and release of Sr and Ba to pore waters.   
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CHAPTER 5 

 

SUMMARY 

 

 

To better integrate the role of physical and biogenic sea-floor reworking into modern 

conceptual models of sediment generation and diagenesis, two fine-grained sedimentary 

successions have been investigated for their sedimentology and geochemical composition, 

using a combination of well-established and novel analytical techniques. To date, there is 

a knowledge gap on how physical sea-floor processes and bioturbation control the 

compositional characteristics of mudstones that were deposited under a wide variety of 

seafloor energy regimes. This study helps to close this gap by testing the hypotheses that 

high-energy sea-floor processes and bioturbation were the dominant control on the 

lithofacies variability in the mudstone-rich Beach Formation, Newfoundland and in the 

Rosario Formation, Mexico.   

 

1. Review of objectives 

 

a) Sedimentological and ichnological analyses were utilized at a range of spatial 

scales to establish a better understanding of the paleoenvironmental conditions 

within unbioturbated mudstones in the Beach Formation, Newfoundland. In 

addition, it was examined if unbioturbated mudstones in the Beach Formation 
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have accumulated under high-energy seafloor conditions with the aim to develop a 

facies model that is adaptable to other similar mud-rich, marginal-marine 

shoreface successions that contain stark fluctuations in bioturbation intensity. 

 

b) A facies description of mudstones has been combined with petrographic and 

geochemical analyses to investigate the concentration, and origin of organic 

carbon in the Beach Formation, Newfoundland. Combined δ13Corg analyses and 

petrographic techniques have been employed to investigate if organic carbon is of 

benthic microbial origin.  

 

c) The possible influence of grain-size selective deposit feeding as a modifier of rock 

composition was tested from very fine-grained sandstones and siltstones in the 

Rosario Formation, Mexico. Here, it was hypothesized that bioturbation does not 

only represent ‘physical disturbance’, but also accounts for systematic spatial 

variability in organic carbon concentration and distribution of redox sensitive 

trace elements. 

 

 

2. Summary of methods 

 

The following analytical approaches were used to achieve the above stated objectives: 
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1)  Sedimentary structures and trace fossils in mudstones were described and 

characterized on hand-sample and thin-section scale to assess the environment of 

deposition and seafloor energy regime.    

2) Integrated Scanning Electron Microscopy (SEM), X-Ray diffractometry (XRD) 

and Fourier Transform Infrared Spectroscopy (FTIR) were used to determine if 

significant variability exists between the mineralogical composition of 

bioturbated and unbioturbated sand- and mudstones.  

3)  Organic carbon content (TOC, wt %) and quality (δ13Corg, ‰) were measured to 

assess the origin of organic matter and to investigate the distribution of organic 

matter between bioturbated and unbioturbated sediment.  

4) Synchrotron Rapid Scanning X-Ray Fluorescence (SRS-XRF) and Inductively 

coupled Plasma Mass Spectrometry (ICP-MS) were integrated to image and 

quantify the spatial distribution of major and trace elements between bioturbated 

and unbioturbated sediments in the Rosario Formation, Mexico.  

  

3. Summary of conclusions 

 

3.1  Sedimentological and ichnological evidence for high-energy sea floor processes 

within mudstones of the Beach Formation, Newfoundland and its implications for 

shallow-marine facies models 
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Shoreface mudstones from the Beach Formation contain ample textural evidence for 

high-energy seafloor reworking. Sedimentological analysis of the unbioturbated 

mudstones revealed that most likely both hyperpycnal flows and wave-enhanced sediment 

gravity flows were the primary delivery mechanism for fine-grained sediment. Decision 

making has been based on diagnostic sedimentary structures and ichnological 

characteristics. The rapid mode of sediment delivery contrasts with previous 

interpretations of the Beach Formation that explained the deposition of unbioturbated 

mudstone beds by a combination of bottom-water anoxia and periodic salinity 

fluctuations in a tidal paleoenvironment (Ranger et al. 1984; Fillion and Pickerill 1990; 

Brenchley et al. 1993). The preservation potential of organic carbon in this Early 

Ordovician muddy shoreface environment is most likely controlled by a combination of 

residence time of organic material in the suboxic zone of the sediment. A delicate 

interplay between the three key variables (a) frequency of physical disturbance, (b) 

duration of exposure and (c) depth of erosion, is most likely the first-order control on the 

burial efficiency of organic matter and is inferred to be a critical variable controlling 

bioturbation intensity and style.  

 

3.2  The significance of intrastratal shrinkage cracks as indicators for salinity 

fluctuations and the role of organic carbon decay after microbial mat burial 

 

It is proposed that microbial-binding of surface sediment is an important prerequisite 

for the formation of intrastratal shrinkage (“synaeresis”) cracks in the Beach Formation. 

Formation of intrastratal shrinkage cracks in mudstones is proposed to be the result of 
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rheological heterogeneities that develop during organic matter decay within the partially 

dewatered mud. While the term ‘synaeresis crack’ is commonly used to describe sinuous 

and tapering cracks in mudstone beds, the use of the non-genetic term ‘intrastratal 

shrinkage crack’ is proposed, unless evidence of synaeresis (i.e. contraction of clay 

mineral lattices in response to salinity change) can be unequivocally demonstrated. 

Within the Beach Formation it is proposed that bioturbation intensity is most likely 

controlled by a combination of organic carbon availability and sporadically elevated H2S 

in pore-waters of sedimentary layers rather than oxygen deficiency of bottom water or 

higher salinity levels.   

 

3.3  Bioturbation as a prime modifier of organic carbon trace element concentration 

in fine-grained siliciclastics 

 

Integrated geochemical and petrographic analyses revealed that phycosiphoniform 

trace makers redistribute grain-bound sedimentary organic matter irrespective of 

mineralogy or shape. This process coevally increases porosity within the burrow halo. 

High concentrations of Ca, Ti and some redox-sensitive trace elements were found in the 

burrow core, and are most likely associated with pyrite, Fe-bearing silicates (mica) and 

possibly organic matter. Despite organic matter enrichment quantities of neo-formed 

pyrite in the burrow core are relatively low. The absence of cross-cutting by other 

phycosiphoniform producers provides additional evidence that the fecal organic matter 

was of low reactivity and largely refractory. The potentially low reactivity of organic 
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matter is inferred to explain the low rate of microbial iron reduction and subsequent 

formation of pyrite. Elements such as Sr and Ba are depleted within the burrow halo and 

core with respect to the host sediment. The significant deficiency of these latter two 

elements might be explained by the fact that the vermiform trace maker used these 

elements for biomineralization processes. Alternatively, the loss of Sr and Ba might be 

explained by accelerated biological weathering of unstable lithic fragments and feldspar 

in the burrow core (as observed in this study), and loss of these two elements to pore 

waters.  

 

4. Significance of research 

 

Effective decision making on how hydrocarbon recovery can be maximized from a 

reservoir requires not only knowledge about the chemical interactions of fluids within the 

rock-pore system, but also a thorough understanding of all petrophysical attributes, such 

as effective porosity, pore-throat aperture size distribution, fluid saturation, mineral 

surface area, wettability and composition of the pore lining (Varva et al. 1992; Bliefnick 

and Kaldi 1996; Standnes and Austad 2003). All these parameters exhibit significant 

heterogeneity on a basin-wide scale (Heath et al. 2011; Day-Stirrat et al. 2012) which 

cannot be explained by the compositional diversity of sediment alone, or its burial 

diagenetic history.  

The underlying problem during field appraisal is that critical elastic and 

petrophysical rock properties (e.g. Young’s modulus) are easily quantified in routine core 
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analyses (Dewhurst et al. 2008; Schlömer and Kroos 1997) but rarely correlated with the 

underlying lithofacies variability. Sedimentological and ichnological datasets are readily 

integrated into facies associations with (broadly) predictable spatiotemporal, basin-wide 

distributions. A multi-disciplinary approach that integrates sedimentological, ichnological 

and petrophysical approaches allows an extrapolation of petrophysical properties towards 

geological situations that are less well known or difficult to directly access. Recent 

studies are just beginning to integrate the effect of physical and biological seafloor 

reworking on the composition of mudstones into modern siliciclastic facies models (e.g., 

Plint 2010). Petrophysical properties need to be supplemented with rock descriptions at 

all available scales and integrated into a predictive chronostratigraphic framework. With 

this approach a realistic geological model can be developed that allows a (careful) 

extrapolation of properties relevant to the basin modeler and reservoir engineer, before 

exploitation is undertaken.  

  

 

5. Open questions and avenues for future research 

 

• Significance for shallow-marine, siliciclastic facies models. All data presented from 

Bell Island, Newfoundland were recovered from a ~23 m thick interval at 

Freshwater Cove. At this locality, the investigated succession did not exhibit a 

significant basin-ward facies shift, but highlights rather autocyclic variability (cf. 

Catuneanu and Zecchin 2013) as the dominant control on the stratigraphic 

distribution of mudstone-rich intervals. If high-energy sea floor processes are the 
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dominant depositional mode for mudstones in the Bell Island Group, then this might 

have broader implications for existing sequence stratigraphic models that propose 

that thick unbioturbated mudstones represent late transgressive and early highstand 

deposits (Brenchley et al. 1993). In the future a larger-scale study is needed, that 

investigates how widely distributed high-energy seafloor processes are in 

unbioturbated mudstones within the Bell Island Group.  

 

• Independent recognition criteria for high-energy seafloor processes. The 

sedimentary record of storm-dominated, sand-rich successions is well established 

(e.g., Aigner and Reineck 1982; Cheel 1990; Duke et al. 1991; Brenchley et al. 

1993; Myrow & Southard 1996; Dumas & Arnott 2005; Yoshida et al. 2007). 

However, to date only a relatively small number of studies investigated the 

diagnostic sedimentary structures and trace fossil characteristics in fine-grained 

deposits that accumulated under gravity-driven and combined-flow processes 

(Bentley and Nittrouer 2003; McIlroy 2004; Aller et al. 2010; Plint 2010). Critical 

hydrodynamic parameters, such as floc settling velocity (Hill et al. 2000) and 

critical dimensionless in-flow variables, such as the flow Reynolds number (Baas et 

al. 2009, 2011), are currently difficult to accurately estimate from the rock record 

(Paola et al. 2009; Talling et al. 2012). It is clear, however, that necessary 

conditions for the preservation of unbioturbated mud layers involve discharge of 

high amounts of river-borne suspended solids during short-lived storm floods and 

high fluxes of flocculated sediment to the wave boundary layer (Gonzalez-Hidalgo 

et al. 2010). Shorelines adjacent to small rivers that drain high mountain ranges 
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(e.g., Hastings et al. 2012) are first-class candidates for future sedimentological 

studies which might provide a modern analogue for the mud-dominated Beach 

Formation. These small, ‘dirty’ systems discharge high volumes of immature silt- 

and clay-sized material with a wide grain size distribution to an energetic wave-

boundary layer. A more quantitative understanding about the formation conditions 

and the underlying factors that enhance preservation of the various classes of shelf-

wide wave- and gravity-driven currents is needed before the sedimentary products 

originating from these flows can be used as “stand alone” facies indicators 

(Schieber 2011). 

 

• Bioturbation as first-order control on geochemical heterogeneity. Within this study 

grain-size selective deposit feeding was examined as a potential spatial modifier of 

sedimentary organic matter and trace elements in fine-grained siliciclastics. The 

small sample amounts (by weight) extracted from the burrow core unfortunately did 

not allow for characterization of the organic fraction at a molecular level (e.g., 

biomarker analysis). Future studies should also integrate different trace fossils 

throughout a broader range of depositional environments and sediment 

compositions. A high priority research target is the potential ability of other 

vermiform trace makers, such as the still unknown producer of Chondrites to 

permanently alter the spatial geochemical characteristics of fine-grained 

sedimentary rocks, as individuals and as a community.   
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 Energetic seafloor processes and bioturbation are the volumetrically most important 

modifiers of fluids, gases and solids in the modern shallow seabed. This work has 

demonstrated that visualizing ‘hard-to-see’ features indicative for seafloor reworking (i.e., 

small burrows and erosional contacts) allows discrimination of a broader range of 

environmental conditions (e.g., water depths and seafloor oxygenation) in shales and 

mudstones with only limited hand-specimen variability. Combining detailed rock 

descriptions with petrographic and geochemical datasets significantly increases the 

fidelity of paleoenvironmental reconstructions in mudstones and allows the formulation 

of more realistic geological models in time and space. A good geological model can be 

used to predict the petrophysical and geochemical heterogeneity for mud-dominated 

regions of the shelf, which are not readily accessible for direct analyses.  
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APPENDIX A 
 
 
 

Whole rock elemental and isotopic data, Bell Island 2009-2012 
 
 

Appendix A contains whole rock geochemical data obtained from the Bell Island 

study site Freshwater Cove (Parsonville). These data are presented in my second and 

my third thesis chapter. The table lists sample number, facies code, stratigraphic 

height, as well as isotopic value (δ13Corg, ‰) and Total Organic Carbon TOC (wt%). 

Stratigraphic height is given in cm. TOC was measured using a Carlo Erba NA 1500 

Series 2 elemental analyzer and δ13Corg was measured using a Thermo Electron Delta 

V Plus mass spectrometer.   
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0

Sample number

Stratigraphic 
height (cm)

Facies 
code δ13Corg (‰) TOC (wt%)

FC1242 2247.0 M5 ‐28.81 0.34
FC1241 2240.0 M6 ‐28.31 0.25
FC1238 2167.0 M4 ‐28.57 0.23
FC1237 2154.0 M7 ‐28.28 0.18
FC1236 2135.0 M7 ‐28.29 0.18
FC1235 2074.0 M2 ‐28.25 0.18
FC1234 2041.0 M2 ‐28.79 0.37
FC1231 1904.0 M1 ‐28.86 0.41
FC1230 1816.0 M7 ‐28.17 0.15
FC1229 1677.0 M1 ‐28.85 0.41
FC1228 1627.0 M4 ‐28.88 0.37
FC1227 1586.0 M6 ‐29.07 0.45
FC1111 1540.0 M1 ‐29.40 0.54
FC1226 1523.0 M7 ‐29.04 0.52
FC1224 1494.0 M1 ‐28.94 0.32
FC1223 1436.0 M6 ‐28.94 0.33
FC1218 1410.0 M1 ‐29.00 0.37
FC1217 1334.0 M1 ‐28.89 0.49
FC1216 1256.0 M1 ‐29.17 0.54
FC1215 1206.0 M2 ‐28.75 0.27
FC1214 1191.0 M2 ‐29.14 0.23
FC1213 1178.0 M5 ‐29.15 0.55
FC1212 1169.0 M3 ‐29.40 0.68
FC1210FC1210 1164 01164. M3M3 29 40‐29.40 0 950.95
FC1208 1153.0 M1 ‐29.32 0.87
FC12‐E 1088.0 M1 ‐29.11 0.52
FC12‐D 1061.0 M1 ‐28.72 0.33
FC12‐C 1046.0 M1 ‐29.13 0.44
FC12‐B 1042.0 M1 ‐28.95 0.37
FC12‐A 980.0 M7 ‐28.88 0.22
FC1206 945.0 S3 ‐29.20 0.70
FC1205 897.0 S3 ‐28.86 0.18
D21 880.0 S3 ‐28.22 0.19
D20 844.0 M1 ‐28.21 0.39
FC1204 856.0 S3 ‐28.72 0.29
D19 824.0 M1 ‐28.46 0.67
FC1203 811.0 S3 ‐28.40 0.15
D18 808.0 S3 ‐28.07 0.50
FC0811 788.0 S3 ‐28.29 0.22
D17 778.0 M1 ‐29.14 0.60
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0

D16 762.0 M1 ‐28.02 1.00
FC1201 754.0 S3 ‐28.77 0.28
FC0810 750.0 S3 ‐28.10 0.07
AD11 731.0 M3 ‐28.52 0.26
D15 727.0 M3 ‐28.68 0.68
FC0809 710.0 M5 ‐28.41 0.68
FC0808 660.0 M6 ‐27.99 0.09
D14 630.0 M1 ‐28.89 0.44
FC0807 612.0 M1 ‐27.68 0.51
FC0806 608.0 M7 ‐28.04 0.13
FC0805 593.0 M1 ‐27.64 0.05
D13 575.0 M1 ‐29.18 0.46
D12 529.0 M1 ‐29.10 0.31
D11 521.0 M1 ‐28.54 0.37
FC0804_2 518.0 M1 ‐27.92 1.52
FC0804_1 517.0 M1 ‐27.44 0.21
D10 515.0 M1 ‐28.38 0.27
FC0803 512.0 M1 ‐28.10 0.12
FC0812b 492.0 M1 ‐28.60 0.57
FC0813 483.0 M1 ‐29.14 0.39
FC0802 481.0 M1 ‐29.46 0.85
D8 481.0 M1 ‐28.34 0.77
FC0815 476.0 M1 ‐29.09 0.41
FC0814 474.0 M1 ‐29.53 0.12
D7 472.0 M1 ‐28.62 0.42
D6D6 467 0467. M1M1 28 59‐28.59 0 440.44
D5 457.0 M1 ‐28.34 0.32
D4 442.0 M1 ‐29.06 0.53
FC0801_2 438.0 M1 ‐27.64 3.43
FC0801_1 437.0 S2 ‐28.04 0.10
AD8 422.0 M1 ‐28.51 0.42
AD7 413.0 M1 ‐29.19 0.47
D3 410.0 M1 ‐28.64 0.65
D2A 408.0 S2 ‐27.46 0.17
D2 401.0 M1 ‐27.57 0.81
D1 327.0 S1 ‐28.68 1.17
A3 232.0 M2 ‐29.07 0.54
FC09A2b 202.0 M2 ‐28.80 0.62
AD5 134.0 M3 ‐29.28 0.53
AD0 49.0 M3 ‐28.10 0.53
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APPENDIX B 
 
 

 
High-resolution geochemical data from one sample interval containing 

intrastratal shrinkage cracks 

 

Appendix B contains geochemical data obtained from the Bell Island sample 

FC0801 from Freshwater Cove (Parsonville). These data are presented in my second 

and thesis chapter. The table lists sample number, isotopic value (δ13Corg, ‰) and 

Total Organic Carbon TOC (wt%). TOC was measured using a Carlo Erba NA 1500 

Series 2 elemental analyzer and δ13Corg was measured using a Thermo Electron Delta 

V Plus mass spectrometer. The stratigraphic position of this sample is given in 

Appendix A.    
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Sample number δ13Corg (‰, PDB) TOC (wt%) 

FC0801-1 -24.41 0.51 

FC0801-2 -27.61 1.18 

FC0801-3 -27.65 2.08 

FC0801-4 -26.41 0.57 

FC0801-5 -26.97 0.72 

FC0801-6 -24.92 0.36 
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APPENDIX C 
 
 

High-resolution geochemical data from phycosiphoniform burrow elements (core 

and halo), as well as host sediment 

 
 

Appendix C contains whole rock geochemical data obtained from sample ROS1 

from the Pelican System (Rosario Formation). These data are presented in my fourth 

thesis chapter. The table lists sample number, isotopic value (δ13Corg, ‰) and Total 

Organic Carbon (TOC, wt%) content. TOC was measured using a Carlo Erba NA 

1500 Series 2 elemental analyzer and δ13Corg was measured using a Thermo Electron 

Delta V Plus mass spectrometer.  
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Sample name δ13Corg (‰, PDB) TOC (wt%) 
ROS_1_matrix  -24.28 0.75 
ROS_1_matrix* -24.00 0.72 
ROS_1_halo -23.69 0.61 
ROS_1_halo* -23.84 0.56 
ROS_1_core -24.44 1.80 
ROS_1_core* -24.44 1.76 

   *duplicate measurements 
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APPENDIX D 
 
 

Sample locations for high-resolution geochemical analyses from 

phycosiphoniform burrow elements (core and halo), and host sediment from the 

Pelican System (Rosario Formation, Mexico) 

 
 

This image contains the sampling locations for high-resolution (sub-mm) geochemical 

data analyses on sample ROS1 from the Pelican System (Rosario Formation). These 

data are presented in my fourth thesis chapter. The annotated image shows the 

sampling localitites and sample names for ICP-MS measurements. The sampling of 

sedimentary laminae and burrow elements core and halo was carried out using a 

Merchantek Micromill (New Wave) microsampling device (Electro Scientific 

Industries Inc., Portland, OR, USA), equipped with a 0.3 mm bit. Prior to drilling, 

linear spot trajectories were mapped out using the imaging software PXC (New 

Wave). 
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APPENDIX E 
 
 

High-resolution geochemical analyses from host sediment and phycosiphoniform 

burrow elements (core and halo) from the Pelican System (Rosario Formation, 

Mexico) 

 
 

This table contains high-resolution (sub-mm) trace element data obtained from host 

sediment, burrow halo and burrow core from sample ROS1. These data are presented 

in my fourth thesis chapter. The table shows trace element concentrations (in ppm). 

The data were obtained via ICP-MS measurements.  

The sample (~0.1 g) was dissolved via HF and HNO3 treatment (see Jenner et al. 

1990).  The sample solution was sprayed into the inductively coupled argon plasma 

(~8000°C) of a HP 4500 plus mass-spectrometer, allowing all analyte species to be 

atomized, ionized and thermally excited in order to be detected. Exact sampling 

locations are given in Appendix D.  
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APPENDIX F 
 
 

Chemical elemental maps obtained by Synchrotron Rapid Scanning X-ray 
Fluorescence (SRS-XRF) 

 

This figure shows two-dimensional elemental maps of sample ROS1. These data 

are presented in my fourth thesis chapter. Non-destructive synchrotron X-ray 

fluorescence (SRS-XRF) imaging was performed at wiggler beam line 6-2 at the 

Stanford Synchrotron Radiation Lightsource (SSRL, CA, USA). Elemental maps were 

acquired with incident beam energies of 12 and 3.15 KeV for imaging of high and low 

atomic weight elements (respectively) and a beam spot size of 100 microns. For low 

atomic weight elements element imaging, samples are enclosed within a helium 

atmosphere to avoid the X-ray absorption and scattering effects of air at lower 

incident beam energy. Photon flux was within1010 and 1011 photons s−1. Exact 

sampling locations are given in Appendix D.  
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APPENDIX G 
 
 

Elemental quantification of chemical elemental maps via Synchrotron Rapid 
Scanning X-ray Fluorescence (SRS-XRF) 

 

This table contains point analyses parameters and calculated concentrations for 

trace elements obtained on wiggler beamline 6-2 at SSRL. Point analyses were 

obtained from host sediment, halo and burrow core of phycosiphoniform burrows by 

driving the rapid scanning stage to locations of interest defined by the previously 

acquired maps. The elemental maps have been quantified using a combination of ICP-

MS analyses and SRS-XRF point analyses. The elemental concentration (ppm) of 

major and trace elements have been were claculated through curve fitting procedures 

using the freely available software PyMCA. Anorthite has been used as reference 

mineral to calibrate peak intensities of all measured elements, since it closely mirrors 

the original sediment composition of sample ROS1.  Due to imprecision in detector 

distance as well as due to imperfect knowledge of the sediment matrix composition at 

each measurement point, total errors on the XRF point analyses tend to be larger than 

ICP-MS measurements. Only sulfur has been calculated via XRF point analyses, using 

an in-house barite standard (see Figure G-1 for exact measurement locations). 

The quantification of individual point spectra has been performed post-scanning 

using the newly collected elemental images as a guide. Separate counts were obtained 

(~200 seconds) acquiring a full energy dispersive spectrum. Due to the significant 

compositional heterogeneity of most geological materials errors are ∼30 % for high 

atomic number elements and ∼50 % for light elements. This affects low atomic 

weight elements (i.e. Ca and below) in particular (see Appendix E).  
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1 cm

Sample ROS1 (Pelican Pt. 0.3 m)
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APPENDIX H 
 
 

Phase identification via X-Ray Diffractometry (XRD) 
 

Appendix H contains the phases identified via X-ray diffractometry for 

phycosiphioniform halo and core as well as host sediment on sample ROS1 (see 

Appendix F). All samples were analyzed in triplicates. In order to identify the mineral 

phases present in different portions of the burrowed sediment, samples were obtained 

from the host sediment, halo and core and analysed with a Rigaku Ultima IV X-ray 

diffractometer (Rigaku Systems®, Tokyo, Japan) using monochromatic Cu–Kα 

radiation. The X-ray diffractometer was operated at 40 kV and 44 mA current, using a 

scintillation counter (1 mm divergent slit, 0.6 mm detector slit, 1.0 mm anti-scatter slit 

and a graphite monochromator). Samples were scanned with a step size of 0.02° and a 

count time of 2 s per step. All samples were analyzed in air-dried state.  
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APPENDIX I 
 
 

Phase identification via Fourier Transform Infrared Spectroscopy (FTIR) 
 

Appendix I contains FTIR spectra for phases identified from host sediment, halo 

and core of sample ROS1. Samples were ground in an agate mortar for ~1 minute. 

The sample material was diluted with KBr (Sigma Aldrich, FTIR-grade). The sample-

KBr mixture was then pressed at 10 tons to allow KBr and sample to crystallize as an 

IR transparent matrix (see Blanch et al. 2007 and Poduska et al. 2011). Infrared 

spectra have been obtained using a Bruker® Alpha FTIR Spectrometer (Bruker 

Corporation, Billerica, MA, USA). The FTIR measurements were carried out in 

transmission geometry (Nicolet 380, 4 cm-1 resolution).  
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