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ABSTRACT 

The distribution of Ni-Mg-Fe in olivine is used extensively to characterize mafic 

intrusions, and, in combination with other geochemical tools, assess their Ni-Cu-Co 

sulfide mineralization potential. Despite the availability of sensitive analytical techniques 

(e.g., Secondary Ion Mass Spectrometry – SIMS) and the proven importance of olivine 

multi-trace element studies to igneous petrology, a more comprehensive geochemical 

approach of determining multiple trace elements in olivine has never been adopted for 

economic geology applications. For this dissertation I implemented a refined SIMS 

analytical protocol for the determination of multiple major-trace elements in olivine from 

the Eastern Deeps Intrusion (EDI), a part of the Voisey’s Bay Intrusion (VBI), Labrador. 

The study demonstrated that systematic, lithology-dependent trace element variations in 

olivine, particularly in Ni, Co, Cr, Mn, and Zn, characterize critical ore-forming processes 

and indicate the proximity to zones of massive sulfide mineralization in the EDI.  

SIMS is an analytical technique for the in-situ, micrometer-scale determination of 

elements in a solid sample with very low detection limits. Chapter 2 introduces the SIMS 

analytical parameters applied for the olivine analyses and further discusses the reference 

material development and the sequential empirical calibration. 

The subsequent chapters detail the SIMS studies of olivine from the EDI and Pants Lake 

Intrusion (PLI). Chapter 3 demonstrates that lithostratigraphic variations in olivine Ni-Co 

contents (~80–2,500 ppm Ni; ~170–370 ppm Co) in the EDI indicate magmatic 

episodicity and multiple sulfide saturation events. The basal, incongruent olivine Mn-Zn 

enrichment (up to 12,000 ppm Mn; up to 680 ppm Zn) reflects country rock 
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contamination followed by a diffusive trace element exchange with surrounding sulfide 

liquid. Chapter 4 discusses the application of the olivine trace chemistry as a lateral 

vector towards sulfide mineralization in the EDI, and as a fertility indicator for mafic 

intrusions on a regional scale (ex. PLI). Progressively increasing contents of Mn-Zn in 

olivine towards the inner basal margin of the EDI indicate spatial (vertical and lateral) 

proximity (~150m) to massive sulfides. A strong compositional bimodality (e.g., Ni-

enriched and Ni-depleted) of olivine also increases the potential for inherent economic 

mineralization (ex. VBI). This study considerably improved our understanding of 

systematic compositional variations in olivine as a response to essential ore-forming 

processes in mineralized mafic magmatic systems. 
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CHAPTER 1  - Introduction 

1.1. Aim and Content of the Study  

1.1.1. General Background 

Economic magmatic Ni-Cu-Co-(PGE) sulfide deposits are almost exclusively associated 

with mafic to ultramafic igneous rocks, and thus, their formation is generally an integral 

part of the petrogenesis of their host intrusive (e.g., Noril'sk, Bushveld, Duluth Complex, 

Jinchuan, Voisey's Bay) or extrusive rocks (e.g., Kambalda-type deposits) (e.g., Keays, 

1995; Lesher et al., 2001; Arndt et al., 2005; Naldrett, 2010a, and references therein). 

However, the potential of economic Ni-Cu ore-formation hinges on some key 

requirements (Fig.1.1):  

1) The presence of a "primitive" (high-Mg) and chalcophile element-rich mafic to 

ultramafic magma. 

2) The mafic magma must attain sulfide saturation and subsequently segregate an 

immiscible sulfide liquid. 

3) The sulfide melt must interact dynamically with a high volume of silicate magma 

(high silicate:sulfide ratio - R-factor; Campbell and Naldrett, 1979) that effectively 

upgrades the metal tenor of the sulfide liquid (e.g., Bremond d'Ars et al., 2001; Maier 

et al., 2001). 

4) The enriched sulfide fraction must be concentrated in economic quantity (Fig.1.1; 

e.g., Naldrett, 1997; 1999; Arndt et al., 2005; Naldrett, 2010b).  
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There are of course several factors that individually constrain these requirements, 

especially during magma ascent, dynamic transport and emplacement. The necessity of 

the mafic magma to assimilate externally-derived sulfur to promote sulfide saturation 

(e.g., Keays and Lightfoot, 2010; Ripley and Li, 2013, and references therein) and a 

favorable regional tectonic setting are, for instance, both widely regarded as essential 

factors governing economic Ni-Cu sulfide mineralization (e.g., Naldrett, 1997; 1999; 

2010b, and references therein). A "favorable" tectonic setting in this context must 

facilitate the transfer of sufficient quantities of mafic magma from the upper mantle into 

crustal levels (e.g., Keays, 1995; Naldrett, 1999; Lightfoot and Keays, 2005; Maier and 

Groves, 2011; Maier et al., 2012). Further, it also needs to stimulate the economic 

accumulation and concentration of sulfides in restricted morphological traps (Fig.1.1; 

e.g., Evans-Lamswood et al., 2000; Lightfoot et al., 2012, and references therein). 

A wide range of lithogeochemical exploration methods are commonly applied to discern 

if some or even all of the above mentioned requirements are satisfied in a Ni-Cu 

exploration target. Methods include analyses of whole-rock compositions (e.g., Pd/Cu, 

Cu/Zr ratios, Mg#, incompatible elements), the determination of the mineral chemistry 

(e.g., Mg# and Ni content in olivine and orthopyroxene), and (bulk) stable isotope 

measurements (
34

S or 
18

O). Reviews of some of the most commonly used techniques 

can be found in Naldrett (1997), Maier et al. (1998), Lesher et al. (2001) and Lamberg 

(2005). These mineral exploration techniques have been validated over the years through 

the description and delineation of existing ore deposits to formulate models that can be 

extrapolated to predict potential exploration targets.  
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Fig. 1.1: Key stages and requirements in the formation of an economic Ni-Cu-Co magmatic sulfide deposit 

(after Naldrett, 2010 and references therein; Lightfoot et al., 2012). 
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In the case of some PGE and many Ni-Cu sulfide deposits, the olivine composition is 

used to infer the primitiveness of the parental melt (Mg# or forsterite content) and to 

determine the extent of sulfide segregation (Ni depletion) (e.g., Lightfoot et al., 1984; 

Chai and Naldrett, 1991; Li and Naldrett, 1999; Li et al., 2000; Li et al., 2002; Li et al., 

2003a; Li et al., 2004; Ripley et al., 2007; Maier et al., 2010). Olivine is an early-

crystallizing phase in host intrusions of most sulfide deposits, and its compositional 

variations thus reflect many early-magmatic conditions and processes (e.g., silicate melt 

composition and early differentiation, magma mixing, assimilation and fractional 

crystallization). Olivine-normative magmas have generally higher Ni contents and a 

higher liquidus temperature than more silicic melts, which means they can assimilate 

sulfide-bearing country rock more readily and thus have a higher potential to form 

economic Ni sulfide deposits (e.g., Naldrett, 1999). The geochemical importance of 

olivine as an indicator mineral is therefore undeniable. The use of olivine is further 

promoted because the basic compositional information (Mg, Fe, and Ni content) can be 

determined easily by Electron-Probe Micro Analysis (EPMA). However, to utilize the full 

potential of the olivine chemistry as a possible sulfide fertility indicator, which is 

applicable even in grass-roots Ni-exploration, the distribution of elements other than Mg, 

Fe, and Ni must be considered. For instance, the partitioning of several compatible and 

incompatible chalcophile (Co, Ni, Cu), lithophile (Ca, Sc, Ti, V, Sr, Y, Zr) and 

siderophile (Cr, Mn, Fe, Zn) elements might reflect several of the key factors in Ni-Cu 

sulfide ore-formation, instead of just sulfide segregation. This could in turn increase the 

geochemical resolution and consequently increase the chance of successful early-stage 
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Ni-target generation. The distribution of trace elements in general is much more sensitive 

to “economically-desired” petrological perturbations (Arndt et al., 2005) during normal 

petrogenesis of a mafic to ultramafic intrusion than are major element mineral and bulk-

rock data. 

 

1.1.2. Problem Statement 

Olivine is ubiquitous in most mafic intrusions associated with magmatic Ni-Cu-Co-(PGE) 

sulfide deposits, and thus its chemical composition (namely MgO-FeO-NiO contents; see 

Sato, 1977; Hart and Davis, 1978) has been widely used in mineral exploration as a tracer 

for (concealed) sulfide segregation (e.g., Lightfoot et al., 1984; Maier et al., 1998 and 

references therein; Li and Naldrett, 1999). However, beyond this traditional application, 

the trace element distribution of olivine has never been investigated in a Ni-Cu ore-

forming environment, nor as a complementary nor potentially more powerful 

geochemical (exploration) tool, even though many studies demonstrate the petrological 

importance of (systematic) variations in the olivine trace element composition (see also 

paragraph 1.3.).  

A geochemical identification and discrimination between the key ore-forming processes 

based on the distribution of certain compatible and incompatible trace elements in olivine 

is thus an attempt to: 1) close this existing gap with a comprehensive database for the 

well-characterized Voisey’s Bay Intrusion (VBI), Labrador; 2) demonstrate the 

geochemical advantages of olivine trace element data for characterizing ore-forming 
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environments (ex. VBI); and 3) to establish a readily applicable and feasible geochemical 

(exploration) method for evolved mafic magma systems, such as the VBI. The olivine 

trace element chemistry and the included petrogenetic information are the focal point of 

this thesis and was investigated for the economic Voisey’s Bay Ni-Cu deposit in 

Labrador, Canada (Chapter 3 and 4) and the geologically similar, but barren to sub-

economic Pants Lake deposit, Labrador (Chapter 4). Secondary Ion Mass Spectrometry 

(SIMS) is the analytical technique utilized in this study to measure trace elements in 

olivine at appropriate detection limits of less than 1 ppm. 

 

1.1.3. Research Objectives 

The primary scientific objective of this study is to identify the key ore-forming 

processes active during the petrogenesis of the Eastern Deeps Intrusion (EDI) in the 

VBI and discriminate them as a function of their petrological significance based on 

variations in the trace element composition of olivine. The applied methodological 

approach and the olivine trace element systematics should then translate into a practical 

and feasible geochemical exploration tool that provide additional vectors towards zones 

of sulfide mineralization at the VBI and elsewhere, and assists in first-order 

discrimination between barren and mineralized mafic intrusions. 
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The main objective is tripartite and encompasses, analytical, geochemical, and 

exploration benefits. In order of appearance these include specific scientific aims: 

1) analytical aspect – the purpose is to establish a SIMS analytical approach that allows 

routine accurate and precise determination of the forsterite content and multiple trace 

elements in compositionally variable olivine (forsterite-fayalite) in one feasible 

analytical step; 

2) geochemical aspect – the intent is to use the element distribution of Ca, Sc, Ti, V, Cr, 

Mn, Co, Ni, Cu, Zn, Sr, Y, Zr (or the most practical subset) as well as the forsterite 

content (Mg/Fe molar ratio) of olivine from primarily the Eastern Deeps segment of 

the VBI to identify the geochemical processes that are key to ore-formation (e.g., 

magma mixing, melt differentiation, contamination, sulfide saturation) and interpret 

systematic variations based on the evolved mafic character of the VBI, the 

silicate/sulfide melt interaction, and the dynamics of an economically mineralized 

magma conduit system; 

3) exploration aspect – the previous aspects are eventually combined to establish a 

practicable (time- and cost-effective) trace element-in-olivine routine that expands 

the traditionally applied Mg-Fe-Ni olivine exploration approach and ultimately 

increases the geochemical sensitivity and applicability to better discriminate between 

barren and mineralized environments and potentially predict zones of massive sulfide 

concentrations in the VBI and fertility on a regional scale and elsewhere. 
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1.1.4. Potential Limitations 

All of the specific objectives of this study contain potential limitations that might hamper 

their achievement.  

1) analytical – the selected suite of analytes includes (trace) elements with highly 

variable chemical characteristics (e.g., charge/size ratio, compatibility etc.) and hence 

highly variable contents in olivine (≤0.1 ppm to ≥10.000 ppm). Although the SIMS 

instrumental approach was specifically designed to routinely analyze this suite of 

elements, individual atomic species are variably affected by energy filtering and 

consequently elemental sensitivities and detection limits might vary. This analytical 

compromise could then bias the quantification of some of the very low abundance 

elements (e.g., Sc, Cu, Zr); 

2) geochemical – many olivine trace element studies show that individual partitioning 

behavior depends on melt composition, temperature, pressure, and oxygen fugacity. 

Therefore, the use of this extended suite of trace elements also complicates 

geochemical interpretation and petrological modeling of the data. The VBI 

constitutes a complex, open system, which experienced episodic magma mixing, 

country rock contamination, and possibly several sulfide saturation events. In this 

less-constrained system, the distribution behavior of many trace elements (e.g., V, 

Cr, Co, Mn, Zn) is still poorly understood. This might challenge the interpretation of 

the data and the use of (empirical) petrogenetic models that utilize partition 

coefficients, since those can vary extensively with the above mentioned parameters 

(e.g., Rollinson, 1993); 
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3) exploration – systematic trace element variations in different olivine populations 

from the VBI (barren and mineralized) may be ambiguous or completely absent and 

thus limit or even prevent the use of this approach as a geochemical (mineralogical 

indicator) exploration tool. Furthermore, olivine from the EDI is the main focus of 

this study and thus extrapolating the results to other geological environments (at the 

VBI or elsewhere) might be equivocal and not uniformly applicable until a versatile 

and robust regional olivine database is established. 

 

1.2. Key Geological Features of the Voisey’s Bay Ni-Cu-Co Sulfide 

Deposit 

The Voisey’s Bay intrusion (VBI; 1,332.7 ±1.0 Ma; Amelin et al., 1999) is an evolved 

mafic member of the Mesoproterozoic Nain Plutonic Suite (NPS). The NPS occupies a 

vast area in northern Labrador, and is composed of a suite of bimodal mafic (anorthositic, 

troctolitic, ferrodioritic) and felsic (monzonitic and granitic), mid- to upper-crustal 

igneous rocks emplaced between 1,350 and 1,290 Ma proximal to the Torngat orogen 

(Ryan, 2000; and references therein). This tectonic suture zone represents the 

Paleoproterozoic amalgamation of the mainly Proterozoic Churchill Province in the west 

and the mostly Archean Nain Province in the east (Ryan, 2000; and references therein). 

Proximal to this major tectonometamorphic zone, a so-far unique, major Ni-Cu-Co 

sulfide deposit is hosted by the olivine-gabbroic to troctolitic VBI (e.g., Lightfoot and 
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Naldrett, 1999; Evans-Lamswood et al., 2000; Lightfoot et al., 2012). After almost two 

decades of intense research and exploration activity, it is currently understood that:  

1) the deposit is associated with several troctolitic to olivine-gabbroic bodies 

(subchambers), which are linked by a complex olivine-gabbro feeder system (magma 

conduits); and that 

2) the presently identified bodies of major massive and disseminated sulfide 

mineralization occur either close to or within the feeder dike (Reid Brook, Discovery 

Hill, Mini-Ovoid and Ovoid), or at the entry line of the feeder system into an upper 

subchamber (Eastern Deeps) (e.g., Lightfoot and Naldrett, 1999; Li and Naldrett, 

1999; Li et al., 2000; Evans-Lamswood et al., 2000; Lightfoot et al., 2012).  

However, unlike other large Ni-Cu sulfide deposits (Noril’sk or Jinchuan), the VBI is an 

evolved mafic magma system where sulfide formation and ore localization is also 

genetically related to the flow dynamics and the (tectonically) confined geometry of the 

magma conduit(s) (e.g., Evans-Lamswood et al., 2000; Lightfoot et al., 2012). Several 

pulses of variable differentiated mafic magma are responsible for entraining, transporting 

and subsequently upgrading sulfides during the formation of the VBI, inasmuch as they 

precipitated and concentrated sulfides in physical traps or zones of reduced flow velocity, 

for example, in widened parts of the conduit or at the entry point into the Eastern Deeps 

Intrusion (EDI; Evans-Lamswood et al., 2000; Lightfoot et al., 2012).  

The combination of several key magmatic ore-formation requirements (see above) makes 

the VBI, and especially the EDI, a prime target for a detailed study of olivine trace 

element geochemistry. The petrological information contained in olivine from different 



P a g e  | 11 

 

 

 

stratigraphic intervals and lithologies might reflect several key stages (e.g., primitive 

melt, country rock contamination, sulfide saturation-segregation-transportation, and 

upgrading, as well as economic concentration) in the petrogenesis of the VBI and the 

associated magmatic Ni-Cu sulfide deposit (Chapter 3 and 4). The data can then be 

applied to further refine the geological model, yield a potential geochemical vector 

towards zones of massive sulfide accumulation, and might be extrapolated to predict 

mineralization in comparable mafic magmatic environments. 

 

1.3. Olivine – Crystallography, Chemistry and Petrological Significance 

Olivine is a major constituent in any ultramafic and many mafic igneous rocks (i.e., 

dunite, peridotite, basalt, gabbro) and the dominant mineral phase in the Earth’s upper 

mantle. The olivine-group comprises orthosilicates with orthorhombic symmetry with the 

general formula M2SiO4 where M is a combination of Mg, Fe
2+

 and Ca, Mn (e.g., Putnis, 

1992; Deer et al. 1997). The structure is composed of isolated [SiO4] tetrahedra (4-fold 

coordinated T-site) linked to two distinct 6-fold coordinated octahedral sites (M1 and M2) 

primarily containing the divalent cations Mg
2+

 and Fe
2+

 (Fig.1.2). These M lattice 

positions are slightly distorted and thus not perfectly symmetrical, with M1 being 

somewhat smaller and less distorted than M2 (Fig.1.2; Putnis, 1992; Deer et al., 1997). 

Therefore, the olivine structure is only approximately arranged in a hexagonally close-

packed oxygen array where the M cations fill merely 1/2 of the potential octahedral sites 

and the Si cations 1/8 of the potential tetrahedral sites. The replacement of the smaller Mg 
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(0.72 Å) by the slightly larger Fe
2+

 (0.78 Å) cation in the forsterite-fayalite solid solution 

(Fo100: Mg2SiO4 – Fa100: Fe2SiO4) is reflected by a linear increase in unit cell parameters 

(Deer et al., 1997; Fig.1.2).  

In general, compositions in the olivine group form extensive solid solutions, and 

primarily vary between forsteritic (senso lato in ultramafic to mafic igneous rocks) and 

fayalitic (s.l. in ferrogabbros to felsic igneous rocks) (Fig.1.3A). Rare Ca-bearing 

compositions can occur (monticellite: CaMgSiO4 and kirschsteinite: CaFeSiO4), whereas 

fayalite also displays a complete diadochy with the rare Mn-endmember tephroite 

(Mn2SiO4). However, virtually no solid solution exists between the Ca-bearing olivine 

and the ferromagnesian compositions (Fig.1.3A), since the cation size discrepancy 

between Ca (1.00 Å) and Fe-Mg, respectively, exceeds the strain tolerance of the olivine 

structure (e.g., Davidson and Mukhopadhyay, 1984). Although, the structural response to 

an increase in temperature is a significant increase in size of the M1 and M2 sites, which 

promotes the substitution of larger cations, for instance, Ca into the olivine structure (e.g., 

Hazen 1976, 1977; O’Reilly et al., 1997). An increase in pressure on the other hand, has 

the opposite effect on the olivine structure and is equivalent to a temperature decrease 

(e.g., Hazen 1976, 1977). In consequence, substitution of Fe-Mg (±Si
4+

) by other cations 

is primarily controlled by the physical properties of the olivine crystal lattice and the ionic 

radii and valence states (Fig.1.3B) of partitioning cations (e.g., Beattie, 1994; Zanetti et 

al., 2004; Grant and Wood, 2010, and references therein). An increasing size/charge 

discrepancy then results in an increasing incompatibility, for instance, Ca
2+

 (1.00 Å; 

D
Ca

Ol/Sil <<1) and Mn
2+

 (0.83 Å; D
Mn

Ol/Sil ~1) (e.g., Beattie, 1994; Kohn and Schofield, 
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1994; Zanetti et al., 2004, and references therein). Therefore, concentrations of most 

altervalent (1+, 3+, 4+, 5+) cations are nearly always in trace concentration-range and 

thus very close to or below the detection limit for EPMA (e.g., Zanetti et al., 2004). 

The Mg2SiO4 – Fe2SiO4 system is considered an almost “ideal” solid solution, and only 

the Fe/Mg ratio is controlling the relatively simple compositional range. However, the 

petrological importance of olivine stems primarily from the fact that it is the first phase to 

crystallize at low pressure on the liquidus of mantle-derived ultramafic to mafic magmas, 

and its composition thus reflects the composition of the mantle source region (e.g., 

Bowen and Schairer, 1935; Roeder and Emslie, 1970; Sato, 1977; Hart and Davis, 1978). 

After Bowen and Schairer (1935) experimentally defined the phase boundaries of the 

FeO-MgO-SiO2 system (Fig.1.4), Roeder and Emslie (1970) experimentally developed 

and empirically calibrated the Fe-Mg exchange equilibrium (equilibrium constant Kd) 

between olivine and silicate liquid that now allows quantification of the temperature and 

the composition of a parental melt in equilibrium with crystallizing olivine. This is a key 

constraint in any model of (basaltic) magma petrogenesis (e.g., Pearce, 1978; Thomson 

and Maclennan, 2013, and references therein). This discovery has thus become a 

cornerstone in igneous petrology (Canil et al., 2001), even though its established Fe-Mg 

Kd value of 0.3 (±0.03; Roeder and Emslie, 1970) is now known to vary with changes in 

pressure, temperature, melt composition, melt polymerization and oxygen fugacity (e.g., 

Putirka, 2008; Thomson and Maclennan, 2013). However, because of its wide application 

in basalt petrogenesis and upper mantle evolution, the Fe-Mg exchange has been further 

implemented by numerous olivine-liquid trace element partitioning studies (e.g., Häkli 
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and Wright, 1967; Duke, 1976; Sato, 1977; Colson et al., 1988; Beattie et al., 1991; 

Snyder and Carmichael, 1992; Beattie, 1994; Gaetani and Grove, 1997; Taura et al., 

1998; Zanetti et al., 2004; Bédard, 2005; Grant and Wood, 2010; DeHoog et al., 2010). 

These are either applied to refine the composition of the upper mantle source region (e.g., 

Sato, 1977; Hart and Davis, 1978; O’Reilly et al., 1997; Canil and Fedortchouk, 2001; 

DeHoog et al., 2010), to characterize the input of recycled crustal material into the mantle 

to decipher mantle heterogeneity (e.g., Sobolev et al., 2007; Herzberg et al., 2013), or to 

monitor thermobarometric constraints (e.g., Häkli and Wright, 1967; Köhler and Brey, 

1990; Falloon et al., 2007; Putirka, 2008). Other applications however, focus on the 

petrogenesis of extraterrestrial bodies, such as the crustal evolution of the Moon and the 

fractionation of the lunar magma ocean (e.g., Papike et al., 2005; Shearer et al., 2006; 

Hagerty et al., 2006; Filiberto et al., 2009; Longhi et al., 2010), or study core formation 

and early differentiation events of the terrestrial planets by the partitioning of siderophile 

elements between olivine and silicate (or immiscible sulfide-metal) melt(s) (e.g., Gaetani 

and Grove, 1997; Holzheid et al., 1997; Holzheid and Grove, 2005).  

The trace element partitioning between olivine and silicate melt is not only attributable to 

the composition (and other intensive parameters) of the parental melt, but is also very 

sensitive to sulfide saturation and the fractionation of a sulfide liquid (e.g., Clark and 

Naldrett, 1972; Hart and Davis, 1978; Rajamani and Naldrett, 1978; Fleet et al., 1981; 

Fleet and McRae, 1983; Li et al., 2003b). This process is critical during the formation of a 

Ni-Cu sulfide deposit and is reflected primarily in a Ni-depletion of olivine (e.g., 

Lightfoot et al., 1984; Li and Naldrett, 1999; Li et al., 2000). 
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Fig. 1.2: “Ideal” forsterite-fayalite structure parallel to (100) plane. 4-fold coordinated tetrahedral sites are 

marked as T, and 6-fold coordinated octahedral sites as M(1) and M(2). Mg-Fe atoms are distributed almost 

randomly between both sites (ordering is temperature-dependent; Zanetti et al., 2004). Bond distances (in 

Å) are indicated by black lines, and increase from forsterite to fayalite. Images were generated using 

CrystalMaker®. 
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Although the olivine trace element chemistry and partitioning behavior is successfully 

applied in mantle-petrology and basalt petrogenesis, it has never been fully utilized in an 

economic geology framework, or as a geochemical exploration tool (“fertility indicator”). 

This might partly be because most trace element concentrations in olivine are extremely 

low (less than 10 ppm) and thus not detectable with EPMA, and barely quantifiable even 

with more sophisticated analytical instruments such as laser ablation-inductively coupled 

plasma-mass spectrometry (LA-ICP-MS) or SIMS. 

 

Fig. 1.3: A) Olivine quadrilateral (after Papike et al., 2005) and the most common solid solutions in their 

respective geological environment. B) Site preferences for common trace elements in the olivine structure 

as a function of ionic radius and valence state (and coordination numbers) (after DeHoog et al., 2010).
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Fig. 1.4: Phase diagram of the MgO-SiO2 system (after Bowen and Schairer, 1935). Given a SiO2 melt 

content between circa 43 to 61 wt.%, olivine crystallizes (equilibrium crystallization) until around 1550°C, 

before it reacts with the liquid to form a MgSiO3 pyroxene (e.g. clinoenstatite).  

 

Although advances have been made in the use of SIMS in olivine analyses (e.g., Shimizu 

et al., 1978; Reed et al., 1979; Steele et al., 1981; Shimizu and Hart, 1982; Weinbruch et 

al., 1993; Taura et al., 1998; Ito et al., 1999; Ottolini et al., 2002; Lehmann, 2003; De 

Hoog et al., 2010), the application is still severely limited to Mg-rich compositions (as 

found in mantle xenoliths and ultramafic rocks), because analytical difficulties (namely 

isobaric interferences and matrix effects; Shimizu and Hart, 1982 and references therein) 

considerably bias the quantification of more fayalitic olivine. Fe-rich compositions (Fo40 

to Fo75), however, are dominant in many economic Ni-Cu sulfide deposits associated with 
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more evolved mafic rocks (especially Voisey’s Bay, Duluth Complex, etc.; e.g., Lightfoot 

and Naldrett, 1999; Ripley et al., 2007). Therefore, a specifically designed SIMS 

analytical approach that copes with these limitations was developed and successfully 

applied in this thesis and is described in detail in Chapter 2. It utilizes the major strengths 

of the SIMS, namely the high sensitivity and the high spatial resolution (e.g., Shimizu and 

Hart, 1982; Stern, 2009). 

 

1.4. The Analytical Strengths of Secondary Ion Mass Spectrometry 

(SIMS)  

In geological applications the SIMS technique is primarily used for trace element and 

(light) stable isotope analyses (e.g., Shimizu et al., 1978; Shimizu and Hart, 1982; 

Williams, 1985; Reed, 1989; Hinton, 1990; Stern, 2009, and references therein). For this 

thesis, the small geometry Cameca IMS 4f instrument (schematics in Fig.1.5) located at 

Memorial University’s CREAIT MAF IIC facility in the Bruneau Centre for Research 

and Innovation was used for all presented olivine analyses. The analytical setup and 

instrument parameters are described in detail in Chapter 2. A brief description of the 

fundamental concepts of the SIMS technique is given here to supplement the information 

in Chapter 2. 

The “modern” SIMS instrument design, such as the Cameca IMS 4f (now 7f), has been 

diversely applied in geochemistry and cosmochemistry since the initial development of 

the first commercial SIMS in the mid-1960’s. The need to conduct mass spectrometry at a 
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very high spatial resolution (micrometer-scale), combined with a high sensitivity for a 

wide range of elements, was partly motivated by NASA’s lunar program (Stern, 2009 and 

references therein). As a consequence of the inherently low analytical backgrounds of the 

SIMS technique, very low detection limits can be achieved. Since then, many studies 

have improved and advanced the field of SIMS analyses and detailed reviews of 

geological applications, basic concepts, and instrumental aspects were presented by 

Shimizu et al. (1978), Shimizu and Hart (1982), Williams (1985), Benninghoven et al. 

(1987), Reed (1989), Hinton (1990), and most recently by Stern (2009).  

Briefly, the fundamental process in SIMS analyses is the bombardment of a solid 

(polycomponent) sample by an energetic primary ion beam (here O
-
 with 10 keV) that 

generates secondary ions through a “collision cascade” in the upper atomic layers of the 

target matrix. Particles that are subsequently ejected from the solid surface in a process 

known as “sputtering” (Fig.1.6) are mostly neutral. However, a small fraction of the 

released material (around 0.1 to 10%; e.g., Williams, 1985; Stern, 2009) is ionized, 

accelerated by a high secondary potential (here 4.5 keV) and then extracted towards the 

mass spectrometer. Electrostatic and magnetic analyzers subsequently separate the ions 

based on their mass/charge ratio (m/z), before they are finally counted in an ion detector 

(here electron-multiplier). In an interference- and fractionation-free environment, this 

measured ion fraction reflects the chemical composition of the (solid) sample and further 

quantification of the actual element content can then be achieved by correlating the 

measured unknown element ratio (here normalized on 
30

Si
+
) with the same ratio in a 

reference material of known composition (e.g., Shimizu and Hart, 1982; Stern, 2009). 
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Relating these secondary ion intensities to the actual element abundances is a critical step 

in SIMS data reduction and requires the use of well-characterized reference materials of 

comparable composition to the unknown sample for empirical calibration of instrumental 

bias (e.g., Shimizu et al., 1978; Shimizu and Hart, 1982; Williams, 1985; Hinton, 1990; 

Stern, 2009, and references therein). The primary bias results from the sputtering process 

and the secondary ion specificity. 

 

Fig. 1.5: Schematic illustration of the Cameca IMS 4f instrument. Key components are illustrated, as well 

as the approximate position of key lenses, slits and apertures. 
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Fig. 1.6: Depiction of the sputtering process at the atomic scale. An inclined primary ion beam (O
-
 ions) 

penetrates the solid surface and produces a collision cascade in the upper atomic layers of the sample 

(knock-on effects indicated by white arrows). Sputtered material (neutral and charged atoms, molecules, 

dimers etc.) is ejected from the implanted and structurally damaged upper layers and subsequently extracted 

towards the secondary column (after Stern, 2009). 
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Since sputtered particles also include more complex molecular ion species (Fig.1.6; 

oxides, hydroxides, dimers, etc.) the resulting “isobaric interferences” on the desired 

monatomic ions can seriously influence the secondary ion mass spectra and hence the 

final quantification (e.g., Shimizu et al., 1978; Shimizu and Hart, 1982; Williams, 1985; 

Hinton, 1990; Stern, 2009). Two different techniques (or a combination of both) are most 

commonly applied to reduce or completely eliminate isobaric interferences:  

1) energy filtering, which is applied in this study, exploits the fact that molecular ions 

(lower high-energy component) and monatomic ions (higher high-energy component) 

have distinctively different energy distributions, so that molecular ion species can be 

discriminated by accepting only the high-energy monatomic secondary ions (e.g., 

Shimizu et al., 1978; Reed, 1989), 

2) high mass resolution (mass-to-base-width ratio or M/M, commonly at 10% peak 

intensity; e.g., Shimizu et al., 1978; Shimizu and Hart, 1982; Stern, 2009) separates 

ion species based on incremental differences in their masses.  

However, both methods work at the expense of the secondary ion intensity, because 

energy filtering reduces the secondary ion energy and high mass resolution drastically 

reduces ion transmission. The latter limitation was largely resolved by the introduction of 

large geometry sensitive high resolution ion microprobes, such as the SHRIMP (now 

SHRIMP II) and the Cameca IMS 1270 (now 1280), which revolutionized in-situ U–Pb 

geochronology of accessory minerals (Stern, 2009 and references therein). In spite of this, 

for the small geometry Cameca IMS 4f instrument, a combination of low mass resolution 

(mass resolving power; MRP of ~350) and element-dependent energy filtering (at –80 eV 



P a g e  | 23 

 

 

and –105 eV) is capable of effectively eliminating most isobaric interferences on major 

and trace elements by measuring only ions with high kinetic energy (e.g., Shimizu et al., 

1978). In cases where isobaric interferences are persistent, noticeably affected natural 

isotopes are, if possible, omitted in favor of unaffected ones (e.g., 
60

Ni
+
 instead of 

58
Ni

+
 ~ 

58
Fe

+
). 

In addition to isobaric interferences, another complexity has hampered quantitative SIMS 

trace element analyses – the so-called “matrix effect”. Especially in a complex silicate 

matrix (e.g., olivine), the secondary ion yield of one element (e.g., Mg or Ni) can be 

enhanced as a function of the concentration of another element (here Fe in olivine). The 

secondary ion intensity therefore depends on the chemical composition of the sample 

(e.g., Shimizu and Hart, 1982 and references therein). In case of olivine, several SIMS 

studies (e.g., Shimizu et al., 1978; Reed et al., 1979; Steele et al., 1981; Weinbruch et al., 

1993; Lehmann, 2003, and references therein), were unfortunately performed only on a 

limited range of olivine compositions (Fo90 to Fo75), noted that the ionization of Mg and 

Ni is enhanced as a function of increasing Fe content. Even though no universal physico-

chemical or crystallographic explanation is established to date for the interaction and 

(enhanced) ionization between the different components in olivine, SIMS analyses of a 

set of chemically well-characterized olivine reference materials covering the forsterite-

fayalite solid solution should adequately describe and accommodate this matrix effect, 

and yield high-quality major and trace element data. However, virtually no SIMS data 

exist for many trace elements spanning the complete olivine solid solution, let alone 

accurately defined and accessible forsterite-fayalite reference materials, since the scope of 
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most petrological studies are on selected minor elements in high-Mg mantle olivine 

(~Fo90). As a result, determination of accurate and precise major and trace element data in 

compositionally diverse olivine is a challenging task. As a prerequisite for addressing the 

questions raised in this thesis, it was necessary to develop a comprehensively applicable 

SIMS analytical protocol that fully characterizes and successfully copes with the matrix 

effect in high-Fe olivine (Chapter 2). 
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Abstract 

Trace element analysis of olivine by Secondary Ion Mass Spectrometry (SIMS) may be 

strongly biased by major element matrix effects as composition varies between the 

forsterite and fayalite end-members, especially for the elements Mn, Co, Ni, Cu and Zn. 

This necessitates a more detailed procedure of multi-reference material calibration and 

sequential data reduction to provide accurate quantitative trace element analysis. 

In this study, seven compositionally divergent olivine (Fo100 to Fo0.5) were assessed as 

potential reference materials to enable an empirical calibration approach that would allow 

routine integral determination of forsterite (Fo) content along with a suite of 13 trace 

elements (Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Sr, Y, Zr). In the first step of data 

reduction, the forsterite (Fo) content of an unknown sample is extracted from a calibration 

of R
25

Mg
+
/(R

25
Mg

+
 + R

57
Fe

+
) (where R

M
X

+ 
is the intensity ratio of an analyte ion to 

30
Si

+
, 

as measured by SIMS), against accepted values for Fo for the seven reference materials, 

as originally determined by Electron Probe Microanalysis (EPMA), using a non-linear 

regression of the form y = (a + x)/(b + cx). The resulting calibrations show an excellent 

correlation (R
2
=0.999) and allow the simultaneous determination of the Fo content and 

the concentrations of MgO, FeO and SiO2 along with the trace elements listed above. 

Subsequently, traditional working lines (R
M

X
+
 versus accepted values for atomic weight 

ratio) and element-specific relative sensitivity factor (RSF) working curves (RSF versus 

Fo) were produced for all 13 trace elements. Analyte peaks were selected to effectively 

eliminate isobaric interferences using an energy filtering approach. Based on observed 

elemental sensitivities (relative secondary ion signal intensities), two major groupings 
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were established: Group  elements (
40

Ca
++

, 
51

V
+
, 

52
Cr

+
, 

55
Mn

+
, 

59
Co

+
, 

60
Ni

+
, 

63
Cu

+
, 

66
Zn

+
) 

generally yield relatively high secondary ion (SI) intensities from natural olivine and 

exhibit good precisions and homogeneities and, consequently, very good working line 

correlations. Group  elements (
45

Sc
++

, 
47

Ti
+
, 

88
Sr

+
, 

89
Y

+
, 

90
Zr

+
) have low SI signals in the 

natural olivine studied and quantification was based on conventional working lines 

derived from one natural olivine reference material (usually San Carlos olivine) combined 

with NIST 610 and 612 glass reference materials. 

Even though traditional working lines for many of the elements studied display near 

linear relationships, plots of RSF values versus Fo content revealed significant variations 

with olivine composition. This effect was particularly pronounced for Mn, Co, Ni, and 

Zn. RSF-based working lines for those elements yield polynomial regressions with good 

correlations (R
2
 ≥0.986). However, when the major element content is included explicitly 

in the regression calculation, strong linear correlations (R
2
 ≥0.983) appear between RSF 

and expressions of the form (aSiO2 + bMgO + cFeO). Thus, for elements with significant 

matrix effects related to Fo content, considering all three major elemental components in 

olivine improves the total co-variation compared to utilizing only the Fo content (MgO-

FeO); this consequently enables an equally precise quantification of the trace elements 

over the complete range of olivine compositions. 

Comparison of SIMS vs. EPMA was performed using highly homogeneous mantle 

olivine (Fo90) from a garnet-peridotite (Western Gneiss Region, Norway) and more 

compositionally variable olivine (Fo74–89) from a volcanic ash deposit (2010 

Eyjafjallajökull eruption, Iceland). SIMS determinations of Fo, Ni and Mn compared 
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accurately with those by EPMA – with SIMS providing a substantially improved 

precision for Mn and Ni, particularly for concentrations below 200 ppm, and a detection 

limit of ≤1 ppm for Ni. A specific goal of this technique development was to ensure that 

SIMS analyses do not produce artifact trends when the data are interpreted using standard 

plots of trace element composition against Fo. 

The capability of SIMS for precise quantification of Fo, Ni, and an extended set of trace 

elements is particularly valuable in studies where olivine Fo compositions vary over a 

large range. For example, those pertaining to melt evolution in magmatic Ni-Cu-Co 

deposits.  

 

Keywords: olivine, SIMS, ion microprobe, reference material, relative sensitivity factor, 

matrix effect 
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2.1. Introduction 

Olivine (Mg,Fe)2[SiO4] is one of the most abundant minerals on Earth, as well as the 

dominant phase in the upper mantle. The understanding of its geochemical behavior is 

vital in deciphering the complexity of mantle and basalt petrogenesis (e.g., Roeder and 

Emslie, 1970; Sato, 1977; Frey et al., 1978; Zanetti et al., 2004; Bédard, 2005; Sobolev et 

al., 2007; De Hoog et al., 2010; Thompson and Maclennan, 2013) and as a petrogenetic 

tracer of a variety of ore-forming processes, especially during the formation of Ni-Cu-Co 

sulfide deposits (e.g., Li and Naldrett, 1999; Li et al., 2000, 2003; Maier et al., 2010). 

Although the fundamental mineralogy and the major phase transitions in the FeO-MgO-

SiO2 system were thoroughly documented during the mid-20
th

 century (e.g., Bowen and 

Schairer, 1935; Roeder and Emslie, 1970), the detailed study of multi-trace element 

distribution and partitioning behavior in olivine has only more recently emerged (e.g., 

Colson et al., 1988; Beattie et al., 1991; Snyder and Carmichael, 1992; Beattie, 1994; 

Gaetani and Grove, 1997; Taura et al., 1998; Ito et al., 1999; Zanetti et al., 2004; Lee et 

al., 2007; Grant and Wood, 2010; De Hoog et al., 2010). This is in part due to continuing 

advances in microanalytical techniques, such as Secondary Ion Mass Spectrometry 

(SIMS), which routinely allows in-situ detection and quantification of trace elements in 

solid materials with ppb sensitivity and high spatial resolution (e.g., Shimizu et al., 1978; 

Reed et al., 1979; Steele et al., 1981; Shimizu and Hart, 1982b; Yurimoto et al., 1989; 

Hinton, 1990; Jones and Layne, 1997; Shimizu, 2000; Hervig et al., 2006; Stern, 2009). 

In contrast to Electron Probe Microanalysis (EPMA), which only enables detection of 
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major elements and limited minor elements (Ca, Ni, Mn) in olivine, SIMS can provide the 

capability to analyze a combination of major and trace elements in one analytical step.  

Due to its importance as a proxy for petrological processes in the upper mantle, many 

SIMS studies have exclusively focused on olivine in the restricted compositional range of 

Fo89 to Fo94 (e.g., Sato, 1977; Kurosawa et al., 1992; Weinbruch et al., 1993; Taura et al., 

1998; Ito et al., 1999; De Hoog et al., 2010). A small number of studies have presented 

limited trace element data for more fayalitic olivine (<Fo70) (e.g., Reed et al., 1979; Steele 

et al., 1981; Weinbruch et al., 1993). Despite their common occurrence in many mafic 

and Fe-rich felsic rocks and their importance to ore-forming processes (e.g., Li and 

Naldrett, 1999; Li et al., 2000), less effort has been invested in characterizing appropriate 

olivine reference materials for less forsteritic compositions, and developing a SIMS 

procedure for systems with wide variation in olivine Fo content. Unlike many rock-

forming silicate minerals, for instance pyroxene (e.g., Shimizu et al., 1978; Shimizu and 

Hart, 1982b; Jones and Layne, 1997), the quantification of SIMS analyses of trace 

elements in olivine is complicated by substantial matrix effects (Shimizu et al., 1978; 

Reed et al., 1979; Steele et al., 1981; Shimizu and Hart, 1982b, Weinbruch et al., 1993; 

Lehmann, 2003), as secondary ion yields for several important elements vary 

considerably with major chemical composition of the olivine – an effect that has further 

hampered the development of validated reference data for less forsteritic olivine. These 

effects also have the potential to induce false trends in trace element versus major element 

(or Fo) plots for olivine if not properly calibrated and corrected. Our study presents an 

improved analytical approach for quantifying both Fo content and an extended suite of 13 
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trace elements simultaneously in compositionally variable olivine, using SIMS 

microanalysis.  

 

2.2. Experimental Procedure 

2.2.1. Reference Material (RM) Characterization 

The quality of SIMS trace element analyses, especially of notoriously trace element-poor 

minerals like olivine, depends intimately on the selection and characterization of suitable 

reference materials (RM). SIMS studies have shown that olivine analyses, specifically, 

are highly influenced and often biased by matrix effects (“chemical fractionation of a 

secondary ion (SI) population relative to the (solid) sample”; Shimizu, 2000) (Shimizu et 

al., 1978; Reed et al., 1979; Steele et al., 1981; Shimizu and Hart 1982b). In the case of 

olivine, SI yields of Mg, Fe and Ni especially have been previously documented as prone 

to, and strongly impacted by, matrix effects (Shimizu et al., 1978; Reed et al., 1979; 

Steele et al., 1981; Shimizu and Hart, 1982b; Weinbruch et al., 1993; Lehmann, 2003 and 

references therein). Therefore, well-characterized RM with matrix compositions spanning 

those of the unknowns are essential in determining accurate element concentrations 

(Weinbruch et al., 1993; Stern, 2009). However, many SIMS studies focusing on trace 

element distribution in olivine only use basaltic glass or the NIST 600-series glasses (e.g., 

Pearce et al., 1997) along with only one natural olivine RM (mantle olivine, usually from 

San Carlos, Arizona) for empirical calibration (e.g., Kurosawa et al., 1992; Taura et al., 

1998; Bell et al., 2009; De Hoog et al., 2010). While this is a reasonable approach for the 
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study of trace elements in exclusively high-Mg olivine, it is not adequate for a more 

extensive range of lower-Mg/higher-Fe olivine, where this strategy could potentially 

produce artifact trends in trace element versus Fo correlations. Despite the analytical and 

empirical uncertainties that are known to complicate olivine SIMS measurements, no 

attempt has been made so far to overcome them with a set of well-characterized olivine 

RM that cover the complete Mg-Fe compositional range. 

To establish serviceable SIMS olivine RM, we used compositionally homogeneous 

olivine ranging between Fo100.0 and Fo0.5. Some are well-characterized olivine mantle 

xenolith occurrences (San Carlos and Kilbourne Hole; Weinbruch et al., 1993; Taura et 

al., 1998; Bell et al., 2009; De Hoog et al., 2010; Grant and Wood, 2010). Others (see 

Table 2.1) were thoroughly tested and characterized during this study, for the purpose of 

serving as potential RM for less forsteritic olivine. 

Characterization of 7 olivine RM (Table 2.1) was carried out using three independent 

analytical techniques: EPMA was used to determine the major element content and to 

verify major element homogeneity at a micrometer scale for all selected olivine RM. A 

suite of 13 minor and trace elements was then analyzed with solution ICP-MS and ICP-

OES techniques (Table 2.1) on replicate small samples. SIMS microanalyses were then 

performed in several sessions, between July 2009 and March 2011. 
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Table 2.1: Chemical composition of potential olivine reference materials 

Sample Code Ol-1 (EPMA) Ol-1 Ol-2 Ol-2 Ol-3 Ol-3 Ol-4 Ol-4 Ol-5 Ol-5 Ol-6 Ol-6 Ol-7 Ol-7

Location SanCarlos RedSea Kilbourne H Tanzanion Fo55 Tasisuak L. Lyon Mtn. Fayalite

(n=  ) 20
x

1s y 20 1s 30 1s 20 1s 40 1s 32 1s 3 1s ideal

wt.%

   MgO   48.34 0.31 49.47 0.14 49.23 0.54 56.66 0.13 24.71 0.20 2.42 0.09 0.20 0.01

   SiO2  40.48 0.12 40.61 0.12 40.49 0.20 42.44 0.10 35.45 0.23 30.36 0.24 29.23 0.17 29.49

   CaO   0.08 0.01 0.07 0.01 0.07 0.02 bdl 0.09 0.17 0.05 0.02 0.05 0.01

   Cr2O3 0.02 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

   TiO2  0.01 0.01 bdl bdl bdl bdl 0.02

   MnO   0.15 0.01 0.13 0.01 0.14 0.01 bdl 0.53 0.02 1.04 0.05 2.04 0.03

   FeO   10.77 0.06 9.29 0.06 9.67 0.65 0.01 0.01 39.77 0.22 67.59 0.25 68.35 0.65 70.51

   NiO   0.37 0.02 0.38 0.03 0.37 0.02 0.01 0.01 0.11 0.02

Total 99.19 0.55 99.98 0.38 99.98 1.45 99.13 0.25 100.42 0.86 101.47 0.67 99.91 0.88 100.00

ppm

   Mg 291555 1864 298351 858 296878 3258 341719 784 149045 1177 14595 550 1227 79

   Si  189229 540 189837 553 189256 922 198384 467 165721 1078 141915 1114 136635 1049 137848

   Ca  580 82 492 50 475 128 25 40 624 1230 369 158 353 62

   Cr 148 74 128 71 109 91 45 41 37 47 53 86 61 67

   Ti 42 72 29 51 24 51 16 35 17 29 135

   Mn 1195 106 1039 108 1055 110 22 41 4094 130 8054 397 15833 169

   Fe   83737 476 72204 456 75181 5014 48 64 309113 1713 525384 1975 531287 3892 548081

   Ni 2927 167 2987 203 2943 173 53 69 892 175

# of ions
1

Mg
2+

1.772 0.011 1.807 0.005 1.801 0.020 1.995 0.005 1.037 0.008 0.118 0.004 0.010 0.001

Ca
2+

0.002 0.000 0.002 0.000 0.002 0.001 0.003 0.005 0.002 0.001 0.002 0.000

Cr
2+

Mn
2+

0.003 0.000 0.003 0.000 0.003 0.000 0.013 0.000 0.029 0.001 0.059 0.001

Fe
2+

0.223 0.001 0.190 0.001 0.199 0.013 0.939 0.005 1.856 0.007 1.942 0.018 2.000

Ni
2+

0.007 0.000 0.007 0.001 0.007 0.000 0.003 0.001

[Y ]
6

2.007 0.014 2.009 0.008 2.012 0.034 1.995 0.005 1.993 0.020 2.005 0.014 2.012 0.020 2.000

Si
4+

0.996 0.003 0.995 0.003 0.994 0.005 1.002 0.002 1.003 0.007 0.997 0.008 0.993 0.006 1.000

Ti
4+

0.001 0.000

Fo % 88.9 0.1 90.5 0.1 90.1 0.7 100.0 0.0 52.5 0.2 6.00 0.22 0.53 0.04 0.0

Fo # 0.89 0.00 0.90 0.00 0.90 0.01 1.00 0.00 0.52 0.00 0.06 0.00 0.01 0.00 0.00

x
: no. of analyses

y
: standard deviation of n analyses (1s)

1
: on the basis of 4 oxygens

ICP-MS (ppm) Ol-1 1s Ol-2 1s Ol-3 1s Ol-4 1s Ol-5 1s Ol-6 1s error (RSD %)
+

Al 205 11 175 9.0 16424 846 96.3 5.0 566 29 4681 241 5.15

Ca 2571 175 1951 132 6129 416 627 43 1769 120 3340 227 6.79

Ti 39.1 13 46.9 16 45.5 15 4.25 1.4 185 62 292 98 33.6

V 4.30 0.374 8.27 0.719 6.58 0.572 394 34 12.9 1.1 3.85 0.334 8.69

Cr 160 11 135 9.5 102 7.2 3.85 0.271 66.2 4.7 4.34 0.305 7.03

Mn 876 26 1002 30 1097 33 7.85 0.234 3929 117 8725 260 2.98

Co 134 4.4 137 4.5 138 4.5 2793 92 321 11 21.5 0.707 3.29

Ni 2890 31 2930 31 2931 31 7.60 0.081 906 9.6 5.90 0.063 1.06

Cu 4.20 2.0 4.73 2.2 2.10 1.0 3.02 1.4 106 50 4.32 2.0 47.1

Zn 64.1 3.1 51.0 2.5 49.9 2.4 5.03 0.244 221 11 2632 128 4.85

Li 1.40 0.09 1.45 0.097 2.23 0.150 17.0 1.1 9.76 0.7 25.7 1.7 6.72

Sr 0.440 0.058 0.438 0.057 1.20 0.157 0.350 0.046 1.13 0.148 0.220 0.029 13.1

Y 0.031 0.003 0.064 0.006 0.129 0.013 1.62 0.158 0.567 0.055 42.6 4.2 9.75

Zr 0.752 0.134 0.784 0.140 1.40 0.249 1.99 0.355 9.37 1.7 3.23 0.577 17.8

Nb < 0.027 0.038 0.008 0.115 0.023 0.093 0.019 0.904 0.184 0.875 0.178 20.4

Ce 0.047 0.011 0.121 0.027 0.127 0.029 0.079 0.018 0.394 0.089 19.7 4.4 22.6

Yb < 0.013  < 0.012  < 0.046 6.76 1.2 0.237 0.041 10.0 1.7 17.1

solution ICP-MS data; < below detection limit (bdl); 
 
1s relative

 
error calculated based on duplicate analyses

ICP-OES (ppm) Ol-1 1s Ol-2 1s Ol-3 1s Ol-4 1s Ol-5 1s Ol-6 1s error (RSD %)
+

Ca 633 3.8 480 2.9 22882 137 21.7 0.130 1312 7.9 3822 23 0.6

Ti < 105 156 65 548 230 < 136 154 64 101 42 42.0

V 12.7 2.8 13.7 3.0 73.5 16 618 136 29.2 6.4 12.8 2.8 22.0

Cr 216 1.3 181 1.1 1721 10 6.59 0.040 48.5 0.291 1.24 0.007 0.6

Mn 865 1.7 999 2.0 1148 2.3 7.08 0.014 3601 7.2 6960 14 0.2

Co 138 0.276 142 0.283 118 0.237 3123 6.2 343 0.686 < 19.2 0.2

Ni 3248 3.2 3314 3.3 2561 2.6 9.49 0.009 948 0.948 < 263 0.1

Cu 16.5 2.6 16.3 2.6 19.2 3.1 12.6 2.0 351 56 11.3 1.8 16.0

Zn 61.7 0.617 59.0 0.590 51.2 0.512 < 3.68 242 2.4 2522 25 1.0

Pb 65.4 1.3 73.7 1.5 81.9 1.6 < 3.73 275 5.5 471 9.4 2.0

Zr 10.2 0.203 11.0 0.221 12.9 0.257 11.7 0.234 20.5 0.411 28.4 0.567 2.0

solution ICP-OES data; < bdl; 1s relative error calculated based on duplicate analyses
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2.2.1.1. Potential RM Identified in this Study 

After characterization by EPMA, ICP-MS, ICP-OES (Table 2.1) and SIMS, the 7 tested 

olivine RM (6 natural and 1 synthetic) were found sufficiently homogeneous for use in 

this study: 

Ol-1: Fo89, San Carlos, Arizona, USA (e.g., De Hoog et al., 2010; Spandler and O’Neill, 

2010). 

Ol-2: Fo90, Zabargad Island, Red Sea, Egypt (see Brooker et al., 2004).  

Ol-3: Fo90, Kilbourne Hole, New Mexico, USA (e.g., Lee et al., 2007; Grant and Wood, 

2010). 

Ol-4: Fo100 (Synthetic), Co doped, (Tanzanion™). 

Ol-5: Fo52, Gabbro, location unknown, Mineral collection of Memorial University. 

Ol-6: Fo6, Nain Plutonic Suite (Tasisuak Lake), Labrador, Canada (courtesy of B. Ryan, 

GSNL). 

Ol-7: Fo0.5, Lyon Mountain Granite, New York, USA (courtesy of P. Valley, USGS). 

 

2.2.2. Electron Probe Microanalysis (EPMA) 

Major and minor elements (SiO2, TiO2, Cr2O3, FeOT, MnO, MgO, CaO, NiO) for all RM 

were measured in two different sessions with a JEOL JXA 8900 Superprobe at the 

Department of Mineralogy at the University of Münster, Germany. The instrument was 

operated with an accelerating voltage of 15 kV, a beam current of 15 nA using 

wavelength-dispersive (WD) spectrometry. The samples were handpicked single-crystals 
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embedded in epoxy resin. The mounts were polished to a standard petrographic finish and 

then cleaned and carbon coated. Measurements of 20 to 40 spots were conducted along 

the longitudinal and lateral axes of individual olivine grains in order to determine their 

homogeneity. Typical detection limits (ppm) were as follows: MgO, 145; SiO2, 185; CaO, 

194; Cr2O3, 240; MnO, 245; FeO, 271; NiO, 236. Concentrations were calculated using 

the ZAF correction method. Data are given in Table 2.1. 

For the purpose of inter-technique comparison, quantitative analyses of additional 

“unknown” olivine test samples were obtained with a CAMECA SX100 Electron Probe 

Micro Analyzer at the Department of Geosciences at the University of Oslo, Norway. 

Measurements included MgO, SiO2, Cr2O3, MnO, FeO, and NiO. Typical detection limits 

for Cr, Mn and Ni were 400–650 ppm. The analytical setup and standardization is 

described in Plümper et al. (2012). Data are given in Table 2.5. 

 

2.2.3. Solution ICP-MS and ICP-OES 

Trace elements were also measured with routine ICP-MS and ICP-OES solution 

techniques. Between 0.4 g and 1.0 g of 6 different olivine crystals (Ol-1 to Ol-6) were 

handpicked and checked for inclusions and other impurities under a reflected-light 

microscope. Ol-7 was only measured with EPMA due to small grain sizes and local 

intergrowth with other mineral phases. Material from Ol-5 and Ol-6 was harvested 

through surface drilling with a NewWave Research MicroMill sampling system to ensure 

highest possible purity. Subsequently, samples were acid digested in HF-HNO3 and 

diluted in an aqueous solution to appropriate elemental concentrations before they were 
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measured with standard ICP-MS (Jenner et al., 1990) and ICP-OES (Navarro et al., 2002) 

methods, provided at the Department of Earth Sciences and the CREAIT MAF-IIC 

microanalysis facility at Memorial University of Newfoundland. Data are given in Table 

2.1. 

 

2.2.4. Secondary Ion Mass Spectrometry (SIMS) 

After characterization of the potential olivine RM, major and trace element analyses were 

performed by SIMS using a CAMECA IMS 4f instrument with improved primary lensing 

and detection systems (Memorial University MAF-IIC microanalysis facility). The grain 

mounts used for EPMA characterization were re-polished, cleaned and sputter coated 

with a 30–50 nm layer of gold to minimize charging of the sample during analysis. A 

primary beam of O
-
 ions, accelerated through a nominal potential of 10 kV and providing 

a current of 15–25 nA, was electrostatically focused into a 30 to 40 m diameter spot on 

the sample. A combination of the 150 m image field setting of the Transfer Lens optics 

and a physical Field Aperture (FA) of 750 m limited the effective Field of View of the 

sample to a 68 m diameter. A 250 m Contrast Aperture (CA) was used, with the 

Entrance Slit narrowed to impinge on the CA image slightly, increasing the effective 

mass resolving power (MRP) (M/M) to >350. 

Each analysis comprised at least 10 cycles of counting on peaks that included 
40

Ca
++

, 

45
Sc

++
, 

25
Mg

+
, 

30
Si

+
, 

47
Ti

+ 
(
48

Ti
+
, 

49
Ti

+
), 

51
V

+
, 

52
Cr

+
 (

53
Cr

+
), 

55
Mn

+
, 

57
Fe

+ 
(
54

Fe
+
), 

59
Co

+
, 

60
Ni

+
 (

61
Ni

+
, 

62
Ni

+
), 

63
Cu

+ 
(
65

Cu
+
), 

66
Zn

+
, 

88
Sr

+
, 

89
Y

+
, 

90
Zr

+
 (

92
Zr

+
) plus counting on a 

background position (usually 19.67 Da) to monitor detection noise. Very low abundance 
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elements were measured for at least 6–10 s per cycle, whereas major elements (and 

background) and first row transition metals were measured for 2 and 6 s per cycle, 

respectively. Total acquisition time for each trial spot was thus 16–20 minutes, not 

including a pre-sputtering period of 2 minutes with a slightly rastered beam to eliminate 

surface contamination. Each individual cycle was monitored to detect any obvious 

inhomogeneities resulting from the primary beam sputtering micro-inclusions with 

advancing depth in the sample; such outlier cycles were rejected during initial reduction 

of the data. 

Secondary ions (SI) were energy filtered (Shimizu et al., 1978; Ottolini et al., 1993, 2000; 

Hervig et al., 2006) by applying a voltage offset to the nominal +4500 V sample 

accelerating voltage: –105 V for elements with atomic mass 66 Da (i.e., 
66

Zn) and –80 V 

for elements with atomic mass >66 Da. This was combined with an energy window of 

±60 eV to suppress isobaric interferences, and potentially reduce (Fe-dependent) matrix 

effects (Lehmann, 2003), by preferentially selecting higher-energy SI. Energy filtering is 

at times unable to effectively eliminate (major) molecular ion interferences, depending on 

the concentrations of certain contributing major or minor elements relative to those of the 

trace elements of interest. Hervig et al (2006), for example, noted several potential 

interferences relevant to this study, in particular, 
48

Ti
+
 by 

48
Ca

+
, (

24
Mg2

+
), 

56
Fe

+ 
by

 28
Si2

+
, 

51
V

+
 by 

25
Mg

26
Mg

+
, 

52
Cr

+
 by 

26
Mg2

+
, 

60
Ni

+
 by 

30
Si2

+
 and 

90
Zr

+
 by 

58
Ni

16
O2

+
. The transition 

metal isotopes in the mass range of 55 Da (Mn) to 66 Da (Zn) are especially susceptible 

to persistent molecular interferences from olivine major element species (Mg-Si-Fe; 

Table 2.2). Therefore, a major initial part of this study comprised an assessment of 
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important isobaric interferences that might affect accurate determinations of the elements 

studied. 

Table 2.2: Potential isobaric interferences on SIMS analytical peaks 

 

 

Secondary ions were counted with an ETP 133H electron multiplier operated in pulse-

counting mode with an overall counting system dead time of ~12 ns. Maximum count 

rates on Mg, Fe and Si were maintained at <10
6
 counts per second (cps). The background 

40
Ca

++

45
Sc

++

25
Mg

+

30
Si

+

47
Ti

+

48
Ti

+

49
Ti

+ 49 / 47 0.7272 0.7824 7.1

51
V

+

52
Cr

+

53
Cr

+ 53 / 52 0.1134 0.1477 23.2

55
Mn

+

54
Fe

+

57
Fe

+ 57 / 54 0.3625 0.3915 7.4

59
Co

+

60
Ni

+

62
Ni

+ 62 / 60 0.1386 0.1365 -1.5

63
Cu

+

65
Cu

+ 65 / 63 0.4457 0.4822 7.6

66
Zn

+

88
Sr

+

89
Y

+

90
Zr

+

92
Zr

+ 92 / 90 0.3330 0.4228 21.2

*: accepted Heavy / Light isotope ratio (natural abundance)

x
: mean SIMS Heavy / Light isotope ratio

y
: relative deviation (%) of SIMS H / L ratio from accepted H / L ratio

preferred analyte for polyisotopic elements are italiced and boldface; tested in Fig. 2.1 and 2.2

H / L
*           

accpt ratio

relative
y         

  H / L (%)

57
Fe

16
O2

+

58
Ni

16
O2

+
,
 45

Sc2
+

none

none

H / L
x         

SIMS ratio

isotope 

pair used

none

none

none

56
Fe

18
O2

+

25
Mg

26
Mg

+

26
Mg

29
Si

+
, 

25
Mg

30
Si

+

none

none

29
Si

18
O

+
, 

23
Na

24
Mg

+ none

isotope potential interferences
assumed significant 

interferences

47
Ti

16
O

+
,
 62

NiH
+

25
Mg

26
Mg

+

26
Mg2

+
, 

24
Mg

28
Si

+

26
Mg

29
Si

+
, 

25
Mg

30
Si

+

56
FeH

+
, 

25
Mg

16
O2

+
, 

28
Si

29
Si

+

none

49
Ti

16
O

+
,
 24

Mg
25

Mg
16

O
+ 24

Mg
25

Mg
16

O
+

46
Ca2

+
,
 60

Ni
16

O2
+
, 

46
Ti

2+
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56
Fe

18
O2

+

48
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+
,
 24

Mg2
+

24
Mg2H

+
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24
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25
Mg

+

50
Ti

16
O

+
, 

50
Cr

16
O

+
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none

56
Fe

16
O2

+
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none

29
Si

30
Si

+

26
Mg2

+
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24
Mg

28
Si

+

26
Mg2H

+
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25
Mg

28
Si

+
, 

24
Mg

29
Si

+

24
Mg2

+

24
Mg2H

+
, 

24
Mg

25
Mg

+
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FeH

+
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27
Al2

+
,
 24
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Si
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27
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16
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+
,
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16
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+
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29
Si

30
Si

+
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Si2
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16
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Si

16
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+
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29
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+
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26
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,
 30

Si
16

O2
+
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signal (“dark noise”) of the electron multiplier was typically lower than 1 count per 

minute. Calculated optimum detection limits were assessed following the procedure of 

Jones and Layne (1997). In our case, a synthetic background signal of 1 count per minute, 

plus two times the estimated standard deviation (2s; essentially ±1 count per minute), 

was used to calculate detection limits for 10 cycles of analysis. Typical detection limits 

(interference-free environment) calculated based on analyses of San Carlos olivine ranged 

from less than 5 ppb for V, Cr, Mn, Cu, Sr, Y, Zr to 10–40 ppb for Ca, Ti, Co, and Ni to 

circa 90 ppb for Sc and Zn (Table 2.3). 

 

2.3. Detailed Analytical Considerations 

The two major factors affecting the accuracy of elemental determinations by SIMS are; 1) 

isobaric interferences, mainly due to polyatomic ion species (dimers, oxides, hydrides 

etc.), which can significantly influence the apparent SI signals of the monatomic ion 

species generally selected as analytes (e.g., Shimizu et al., 1978; Shimizu and Hart, 

1982b, Hinton, 1990; Shimizu, 2000; Hervig et al. 2006), and 2) major element matrix 

effects on SI yields. Both factors were recognized early in the study of polycomponent 

silicate materials with SIMS (cf. Shimizu et al., 1978; Reed et al., 1979; Steele et al., 

1981; Shimizu and Hart, 1982b; Weinbruch et al., 1993; Lehmann, 2003). In the case of 

olivine there are significant, sometimes non-linear, matrix effects (category 2, above) on 

several trace elements – including Cr, Co, Mn, and Zn – which have never been fully 

investigated for the natural solid solution range of this mineral. 
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Table 2.3: Average SI raw counts normalized to 
30

Si
+
 for measured trace elements in olivine RM and NIST 

glasses for analytical sessions in 2011 

 

 

2.3.1. Isobaric Interferences and Analyte Peak Selection 

Energy filtering, originally described by Shimizu et al. (1978) as “a method for 

suppressing intensities of interfering molecular ion species relative to single-atom ions 

based on the kinetic energy distribution of secondary ions” can effectively remove most 

of the isobaric interferences for the elements of interest in this study, without reducing SI 

signals below an acceptable level of precision. 

Sample Code Ol-2 Ol-3 Ol-4 Ol-5 Ol-6 Ol-7 NBS 612 NBS 610 Typical detection limits

RedSea Kilbourne H Tanzanion Fo55 Tasisuak L. Lyon Mtn. NIST glass NIST glass based on Ol-1 
30

Si
+
 c/s

(M
+
 / 

30
Si

+
) (x 10

-4
) RSFM+* (x 10

-4
) (x 10

-4
) (x 10

-4
) (x 10

-4
) (x 10

-4
) (x 10

-4
) (x 10

-4
) (x 10

-4
) (ppb)

40
Ca

++
70.3 0.00051 60.7 34.5 1.18 164.3 510.0 136.7 5190 5534 36

1 s
x

3.20 2.54 2.18 0.352 32.9 19.5 29.2 58.2 72.7
45

Sc
++

0.092 0.00016 0.162 0.283 0.579 10.5 0.904 11.1 83

1s 0.065 0.495 1.34 0.262 1.25 0.052 0.319
25

Mg
+

102322 0.00142 99202 101226 110304 88841 9868 817.7 14.3 110.5 11

1s 3474 3679 2654 3251 4469 322.1 3.15 0.488 2.39
47

Ti
+

4.89 0.00050 3.15 2.04 0.274 9.90 7.92 6.10 3.37 40.6 27

1s 0.699 0.901 0.460 0.236 6.60 1.73 0.466 0.149 1.34
51

V
+

10.1 0.00937 9.33 3.14 486.3 5.86 0.103 0.044 32.8 362.2 3

1s 1.52 0.927 0.636 21.8 3.52 0.019 0.012 1.25 18.74
52

Cr
+

238.6 0.00673 236.8 156.7 128.4 108.4 11.6 1.25 18.5 230.9 2

1s 16.0 16.9 25.5 28.0 8.01 0.657 0.487 1.03 7.47
55

Mn
+

835.8 0.00286 711.8 746.6 5.46 5956 15252 29856 20.0 233.1 4

1s 19.4 34.6 71.8 1.20 601.6 946.0 709.5 0.603 4.33
57

Fe
+

1155 0.00006 929.8 937.4 7.77 12327 22280 20384 10.7 15.6 209

1s 189 134.9 158.2 1.88 3743 3680 747 0.39 0.70
59

Co
+

70.5 0.00211 64.1 48.01 973.3 383.0 54.1 14.07 6.82 86.9 8

1s 1.68 2.11 3.90 35.3 24.4 1.21 2.35 0.593 1.98
60

Ni
+

182.1 0.00025 180.2 182.7 2.86 154.3 1.13 2.30 6.52 21.6 37

1s 4.79 2.05 4.63 2.96 8.35 0.047 2.79 0.232 0.566
63

Cu
+

3.00 0.00293 4.19 0.481 1.43 8.05 6.35 4.94 23.7 5

1s 0.693 0.805 0.127 1.56 4.10 0.717 0.318 0.661
66

Zn
+

2.77 0.00018 1.68 1.52 0.263 19.3 295.0 0.41 3.39 91

1s 0.189 0.113 0.193 0.100 1.01 3.92 0.139 0.236
88

Sr
+

0.641 0.00583 0.666 0.651 0.220 0.655 0.275 79.1 560.6 2

1s 0.217 0.157 0.072 0.074 0.198 0.056 2.40 19.6
89

Y
+

0.110 0.01418 0.157 0.104 2.76 0.417 31.8 52.7 662.8 1

1s 0.056 0.044 0.052 0.200 0.160 20.5 1.72 24.4
90

Zr
+

0.096 0.00026 0.149 0.126 0.113 0.241 0.524 21.1 258.1 4

1s 0.027 0.077 0.106 0.090 0.125 0.283 0.656 7.74
x
: standard deviation of the mean of multiple analyses in 2010-2011 (see Fig. 2.4, 2.5, and 2.7 for no. of individual analyses per session)

*: element-specific relative sensitivity factor RSF = ((IM
+
 / I

30
Si

+
)SIMS-RM x SiO2 (wt.%)) / M (ppm)ACCPT-RM; see text for discussion

Ol-1

SanCarlos



P a g e  | 52 

 

 

We evaluated multiple mass peaks of certain polyisotopic elements to assess the impact 

of potential isobaric interferences (Table 2.2) and to make the best possible selection of 

analyte mass. These were Ti (
47

Ti vs. 
48

Ti and 
49

Ti), Cr (
52

Cr vs. 
53

Cr), Fe (
54

Fe vs. 
57

Fe), 

Ni (
60

Ni vs. 
61

Ni and
 62

Ni), Cu (
63

Cu vs. 
65

Cu), Zr (
90

Zr vs. 
91

Zr, 
92

Zr, 
94

Zr, 
96

Zr). Figures 

2.1 and 2.2 illustrate that some of these peaks in selected RM olivine are strongly biased 

by interferences: especially, 
49

Ti
+
 (Fig. 2.1A), 

92
Zr

+
 (Fig. 2.2B). Others show less 

pronounced effects (
53

Cr
+
, 

65
Cu

+
; Fig.2.1B and 2.2A) or are not perceptibly influenced 

relative to the accepted natural isotope ratio and the normal magnitude of mass dependent 

fractionation predicted from previous studies such as Shimizu and Hart (1982a) (
54

Fe
+
, 

57
Fe

+
, 

60
Ni

+
, 

62
Ni

+
; Fig.2.1C–D). 

All effectively non-interfered isotopes however, should also have linear regressions with 

intercepts (within the SIMS analytical error, 2SE) at the point of origin on isotope ratio 

diagrams (Fig.2.1 and 2.2). Additionally, the SIMS SI ratio of two selected isotopes 

should match their natural isotope ratio (accepted ratio), accounting for some degree of 

preferential detection of the lighter isotope due to instrumental fractionation (not isobaric 

interferences) (Slodzian et al., 1980; Shimizu and Hart, 1982a, b), as is the case for 

62
Ni/

60
Ni (Fig.2.1D). According to Shimizu and Hart (1982a), this mass-dependent 

light/heavy (L/H) isotope fractionation is in the range of +1.5 (Cr) to +3.7 (Si) % per Da 

in pure metals and might be less in silicate minerals like olivine. An important conclusion 

of the Shimizu and Hart (1982a) study was that virtually all elements analysed by SIMS 

using O
-
 sputtering and positive secondary ion analytes show a preferential detection of 

light over heavy isotopes. 



P a g e  | 53 

 

 

SIMS trial sessions in 2010 and 2011 implied that several of the tested isotope pairs are 

indeed affected by potential molecular ion interferences. Plots of one isotope against 

another of the same element (Fig.2.1 and 2.2) are used to demonstrate the difference (%) 

from the accepted isotope ratios due to potential isobaric interferences in olivine. 

 

Fig. 2.1: Three-isotope plots for determination of potential mass interferences. Symbols on diagrams denote 

individual measurements with analytical error (2 times standard error – 2 SE). A) 
49

Ti
+
 versus 

47
Ti

+
, B) 

53
Cr

+
 versus 

52
Cr

+
, C) 

57
Fe

+
 versus 

54
Fe

+
, D) 

62
Ni

+
 versus 

60
Ni

+
. Dark grey dashed lines indicate 95% 

confidence interval. 
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Fig. 2.2: Three-isotope plots for determination of potential mass interferences. Symbols on diagrams denote 

individual measurements with analytical error (2 times standard error – 2 SE). A) 
65

Cu
+
 versus 

63
Cu

+
, B) 

92
Zr

+
 versus 

90
Zr

+
. Dark grey dashed lines indicate 95% confidence interval. 
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2.3.1.1. Observed Isobaric Interferences 

For Ti, SI yields for isotopes 48 (not shown) and 49 (Fig.2.1A) are obviously stronlgy 

biased to higher 
49

Ti
+
 in the Mg-rich (mantle olivine) RM (Ol-1 to Ol-3), whereas the 

extremely fayalitic olivine (Ol-6 and Ol-7) yield 
49

Ti/
47

Ti ratios reasonably close to the 

value expected from natural abundances – although the 7% deviation (Table 2.2) of the 

SIMS 49/47 ratio from the accepted ratio implies that the heavy isotope (
49

Ti
+
) is 

preferentially detected. This effect seems to correlate with the Mg content of olivine and 

becomes progressively less pronounced from forsteritic (Ol-1 to Ol-3), through 

intermediate (Ol-5), to fayalitic (Ol-6 and Ol-7), compositions. Therefore, a strong 

molecular interference from a persistent Mg-species (
24

Mg
25

Mg
+
, 

24
Mg2H

+
 etc.; Table 

2.2) on 
49

Ti
+
 is most likely responsible. Similar species are expected to interfere with 

48
Ti

+
. As a consequence, 

47
Ti

+
 is the preferred analyte peak for Ti, as there are no simple 

Mg-based isobaric interference possible at this mass. 

The empirical fit for the tested Cr isotopes, 52 and 53 (Fig.2.1B), suggests an isobaric 

signal contribution to 
53

Cr
+
, most pronounced in Ol-4 and Ol-5 (measured 53/52 ratio of 

0.1693 versus natural 53/52 ratio of 0.1134). Using the slope of the regression line 

incorporating all olivine RM, the relative deviation is circa 23% (Table 2.2), implying 

preferential detection of the heavy isotope, most likely through interference from 

persistent Mg- (i.e. 
26

MgH
+
) and MgSi-species (i.e. 

24
Mg

29
Si

+
 or 

25
Mg

28
Si

+
) (Table 2.2).  

Possible interferences on Fe analyte masses were examined for 
54

Fe
+
 and 

57
Fe

+
. The linear 

regression (Fig.2.1C) implied a minimum deviation of the SIMS 57/54 ratio from the 

accepted ratio of circa 7% (Table 2.2). The heavy isotope thus appears slightly enriched, 
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which is probably a result of minor signal contributions from 
25

Mg
16

O2
+
, 

28
Si2H

+
, and 

56
FeH

+
 (Table 2.2). However, the contributions from these isobaric interferences are at a 

level that produces no discernible error in the determination of Fo content using the 
57

Fe
+
 

analyte. 

Nickel has been documented as prone to substantial matrix effects in olivine (cf. Shimizu 

et al., 1978; Reed et al., 1979; Steele et al., 1981; Shimizu and Hart, 1982b; Weinbruch et 

al., 1993) but was first tested for isobaric interferences by using analyte masses 
60

Ni
+
, 

61
Ni

+
, and 

62
Ni

+
. The relative deviation of the SIMS 

62
Ni/

60
Ni ratio from the accepted 

ratio is –1.5% (Fig.2.1D; Table 2.2). This demonstrates the normally expected enhanced 

production of the light isotope relative to the heavy isotope, implying an essentially 

interference-free signal from both masses (e.g., Shimizu and Hart, 1982a). 
60

Ni
+
 was 

selected as the preferred analyte mass based on its higher isotopic abundance, and, 

quantification of the 
60

Ni
+
-based analyses return excellent correlation with EPMA results 

(see Section 4.3.). 

Determinations of 
63

Cu
+
 and 

65
Cu

+
 yield a good linear regression, with a 

65
Cu/

63
Cu ratio 

close to the natural abundance ratio (Fig.2.2A). The overall SIMS 65/63 deviation is circa 

8% (Table 2.2), which implies a minor isobaric signal contribution to 
65

Cu
+
. This is likely 

from 
64

ZnH
+
, since Zn is uniformly more abundant than Cu in the olivine studied here 

(Table 2.1). At higher masses (≥60 Da) hydride interferences are also more difficult to 

remove by energy filtering than monoxide or dimer species (Shimizu and Hart, 1982b). 

Consequently, 
63

Cu
+ 

was selected as the preferred analyte mass. 
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The 
92

Zr
+
 signal is excursively affected at the Fe-rich extreme of the olivine solid solution 

(Fig.2.2B). In the most fayalitic olivine (Ol-6 to Ol-7), the 
92

Zr
+
 signal appears 

significantly enhanced by 
56

Fe
18

O2
+
 and 

46
Ti2

+
 signal contribution. The SIMS 92/90 

deviation based only on data from Ol-1 to Ol-5 is 21% (Table 2.2), which still suggests a 

significant isobaric interference on 
92

Zr
+
. However, the 92/90 ratios determined in high-

Mg mantle olivine (e.g., Ol-1) evidence no signal contributions from possible Ni species 

isobars, such as the possible 
58

Ni
16

O2
+
 interference (Hervig et al., 2006), despite a Ni 

abundance of ~3000 ppm (and a Ni/Zr ratio of >300:1). Observations from additional test 

runs in 2011 with all five Zr isotopes confirmed empirically that no isobaric interference 

due to a Ni species is detectable in the olivine studied herein. Consequently, 
90

Zr
+
 was 

selected as the preferred analyte mass based on its higher isotopic abundance. 

In summary, based on the analytical and empirical assessments mentioned above, the 

following analytical peaks are preferred: 
47

Ti
+
, 

52
Cr

+
, 

57
Fe

+
, 

60
Ni

+
, 

63
Cu

+
, and 

90
Zr

+
. 

40
Ca

++
 

was selected as the analyte peak for Ca – to avoid the overwhelming interference by 

24
MgO

+
 on 

40
Ca

+
, and similar effects on the other singly charged Ca isotope species. 

 

2.3.2. Matrix Effects 

Shimizu et al. (1978), Steele et al. (1981) and Shimizu and Hart (1982b) recognized that 

the secondary ion (SI) yield of Mg
+
 in olivine is strongly enhanced as a function of Fe 

content. However, some minor elements are also similarly affected, and Reed et al. 

(1979) and Steele et al. (1981) observed that SI yields of Ni are also a strong function of 

the Fe content. Recently, Weinbruch et al. (1993) reiterated this observation, but only for 
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olivine within a limited compositional range (0–17 wt.% FeO; Fo100-Fo80). They 

concluded that compositional matrix effects could be neglected for analyses of Fe and 

Mn, but that Ni was very sensitive (along with Sc) – with variations of the RSFNi of about 

60% over their limited range of reported FeO contents. In this study, we report an 

increase of the RSFNi of ~139% from Ol-1 (10.71 wt.% FeO) to Ol-5 (39.66 wt.% FeO) 

(see Section 4; Fig.2.5B). In order to calibrate for these significant effects, a wide range 

of olivine composition RM is essential. 

Most of the elements studied show reasonably linear correlations on traditional working 

line plots (e.g., Ca, V and Cr in Figs.2.4A–C, respectively) – implying that their SI yields 

are substantially independent of major element matrix effects. However, several elements 

show significant degrees of curvature on plots of Relative Sensitivity Factor (RSF) 

against Fo content – i.e., Mn, Co, Ni, Cu and Zn in Figures 2.4 and 2.5 – implying a 

substantial matrix effect on SI yield. Notably, Ca was also documented as sensitive to 

matrix effects by Shimizu et al. (1978), Ottolini (2002) and Lehmann (2003), but our use 

of 
40

Ca
++

 (avoiding potential variable interference from 
24

Mg
16

O
+
) may have mitigated 

this effect. The variations in the elemental RSF values are an additional demonstration of 

the significant amplitude of the matrix effect over a range of olivine compositions (Mg-

Fe-Si). Multivariate regression (Fig.2.6) revealed good linear correlations (e.g., R
2
=0.983 

for 
60

Ni
+
; Fig.2.6D) between the elemental RSF and the major components of olivine, 

SiO2, MgO and FeO. Thus calibration with suitable RM can compensate for the matrix 

effect and enable a precise quantification of the element concentrations. This departure 

from the “conventional” calibration working line approach (e.g., as used for plagioclase, 
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garnet, clinopyroxene and silicate glass analyses by SIMS; Shimizu et al., 1978; 

Yurimoto et al., 1989; Jones and Layne, 1997; Shimizu, 2000; Lehmann, 2003) has 

previously been investigated in a preliminary fashion for some major and trace elements 

(Mg, Fe, Ni, Sc) in olivine, but not yet for the extended suite of trace elements analyzed 

in this study. Nonetheless, for comprehensive and accurate SIMS olivine study, the 

knowledge of the interaction of SI yields of “matrix-sensitive” trace elements with 

varying olivine composition is imperative. The introduction of a set of new olivine RM 

has thus the potential to expand the field of olivine trace element geochemistry with 

SIMS and make it robust for compositionally diverse suites of olivine. 

 

2.4. Results and Discussion 

SIMS olivine RM measurements were made in multiple extended sessions from 2009 to 

2011. During the sessions in 2009, we analyzed a total of 82 spots on 5 different olivine 

RM (Ol-1 to Ol-5). In 2010 we measured a total of 157 spots on 7 different olivine RM 

(Ol-1 to Ol-7) and in 2011 a total of 135 spots on 5 different olivine RM (Ol-1, Ol-2, Ol-4 

to Ol-6). The last set is considered the most appropriate olivine RM subset. 

 

2.4.1. Calculation of the Forsterite Content 

Following the empirical approach outlined in the Appendix (Chapter 6.1.), we produced a 

working line for extracting the Fo content of individual olivine and, by corollary 

calculation, the concentrations of the major elements Mg, Fe and Si. 
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The results for the Fo calibration procedure are depicted in Figure 2.3A and in Table 2.4. 

The averages of multiple (8 to 109) spot analyses of olivine analyzed throughout 2009 to 

2011 are plotted in Fig.2.3A, demonstrating excellent long term stability of the secondary 

ion ratio determinations. The relative external precision is generally better than ±1% (1s), 

with the exception of Ol-5 (±2.5% 1s), Ol-6 (±9.7% 1s) and Ol-7 (±6.3% 1s). The low 

SI signal deviation over a period of circa 28 months confirms the long-term instrumental 

stability of the MAF-IIC Cameca IMS 4f and demonstrates the small magnitude of 

instrumental drift affect on the measurements, as well as the generally adequate 

homogeneity of the RM (especially when averages of multiple spot measurements are 

used for calibration curves). The data displayed in Fig.2.3A illustrate a smooth trend with 

a pronounced inflection in the interval of circa Fo20–50, anchored and described by the Ol-

5 and Ol-6 samples. Average RFo ratios (where RFo is defined as 

I
25

Mg
+
/I

30
Si

+
)/(I

25
Mg

+
/I

30
Si

+
 + I

57
Fe

+
/I

30
Si

+
) for Ol-5 and Ol-6 were 0.880 (±0.022 1s) 

and 0.310 (±0.030 1s), respectively. Inhomogeneities in either MgO or FeO contents can 

be ruled out as a source of the higher long-term error, since the EPMA results show little 

relative variation in major element content. Therefore, the slightly more elevated standard 

deviation of the fayalitic olivine is likely a reflection of the variable contribution of the 

SIMS matrix effect during sessions several years apart, since both olivine have high FeO 

contents, 39.66 wt.% in Ol-5 and 67.59 wt.% in Ol-6, which would account for a higher 

bias through variable matrix effect (Shimizu et al., 1978; Shimizu and Hart, 1982b; 

Lehmann 2003). This effect would, therefore, be reduced by using specific calibration 

sets for individual analytical sessions. 
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Considering the trend of our curve, and published data (e.g., Shimizu et al., 1978; Reed et 

al., 1979; Steele et al., 1981; Weinbruch et al., 1993), the matrix effect seems to be less 

pronounced for compositions ranging from Fo82–100 or Fo0–10. For both intervals the 

impact of the FeO content on the MgO content and vice versa, and thus the potentially 

enhanced production and ionization of either SI species, is only minor, which limits the 

degree of bias. In accordance with our data, Shimizu et al. (1978), on the basis of results 

from a limited range of olivine compositions (Fo≥80), predicted the highest influence at 

compositions between Fo34–80, obviously the range where FeO and MgO concentrations 

are most equitable, which would result in a maximum impact of the matrix effect. 

The empirical relationship between RFo and Fo (EPMA)ACCPT is best characterized by a 

non-linear regression, using a fourth order rational equation with 3 parameters. Fitting the 

following regression (Eq. 1) to our data in Fig 2.3A achieves an R
2
=0.999 with the 

equation: 

 

(Eq. 1)                        x = (0.0003 – RFo x 0.1391) / (RFo x 0.8601 – 1) 

 

where x represents the Fo (EPMA) value and RFo equals (I
25

Mg
+
/I

30
Si

+
)/(I

25
Mg

+
/I

30
Si

+
 + 

I
57

Fe
+
/I

30
Si

+
). The coefficients a, b and c can easily be calculated with scientific data 

analysis and graphing software (e.g., SigmaPlot
®
). Once established, the Fo working 

curve can be applied to accurately determine the Fo content of olivine of diverse 

compositions from a variety of origins and host rocks (see Appendix 6.1.).  



P a g e  | 62 

 

 

Considering the high reproducibility (external precision) of the results, even over a period 

of almost 28 months (relative spread around the average RFo values recovered of between 

0.002% (Ol-3, 1s) and 9.7% (Ol-6, 1s), mean standard deviation (2s) for measured 

25
Mg

+
/
30

Si
+
 of better than 1.5% and 

57
Fe

+
/
30

Si
+
 of better than 4.4% – resulting in an 

analytical uncertainty for RFo of ~1% 2s; 2011 session), this technique is equivalently 

accurate for major element determination of olivine to EPMA – with the added benefit 

that Fo is determined simultaneously, and in exactly the same analytical volume, as the 

trace element analyses. For example, for the Fe-rich Ol-6 the relative analytical error (2s) 

for the Fo content was ~5.3% with EPMA and ~2.9% with SIMS, diminishing to <0.1% 

for the Mg-rich Ol-1 to Ol-3. 

Minor and trace element concentrations are generally less than 1 wt.% in natural olivine 

(Deer et al., 1997). Consequently, they will fall close to stoichiometrically determined 

curves between the ideal Fo-Fa endmembers – allowing straightforward calculation of the 

contents of MgO, FeO and SiO2 using the Fo content determined by SIMS. This 

procedure is portrayed graphically by plotting the wt.% of the major elements (Mg-Fe-Si) 

versus the Fo contents (accepted values as determined by EPMA) of the reference olivine 

selected for this study (Fig.2.3B). The computed Fo value of an unknown olivine can then 

be inserted to solve the individual equations for the major element concentrations in 

stoichiometrically pure olivine (see Appendix 6.1.). 
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Fig. 2.3: A) Average raw RFo determined by SIMS against the average accepted Fo (EPMA) values (Table 

2.4). This relationship (Step 1) allows the calculation of the unbiased Fo content of any olivine. The number 

in brackets behind sample identification refers to the sum of measured spots on each sample over a 28 

month period. The error bars are the standard deviation of the average (1s). Dark grey dashed line is the 

95% confidence interval. SEE denotes standard error of the estimate. B) Weight concentration of major 

elements in (perfectly stoichiometric) olivine (MgO, FeO, SiO2) versus Fo content determined with EPMA 

(Appendix 6.1.). 
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Table 2.4: Average forsterite content of reference olivine determined with EPMA and SIMS 

 

 

In summary, a straightforward calibration of SIMS olivine analyses with suitable RM, 

allows a reasonably precise determination of the Fo content (generally ±1.5% 2ssee 

Appendix 6.2.) and thus the major element concentrations of an unknown olivine, plus a 

suite of geochemical versatile trace elements in just one analytical step. 

 

2.4.2. Quantification of Minor and Trace Elements 

Based on the analytical trials of the 2009 to 2011 SIMS sessions, our suite of trace 

elements can be usefully subdivided into two groups: Group  comprises isotopes with an 

atomic mass ≤
66

Zn where analysis is generally (with the possible exception of 
63

Cu) 

straightforward and highly precise, in large part due to the relatively high abundances of 

these elements in natural olivine. Group  is composed of isotopes with an atomic mass 

>
66

Zn but ≤
90

Zr, which have very low abundances in natural olivine (ppm to sub-ppm), 

increasing the difficulty of precise analyses. This subdivision is therefore strictly based on 

RM's Fo (EPMA) SD (1 s ) 1 s  (%) n
x RFo (SIMS)

Y SD (1 s ) 1 s  (%) n
z Fo (SIMS)

1
SD (1 s )

Ol-1 0.888 0.001 0.06 15 0.986 0.005 0.52 59 0.901 0.005

Ol-2 0.905 0.001 0.05 20 0.988 0.003 0.28 54 0.914 0.003

Ol-3 0.901 0.007 0.78 30 0.991 0.002 0.17 18 0.930 0.002

Ol-4 1.000 0.000 0.01 20 1.000 0.000 0.00 74 0.992 0.000

Ol-5 0.525 0.002 0.42 38 0.880 0.022 2.49 109 0.502 0.012

Ol-6 0.057 0.002 3.60 31 0.310 0.030 9.72 19 0.058 0.006

Ol-7 0.005 0.000 0.00 3 0.039 0.002 6.31 8 0.005 0.000

fayalite 0.000 0.000 0.000
x
: no. of EPMA analyses from multiple sessions in 2009

Y
: calculated based on relationship R

25
Mg

+
 / (R

25
Mg

+ 
+ R

57
Fe

+
); see text for discussion

z
: no. of SIMS analyses from multiple sessions between 2009 - 2011

1
: forsterite content calculated with empirical relationship from Fig.2.3



P a g e  | 65 

 

 

analytical strategy and performance (abundance and SI yield) and does not reflect any 

intrinsic geochemical (melt composition, pressure – temperature or oxygen fugacity 

dependence, partition coefficients etc.) or mineralogical (i.e., incompatibility, oxidation 

state, ionic radius, electronegativity, site preference) affinities of these element Groups. A 

detailed discussion of trace element partitioning behavior in olivine is beyond the scope 

of this paper and the interested reader is referred to recent publications of Taura et al. 

(1998), Zanetti et al. (2004), Bédard (2005), De Hoog et al. (2010), and Grant and Wood 

(2010). 

 

2.4.2.1. Group  Elements (
40

Ca, 
51

V, 
52

Cr, 
55

Mn, 
59

Co, 
60

Ni, 
63

Cu, 
66

Zn) 

This group largely comprises elements that occur in olivine in concentrations that yield SI 

intensities that allow reasonably precise analysis. Further, the specific analyte peaks 

selected in this study are not prone to significant isobaric interferences when adequate 

energy filtering is applied. 

An exception within this group is copper (
63

Cu), which has a very low natural abundance 

in olivine and also a relatively high first ionization energy (therefore relatively low 

secondary ion yield; see also Hervig et al., 2006), and thus cannot be determined with 

very high confidence. This is consequent to the poor counting precision of the low SI 

intensities, combined with high analytical uncertainties in the accepted concentrations 

measured by the solution ICP-MS and ICP-OES techniques. 

Working lines produced with the conventional calibration curve method (Appendix 6.1.3. 

– Step 3) (e.g., Shimizu et al., 1978; Shimizu, 2000) for the Group  elements Ca, V and 
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Cr (Fig.2.4A–C) reveal strong linear relationships, with R
2
 of 0.987 for 

52
Cr, 0.997 for 

40
Ca, and 0.999 for 

51
V. RSF-based working lines are plotted against Fo content (see 

Appendix 6.1.3. – Step 4A) for the remaining elements, analysed as 
55

Mn
+
, 

59
Co

+
, 

60
Ni

+
, 

63
Cu

+
 and 

66
Zn

+
, in Figures 2.4D and 2.5A–D. These plots display curved trends and are 

best described by (polynomial) regressions – which all yield R
2
 >0.99.  

Representative plots of RSF values alternately expressed as a function of MgO-FeO-SiO2 

(see Appendix 6.1.3. – Step 4B) are depicted in Figure 2.6. The detailed use of these plots 

in the SIMS calibration procedure, as well as the characteristics and behavior of each 

element (ionic radii, most common oxidation state, first ionization energy (IE; eV)) are 

discussed below, with reference to Figures 2.4–2.6.  

40
Ca (1.00 Å, 2+, IE 6.1132): Ca concentrations range from 21.8 ppm (Ol-4) to 3,822 

ppm (Ol-6) and generally increase with decreasing Fo content in the olivine studied. 

Normalized SI ratios plotted against atomic (weight) ratios describe a near linear 

regression (R
2
=0.997; Fig.2.4A), and RSF values are virtually identical for all RM over 

the measured Fo range (Fo6–100). Therefore, the Fo-Fa matrix effect seems insignificant 

and quantification can be based on conventional working lines (Fig.2.4A). 

51
V (0.64 Å, 3+, IE 6.7462): V concentrations are generally low, between 3.9 ppm (Ol-

6) and 12.9 ppm (Ol-5); Ol-4 is an exception with 395 ppm. The conventional working 

line plotted against atomic (weight) ratios based on accepted concentrations from ICP-MS 

analyses yields a linear regression with a R
2
=0.999 (Fig.2.4B). Despite this excellent 

correlation the “accepted” V concentrations for most of the lower-V olivine RM cause 

them to plot to the right of the regression line (Fig.2.4B, detail – grey symbols). This 
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implies that the ICP-MS results are biased towards higher V concentrations in these latter 

samples, which is the result of contamination through micro-inclusions of ilmenite or 

chrome diopside (SEM results). On the other hand, if the NIST 612/610 glasses are used 

independently to calibrate the V content of the RM olivine as measured by SIMS, 

accepted V concentrations appear more accurate and collinear (Fig.2.4B, detail – black 

symbols). For example, the accepted value of Ol-6 decreases from 3.8 ppm to 0.05 ppm, 

and an improved correlation with SI intensities is achieved for all the low V olivine (Ol-1 

to Ol-6, except Ol-4; Fig.2.4B). Even though this back-calculation relies on the 

assumption of matrix equivalence between olivine and NIST 612/610, the slopes of the 

two respective working lines are within 11% relative error, and the V SI intensities reveal 

the apparent inclusion effect on “accepted” V concentrations from solution methods.  

52
Cr (0.62 Å, 3+, IE 6.7665): Cr contents range from 4.3 ppm (Ol-6) to 142 ppm (Ol-1) 

and show a generally positive correlation with Fo content in the olivine samples studied. 

The conventional working line demonstrates a strong linear correlation, with R
2
=0.987 

(Fig.2.4C). Even though the element-specific RSF for Cr seems to be largely independent 

of the Fo content, a significant improvement in linear correlation is gained when plotted 

against a multivariate function of MgO-FeO-SiO2 (R
2
=0.999; Fig.2.6A). Following Step 

4B (Appendix 6.1.3.), the more sophisticated RSF-based calculation can therefore be used 

to slightly improve the accuracy of the final quantification. 

55
Mn (0.83 Å, 2+, IE 7.4340): Mn concentrations are routinely very high (up to 15,833 

ppm in Ol-7) and commonly demonstrate a strong negative correlation with Fo content. 

RSFs show a strong dependence on the Fo content, and the RSF versus Fo content trend 
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is distinctly curved (R
2
=0.999; Fig.2.4D), indicating a significant matrix effect bias. 

Quantification is most accurate when an RSF-based working line is utilized, either fitted 

against the Fo content or multivariate function of MgO-FeO-SiO2. The correlation with 

MgO-FeO-SiO2 produces a good linear regression (R
2
=0.991; Fig.2.6B) but calculated 

Mn concentrations are almost identical using either RSF-based working line approach. 

59
Co (0.65 Å, 2+, IE 7.8810): Co contents range from 21.5 ppm (Ol-6) to 3,123 ppm 

(Ol-4; Co-doped synthetic forsterite). A negative correlation with Fo content is visible 

from Fo90 (136.7 ppm) to Fo52 (321.2 ppm), whereas Fo6 (Ol-6) is strongly depleted in 

Co. The element-specific RSF-based working lines display a near linear correlation with 

both the Fo content (Fig.2.5A; R
2
=0.998) and when plotted against a multivariate 

function of MgO-FeO-SiO2 (Fig.2.6C; R
2
=0.988). However, calculation of the element 

concentration with Step 4A (Fig.2.5A) yields more accurate results, especially for high 

Co olivine, where quantification with Step 4B (Appendix 6.1.3.) (Fig.2.6C) displays an 

overestimation of circa 40% due to the statistical leverage of the Tanzanion standard 

(high MgO-SiO2). 

60
Ni (0.69 Å, 2+, IE 7.6398): Ni concentrations range from 6 ppm (Ol-6) to 2,931 ppm 

(Ol-3) and have a pronounced positive correlation with Fo content in the olivine studied. 

The RSF-based working line versus Fo content is strongly curved (Fig.2.5B; R
2
=0.998), 

indicating a distinct matrix effect influence. In accordance with literature data (Reed et 

al., 1979; Steele et al., 1981; Shimizu and Hart, 1982b; Weinbruch et al., 1993) the bias is 

insignificant for Fo compositions from Fo95–85, but is potentially severe in olivine with 

Fo80 and lower. When plotted against a multivariate function of MgO-FeO-SiO2, a good 
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linear regression is obtained (Fig.2.6D; R
2
=0.983). Both Step 4A and Step 4B approaches 

allow an accurate matrix effect-corrected quantification with similar results. 

63
Cu (0.73 Å, 2+, or 0.77 Å, 1+, IE 7.7264): Cu contents are, with one exception (Ol-5, 

105 ppm), very low (<5 ppm) and the “accepted” values from ICP-MS and ICP-OES 

techniques already have a high uncertainty – likely exacerbated by the presence of Cu-

sulfide micro-inclusions. SI yields vary in precision and reproducibility during and 

between analytical sessions and thus display poor correlation with atomic (weight) ratios. 

RSF-based working lines (Fig.2.5C and Fig.2.6E) based on averaged data produce strong 

correlations (R
2
≥0.992) between element-specific RSF and Fo content or major element 

concentrations. However, both approaches hinge primarily on the accepted Cu 

concentration in Ol-5, which is likely overestimated by solution-based techniques (note 

the varying Cu results of ICP-MS and ICP-OES techniques; Table 2.1). Therefore, Cu 

concentrations are more adequately quantified in the RM by simply utilizing a 

conventional NIST glass-based working line (Appendix 6.1.2. – Step 3). An improved 

certainty in accepted Cu contents for the RM would be highly desirable, since these 

values control the empirical calculation and therefore the accuracy of the final 

quantification, if a matrix effect-influence is to be considered – as indicated in this study 

(Fig.2.5C). 

66
Zn (0.74 Å, 2+, IE 9.3942): Zn concentrations range from circa 5 ppm (Ol-4) to 

2,631 ppm (Ol-6) and display a marked negative correlation with Fo content in the olivine 

studied. RSF-based working lines describe a curved trend with varying Fo content 

(Fig.2.5D; R
2
=0.986), whereas the RSF expressed as a multivariate function of MgO-
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FeO-SiO2 produces a strong linear correlation (R
2
=0.990; Fig.2.6F). As for Mn, 

quantification with either approach (Appendix 6.1.3. – Step 4A or 4B) yields almost 

identical results. 

 

Fig. 2.4: Working lines for Group  elements (
40

Ca, 
51

V, 
52

Cr, 
55

Mn). A) to C) are conventional working 

lines of SI ratios fitted against atomic weight ratios, whereas D) is an element-specific RSF-based working 

line fitted against the accepted Fo content. The number in brackets behind sample identification refers to the 

sum of measured spots on each sample. The error bars are the standard deviation of the average (1s). 

Figures 2.4A to C resemble Appendix 6.1.  Step 3, and Figure 2.4D resembles Appendix 6.1.  Step 4A in 

our empirical approach. Dark grey dashed lines indicate 95% confidence interval. 
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Fig. 2.5: Working lines for Group  elements (
59

Co, 
60

Ni, 
63

Cu, 
66

Zn). A) to D) are element-specific RSF-

based working lines fitted against the accepted Fo content. The number in brackets behind sample 

identification refers to the sum of measured spots on each sample. The error bars are the standard deviation 

of the average (1s). Figures 2.5A to D resemble Appendix 6.1.  Step 4A in our empirical approach. Dark 

grey dashed lines indicate 95% confidence interval. 
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The elements Mn, Co, Ni and Zn are geochemically similar to Mg
2+

 and Fe
2+

, with 

comparable ionic radii (Mg
2+

: 0.66 Å, Fe
2+

: 0.74 Å) and identical oxidation states. Co and 

Ni are very compatible in Fo-rich olivine (e.g., Bédard, 2005; De Hoog et al., 2010), 

whereas Mn and Zn more readily substitute into Fa-rich olivine (Kohn and Schofield, 

1994). Therefore, all four of these divalent elements can be relatively abundant in the 

olivine structure in place of Mg
2+

 and Fe
2+

, preferentially occupying one of the two 6-fold 

coordinated octahedral lattice spaces (M1 and M2) (Ericsson and Filippidis, 1986; Ito et 

al., 1999 and references therein). However, the variable morphologies of the RSF-based 

curves (Fig.2.4 and 2.5) suggest that these elements are affected somewhat differently 

during sputtering. In particular, Mn, Ni and Zn share similar convex curve morphology, 

whereas Co displays a more nearly linear slope, and the Cu curve is strongly concave.  

The geochemical resemblance of Co and Ni to Mg, and Mn and Zn to Fe suggests that 

structural/crystallographic parameters exert some control over the amplitude of the matrix 

effect, particularly when bivalent substitution mechanisms are responsible and the ionic 

radius of the incorporated elements is the main influence on unit cell parameters. If 

during SIMS ion bombardment of olivine surface layer(s), positive ion emission is in fact 

a result of bond-breaking caused by collision cascades and hence the so-called sputtering 

process (Slodzian et al., 1980), the greater secondary ion yield of, for instance, Mg (Ni, 

Mn, Zn etc.; Lehmann, 2003) with increasing Fe content, must be directly related to an 

enhanced ionization and emission of the affected atoms. In the forsterite-fayalite solid 

solution, the replacement of Mg
2+

 by the larger radius Fe
2+

 in the olivine structure 

weakens the cation-oxygen bonds and thus likely the physico-mechanical resistance to the 
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kinetic energy transfer of the sputtering process. This might in turn cause the elevated 

emission of ionized bivalent transition metals that occupy either of the two 6-fold 

coordinated lattice spaces with increasing amounts of Fe
2+

 in the olivine crystal structure. 

All these bivalent transition elements display a significant matrix effect in olivine, which 

militates against the use of the simple conventional SIMS working lines commonly used 

for trace element quantification. 

Monovalent, trivalent, tetravalent and pentavalent cations (Sc, Ti, V, Cr, Cu, Y, Zr) on the 

other hand, beside their commonly much lower abundance in olivine, are much less 

affected by the matrix effect. They also require more complex substitution mechanisms in 

the olivine structure (discussed by Taura et al., 1998; Zanetti et al., 2004; De Hoog et al., 

2010; Grant and Wood, 2010), including a coupled replacement in the 4-fold coordinated 

tetrahedral site commonly occupied by Si
4+

. This may cause defect sites and vacancies in 

the olivine crystal lattice that subsequently alter its physical properties, which in turn 

might make these elements and the neighboring lattice space less likely to be influenced 

by the previously mentioned enhanced ionization effects. Even though a systematic link 

between the ionization behavior and cation ordering in the olivine structure cannot be 

explicitly established here, further research might unravel the underlying causality 

between the enhanced ionization of specific cations and their geochemical attributes and 

crystallographic preferences in olivine. 
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Fig. 2.6: Working lines for Group  elements (
52

Cr, 
55

Mn, 
59

Co, 
60

Ni, 
63

Cu, 
66

Zn) influenced by matrix 

effects. Element-specific RSF are fitted as a function of the three major element components in olivine in 

the form of (aSiO2 + bMgO + cFeO) in a full model multiple regression. The number in brackets behind 

sample identification refers to the sum of measured spots on each sample. This Figure resembles Step 4B in 

our empirical approach (Appendix 6.1.). 
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2.4.2.2. Group  Elements (
45

Sc, 
47

Ti, 
88

Sr, 
89

Y, 
90

Zr) 

This group of elements has a considerably lower abundance in olivine than those in 

Group . Element contents are generally less than 0.1 to 1 ppm, with some exceptions (Ol-

4, synthetic Fo) and Ol-6 (metasomatic/hydrothermal fayalitic olivine) – and this 

significantly increases the difficulty of precise quantification. The process is further 

complicated by commonly strongly variable accepted element abundances from ICP-MS 

and ICP-OES measurements, likely caused by the inevitable contamination through 

micro-inclusions – which have very high leverage on the bulk concentration of these 

elements. Consequently, average SI ratios per session show a much higher relative 

variability with values between circa 10% (1s) for 
88

Sr in Ol-3 to 60% (1s) for 
90

Zr in 

Ol-5. Analyses are occasionally plagued by very poor analytical precision (high s 

uncertainties reflecting Poisson counting statistics) and are thus only reportable as semi-

quantitative in certain samples. To counter the above mentioned difficulties, final 

quantification of Group  elements was solely based on conventional working lines (e.g., 

Jones and Layne, 1997) while utilizing one olivine RM (usually Ol-1) in tandem with the 

NIST glasses 612 and 610 (Fig.2.7). This approach proves more acceptable, since Group 

 elements appear mostly independent from the Fo content and are thus probably far less 

biased by matrix effects. Each individual element in Group  is briefly discussed below, 

with reference to Figure 2.7. 

45
Sc (0.75 Å, 3+, IE 6.5615): Sc was not determined by ICP-MS and ICP-OES 

techniques, and conventional working lines were produced with Ol-1 (literature data of 
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circa 2.4 ppm Sc from De Hoog et al., 2010) and NIST 612/610 glasses (Fig.2.7A; 

R
2
=0.997). Analytical precision is high for fayalitic olivine (better than 16% 2s) and 

relatively poor for forsteritic olivine (circa 90% 2s). However, back-calculation of the 

Sc concentration of Ol-1 using this calibration yields comparable results (circa 2.3 ppm) 

within the error to the range of San Carlos olivine (2.4 to 3.0 ppm with SIMS) reported by 

De Hoog et al. (2010). Scandium therefore appears reasonably quantifiable with our 

analytical setup and a conventional working line approach. 

47
Ti (0.61 Å, 4+, IE 6.8281): Ti contents vary from 4.3 ppm (Ol-4) to 292 ppm (Ol-6). 

Concentrations are highest in the low-forsterite olivine. Considerable uncertainties in the 

accepted concentrations (ppm) as determined by EPMA, ICP-MS and ICP-OES 

techniques, adversely affect the precision of the Ti working line, and thus the absolute 

accuracy of the calculated concentrations would benefit from better characterization of 

the accepted Ti concentrations in the olivine RM. However, using a conventional working 

line based on Ol-1 and NIST 612/610 (Fig.2.7B) yields a near perfect linear correlation 

(R
2
=0.996) and allows reasonable determination of the Ti content in olivine. 

88
Sr (1.18 Å, 2+, IE 5.6949): Sr abundances vary from 0.22 ppm (Ol-6) to 1.1 ppm 

(Ol-5) in the RM studied. On the basis of the conventional working lines, we tried to 

differentiate between biased and unbiased accepted concentrations of Sr, and concluded 

that those for samples Ol-1, Ol-4 and Ol-5 appeared most accurate and suitable. However, 

due to the high uncertainty of the accepted values from solution ICP-MS, probably due to 

contamination by micro-impurities (melt/fluid/mineral inclusions), analytical results were 

quantified based on a conventional working line with NIST 612/610 (Fig.2.7C; 
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R
2
=0.995). Individual SIMS analyses of Ol-1, Ol-4, and Ol-5 have variable internal 

precisions with an average uncertainty of 40% (2s) after rejection of outliers. 

89
Y (0.9 Å, 3+, IE 6.2171): Y concentrations ranged from 0.03 ppm (Ol-1) to 42.6 ppm 

(Ol-6). The Fo90 samples (Ol-1 and Ol-2) have very low concentrations and higher 

analytical uncertainties (Ol-1 ~60% 2s) than the more fayalitic samples (Ol-5 ~33% 2s 

and Ol-6 ~37% 2s). The synthetic Ol-4 (Fo100) has the lowest analytical uncertainty 

(~16% 2s). The Y concentrations in Ol-5 and Ol-6 seem to be artifacts of 

microinclusions. As a result, a conventional working line with Ol-1 and NIST 612/610 

was used for quantification. The regression exhibits a linear correlation (Fig.2.7D) with 

an R
2
=0.995. A recalculation of the Y concentration of Ol-1 and Ol-2 based in the NIST 

glass working line adjusted the “accepted” values from 0.25 to 0.05 ppm in Ol-1 and from 

0.06 to 0.07 ppm in Ol-2. 

90
Zr (0.72 Å, 4+, IE 6.6339): Zr varies from circa 0.8 ppm (Ol-1) to 9.4 ppm (Ol-5). 

Some analytical challenges for Zr have been discussed above, but the observed scatter in 

working lines probably stems from biases in the accepted Zr concentrations from solution 

ICP-MS data, rather than isobaric interferences during SIMS (see Section 2.3). As noted 

by Garrido et al. (2000), incompatible trace elements like REE, Zr, Nb, Ta and Sr in 

olivine, especially from mantle xenoliths (samples Ol-1 to Ol-3), are most likely 

concentrated in melt/fluid or mineral inclusions. Solution ICP-MS analysis is thus more 

prone to contamination than in-situ techniques and probably determines higher 

concentrations of those elements than actually present within the olivine. Consequently, a 

NIST 612/610-based conventional working line was utilized for quantification, which 
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yielded a strong linear correlation (R
2
=0.997). This working line implies that the 

“accepted” Zr content of Ol-1 (San Carlos olivine) is also too high, and the SIMS 

recalculated concentration (versus NIST 612/610) is 0.24 ppm, compared to the 0.75 ppm 

from ICP-MS analysis. 

In summary, the very low concentration of most trace elements in Group  makes them 

analytically more challenging, and often susceptible to lower internal precision. Despite 

those complications, Sc, Ti, Sr, Y, and Zr can be quantified in a useful manner. 

Secondary ion intensities demonstrate no perceptible dependency on the Fo content. We 

feel that this is strong proof (though not absolute) that matrix effects seem to be relatively 

insignificant, allowing the simple application of NIST glass-based conventional working 

lines. 
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Fig. 2.7: Working lines for Group  elements (
45

Sc, 
47

T
i
, 

88
Sr, 

89
Y). All elements were quantified 

exclusively applying conventional working lines (e.g., Jones and Layne, 1997), utilizing one olivine RM 

(usually Ol-1) and the NIST glasses 612 and 610. Inset is a zoom-in of the point of origin with the position 

of Ol-1 relative to the regression line. The number in brackets behind sample identification refers to the sum 

of measured spots on each sample. The error bars are the standard deviation of the average (1s). This 

Figure resembles a slightly adjusted Step 3 in our empirical approach (Appendix 6.1.). Dark grey dashed 

lines indicate 95% confidence interval. 
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2.4.3. SIMS and EPMA Inter-Technique Comparison 

In order to test our SIMS analytical approach, two unknown olivine samples (WGR and 

ICE) were selected for comparative analyses. WGR is a garnet-peridotite from the 

Western Gneiss Region, Norway (e.g., Van Roermund, 2009; Brueckner et al., 2010) and 

ICE is from a volcanic ash deposit from the 2010 Eyjafjallajökull eruption, Iceland (e.g., 

Gislason et al., 2010). Multiple olivine from each sample were measured with both 

EPMA and SIMS for the purpose of a direct comparison of the major element (MgO, 

FeO, SiO2) and minor element (Mn, Ni) concentrations determined with these different 

techniques.  

WGR olivine are on average fairly homogeneous at Fo90 ±0.1 (1s EPMA; ±0.6 1s 

SIMS) and with average Ni and Mn concentrations of circa 3,400 ppm and 750 ppm, 

respectively (Fig.2.8 and Table 2.5). Both techniques yield very similar results for major 

and trace element contents in WGR olivine (Fig.2.8) with an excellent linear correlation 

(Fig.2.8A and B). Minimum and maximum values for Mn and Ni (Table 2.5) from the 

analyzed olivine population also correspond very well (i.e., Ni (EPMA) 2,964 ppm – 

3,826 ppm versus Ni (SIMS) 3,042 ppm – 3,718 ppm). The forsterite values determined 

with SIMS, however, have a slightly higher uncertainty (~1.5% 2s per spot) than 

analyzed with EPMA (~0.5% 2s per spot). This results from the empirical calibration (Fo 

calculation; Fig.2.3A) and the intrinsically higher uncertainty of this calculation step 

compared to the more direct quantification with EPMA. The error of the empirical SIMS 

calibration is thus characterized by the standard error of the estimate at the 95% (~2s) 
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confidence interval. The component of analytical uncertainty (2s) for (SIMS) 

determination of RFo (WGR) is an insignificant contribution to this error (0.02%). 

ICE olivine on the other hand displayed substantial variation in Fo values between grains, 

from 73–88 (SIMS), and 74–87 (EPMA), with an average of 80 for both techniques. 

Individual grains are mostly unzoned in major elements, whereas intra-grain Mn and Ni 

concentrations can vary considerably (up to ±800 ppm). A direct comparison between 

individual spots from EPMA and SIMS is difficult since the sampled olivine population 

was analyzed independently. However, excellent linear correlations between (average) 

major element and (average) Mn and Ni concentrations determined with EPMA and 

SIMS from the sampled olivine population exist (Fig.2.8A and B and Table 2.5) and 

further emphasize the general compositional diversity of the ICE olivine resolved by both 

techniques. Average Mn and Ni values are similar (e.g., Ni (EPMA) 1,699 ppm versus Ni 

(SIMS) 1,802 ppm), and minimum and maximum values correlate extremely well (e.g., 

Mn (EPMA) 1,163 ppm – 2,794 ppm versus Mn (SIMS) 1,158 ppm – 2,974 ppm). Data 

from both EPMA and SIMS demonstrate a strong negative correlation between Fo and 

Mn content and a strong positive correlation between the Fo and Ni concentration 

(Fig.2.8C and D).  

In summary, the proposed SIMS analytical and empirical approach using compositionally 

diverse olivine as test samples yields similar results to EPMA for major elements and for 

the reasonably abundant minor elements detectable by EPMA in these samples (Mn, Ni). 

This confirms that the matrix effects and isobaric interferences that may influence SIMS 

analyses of more fayalitic olivine can be controlled, and that the desired performance 
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advantages of the SIMS (high sensitivity, high accuracy and extended suite of trace 

elements) can be readily utilized for these determinations, while maintaining accuracy 

relative to EPMA. 

Table 2.5: Comparative EPMA and SIMS results for unknown olivine 

 

Sample Code WGR Ol* WGR Ol WGR Ol WGR Ol ICE Ol ICE Ol ICE Ol ICE Ol

Method EPMA EPMA SIMS SIMS EPMA EPMA SIMS SIMS

(n=  ) 50
x

1s y 24 1s 44 1s 32 1s

wt.%

   MgO   49.36 0.23 49.28 0.46 42.02 2.54 42.83 3.17

   SiO2  39.96 0.36 40.86 0.11 38.47 0.65 39.27 0.73

   CaO   0.01 0.01 0.01 0.00 0.25 0.03 0.46 0.12

   Cr2O3 0.01 0.01 0.01 0.00 0.03 0.03 0.02 0.01

   MnO   0.10 0.02 0.10 0.01 0.26 0.06 0.28 0.07

   FeO   9.89 0.13 9.87 0.57 18.65 3.25 18.35 3.91

   NiO   0.43 0.02 0.43 0.02 0.22 0.11 0.23 0.09

Total 99.76 0.78 100.55 1.16 99.89 6.68 101.43 8.10

ppm

   Mg 297686 1383 297208 2773 253450 15341 258308 19141

   Si  186794 1679 190996 496 179817 3028 183540 3423

   Ca  85 87 39 9 1795 214 3294 838

   Cr 60 65 61 8 177 205 165 70

   Mn 745 131 777 64 1980 433 2162 512

min. 467 689 1163 1158

max. 996 871 2794 2971

   Fe   76882 978 76720 4398 144968 25297 142636 30362

   Ni 3418 174 3405 166 1699 826 1802 699

min. 2964 3042 665 925

max. 3826 3718 3587 3130

# of ions
1

Mg
2+

1.814 0.008 1.793 0.017 1.607 0.097 1.610 0.119

Ca
2+

0.007 0.001 0.012 0.003

Cr
2+

0.001 0.001

Mn
2+

0.002 0.000 0.002 0.000 0.006 0.001 0.006 0.002

Fe
2+

0.204 0.003 0.201 0.012 0.400 0.070 0.387 0.082

Ni
2+

0.009 0.000 0.008 0.000 0.005 0.003 0.005 0.002

[Y ]
6

2.029 2.004 2.026 2.020

Si
4+

0.985 0.009 0.997 0.003 0.987 0.017 0.990 0.018

Fo % 89.9 0.1 89.9 0.6 80.1 0.4 80.4 0.5

Fo # 0.899 0.001 0.899 0.006 0.801 0.037 0.804 0.045

*: analytical data (averages)

x
: no. of analyses

y
: standard deviation of mean (n analyses)

1
: on the basis of 4 oxygens
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Fig. 2.8: Results of trial runs of unknown olivine samples. WGR denotes olivine from the Western Gneiss 

Region, Norway, whereas ICE symbolizes olivine from a volcanic ash deposit, Iceland. A direct 

comparison between EPMA (x-axis) and SIMS (y-axis) results for (average) major element contents (wt.% 

±1s) is depicted in A), whereas (average) minor element concentrations (ppm ±1s; Mn and Ni) are 

displayed in B). The number in brackets behind sample identification reflects the sum of measured spots on 

each olivine population with the first value for EPMA and the second for SIMS analyses. Minor element 

concentrations (Mn and Ni) versus Fo content from EPMA and SIMS measurements are plotted in C) and 

D), with error bars denoting 2s uncertainty. 
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2.5. Summary and Conclusions 

1. Seven compositionally variable olivine were tested as potential SIMS RM. For the 

quantification of unknown olivine a subset of four RM, two primitive mantle olivine 

(Ol-1 and Ol-2), one intermediate olivine (Ol-5) and one fayalitic olivine (Ol-6), 

proved most accurate and yielded similar results for major (MgO, FeO, SiO2) and 

trace element (Mn, Ni) concentrations in two unknown olivine populations to 

electron-probe microanalyses (EPMA). 

 

2. Despite the documented matrix effect for Mg and Fe in olivine, it is possible to 

determine the forsterite content (and therefore the weight concentrations of MgO, 

FeO and SiO2) of any olivine by SIMS using the above discussed empirical approach 

combined with an adequately diverse set of olivine RM. 

 

3. Over the compositional range of potential RM examined in this study, Ol-5 (Fo52) 

experienced the highest matrix effect bias. For olivine around this composition, MgO 

and FeO (wt.%) contents are similar in magnitude. This might lead to an 

amplification of the matrix effect, since an increasing Fe content is causing an 

enhanced emission of selected elements (Mg, Mn, Co, Ni, Zn). For quantification of 

major and trace elements in olivine of these intermediate compositions, matrix effects 

are therefore an important consideration. However, accurate quantification of the 

affected elements is achieved with the appropriate selection of well-characterized 

olivine RM, bracketing the composition of the sample olivine. 
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4. The impact of the matrix effect on trace element determinations varies significantly by 

element and seems to be highest for transition metals with geochemical similarities to 

Mg
2+

 and Fe
2+

 (ionic radii, valence state, site preference etc.) and concentrations over 

50 ppm (Cr, Mn, Co, Ni, Cu, Zn), which mainly occupy the 6-fold coordinated lattice 

spaces. However, Ca, which can potentially comprise a major constituent in olivine 

(CaMgSiO4 – Monticellite and CaFeSiO4 – Kirschsteinite) seems largely unaffected 

by matrix effects in our study when determined using the 
40

Ca
++

 analyte mass. This 

observation is in marked contrast to results from Ottolini et al. (2002) for olivine, 

Shimizu et al. (1978) for Ca-rich pyroxenes, or Lehmann (2003) for silicate glasses 

using the 
40

Ca
+
 analyte mass.  

 

5. The analytical and empirical calibration approach presented here further supports the 

effectiveness of quantitative SIMS in trace element analyses of compositionally 

diverse olivine and further extends its geochemical application to simultaneous Fo 

determination (typically ~1.5% 2s) and high precision (typically ~5% 2s) analyses 

of minor element concentrations of (Ca, V, Cr, Mn, Co, Ni, Zn). Trace elements such 

as (Sc, Ti, Cu, Sr, Y and Zr) may also be usefully quantified (typically 20–60% 2s). 

A subset of these trace elements can be chosen based on the scientific/geochemical 

objective (mantle petrology or ore deposit characterization etc.) and optimally 

utilized, so this procedure enables the in-situ analysis of major and trace elements in 

olivine in a single small diameter spot. 
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Abstract 

Ni-Cu-Co sulfide mineralization in the Mesoproterozoic Voisey’s Bay Intrusion is 

spatially and genetically associated with magmatic breccia zones within an extensive dike 

system and, in particular, with the entry point of this system into a larger intrusion 

(Eastern Deeps Intrusion; EDI). The massive sulfide- and breccia-bearing inner basal 

margin of the EDI is enveloped by weakly mineralized variable-textured troctolite (VTT) 

that progressively decreases in sulfide content, contains fewer gneissic fragments and 

eventually grades into a largely sulfide-barren, homogeneous plagioclase and olivine 

(meso)cumulate, termed normal troctolite (NT), towards the top of the intrusion. Olivine 

from the NT, VTT, the basal breccia sequence (BBS), and the uppermost olivine gabbro 

(OG) lithology in the EDI, were analyzed with Secondary Ion Mass Spectrometry 

(SIMS). We present multi-trace element data (including V, Cr, Mn, Co, Ni, Zn, Sr, and 

Y) that show informative geochemical variability in olivine from the EDI. In particular, 

the homogeneous NT comprises some stratigraphic sections containing primitive, Ni-rich 

olivine (Fo79, ~2,600 ppm Ni), as well as sections containing differentiated and strongly 

Ni-depleted olivine (Fo66, ~78 ppm Ni). These narrow, irregular intervals in the upper 

part of the NT sequence are bracketed by NT horizons containing olivine of relatively 

uniform composition (~Fo77, ~1,600 ppm Ni). Olivine from the VTT shows a broad 

trend with depth; in the upper part of the VTT unit, close to the contact with the NT, 

olivine is relatively primitive (~Fo80, ~1,800 ppm Ni, ~3,000 ppm Mn, ~280 ppm Zn), 

whereas the lower, weakly mineralized and contaminated part of the unit comprises 

clearly more differentiated olivine (~Fo70, ~1,300 ppm Ni, ~4,100 ppm Mn, ~400 ppm 
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Zn). The increase in Fe-Mn-Zn with depth is continuous within the VTT and culminates 

in olivine from the massive sulfide-bearing BBS, which exhibits distinctively high Mn-Zn 

contents (e.g., mean Mn 10,150 ppm ±1,100 1s; mean Zn 620 ppm ±41 1s) relative to 

their forsterite contents (e.g., mean Fo62 ±2 1s. BBS olivine have an average Ni 

concentration of ~820 ppm, but olivine grains that are enclosed by sulfide display 

homogeneous forsterite contents (~Fo62) with pronounced intra-grain trace element 

zonation (Mn>Ni>Co>Zn). 

Four petrological processes important to ore formation are recorded by the compositional 

diversity of EDI olivine. The heterogeneous Ni-Co-Fo contents of olivine in the EDI 

(Co/Ni ratios in OG: 0.18–1.1; NT: 0.07–0.26; VTT: 0.11–0.29; BBS: 0.20–0.34) are due 

to variable modification of original compositions by reequilibration with trapped silicate 

and sulfide liquids. The abrupt changes of Fe and Ni contents and some trace elements (in 

particular Co, Sr, Y) in olivine from the barren upper NT indicate that olivine crystallized 

from separate pulses of magma with variable degrees of differentiation (Mg-Ni-rich 

versus Mg-Ni-depleted). The severe Ni depletion of one NT silicate melt batch (~10 ppm 

Ni vs. 290 ppm Ni for average NT magma) is likely a result of sulfide saturation and 

segregation, either in a deeper staging chamber, or in the conduit, prior or contemporary 

to olivine precipitation and emplacement. This Ni-rich sulfide fraction might be preserved 

as the high Ni tenor disseminated sulfides observed in the VTT. The gradational increase 

of Fe-Mn-Zn in olivine from the weakly mineralized and contaminated lower part of the 

VTT downward into the massive sulfide-bearing and strongly contaminated BBS is 

consistent with olivine fractionation from an increasingly country rock-contaminated, 
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sulfide-saturated, Fe-Mn-Zn-rich silicate magma. BBS olivine crystallized prior to or 

contemporaneously with the segregation of an immiscible sulfide liquid. Diffusion 

profiles (Mn-Ni) indicate a relatively short immersion time (<<1,000 years) of BBS 

olivine grains in sulfide liquid, which resulted in the partial retention of Ni in the olivine.  

Olivine in the vicinity of massive sulfides in the EDI (VTT-BBS) have distinct trace 

element signatures (V-Cr-Mn-Co-Ni-Zn) compared to olivine from the barren NT and 

OG. A multiple regression analysis using these data yields a factor that describes the 

relative vertical proximity to massive sulfides in the EDI. In conjunction with the 

stratigraphic context of the host lithology, this information could potentially be used as a 

vector towards massive sulfide mineralization in the EDI and support Ni-exploration in 

other olivine-bearing mafic intrusions.  

 

Keywords: forsterite, fractional crystallization, trace element partitioning, mineralogical 

indicator, Ni-Cu sulfide mineralization, Nain Plutonic Suite  

  



P a g e  | 97 

 

 

3.1. Introduction 

Within the Ni-Cu-Co sulfide ore-bearing Voisey’s Bay Intrusion (VBI) of northern 

Labrador, Canada, the outcropping Eastern Deeps Intrusion (EDI) contains a significant 

portion of the associated economic sulfide mineralization (e.g., Evans-Lamswood et al., 

2000; Lightfoot et al., 2012; Fig.3.1). The EDI consists of olivine gabbro, barren and 

weakly disseminate sulfide mineralized troctolite, and a basal, country rock contaminated, 

massive sulfide-bearing breccia sequence, which forms the economic core of the deposit 

(e.g., Lightfoot and Naldrett, 1999). The two styles of mineralization (disseminated 

versus massive) have distinct differences in metal tenor (Ni-Cu); disseminated sulfides in 

the weakly mineralized variable-textured troctolite (VTT) have high Ni tenors 

([Ni]100=4−8%), and massive sulfides associated with the breccia sequence (BBS) at the 

base of the EDI have lower Ni tenors ([Ni]100=3.5−4%) (Lightfoot et al., 2012). The 

disparate metal tenors are consistent with R-factor (silicate:sulfide melt ratio; Campbell 

and Naldrett, 1979) variations and the equilibration of sulfide with olivine-normative 

melts (Lightfoot et al., 2012). The distribution of Mg-Fe-Ni in olivine from EDI 

lithologies records important information about the magma source, fractional 

crystallization processes, and equilibration with trapped silicate and immiscible sulfide 

liquids (e.g., Li and Naldrett, 1999; Li et al., 2000, 2007; Venables, 2003).  

Tracing sulfide segregation in mafic magmatic systems is the key application of olivine 

Mg-Fe-Ni analysis and can support Ni-exploration decisions (e.g., Fleet and McRae, 

1983; Lightfoot et al., 1984; Tyson and Chang, 1984; Barnes and Naldrett, 1985; 

Chalokwu and Grant, 1987; Maier et al., 1998; Li et al., 2003a; Maier et al., 2010). 
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Previously published olivine composition data from the VBI reveal minor stratigraphic 

variations in Mg/Fe across the barren and mineralized EDI lithologies, whereas the Ni 

concentration of olivine appears mostly erratic. The decrease (up to 20 mol.%) in olivine 

forsterite (Fo) content with depth in the EDI is independent from olivine Ni 

concentrations, which also vary largely independently of Fo content, host lithology, 

depth, and style of associated mineralization – from ~260 ppm (olivine gabbro – OG, 

~Fo73) to 2,200 ppm (barren normal troctolite – NT, ~Fo79). Li and Naldrett (1999) 

related the Ni diversity to interaction with segregated sulfides and reequilibration between 

olivine and surrounding sulfide liquid. Based on their olivine data, the authors concluded 

that the EDI troctolites (NT-VTT) are related through fractional crystallization and that 

the NT-VTT magma entrained existing sulfides and upgraded them in metal content. 

Venables (2003) on the other hand proposed that NT-VTT olivine were actually enriched 

in Ni by equilibration with a Ni-rich sulfide liquid and thus cannot be the metal source for 

the EDI sulfide-ore deposit. However, since EDI olivine from the barren NT, weakly 

mineralized VTT, and contaminated, massive sulfide-bearing BBS have overlapping Ni-

Fo contents (Li and Naldrett, 1999; Li et al., 2000; Venables, 2003), the genetic 

relationship between NT-VTT olivine and immiscible sulfide liquid(s), and between the 

composition of BBS olivine and massive sulfide mineralization is uncertain. 

In this study we use Secondary Ion Mass Spectrometry (SIMS) multi-trace element (Ca, 

Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Sr, Y, and Zr) microanalysis of olivine to show that a 

systematic stratigraphic and genetic relationship exists between the olivine trace element 

composition and:  
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(1) The magmatic episodicity (and consequent variation in R-factor), particularly of the 

host troctolites (NT, VTT);  

(2) The influence of country rock contamination on the origin of sulfide saturation in the 

mineralized VTT and BBS;  

(3) The different styles of sulfide mineralization in the EDI (VTT – higher Ni tenor, 

disseminated, versus BBS – lower Ni tenor, massive; Li et al., 2000; Evans-

Lamswood et al., 2000; Lightfoot et al., 2012).  

The chemical diversity (Ni, Co, Cr, Mn, and Zn) of olivine in barren troctolite versus 

mineralized troctolite/basal breccia is further used to establish potentially systematic 

olivine trace element variations as geochemical vector towards zones with economic 

sulfide mineralization in the EDI. 

 

Fig. 3.1: Simplified geological map of the VBI with the olivine gabbroic to troctolitic rocks and major 

sulfide mineralization projected to the surface (after Evans-Lamswood et al., 2000). The inset shows the 

position of the VBI in the regional tectonic framework of coastal Labrador (after Li and Naldrett, 1999). 
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3.2. Geology and Mineralogy of the Voisey’s Bay Intrusion 

3.2.1. Geological Background 

The olivine gabbroic to troctolitic rocks of the VBI (Fig.3.1) are part of the Nain Plutonic 

Suite (NPS). The NPS is a Mesoproterozoic anorthosite-mangerite-charnockite-granite 

(AMCG) suite, covering almost 20,000 km
2
 of northern Labrador, Canada (Emslie et al., 

1994; Ryan, 2000; and references therein). Numerous NPS intrusions – including 

anorthosite, troctolite, ferrodiorite and granitoid – punctured the Paleoproterozoic Nain-

Churchill continental suture zone (“Torngat orogen”) between circa 1,350 and 1,290 Ma, 

as a result of limited intracontinental rifting along this major terrane junction (e.g., Emslie 

et al., 1994; Ryan, 2000). West of this tectonic boundary, the Paleoproterozoic Torngat 

orogen, part of the Churchill Province, comprises interbanded garnet-sillimanite 

paragneisses, which are locally sulfide- and graphite-bearing and collectively known as 

“Tasiuyak gneiss”, as well as minor massive to lineated enderbitic orthogneisses 

(“metaplutonic rocks”; Rawlings-Hinchey et al., 2003). To the east, the Archean Nain 

Province consists of interbanded quartzo-feldspathic and amphibolitic orthogneiss with 

retrogressed granulite- and amphibolite-facies mineral assemblages (e.g., Li and Naldrett, 

1999; Ryan, 2000). U-Pb geochronology of baddeleyite and zircon implies an 

emplacement age of 1,332.7 ±1.0 Ma for most components of the VBI (Amelin et al., 

1999) – making it the oldest known troctolitic member of the NPS.  

The VBI comprises a group of olivine gabbroic to troctolitic chambers linked by an 

olivine gabbro dike (Fig.3.1); collectively these rocks host the economic Voisey’s Bay 
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Ni-Cu-Co sulfide deposit. The VBI is subdivided into five major components (Fig.3.1), 

(1) a buried Lower Chamber (Western Deeps or Reid Brook Intrusion) in the west, 

comprising a thick sequence of plagioclase-rich troctolite (leucotroctolite – LUT) and 

olivine gabbro (OG), (2) a partially exposed Upper Chamber (Eastern Deeps Intrusion – 

EDI; detailed in Fig.3.2) in the east, containing a variable-textured troctolite (VTT) 

overlain by a homogeneous normal troctolite (NT) that is, in turn, overlain by an olivine 

gabbro (OG). The chambers of (1) and (2) are inferred to be connected by partially 

brecciated, semi-massive to massive sulfide-bearing gabbroic feeder sheet(s) of 

approximately 1km vertical extent, which are exposed at surface at the (3) Discovery Hill 

Zone, (4) the Mini-Ovoid, and (5) the Ovoid deposit. The Ovoid deposit is a bowl-shaped 

structure consisting of up to 110m of massive sulfide (currently mined in an open-pit 

operation) (e.g., Lightfoot and Naldrett, 1999; Li and Naldrett, 1999; Huminicki et al., 

2011; Lightfoot et al., 2012). 

Although the Western Deeps Intrusion (WDI) was emplaced mainly in the sulfide-bearing 

Tasiuyak paragneiss, the EDI primarily intruded the enderbitic orthogneiss and, to some 

extent, the Nain orthogneiss (e.g., Lightfoot and Naldrett, 1999). Zones of significant 

sulfide mineralization, with systematic variations in metal tenor (Ni-Cu), are spatially and 

genetically associated with magmatic breccia and country rock contaminated lithologies; 

specifically, the feeder breccia (FB) at the top of the Reid Brook Zone (base of the feeder 

dike), as well as the basal breccia sequences (BBS) which appear both in the feeder sheet 

(e.g., within the Ovoid deposit), and within the EDI, proximal to the entry point of the 
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feeder dike (e.g., Lightfoot and Naldrett, 1999; Li and Naldrett, 1999; Evans-Lamswood 

et al., 2000; Lightfoot et al., 2012).  

 

3.2.2. Previous Studies  

Published olivine compositional data indicates that there is a link between Fo content and 

stratigraphic position within the intrusion (Li and Naldrett, 1999; Li et al., 2000; 

Venables, 2003). The published data show a decrease in average forsterite content of 

olivine from NT (Fo73–77) and VTT (Fo69–75) through BBS (Fo66–72) – although a 

high intra-sample heterogeneity is observed in olivine from the VTT (Fo61–85) 

(Venables, 2003). In detail, the Ni concentrations appear decoupled from the Fo content 

and stratigraphic position in the EDI, and display no coherent trend within either the 

troctolite units or the BBS (Li and Naldrett, 1999; Li et al., 2000; Venables, 2003). One 

excursive horizon of Ni-rich olivine appears in the NT sequence in the EDI (VB266, 

~109m, ~2,216 ppm Ni; Venables, 2003), whereas olivine with very low Ni 

concentrations (VB266, ~55 ppm Ni; Venables, 2003) occurs sporadically in the VTT and 

BBS. These very low contents are apparently outliers, since they seem to reflect 

individual spots on single olivine grains rather than multiple grains in a single sample 

(Venables, 2003). The majority of the VBI olivine grains analyzed to date by EPMA have 

Ni concentrations between 900 and 1,700 ppm (Li and Naldrett, 1999; Li et al., 2000; 

Venables, 2003). The lowest reported, analytically robust Ni contents are ~159 ppm and 

occur in olivine from the feeder OG unit within the conduit (as sampled by DDH VB315), 
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whereas the lowest values in the EDI are also found in OG (VB231; up to 262 ppm Ni) 

(Li and Naldrett, 1999; Li et al., 2000). 

Even though the published Ni contents for VBI olivine demonstrate a strong 

heterogeneity, and almost no systematic relationship with the Fo content or stratigraphic 

position, the overall ranges in Ni concentrations presented by Li and Naldrett (1999), Li 

et al. (2000) and Venables (2003) overlap, except for the most extreme values from 

Venables (2003). These authors report somewhat different ranges in Fo content from 

several DDH (i.a., VB166, VB189, VB194, VB201, VB231) within the VBI. Li and 

Naldrett (1999) and Li et al. (2000) report the lowest average Fo values for VBI olivine 

(i.e., NT, Fo56–72; VTT, Fo54–72; BBS, Fo53–64) with ultramafic fragment (UMF) 

samples containing olivine with a maximum of Fo81 (overall range of Fo70–81). The Fo 

values from one DDH (VB266) in the EDI reported by Venables (2003) are on average 

much higher (see above). Given the compositional disparity and the limited set of 

elements in the published olivine data, it was not possible to correlate variations in the 

olivine chemistry to the different zones of sulfide mineralization (VTT and BBS) in the 

EDI.  

 

3.2.3. Sampling and Analytical Methods 

3.2.3.1. Sampling Approach 

The stratigraphy of the EDI comprises the most complete succession of olivine gabbroic 

to troctolitic units in the entire VBI (Evans-Lamswood et al., 2000). The majority of our 
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samples were derived from diamond-drill holes (DDH) transecting the EDI (Fig.3.2). 

Samples were collected from 5 DDH (VB-98-451, VB-96-266, VB-00-544, VB-00-548, 

VB-01-552; in the following abbreviated) transecting the EDI from NW to SE roughly 

following the entry line of the feeder dike at the steep to sub-vertical north wall (Fig.3.2). 

These were supplemented by samples from VB-98-449, which sampled the top of the 

Reid Brook Zone (WDI). Between 4 (VB548) and 53 (VB266) representative samples of 

less than 0.5m long half core were acquired from top to base of each hole. All sampled 

DDH from EDI intersected the troctolitic units (NT and VTT) and the weakly mineralized 

(lower part of VTT) to heavily mineralized (BBS) basal portion of the intrusion, proximal 

to the entry point of the feeder dike (Fig.3.2). OG was intersected sporadically in the EDI 

(VB544 and VB552) and at the top of the Reid Brook Chamber (VB449). The core 

selected for analysis is the basis for a chemostratigraphy of the EDI directly above the 

economic mineralization and extends NW, approximately halfway towards the Ovoid 

deposit. Samples for olivine analysis were systematically chosen to cover a vertically 

continuous transect from the barren NT downhole to the mineralized BBS, with an 

average vertical resolution of one sample per 25m (VB266). This strategy was designed 

to allow a comparison between olivine from barren troctolite (NT), zones with high tenor 

disseminated sulfide (VTT) and zones with low tenor massive sulfide (BBS) – with the 

potential to reveal compositional trends associated with the timing and location of sulfide 

saturation and segregation. Further, VB266 has been intensively studied previously (Li 

and Naldrett, 1999; Li et al., 2000; Venables, 2003; Lightfoot et al., 2012; see above) and 

whole-rock geochemical characterization and EPMA olivine data were thus readily 
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available for comparison. Consequently, VB266 had the highest sample density in our 

study and provides an anchor point in the approximate center of the EDI. 

 

Fig. 3.2: Detailed geological map of the EDI in the eastern part of the VBI with sulfide mineralization 

projected to the surface (after Lightfoot et al., 2012). The positions of sampled DDH are marked with 

circles and their specific identification number. The cross-section (vertical exaggeration) shown is inferred 

based on the individual DDH log files (Vale, unpublished data) and assumes a contiguous longitudinal 

section through DDH VB266, VB544, VB548, and VB552. 
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3.2.3.2. Secondary Ion Mass Spectrometry (SIMS) 

Major and trace element analyses were performed with a Cameca IMS 4f instrument at 

the Memorial University MAF-IIC microanalysis facility. Target areas from rectangular 

polished thin-sections were cut into 1” discs, then cleaned and coated with a ≤0.05m 

thick layer of gold to minimize charge build-up on the sample surface during analysis. A 

primary beam of O
-
 ions, accelerated through a nominal potential of 4.5 kV with a beam 

current of circa 20 nA, was focused to a 25 to 40m spot on the sample. Between 5 and 

25 spot analyses were made in each sample, involving several discrete olivine grains. 

Each analysis comprised 10 cycles of peak counting on 
40

Ca
++

, 
45

Sc
++

, 
25

Mg
+
, 

30
Si

+
, 

47
Ti

+
, 

51
V

+
, 

52
Cr

+
, 

55
Mn

+
, 

57
Fe

+
, 

59
Co

+
, 

60
Ni

+
, 

63
Cu

+
, 

66
Zn

+
, 

88
Sr

+
, 

89
Y

+
, 

90
Zr

+
 plus counting on a 

background position to monitor detection noise. The measured count rates were 

normalized to the count rate of 
30

Si
+
. Secondary ions were energy filtered (cf. Shimizu et 

al., 1978; Ottolini et al., 1993; Hervig et al., 2006) to effectively eliminate isobaric 

interferences (and reduce matrix effects) by preferentially selecting high-energy ions. 

Detection limits were estimated following the procedure of Jones and Layne (1997). 

Typical detection limits for an interference-free measurement, calculated based on the 

results for San Carlos olivine reference material, were; less than 5 ppb for V, Cr, Mn, Cu, 

Sr, Y, Zr; 10–40 ppb for Ca, Ti, Co, and Ni; ~90 ppb for Sc and Zn.  

The relative analytical error (2s) was estimated for each analytical spot using the internal 

precision (standard deviation of the mean) of each 10-cycle analysis. Typical precisions 

were ~3% for Mg, Mn and Fe; ~7.5% for Cr, Co, Ni, and Zn; ~30% for Ca, Ti and V; and 

~45% for Sc, Cu, Sr, Y and Zr. The analysis of Sc, Cu, Sr, Y and Zr was partly hampered 



P a g e  | 107 

 

 

by relatively high analytical errors due to very low (near detection limit) concentrations in 

the samples measured, and results for these elements were thus treated as semi-

quantitative. The complete analytical approach, and the reference materials used, is 

described in detail in Chapter 2. 

 

3.2.4. Petrography of the Eastern Deeps Intrusion 

Detailed geological and mineralogical descriptions of the VBI host rocks, and their 

structural context, are presented by Lightfoot and Naldrett (1999), Li and Naldrett (1999), 

Evans-Lamswood et al. (2000), Lightfoot et al. (2012) and references therein. 

Consequently, we concentrate here on describing olivine from the four major lithologies 

of the EDI (from base to top: BBS, VTT, NT, OG), and review below their key 

petrographic characteristics and mineralogical associations in the context of each host 

lithology (photomicrographs of all measured samples are also in Appendix 6.6.). 

 

3.2.4.1. Basal Breccia Sequence (BBS) 

The BBS (in VB451, VB266, VB552) is a discontinuous basal sequence in the EDI, from 

1m to 5m thick, that is associated with intervals of economic massive sulfide 

mineralization (Fig.3.1 and 3.2). The unit is highly contaminated – with up to 25 vol.% of 

cm-sized paragneiss fragments that commonly show syn-magmatic flattening, partial 

digestion and re-crystallization (see Lightfoot and Naldrett, 1999; Li and Naldrett, 1999; 

Li et al., 2000; Lightfoot et al., 2012). The sulfide content can be as high as 45 vol.%, and 
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it occurs either in massive stringers or occasionally as leopard-textured troctolite (LTT). 

Troctolitic and ultramafic inclusions (or ultramafic fragments – UMF) essentially strongly 

serpentinized melatroctolite and wehrlite fragments are also incorporated. The BBS 

comprises approximately 30–45 vol.% plagioclase, 5–15 vol.% orthopyroxene (±augite), 

5–10 vol.% olivine. Biotite, greenish-brown hornblende and sulfides occur as interstitial 

phases (10–50 vol.%). Olivine is mostly fine- to medium-grained, irregular poikilitic or 

sub- to euhedral, and mildly to moderately altered (Fig.3.3F–H). Locally, plagioclase 

chadacrysts (less than 0.3mm; Fig.3.3F) are included in olivine. Individual olivine grains 

are commonly embayed, with signs of corrosion and resorption (Fig.3.3G), or completely 

included in sulfides and thus preserve a euhedral shape (Fig.3.3H). These latter olivine 

grains have a pronounced chemical zonation (Fig.3.4), which is not detectable with the 

petrographic microscope. Also, the euhedral olivine grains are usually separated from the 

surrounding sulfides by a thin selvage of biotite, ±greenish-brown hornblende (and, 

rarely, augite ±orthopyroxene), or a combination of all three of these silicate phases – a 

consistent textural feature that was observed in every major unit in the EDI. Locally, 

olivine grains are entirely serpentinized with rims of biotite, ±greenish-brown hornblende, 

±Fe-Ti oxides.  

 

3.2.4.2. Variable-textured Troctolite (VTT) 

The VTT (in VB451, VB266, VB544, VB552) is a country rock-contaminated meso- to 

orthocumulate that can contain appreciable amounts of interstitial sulfides (up to 15 

vol.%), and up to 15 vol.% partially digested and re-crystallized paragneiss inclusions 
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close to the footwall contact with the BBS. The cumulus phases are plagioclase (50–55 

vol.%) and olivine (25–30 vol.%), with augite (±orthopyroxene), biotite and greenish-

brown hornblende as major interstitial phases (10–20 vol.%). Grain sizes range from fine- 

to coarse-grained with local pegmatitic intervals. The degree of alteration is moderate to 

high, and includes sericitization of plagioclase, serpentinization of olivine and 

uralitization of augite (±orthopyroxene). Olivine and pyroxene grains are commonly 

completely replaced by mixtures of serpentine-group minerals, biotite, greenish-brown 

hornblende and Fe-Ti oxides. In general, olivine is fine- to medium-grained, equant to 

round where enclosed by plagioclase oikocrysts, and elsewhere subhedral to partially 

irregular poikilitic, locally enclosing small plagioclase laths (Fig.3.3D–E). Rare olivine 

grains have epitactic overgrowths of augite (±orthopyroxene) and exhibit signs of 

resorption and re-crystallization (Fig.3.3E). The VTT displays the widest range of olivine 

textures of all studied units in the EDI. 

 

3.2.4.3. Normal Troctolite (NT) 

This unit forms the upper troctolite in DDH (VB266, VB544, VB548, VB552), and crops 

out along the central part of the exposed EDI (Fig.3.2). It is essentially a homogeneous, 

weakly layered, dark-grey, medium-grained troctolite that is, based on the modal 

percentage of cumulus plagioclase (55–65 vol.%) and cumulus olivine (25–35 vol.%), the 

most primitive laterally and vertically correlatable unit in the intrusion. Olivine is 

typically medium-grained, with a range of crystal habits from equant and prismatic (sub- 

to euhedral) to partially poikilitic, enclosing plagioclase chadacrysts (Fig.3.3A–B). In 
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general, grains are fresh to moderately serpentinized, display kelyphitic-zones (Fig.3.3A; 

an intergrowth of brown hornblende and pyroxene lying between olivine and anorthite), 

or epitactic overgrowths of orthopyroxene (or augite), brown hornblende and biotite. The 

latter occur dominantly as selvages on olivine grains that are in contact with Fe-Ti oxides 

or sulfides (Fig.3.3B). These textures indicate that olivine formed prior to or at the same 

time as plagioclase, but always earlier than the other mineral phases.  

 

3.2.4.4. Olivine Gabbro (OG) 

The OG is the uppermost unit of the EDI and is exposed on surface at the eastern margin 

of the intrusion, and was intersected by VB544 and VB552 (Fig.3.2). This coarse to 

pegmatitic olivine-plagioclase cumulate has 60–70 vol.% plagioclase and 10–25 vol.% 

olivine. Interstitial augite (up to 15 vol.%) is present as coarse-grained oikocrysts 

enclosing olivine and plagioclase grains. Ilmenite (±titanomagnetite) occurs interstitially 

as cm-sized laths and elongate crystals in higher abundance than in other units (less than 

8 vol.%). Olivine occurs as fine- to coarse-grained, equant, rarely irregular, but mostly 

prismatic (subhedral) crystals that are moderately to strongly serpentinized, and locally 

completely replaced by mixtures of serpentine-group minerals, ±biotite, ±brown-green 

hornblende, ±Fe-Ti oxides. Although some grains display minor epitactic overgrowths of 

orthopyroxene or augite (Fig.3.3C), this feature is less common in the OG than in the 

VTT and NT.  
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Fig. 3.3 (previous page): Photomicrographs of olivine grains that are texturally characteristic of the 

individual lithologies in the EDI. Cross-polarized light. A)–B) olivine in NT, C) in OG, D)–E) in VTT, F)–

G) in BBS. Key for minerals: ol = olivine, plag = plagioclase, bt = biotite, hbl = hornblende, cxp = 

clinopyroxene, slfd = sulfide, hrc = hercynite. 

 

 

Fig. 3.4: Zonation in an olivine grain enclosed by sulfide minerals (VB266-43, BBS). Vertical profile 

(consisting of 23 analyses) is shown in A), and the horizontal profile (consisting of 19 analyses) in B) for 

the element concentrations of Ni, Co, Mn, Zn, and the Fo content. Results for the diffusion profile modeling 

are calculated with diffusion coefficients (DNi and DMn) for 1,100°C and 1,000°C from Petry et al. (2004). 

The calculation is presented and discussed in detail in Appendix 6.3. 
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Table 3.1: SIMS analytical data for olivine (averages) from the VBI 

 

Sample Rock type depth RVP
a

RVP calc
b

n forsterite 1s 3
MgO FeO Ca 1s Sc 1s Ti 1s V 1s Cr 1s Mn 1s Co 1s Ni 1s Cu 1s Zn 1s Sr 1s Y 1s Zr 1s

VB552-1 OG 4 0.00 0.31 7 72.8 0.6 37.04 24.15 677 108 6.84 1.23 75.1 5.2 3.70 0.38 67.9 2.7 4047 33 275 7 375 10 9.9 7.8 352 7.9 0.154 0.021 0.231 0.070 0.270 0.152

VB552-3 OG 77 0.08 0.43 14 72.7 1.3 36.98 24.29 558 112 6.09 1.69 42.3 19.3 1.58 0.29 53.7 2.7 3800 71 215 5 441 15 6.4 2.3 332 7.0 0.290 0.126 0.087 0.016 0.509 0.172

VB449-3 OG 474 N.M. N.M. 6 67.0 1.1 33.37 28.80 492 85 8.98 1.69 34.4 4.4 2.47 0.05 77.8 6.4 3741 64 193 33 178 26 30.9 12.3 362 10.5 0.313 0.098 0.663 0.357 0.166 0.008

VB449-4.1 OG 513 N.M. N.M. 9 69.1 0.7 34.71 27.14 496 116 7.11 0.72 40.9 11.1 1.93 0.55 52.3 2.0 4213 40 188 5 337 15 67.0 11.7 472 9.1 0.329 0.118 0.133 0.020 0.299 0.084

VB449-4.2 OG 513 N.M. N.M. 6 71.8 1.0 36.41 25.00 370 42 N.M. N.M. 23.4 11.5 1.15 0.22 56.2 3.8 3764 45 212 10 479 11 N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M.

VB449-5 OG 611 N.M. N.M. 12 64.9 1.2 32.07 30.41 500 79 7.91 2.82 27.1 9.9 1.76 0.27 61.0 3.5 4229 112 217 9 278 11 61.9 20.7 365 7.8 0.203 0.067 0.610 0.157 0.666 0.032

VB544-11.2 OG 375 0.54 0.46 10 69.4 1.4 34.83 26.96 264 110 2.04 0.70 46.2 17.7 2.52 0.15 78.7 4.2 2836 103 257 21 1252 91 N.M. N.M. 225 16.5 1.169 1.650 0.085 0.056 0.999 0.947

VB544-12.1 OG 389 0.56 0.68 12 59.3 1.1 28.57 34.71 565 103 6.04 1.33 32.4 7.5 2.18 0.16 57.7 3.2 3994 37 189 5 1028 37 3.7 1.6 371 7.4 0.625 0.131 0.319 0.126 0.370 0.053

VB544-12.2 OG 390 0.56 0.66 18 59.9 0.7 28.90 34.30 708 89 3.66 0.88 41.0 6.7 1.95 0.21 62.3 3.4 4008 37 190 3 985 41 4.9 0.6 383 3.5 0.863 0.176 0.230 0.110 0.379 0.067

VB544-13.1 OG 404 0.58 0.59 9 61.5 1.1 29.87 33.09 442 84 2.37 0.49 21.5 4.7 1.87 0.15 66.9 1.2 3826 35 190 4 529 7 N.M. N.M. 329 5.3 0.446 0.064 0.088 0.025 0.352 0.048

ED-NT NT 0 0.00 0.19 28 77.9 1.2 40.69 19.77 449 103 4.05 1.24 304 122 6.07 1.32 85.1 7.9 2545 90 246 16 1247 54 43.6 25.6 236 14.0 1.009 0.541 0.140 0.070 1.133 0.656

VB266-1 NT 38 0.06 0.26 15 79.9 0.4 42.17 18.02 106 28 N.M. N.M. 53.5 31.5 3.88 1.22 81.0 4.1 2599 53 305 8 1618 52 5.5 1.5 247 14.5 0.152 0.045 0.033 0.013 N.M. N.M.

VB266-21 NT 47 0.07 0.27 15 79.2 0.7 41.70 18.59 159 15 N.M. N.M. 46.5 30.6 3.50 0.38 79.6 3.0 2793 31 287 7 1428 31 5.3 1.6 264 12.4 0.375 0.048 0.047 0.018 0.332 0.173

VB266-23 NT 78 0.11 0.23 15 77.1 1.4 40.31 20.29 390 108 N.M. N.M. N.M. N.M. 5.15 0.75 89.2 3.7 2624 83 263 13 1382 71 55.6 15.6 251 8.2 0.782 0.145 0.085 0.017 0.599 0.542

VB266-24.2 NT 101 0.15 0.30 4 80.0 0.3 42.00 18.19 327 33 2.09 1.40 43.7 8.3 3.62 0.30 82.0 5.0 2864 28 239 4 1525 17 10.5 3.2 292 1.2 0.333 0.041 0.047 0.015 0.175 0.035

VB266-24.1 NT 101 0.15 0.25 11 81.8 0.2 43.08 16.74 307 58 2.60 1.01 42.4 23.7 4.21 0.35 90.6 1.3 2562 27 240 4 1620 27 4.7 1.6 246 6.0 0.338 0.030 0.042 0.010 0.377 0.431

VB266-26 NT 106 0.15 0.29 39 79.5 0.9 41.67 18.53 406 135 2.79 0.95 76.2 60.5 3.75 0.68 86.9 11.1 2596 120 249 27 1541 74 25.6 26.7 241 22.3 0.672 0.298 0.070 0.069 0.398 0.334

VB266-27A NT 108 0.16 0.45 31 76.8 0.8 39.33 21.44 348 56 4.29 1.05 224 170 4.68 1.13 87.5 7.8 2796 88 204 18 2451 117 22.5 14.0 284 31.0 0.506 0.283 0.131 0.063 0.442 0.282

VB266-27B NT 108 0.16 0.31 12 79.0 0.6 41.21 19.06 391 44 4.61 1.77 130 100 4.86 0.56 83.4 2.3 2772 88 242 5 1884 34 3.8 1.0 271 7.0 0.414 0.028 0.151 0.054 0.821 0.664

VB266-3.1 NT 108 0.16 0.46 8 78.8 0.3 41.12 19.27 413 52 3.53 0.71 91.8 31.1 4.08 0.36 79.8 3.3 3011 27 193 15 2489 142 25.5 3.4 311 24.2 0.520 0.032 0.093 0.020 0.439 0.373

VB266-3.2 NT 108 0.16 0.41 6 79.6 0.4 41.69 18.57 392 55 3.04 0.95 69.3 13.5 3.94 0.52 79.6 3.2 2972 32 202 7 2200 138 30.3 9.4 309 9.3 0.471 0.083 0.089 0.024 0.340 0.202

VB552-5 NT 225 0.23 0.26 10 79.4 0.6 41.60 18.69 420 81 N.M. N.M. 37.0 10.5 3.78 0.37 79.8 3.3 2994 32 236 4 1000 19 19.6 6.4 236 8.2 0.236 0.050 0.070 0.016 0.266 0.154

VB544-1 NT 11 0.02 0.42 11 79.8 0.7 41.79 18.35 136 37 1.01 1.00 13.0 3.4 2.74 0.74 74.3 19.3 2183 105 231 7 1976 42 4.7 2.5 97 15.3 0.581 0.234 0.029 0.020 0.159 0.099

VB544-2 NT 18 0.03 0.43 8 71.8 0.7 36.37 24.98 314 58 2.52 1.12 41.3 7.6 2.22 0.28 61.0 6.7 3090 47 275 4 1214 27 36.3 13.3 323 10.2 0.463 0.306 0.077 0.013 0.283 0.142

VB544-4.2 NT 36 0.05 0.42 12 73.1 1.1 37.20 23.95 274 67 2.50 1.13 31.7 1.8 2.36 0.31 59.9 1.9 3023 98 282 34 1355 85 8.7 1.2 321 11.3 0.320 0.053 0.056 0.014 0.216 0.070

VB544-5A NT 67 0.10 0.38 11 65.6 1.6 32.43 29.93 447 50 2.78 0.51 57.1 15.5 2.82 0.44 71.6 5.4 2739 80 173 9 77.6 2 5.4 2.0 262 27.5 0.760 0.249 0.194 0.037 0.492 0.190

VB544-8.2 NT 247 0.35 0.35 10 75.1 0.8 38.54 22.28 189 39 1.62 0.60 32.7 6.7 2.40 0.18 63.3 5.1 2827 36 329 19 1299 56 28.9 8.4 290 7.1 0.316 0.073 0.034 0.011 0.242 0.049

VB544-9 NT 349 0.50 0.34 5 75.1 0.3 38.56 22.34 322 41 1.55 0.60 66.6 33.6 3.03 0.28 84.6 1.5 2710 36 243 2 1253 33 3.9 1.2 265 15.1 0.993 0.149 0.058 0.012 0.405 0.094

VB548-1 NT 27 0.03 0.45 10 72.4 0.9 36.74 24.52 606 109 6.86 1.52 26.2 9.8 2.51 0.18 67.5 4.9 4028 38 295 7 1344 21 48.2 13.8 429 9.5 0.330 0.053 0.364 0.128 0.264 0.049

VB548-2 NT 33 0.04 0.43 10 71.2 1.1 36.08 25.48 622 61 5.84 1.03 84.2 41.7 3.01 0.41 67.6 3.8 3250 57 238 6 1301 39 85.5 12.6 366 13.1 0.410 0.144 0.423 0.198 0.388 0.465

VB548-9.1 NT 567 0.73 0.48 6 70.5 0.4 35.65 26.01 170 41 3.43 0.51 113 16.4 3.05 0.13 70.0 3.6 2686 28 296 3 2113 23 30.8 4.6 328 3.9 0.625 0.230 0.060 0.025 0.310 0.070

VB548-10 NT 568 0.73 0.44 12 73.5 0.8 37.49 23.59 212 55 3.57 0.66 42.4 6.7 2.26 0.21 65.1 3.5 3265 58 366 34 1834 66 6.7 1.5 336 14.0 0.396 0.064 0.144 0.087 0.214 0.046

VB266-29 VTT 146 0.21 0.20 13 80.0 0.7 42.00 18.19 313 65 2.83 0.89 47.6 16.5 3.85 0.42 87.3 10.6 2910 54 253 9 926 35 11.0 4.6 282 35.5 0.279 0.081 0.083 0.050 0.205 0.047

VB266-31.1 VTT 217 0.32 0.20 6 80.4 0.2 42.26 17.88 360 57 N.M. N.M. 77.4 66.8 4.62 0.42 102 4.3 3059 22 270 24 1135 22 3.8 1.2 240 6.6 0.201 0.020 0.059 0.015 0.311 0.230

VB266-33 VTT 262 0.38 0.30 6 80.6 0.2 42.39 17.72 386 66 N.M. N.M. 62.2 43.0 4.23 0.33 93.0 6.1 3071 30 246 26 1619 127 3.8 1.1 250 27.4 0.308 0.036 0.113 0.105 0.394 0.183

VB266-34A VTT 274 0.40 0.27 20 76.2 0.9 39.68 21.06 275 42 N.M. N.M. N.M. N.M. 3.68 1.12 82.3 6.6 3035 66 281 6 990 28 47.7 12.6 267 9.0 1.083 0.264 0.184 0.071 0.791 0.464

VB266-6.2 VTT 290 0.42 0.30 4 80.3 0.3 42.24 17.91 314 34 N.M. N.M. 16.5 2.0 3.97 0.38 100 1.7 2865 55 274 9 1799 58 3.7 0.6 226 16.1 0.270 0.028 N.M. N.M. 0.131 0.011

VB266-7 VTT 357 0.52 0.32 11 77.5 1.8 40.57 19.96 196 27 N.M. N.M. N.M. N.M. 4.51 0.86 91.4 5.1 2660 124 239 23 1708 169 99.5 17.1 227 13.9 0.702 0.151 0.113 0.025 1.918 0.868

VB266-8 VTT 385 0.56 0.38 14 75.2 0.9 39.02 21.88 259 36 N.M. N.M. N.M. N.M. 5.01 1.14 83.8 2.2 2987 79 206 15 1813 151 43.4 12.2 267 34.8 1.220 0.379 0.173 0.055 0.906 0.573

VB266-37 VTT 402 0.59 0.27 6 80.9 0.5 42.63 17.44 242 60 N.M. N.M. 76.0 57.1 4.62 0.35 101 4.8 2878 49 281 13 1853 59 3.9 2.6 250 22.9 0.323 0.080 N.M. N.M. 0.270 0.130

VB266-39 VTT 453 0.66 0.39 14 74.3 0.7 38.42 22.61 196 30 N.M. N.M. N.M. N.M. 3.57 0.55 79.0 2.9 3043 55 273 10 1654 63 111.8 28.0 280 5.5 1.238 0.215 0.075 0.023 1.443 0.663

VB266-10.3 VTT 501 0.73 0.30 6 77.6 0.5 40.39 20.18 529 80 N.M. N.M. 44.4 24.0 4.22 0.50 93.0 6.5 3333 29 265 3 1344 11 31.5 6.0 287 14.2 0.302 0.029 0.271 0.113 0.216 0.063

VB552-6.2 VTT 587 0.61 N.M. 11 77.9 0.6 40.47 20.00 448 127 N.M. N.M. 58.7 51.2 5.26 2.25 101 12.9 2947 90 240 12 1279 44 N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M. N.M.

VB552-11.1 VTT 763 0.80 0.50 19 69.8 0.7 35.14 26.59 432 90 4.03 0.93 44.1 6.3 3.03 0.23 70.0 2.7 3558 65 203 18 1436 80 5.4 0.7 390 26.6 0.550 0.122 0.186 0.083 0.238 0.032

VB552-11.2 VTT 763 0.80 0.49 15 70.4 0.8 35.50 26.11 482 123 4.65 0.97 38.2 4.7 2.81 0.19 70.2 3.2 3449 31 248 7 1562 36 8.3 1.4 382 6.1 0.500 0.083 0.316 0.157 0.255 0.023

VB552-13.1 VTT 792 0.83 0.59 22 67.3 1.9 33.50 28.60 417 136 5.30 1.33 49.9 10.1 2.66 0.58 62.1 3.3 3924 83 223 30 1582 205 11.0 9.1 398 28.5 0.536 0.255 0.141 0.108 0.261 0.083
a
: relative vertical proximity factor = sample depth / (depth of first massive sulfide occurence x relative sulfide content; e.g., RVP VB266-43 = 651 / (652.3 x 0.95)

b
: relative vertical proximity factor calculated based on results from multiple regression of V-Cr-Mn-Fe-Co-Ni-Zn and RVP with olivine data from VB266, VB544, and VB552 (see Appendix 6.4.)

3
: reported 1s error is standard deviation of n  analyses on individual sample ("inter-sample variability") - for average analytical error see Analytical Method section; (N.M. ) - not measured
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Table 3.1 (cont): SIMS analytical data for olivine (averages) from the VBI 

 

 

Sample Rock type depth RVP
a

RVP calc
b

n forsterite 1s 3
MgO FeO Ca 1s Sc 1s Ti 1s V 1s Cr 1s Mn 1s Co 1s Ni 1s Cu 1s Zn 1s Sr 1s Y 1s Zr 1s

VB451-1 VTT 12 0.01 0.35 23 75.0 2.2 38.55 22.38 474 104 4.99 1.15 201 118 4.41 0.63 74.9 11.4 3211 141 211 13 1310 64 5.0 1.2 322 15.8 0.342 0.081 0.170 0.088 1.486 1.019

VB451-3.1 VTT 25 0.01 0.44 6 68.8 1.3 34.46 27.40 717 91 3.27 0.98 83.8 59.0 3.79 0.90 69.3 1.9 3824 97 228 3 1030 15 6.9 1.9 401 9.2 0.369 0.038 0.139 0.044 0.505 0.208

VB451-3.2 VTT 25 0.01 0.42 11 72.3 1.4 36.68 24.65 526 54 2.85 0.89 43.2 22.9 2.85 0.42 70.1 3.9 3533 139 234 8 1081 43 5.5 0.9 352 23.4 0.308 0.024 0.072 0.013 0.236 0.062

VB451-4 VTT 171 0.09 0.42 10 73.2 3.0 37.34 23.84 316 101 4.29 0.96 42.0 15.3 3.68 0.96 75.0 5.9 3075 216 221 5 1617 78 4.1 0.7 330 47.5 0.414 0.045 0.067 0.014 0.346 0.248

VB544-10 VTT 355 0.51 0.34 15 77.8 0.3 40.38 20.09 309 44 3.52 0.61 45.2 12.0 4.04 0.90 91.5 6.0 2479 23 203 21 1675 120 7.1 0.9 214 23.7 0.540 0.091 0.091 0.014 0.573 0.291

VB544-15 VTT 557 0.80 0.27 11 79.5 0.7 41.48 18.63 289 68 4.96 1.24 189 155 4.59 1.77 73.2 7.3 2642 28 296 5 1791 62 58.2 17.6 277 6.6 0.358 0.046 0.185 0.078 1.419 1.189

VB544-17 VTT 622 0.89 0.59 6 62.3 0.7 30.39 32.41 385 51 1.03 0.61 33.0 6.9 1.73 0.64 49.3 4.7 3472 119 255 18 1083 117 18.7 5.2 371 17.8 0.935 1.055 0.036 0.008 0.356 0.083

VB544-18.1 VTT 663 0.95 0.57 10 64.8 0.6 31.90 30.58 555 82 3.70 1.25 253 227 2.74 0.58 69.2 2.5 4077 56 231 4 1198 24 7.0 2.3 392 4.7 0.671 0.072 0.108 0.022 0.647 0.334

VB544-18.2 VTT 663 0.95 0.52 13 65.9 0.5 32.60 29.71 349 90 2.73 0.54 91.0 109 2.20 0.26 70.8 1.5 3484 21 239 8 1097 68 20.7 3.8 355 10.2 0.593 0.075 0.085 0.030 0.519 0.155

VB552-20 LTT 900 0.94 0.72 7 68.4 0.6 34.30 27.69 276 89 N.M. N.M. 46.6 8.1 2.65 0.26 67.6 3.8 6970 484 206 28 772 86 26.9 8.8 401 45.1 0.299 0.095 0.333 0.104 0.276 0.051

VB266-12 BBS 609 0.89 0.51 15 63.8 1.5 31.70 30.91 198 26 N.M. N.M. 210 122 4.51 2.17 70.6 6.5 4600 105 244 8 1091 43 5.6 1.3 457 23.0 0.371 0.038 0.091 0.025 0.227 0.145

VB266-43 BBS 651 0.95 0.93 37 62.1 1.2 30.62 32.20 292 83 7.61 3.32 273 135 4.60 1.96 50.7 12.6 9928 1249 182 26 755 79 21.6 12.9 583 38.0 0.580 0.273 0.141 0.073 0.683 0.383

VB266-44 BBS 651 0.95 1.00 22 61.5 1.8 30.43 32.45 247 64 3.20 0.92 202 113 2.67 1.13 57.0 4.6 10148 1116 202 19 811 71 13.9 8.4 618 41.2 0.527 0.123 0.047 0.010 0.550 0.296

VB552-21.1 BBS 902 0.94 0.81 11 67.5 1.3 33.72 28.41 231 73 N.M. N.M. 46.5 6.0 2.22 0.33 67.1 9.3 7700 569 196 28 726 91 44.2 13.7 408 38.0 0.378 0.238 0.279 0.132 0.559 0.490

VB451-7 BBS 292 0.16 0.53 11 65.1 0.8 32.09 30.34 516 88 3.31 0.84 40.2 9.1 2.47 0.63 61.6 1.8 4138 84 248 3 796 48 5.0 1.1 396 8.1 0.346 0.049 0.128 0.064 0.225 0.035

VB552-15B UMF 836 0.87 0.43 28 72.7 2.5 37.00 24.29 290 109 9.51 3.66 63.4 42.7 4.10 1.28 74.0 8.0 3523 267 237 27 1268 94 11.7 6.2 240 45.3 0.329 0.056 0.261 0.185 0.207 0.062

Parameters for AFC modeling (compositions of model liquids)
1

basaltic liquid
X

8.0 10 160 140 1600 60 290 140

model gneiss
Y

4.3 10.8 108 80 20000 30 50 250

Partition coefficients (Dmin/melt) for basaltic melt
2

olivine 5.2 1.6 0.03 0.80 1.3-1.6 3.5 9.0 1.5-2.2

plagioclase 0.04 0.10 0.20 0.02 0.04 0.10 0.06 0

clinopyroxene 2.5 0.65 6 34 1.2 1.3 2.1 0

sulfide 9 0.60 0.90 0.30 61 200 1

Fe-Ti oxide
Z

1.3 60 15 1.9 2.2 3.8 0
a
: relative vertical proximity factor = sample depth / (depth of first massive sulfide occurence x relative sulfide content; e.g., RVP VB266-43 = 651 / (652.3 x 0.95)

b
: relative vertical proximity factor calculated based on results from multiple regression of V-Cr-Mn-Fe-Co-Ni-Zn and RVP with olivine data from VB266, VB544, and VB552 (see Appendix 6.4.)

1
: Rayleigh fractionation melt calculation: CL / CO = F

(D-1) 
(Rollinson, 1993; Li et al., 2007); AFC modeling was performed using the equation CL / CO=f'+r / (r-1+D) x CA / CO(1-f') from DePaolo (1981)

X
: basaltic liquid composition inferred after Condie (1993) Proterozoic basalts

Y
: model gneiss composition  - Mn based on Mn-rich enderbitic/Nain orthogneiss (Vale, unpublished data); Zn based on Tasiuyak paragneiss (Vale, unpublished data)

2
: mineral D values are from Bougault and Hekinian (1974); Paster et al., (1974); Duke (1976); Maclean and Shimazaki (1976); Rajmani and Naldrett (1978); Pederson (1979); 

Kloeck and Palme (1988); Beattie (1994); Ewart and Griffin (1994); Kohn and Schofield (1994); Gaetani and Grove (1997); Jones and Layne (1997); Bindemann et al., (1998); 

Li et al., (2003b); Klemme et al., (2006)
Z
: the major Fe-Ti oxide phase is ilmenite (titanomagnetite), however variable amounts of magnetite occur. Where D values for ilmenite were unavailable, D values for magnetite were utilized instead

3
: reported 1s error is standard deviation of n  analyses on individual sample ("inter-sample variability") - for average analytical error see Analytical Method section; (N.M. ) - not measured
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3.3. Results 

3.3.1. Olivine Compositional Variations 

We performed multiple spot analyses, mostly core-rim transects, on several olivine grains 

in each sample. Individual olivine grains in the EDI are not significantly zoned in major 

elements (see also Li and Naldrett, 1999; Li et al., 2000; Venables, 2003), although the 

inter-grain variability in a given sample appears to increase with increasing Fe content 

(e.g., Fo82 ±0.22 1s versus Fo62 ±1.8 1s). Intra-grain trace element zonation appears to 

be significant only for olivine from the VTT and BBS that is in direct contact with sulfide 

mineral phases. Partially enclosed olivine exhibits outer rim enrichments, primarily in Mn 

(±Zn) and, to a lesser extent, depletions in Ni and Co. When in contact with wetting 

sulfides, olivine from the VTT displays rims slightly depleted in Ni and Co. In particular, 

olivine rims in immediate contact with sulfide have up to 500 ppm Ni and 55 ppm Co less 

than rims of the same grain not in contact with sulfide (e.g., VB552-13.1). Major element 

concentrations, and Mn-Zn contents, are not perceptibly zoned in these VTT samples. In 

BBS sample VB266-44 (651m) an olivine grain distal to sulfides (but in contact with 

plagioclase) has 7,900 ±53 ppm (2s) Mn, 622 ±13 ppm (2s) Zn, 850 ±30 ppm (2s) Ni, 

and 230 ±5 ppm (2s) Co, whereas an olivine grain in direct contact with sulfides has Mn 

and Zn concentrations of 10,600 ±50 ppm (2s) and 684 ±25 ppm (2s), respectively, and 

around 50 ppm less Ni and Co. An olivine grain completely enclosed in sulfide minerals 

in VB266-43 (651m, Fig.3.3H) was further examined with line detailed orthogonal 

transects (Fig.3.4). The nearly symmetrical trace element profiles for Mn, Ni, and Co 
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demonstrate clear core-rim zonation in the magnitudes of Mn>Ni>Co, whereas Zn and 

the Fo content remain homogeneous. The concentration of Mn increases from core to rim 

(plus ~3,400 ppm Mn, factor of 1.4), whereas Ni and Co decrease (minus ~175 ppm, 

factor of 0.8, minus ~35 ppm, factor of 0.8) respectively (Fig.3.4).  

In the absence of wetting sulfide, the intra-sample variability is similar to the average 

SIMS analytical uncertainty (e.g., sample VB552-1, n=7, Ni content is 375 ±10 ppm 1s 

with an average analytical spot precision of ±9 ppm 1s). Intra-crystal compositional 

variations are thus only important for BBS olivine, and to a minor extent VTT olivine in 

contact with sulfides, and are reflected by higher absolute 1s deviations in olivine 

populations (e.g., VB266-43, n=37, 9,928 ±1,249 ppm 1s Mn; Table 3.1). Consequently, 

in Table 3.1 and Figures 3.5–3.11, average concentrations for multiple grains within 

individual samples are always denoted with the ±1s intra-sample variability (standard 

deviation of n spot analyses), whereas individual spot analyses are denoted with their 

internal precision as ±s.  

 

3.3.2. Chemostratigraphic Variations of Olivine 

Figures 3.5 and 3.6 illustrate the olivine trace element stratigraphy for two selected DDH 

from the EDI (VB266 and VB544; see Fig.3.2 for DDH locations). Depicted is the Fo 

content (mol.%) and the abundances of Ni, Co, Cr, Mn, and Zn (ppm), as they vary with 

depth. The Fo content exhibits a basal decrease; most pronounced in VB266, with an 

average of Fo79 ±1 1s in NT olivine, Fo78 ±2 1s in VTT olivine, and then Fo62 ±1 1s 
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in olivine from the BBS (Fig.3.5A). Non-monotonic variations in Fo number occur 

commonly in the individual DDH sections, as seen by excursions within the NT and VTT 

intervals (VB266; Fig.3.5A) – which are prominent in the downhole profiles, especially 

in VB544 (Fig.3.6A). These always coincide with excursions in other trace elements. In 

particular, samples with more primitive (higher) Fo contents (VB266: 108m, 290m, 

400m; VB544: 11m, 355m, 557m) correlate well with higher Ni, Co and Cr contents, 

whereas more evolved olivine (lower Fo contents) have higher Mn and Zn concentrations 

(VB266: 600m, 650m; VB544: 400m, 620m, 660m). Although Co shows a broadly 

similar trend to Ni (and Cr), with a decrease towards the base of VB266 (Fig.3.5B–C) in 

the BBS sequence (less prominent in VB544; Fig.3.6B–C), Co-Ni abundances in olivine 

of several NT-VTT horizons (e.g., VB266: 108m, 146m, 274m; VB544: 11m, 355m) are 

negatively correlated. The basal decrease in Fo, Ni, Co, and Cr is more pronounced in 

olivine from VB266 (Fig.3.5A–D) than from VB544 (Fig.3.6 A–D). In contrast, Mn and 

Zn concentrations increase with greater depth – starting in the lower part of the VTT and 

continuing into the BBS – as displayed in VB266 (Fig.3.5E–F) and VB552 (not shown; 

Table 3.1), and to a lesser extent in VB544 (Fig.3.6 E–F).  
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Fig. 3.5: Chemostratigraphy for olivine from DDH VB266 from zero meters to end of hole. A) shows the 

Fo content in mol (%). B) to F) show trace element concentrations in ppm. 
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Fig. 3.6: Chemostratigraphy for olivine from DDH VB544 from zero meters to end of hole. A) shows the 

Fo content in mol (%). B) to F) show trace element concentrations in ppm. 
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3.3.3. Lithological Variations of Olivine 

3.3.3.1. Olivine from the BBS 

The BBS contains the most Fe-rich olivine, with a mean Fo number of only 64 ±2 (1s; 

n=96) (Fig.3.7A). Ni values are low compared to the troctolitic units and range from 726 

to 1,091 ppm (Fig.3.7B). The average Co/Ni ratio of BBS olivine is 0.25 ±0.03 (1s; 

n=96), which reflects their Ni and Co deficiency relative to the troctolitic units (Fig.3.7B–

C). In accord with this observation, the BBS olivine also has the lowest average Cr 

content of all EDI olivine (58 ±11 ppm 1s n=96; Fig.3.7D). The most distinctive 

geochemical features, however, are the elevated Mn (≤12,250 ±277 ppm 2s) and Zn 

(≤684 ±25 ppm 2s) concentrations, which are up to 6x higher in Mn, and 3x higher in Zn, 

than the average values in olivine from the NT, VTT or OG (Fig.3.7E–F). These high 

values occur in chemically zoned olivine grains (Fig.3.4), which also explain the high 

Mn-Zn variability (Fig.3.7E–F) of BBS olivine compared to NT, VTT, and OG.  

As mentioned above, some ultramafic fragments (UMF) are incorporated in the BBS. A 

serpentinized melatroctolite fragment (VB552-15B, 836m; Fig3.8D) contains fine-

grained, fairly evolved and unzoned olivine with an average Fo content of ~73, and mean 

Ni and Co concentrations of ~1,300 ppm Ni and ~240 ppm Co, respectively (Fig.3.7A–

C). The average Mn (~3,500 ppm) and Zn (~240 ppm) contents overlap with values from 

NT-VTT olivine (Fig.3.7E–F).  

 



P a g e  | 121 

 

 

3.3.3.2. Olivine from the VTT 

The VTT contains olivine with a wide range of compositions, from fairly primitive (Fo81; 

~1,900 ppm Ni) to more evolved (Fo62; ~1,083 ppm Ni) (Fig.3.7A–B). The bulk of the 

VTT olivine has Fo74 ±5 (1s; n=272), ~1,400 ppm Ni, ~240 ppm Co, and is relatively 

rich in Cr (78 ppm ±13 1s) compared to either BBS or OG (Fig.3.7A–D). The Ni and Co 

concentrations in VTT olivine are variable (Fig.3.7B–C), with an average Co/Ni ratio of 

0.18 ±0.05 (1s; n=272). The Mn and Zn contents partly overlap with those of NT olivine 

(Fig.3.7E–F), but both elements are enriched approaching the contact with the BBS (e.g., 

VB552-13.1, 792m; ~3,900ppm Mn; ~400 ppm Zn; also Fig.3.5E–F). Thus, the increase 

from lower to higher Mn and Zn contents depicted in Figures 3.5E–F and 3.6E–F implies 

an almost continuous gradual progression from barren troctolite units in the hanging wall 

(NT, and top of VTT) towards the mineralized basal margin of the EDI (base of VTT into 

BBS; Fig.3.5–6).  

 

3.3.3.3. Olivine from the NT 

The olivine from the NT sequence have the most primitive composition (Fig.3.7A) and 

display a mean forsterite content of Fo77 ±4 (1s; n=289), with maximum and minimum 

values of Fo82 (VB266-24.1) and Fo66 (VB544-5A), respectively. The major element 

range in NT olivine is accompanied by diverse Ni contents (Fig.3.7B) – with the highest 

values (~2,600 ppm; VB266-3.1 and -27; Table 3.1) approaching the primitive mantle 

olivine field in Ni versus Fo space (Fig.3.10A) and a minimum of ~80 ppm in the lowest 
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Fo sample (VB544-5A). In particular, petrographic observations demonstrate that olivine 

of the Ni-rich (Fig.3.8A) and Ni-poor (Fig.3.8B) type, although broadly similar in texture 

and sulfide content (~3 vol.%), is not compositionally identical. Epitactic overgrowth of 

orthopyroxene (±augite) on mostly medium-grained olivine is more abundant in the Ni-

poor sample, which also has a slightly higher content of intercumulus phases (biotite, 

amphibole). Based simply on petrographic observation, these horizons would be almost 

indistinguishable from the average NT, which contains between 1,300 and 1,600 ppm Ni 

in olivine (Fig.3.7B). NT olivine also have an average Co/Ni ratio (0.17 ±0.05 1s; n=289) 

comparable to VTT olivine, but with a higher Co variability (Fig.3.7C). The average Cr 

content of NT olivine is also similar to that in olivine from the VTT (~79 ppm; Fig.3.7D). 

Although Mn and Zn contents are relatively constant, with the bulk of the olivine 

containing ~2,600 ppm Mn and 280 ppm Zn (Fig.3.7E–F), sample VB544-1 

(melatroctolite interval in the NT) contains unzoned olivine with exceptionally low Zn 

contents (up to 100 ppm) that approach the values for primitive mantle olivine but, 

paradoxically, have much lower forsterite values (Fo80 ±1 1s) (Fig.3.10D). Compared to 

the surrounding NT, this “primitive” olivine sample lies within a greenish-gray, mostly 

fine-grained melatroctolite, with a sugary texture and a weakly developed magmatic 

layering. The olivine abundance is higher (50–60 vol.%) than in the typical NT, whereas 

the individual grains are rounded to equant and exhibit advanced serpentinization 

(Fig.3.8C). Even though the texture and mineral mode is remarkably similar to the 

measured melatroctolite fragment (UMF) from the BBS (Fig.3.8D), the chemical 

composition of the olivine is strikingly different. Olivine from the UMF is on average 
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much more evolved than that from this most primitive interval in the NT (Fig.3.12A–B). 

Similar to the samples with extremely high Ni (VB266-3.1 and -27) and low Ni (VB544-

5A) olivine (Fig.3.5B and 3.6B), this lowest Zn sample appears to represent a 

petrographically defined stratigraphic interval in the otherwise relatively homogeneous 

NT (Fig.3.6F). 

 

Fig. 3.7: Box plots depict the Fo contents and concentration ranges for Ni, Co, Cr, Mn, and Zn of olivine 

from the major lithologies (OG, NT, VTT, LTT, BBS, and UMF). Individual boxes include the median 

(solid line), the mean (dashed line) of the olivine populations, whereas the dots to the left and right of the 

box constrain the 5th and 95th percentile, respectively, which approximately represents the 2s range (see 

inset). Roughly similar lithological trends for Fo, Ni, Co, and Cr are visible. Mn and Zn also display a co-

variation. See text for detailed discussion. 
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3.3.3.4. Olivine from the OG 

The OG sequence contains olivine with variable Fo contents (Fo66 ±5 1s; n=103), but 

comparatively homogeneous trace element compositions (Fig.3.7B–F). On the basis of Ni 

contents, two distinct groups of OG olivine can be distinguished; one with lower Ni 

values (200–600 ppm), and one with higher Ni values (1,000–1,300 ppm) (Fig.3.7B). The 

forsterite compositions vary discernibly between high-Ni (average; Fo62) and low-Ni 

(average; Fo68) type olivine. Concomitantly, Co/Ni ratios range from 0.19 ±0.01 (1s; 

n=40) for high-Ni olivine, to 0.59 ±0.18 (1s; n=63) for low-Ni olivine, whereas the 

average Co concentration of OG olivine is low (~210 ppm Co; Fig.3.7C). A limited 

number of samples from the EDI (VB544-13.1, VB552-1 and -3), and all samples from 

top of the Reid Brook Zone (VB449), fall in the low Ni group. Olivine from the OG is 

also low in Cr (62 ±9 ppm 1s; n=103; Fig.3.7D), with Mn (~3,900 ppm) and Zn (~350 

ppm) values at the upper range of the EDI olivine spectrum (Fig.3.7E–F).  

 

3.3.4. Compositional Variations of Olivine Distal and Proximal to Massive 

Sulfide Mineralization 

The massive sulfide ores in the EDI are associated with the brecciated and contaminated 

basal sequence. The most obvious differences in olivine composition between the 

nominally barren NT and mineralized VTT-BBS units are the decrease in Cr-Co-Ni 

contents and the increase in Fe-Mn-Zn (Fig.3.7). Figure 3.9 shows the Mn-Zn variations 

in olivine relative to the vertical proximity to massive sulfide in the EDI. The relative 
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vertical proximity factor (RVP) is calculated as the depth of the sample divided by the 

depth of the first occurrence of mineralization in the measured DDH multiplied by the 

relative sulfide content (e.g., VB552-13.1 VTT, 792m, first occurrence of massive sulfide 

at 911m with 95% sulfide – from unpublished Vale log files; RVP=792/(911*0.95)=0.83; 

Table 3.1). Olivine with RVP values close to 1 are in direct proximity to massive sulfides, 

whereas values below 0.4 imply the absence of a detectable signal of major 

mineralization. This threshold at an RVP value of 0.4 corresponds to a maximum distance 

to massive sulfide of less than 450m. From 0.4 to 1 the increase in Mn-Zn in olivine from 

VTT and BBS is readily visible (Fig.3.9). From 0.4 to 0, on the other hand, some NT-

VTT-BBS samples also display elevated values for Mn and Zn. These enriched samples, 

however, have higher (disseminated) sulfide contents (NT ~5 vol.%, VTT 5–15 vol%, 

BBS ~20 vol.%; Fig.3.9 – green field) than the nominally barren (~1 vol.%) NT-VTT 

samples that fall in this range of RVP values. Therefore, these VTT-BBS samples can be 

excluded as prospective olivine based on petrographic observations, the stratigraphic 

position in the EDI, their elevated, but still less enriched Mn-Zn contents, and their multi-

trace element signature (see Discussion in section 3.6.). 

 

3.3.5. Summary of Key Results 

(1) Individual olivine grains in the OG, NT, and UMF are chemically unzoned, whereas 

grains in the mineralized VTT and BBS that are enclosed by sulfide mineral phases 

display a variably pronounced trace element zonation (Mn>Ni>Co>Zn) with 

homogeneous Fo contents (Fig.3.4). 
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(2) The Fo, Ni, Co, and Cr contents decrease with depth in the EDI, and correspond to 

changes in lithology (Fig.3.7) – from the highest values in the NT at the top to the 

lowest in the BBS at the base (Fig.3.5A–D and 3.6A–D). 

(3) Mn and Zn concentrations in olivine from the EDI show a positive co-variation; they 

increase in unison with depth, from the lowest values in the NT (Fig.3.7E–F), to 

intermediate in the lower VTT towards the highest in the BBS (Fig.3.5E–F and 3.6E–

F).  

(4) Ni-rich and Ni-depleted olivine intervals in the barren NT sequence (Figs.3.5B and 

3.6B) show a maximum variation in Ni concentration of almost 2,500 ppm, whereas 

the average Ni concentration in olivine bracketing these horizons is relatively 

uniform at ~1,500 ppm (Fig.3.7B).  

(5) The composition of olivine (e.g., Fo content, V, Ni, Mn, Zn, Sr, and Y) in nominally 

melatroctolite samples (top of NT and UMF in BBS; Fig.3.8C–D) varies 

systematically with the host lithology (NT vs. BBS) and the stratigraphic position in 

the EDI. 

(6) The gradual increase in Mn and Zn abundance in olivine is correlated with the 

transition from the weakly mineralized lower part of the VTT into the massive 

sulfide-bearing BBS from below circa 500m in VB266 (Fig.3.5E) and below 550m in 

VB544 (Fig.3.6E). Other DDH data (VB552; see Table 3.1) further corroborate the 

presence of anomalously Mn-Zn-rich olivine in proximity to the massive sulfide 

occurrence in the EDI (Fig.3.9). 
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Fig. 3.8: Photomicrographs of olivine grains that are texturally characteristic for the Ni-rich, Ni-poor and 

primitive olivine samples in the NT unit from VB266 and VB544 and the UMF from VB552. Cross-

polarized light. A) shows the Ni-rich interval, B) the Ni-poor interval, C) the primitive olivine horizon on 

top of the NT, and D) the UMF in the BBS. Key for minerals: ol = olivine, plag = plagioclase, bt = biotite, 

oxp = orthopyroxene slfd = sulfide. 
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Fig. 3.9: Mn and Zn variations with relative vertical proximity to massive sulfide mineralization (RVP 

factor; y-axis) in the EDI. Bubble size corresponds to the Mn content (ppm), which exceeds the 2,000 ppm 

threshold commonly at RVP values greater than 0.6. Values of RVP close to 1 imply proximity to massive 

sulfide mineralization (MASU), whereas all olivine with RVP values below 0.4 is not associated with major 

mineralization. The VTT-BBS samples with elevated Mn-Zn contents (green field) are all from VB451, 

which does not intersect massive sulfide (Fig.3.2; Table 3.1). Even though the olivine have Mn-Zn contents 

close to values for prospective olivine from, for example VB266, their overall potential is lower, and the 

VTT and BBS samples can be eliminated based on several characteristics: VTT – composition of Fo, Cr, 

Ni, ±Mn, ±Zn and thus low calculated RVP, BBS – relatively low Mn-Zn concentrations with respect to 

exact stratigraphic position at base of BBS (see also Discussion 3.6.). 
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3.4. Discussion 

3.4.1. Link between Olivine Composition and Magmatic Episodicity 

3.4.1.1. Controls on the Compositional Variations of Ni-rich and Ni-poor NT Olivine 

Fractional crystallization processes and subsolidus reequilibration with intercumulus 

silicate and sulfide liquids most likely controlled the olivine composition in the VBI (e.g., 

Sato, 1977; Hart and Davis, 1978; Rajamani and Naldrett, 1978; Fleet et al., 1981; 

Barnes, 1986; Li and Naldrett, 1999). The interaction between silicate melt, olivine and 

sulfide liquid with regard to the exchange of Fe and Ni has been studied extensively, 

particularly in sulfide-ore-bearing systems (e.g., Clark and Naldrett, 1972; Hart and 

Davis, 1978; Fleet et al., 1981; Fleet and MacRae, 1983; Holzheid et al., 1997; Brenan 

and Caciagli, 2000; Li et al., 2003b). Generally, two processes can provoke Ni depletion 

of olivine: (1) a silicate melt – sulfide liquid interaction, in which the silicate melt gets 

stripped of Ni prior to, or during, olivine crystallization (e.g., Hart and Davis, 1978; 

Rajamani and Naldrett, 1978; Fleet et al., 1981), or (2) olivine – sulfide liquid re-

equilibration that induces a syn- or post-magmatic Fe-Ni exchange (e.g., Clark and 

Naldrett, 1972; Barnes and Naldrett, 1985; Li and Naldrett, 1999; Li et al., 2000). 

Both the geochemical and petrographic evidence is in accord with the derivation of the 

Ni-rich and Ni-poor olivine through fractional crystallization (FC) of a parental magma of 

broadly basaltic composition, with an initial MgO content of 8 wt.% (FeO/MgO=1.25) – 

comparable, for example, to uncontaminated tholeiitic to picritic basalts from the Noril’sk 

area (Li and Naldrett, 1999; Li et al., 2000; Scoates and Mitchell, 2000; Li et al., 2003a). 
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Model lines for FC processes were simulated under the assumption that the (weight) ratio 

(FeO/MgO)olivine/(FeO/MgO)liquid=0.3 (±0.03; Roeder and Emslie, 1970; see also Table 

3.1) was constant during fractional crystallization of olivine (ol)+plagioclase 

(plag)+clinopyroxene (cpx) (modal ratio of 1:3:0.2) as liquidus phases (FC A). Each 

model line was delineated using Fo contents calculated for increments of 5% progressive 

crystallization based on the (FeO/MgO)liquid (Li et al., 2007). Perfect FC (unlikely in 

natural systems), as opposed to equilibrium crystallization, will produce the maximum 

compositional shift in the silicate melt, and the fractionating mineral phases and is 

regarded as a limiting case for our models (Li et al., 2007). Petrographic observations of 

EDI troctolites support the ol:plag:cpx crystallization sequence. The first olivine to 

crystallize has a Fo content of 82, which resembles the composition of the most primitive 

NT olivine from this study.  

The fractionation of several trace elements (Ni, Co, V, Cr, Mn, Zn) was then calculated 

following the approach of Li et al. (2003a, 2007) – the trace element content of the initial 

melt (CO; inferred from average composition of Proterozoic basalts; Condie, 1993; Table 

3.1), the partition coefficients (e.g., DNiol/sil = concentration in olivine / concentration in 

liquid) for olivine, plagioclase, clinopyroxene, sulfide liquid, and Fe-Ti oxide (Table 3.1), 

the degree of fractionation, and the proportion of the remaining liquid (F) (from 100% − 1 

to 0% − 0 in 5% − 0.05 increments; used to compute the bulk D), were used to calculate 

the composition of the residual liquid (CL) according to the equation: 

CL = COF
(D-1)
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The model lines in Figure 3.10A (FC model lines A1, A2, and B) bracket the apparent Ni 

and Fo co-variation and can explain the formation of most EDI olivine. Under these 

conditions, the Ni-rich olivine would have crystallized from a silicate melt with 290 ppm 

Ni (FC A1), but their Fo contents may have been subsequently reduced by interaction 

with a trapped silicate liquid (up to 9 mol.% maximum trapped liquid shift (TLS) in NT 

olivine as calculated by Li et al., 2000; Venables, 2003) (e.g., Barnes, 1986; Chalokwu 

and Grant, 1987) (Fig.3.10A). The composition of the Ni-poor olivine on the other hand, 

is explicable by precipitation from a batch of slightly more differentiated silicate melt 

(higher Fe-Sr-Y; Fig.3.12A–B), which in this case segregated a sulfide liquid after 10% 

crystallization in the modal ratio of 1 ol: 3 plag: 0.2 cpx: 0.08 sulfide (Fig.3.10A; FC B). 

This sulfide segregation (process 1) strongly depleted the silicate melt in Ni (~9 ppm with 

DNiol/sil=9; Li et al., 2003b) and Co (~50 ppm with DCool/sil=3.5; Beattie et al., 1991) 

prior to olivine crystallization, whereas the slightly higher amount of trapped silicate 

liquid (evident by higher amount of hydrous intercumulus phases) later resulted in a 

greater reduction of the Fo content in the Ni-poor olivine (~Fo66). The FC model is 

favored over a Ni depletion of the Ni-poor NT olivine by subsolidus reequilibration with 

sulfides (process 2), as proposed for olivine in the BBS (Li and Naldrett, 1999), because: 

firstly, the overall sulfide content in this sample is too low (~3 vol.%); secondly, none of 

the olivine grains is enclosed by sulfides – but rather rimmed by orthopyroxene; and 

thirdly, these olivine grains are unzoned in Ni and Fe (Fig.3.10A). In comparison, all 

olivine in contact with sulfide in the VTT and BBS exhibits variable core-rim changes in 

Ni and Co (VTT) and Mn (±Zn) (BBS) concentration (Fig.3.4). These profiles likely 
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reflect subsolidus, solid-liquid diffusive exchange, because once segregated, sulfide liquid 

tends to be quite immobile, with only a limited tendency for migration through cumulate 

pore space (Barnes et al., 2008). Therefore, the complete physical separation of the Ni-

poor NT olivine and interstitial sulfide liquid between the point of equilibration (lower 

chamber or conduit) and the site of final emplacement (upper part of NT in EDI) is 

doubtful (e.g., Bremond d’Ars et al., 2001) – even in a dynamic and turbulent 

environment like the VBI – especially since the Ni-poor interval is bracketed by olivine 

with uniform Ni composition. Finally, the presence of the orthopyroxene selvages around 

the Ni-poor olivine might have shielded them from later Ni and Fe exchange, whereas 

early depletion to the very low apparent Ni concentration (~18x less Ni than average BBS 

olivine) would have likely required a long equilibration time. 

Instead, we conclude that the initial batch of melt must have lost most of its Ni in a lower 

staging chamber prior to olivine crystallization (FC B). Alternatively, it may have 

interacted with a sulfide melt during ascent through the conduit, either by undergoing 

intrinsic sulfide saturation, or by assimilating sulfides during an earlier saturation event. 

Model FC A2 simulates this intermediate case, where ol:plag:cpx crystallized from a melt 

with an initial Ni content of 100 ppm (CO=100) instead of 290 ppm, because the sulfides 

would have scavenged the silicate melt of chalcophile elements in an R-factor process – 

likely in the order Ni>Cu>Co (MacLean and Shimazaki, 1976) – leaving behind a 

depleted melt reservoir from which the Ni-poor olivine subsequently crystallized. Parts of 

this enriched sulfide fraction may now be preserved as the high tenor disseminated 

sulfides observed towards the base of the VTT. 
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Fig. 3.10: Plots of selected trace elements versus forsterite content of VBI olivine. The sample type follows 

abbreviations used in the text (e.g., OG – olivine gabbro, UMF – ultramafic fragment) and in brackets is the 

number of samples per unit and the total number of measured data points in olivine for each specific 

lithology. Error bars denote 1s sample internal error (inter-granular variability). Inset in A) shows the 

potential change in composition due to the trapped liquid shift and equilibration with sulfide (Li et al., 

2000). MO indicates the composition of primitive mantle olivine (partly from DeHoog et al., 2010; partly 

unpublished data). Black lines denote calculated Rayleigh fractionation model lines (FC A, B, and D) and 

the Assimilation FC model (AFC C) to replicate and bracket the apparent olivine trends derived from four 

possible scenarios: A the crystallization of ol:plag:cpx, in a ratio of 1:3:0.2 (solid line); B the segregation of 

a sulfide liquid after 10% crystallization of ol:plag:cpx in a ratio of 1:3:0.2 to 0.08 sulfide (dashed line); C 

is based on model curve A with the silicate melt assimilating 10% of Mn-rich (enderbitic-Nain) orthogneiss 
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(dashed and dotted line) after 25% crystallization. Symbols (and numbers) on model lines indicate the 

degree of crystallization in 5% increments. Parameters used for calculations are listed in Table 3.1. See text 

for further discussion. 

 

 

Fig. 3.11: Plots of selected trace elements from VBI olivine. B) displays Cr versus V with FC model D, the 

crystallization of ol:plag:cpx and a Fe-Ti oxide phase (ilmenite, ±titanomagnetite, ±magnetite) in a ratio of 

1:3:0.45:0.3 (dotted line). See Fig.3.10 for description of legend and other FC models. 
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3.4.1.2. Petrogenesis of Olivine in Melatroctolite 

The two melatroctolite samples analyzed were from the BBS (UMF BBS; 836m, VB552-

15B) and the nominal top of the NT unit (UMF NT; 11m, VB544-1) and contain olivine 

that diverges from the other populations described (Fig.3.10D, 3.11D, 3.12C–D). The 

stratigraphic continuity of the primitive olivine horizon near the top of the NT sequence is 

still somewhat cryptic – especially its lateral and vertical extent. Its precise contact 

relationships (footwall and hanging wall) are slightly diffuse and oriented at ~80° to core 

axis. However, textural and geochemical evidence support a petrogenesis different from 

that of the surrounding NT, and it is possible that this section represents a large, partially 

serpentinized ultramafic fragment – a cumulate remnant of an earlier magmatic event. 

Alternatively, it might represent an ultramafic sill with an eroded hanging wall contact, 

intruded syn- or post-magmatically relative to the main EDI intrusive event. A truly 

intrusive relationship to the main EDI, however, seems doubtful because, even though the 

footwall contact is slightly diffuse, it shows no textural evidence of either 

metamorphism/metasomatism or a chilled margin. In addition, the primitive olivine 

contained in the melatroctolite is strongly serpentinized, whereas olivine from the 

surrounding NT is fairly fresh and unaltered, which suggests that the primitive olivine 

horizon was altered prior to emplacement of the NT, and is therefore older. Olivine from 

the UMF NT sample also has a more primitive composition than average NT olivine 

(lower Ca-Sc-Ti-V-Mn-Zn-Y-Zr), not dissimilar to mantle olivine (Fig.3.12C, MO; from 

Western Gneiss Region, Norway; F.Bulle, unpublished data). For these reasons, the 

primitive olivine is interpreted as a product of a compositionally different, and more 
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primitive, parental magma that evolved along a separate FC path in an earlier intrusive 

phase than the one that generated the NT and VTT units (Fig.3.12C).  

In contrast, the melatroctolite fragment from the BBS (UMF BBS), even though 

texturally similar to the primitive olivine interval in the NT, contains more differentiated 

olivine (higher Sc-Mn-Fe-Y; Fig.3.12C–D). The evolved Fo and Ni compositions of the 

olivine in this sample are comparable to the range of published values for other UMF 

from the VBI (Li and Naldrett, 1999). Assuming that their similar petrography indicates 

that both melatroctolite fragments share the same parental magma origin, their presence 

in various parts of the EDI stratigraphy would imply that they were either incorporated 

episodically from a lower chamber, or that they were emplaced via discrete magma 

conduits (Lightfoot and Evans-Lamswood, 2012). The chemical composition of the 

olivine from the UMF in the BBS might then be a result of a post-crystallization trace 

element overprint. As this UMF was entrained in the sulfide- and xenolith-rich melt of the 

BBS, trace element diffusion between the olivine in the UMF and the contaminated melt 

(or a volatile-rich fluid), might have altered the olivine composition over time. The small 

olivine grain size and preferred fluid pathways through the UMF could have enhanced 

element diffusion (especially of Mn-Fe-Zn) into the olivine structure, producing enriched, 

yet unzoned olivine crystals (Costa and Dungan, 2005). Olivine of the UMF in the BBS is 

enriched by up to 1,300 ppm in Mn in comparison to those from the primitive interval of 

the NT (Fig.3.12C), an enrichment that is comparable to that observed in the zoned BBS 

olivine that are in contact with sulfides. Therefore, Mn-Zn and other trace elements were 

likely exchanged between olivine in the UMF and the surrounding contaminated melt. 
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During turbulent transit through the magma conduit, this UMF effectively interacted with 

trace element-rich contaminated material – and the olivine was able to reequilibrate to a 

secondary composition. Conversely, the primitive olivine interval in the upper part of the 

NT unit likely retains its primary composition. 

 

Fig. 3.12: Enrichment-depletion diagrams showing the enrichment factors for the trace element 

composition of the average Ni-rich and Ni-poor olivine intervals in the NT relative to A) average NT 

olivine and B) to average BBS olivine, and the average UMF NT olivine and UMF BBS olivine relative to 

C) average NT olivine and D) to average BBS olivine, both from VB266. The mantle olivine composition 

depicted is from a spinel-garnet peridotite from the Western Gneiss Region, Norway (MO WGR; F.Bulle, 

unpublished data – Chapter 2). 
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3.4.2. Olivine Composition as a Record of Contamination Processes 

The petrogenesis of the Voisey’s Bay magmatic sulfide deposit is intimately related to 

country rock assimilation and contamination (e.g., Naldrett, 1997; Lambert et al., 1999; 

Lightfoot and Naldrett, 1999; Ripley et al., 1999, 2002). In order to saturate ultramafic to 

mafic melts in sulfur and provoke the segregation of economic quantities of immiscible 

sulfide liquid, contamination through assimilation of SiO2-rich country rock 

(“felsification”; Irvine, 1975, 1977) or the assimilation of external sulfur are required 

(e.g., Ripley, 1981; Keays, 1995; Naldrett, 1997; Keays and Lightfoot, 2010; Ripley and 

Li, 2013). This segregation is considered essential for the formation of most Ni-Cu-Co 

sulfide ore deposits (Ripley and Li, 2013). 

For the VBI, the addition of crustal sulfur through desulfurization of the enclosing 

sulfide-bearing Tasiuyak paragneiss is likely the major factor that forced the VBI parental 

melt(s) to the point of sulfide saturation (Ripley, et al., 1999; 2000; 2002; Scoates and 

Mitchell, 2000). Although felsification through the input of bulk crustal contamination 

and silica enrichment has been argued to be minor on geochemical grounds (Amelin et 

al., 2000) and on isotopic grounds (Lambert et al., 2000), petrographic, mineralogical and 

stable isotopic evidence, particularly in the heavily sulfide mineralized, breccia-bearing 

marginal units of the EDI (e.g., BBS), indicate an assimilation and elemental exchange 

with the surrounding country rock (e.g., Lightfoot and Naldrett, 1999; Ripley et al., 1999; 

Li and Naldrett, 2000; Mariga et al., 2006a). The entrained fragments of Tasiuyak 

paragneiss in the BBS and lower VTT are partially digested and altered through contact 

metamorphism, and the primary metamorphic minerals (garnet, cordierite, K-feldspar 



P a g e  | 139 

 

 

etc.) are progressively replaced by assemblages dominated by hercynite and magnetite (Li 

and Naldrett, 2000; Mariga et al., 2006a). The degree of reaction increases in conjunction 

with the FeO-MnO-ZnO contents of hercynite from the Reid Brook Zone towards the 

EDI (Li and Naldrett, 1999; Li and Naldrett, 2000).  

 

3.4.2.1. Effect of Contamination on the Olivine Composition  

The Fe-Ni-Cr-V composition of olivine in the lower VTT and BBS is consistent with 

derivation through fractional crystallization (Fig.3.10A–B; FC A) from the same parental 

melt that crystallized most NT-VTT olivine. The slightly elevated contents of Cr (+V) 

relative to the Fo content (BBS and some VTT fall above the model lines in Fig.3.10B 

and 3.11B) likely result from either a limited crystallization of olivine before Fe-Ti oxide 

phases entered the liquidus (Cr-V contents start following model line FC D at circa 10% 

FC; Fig.3.11B), or a minor subsolidus increase through the trapped liquid shift. However, 

FC processes alone cannot explain the Mn-Zn-rich signature of most of the BBS (and 

LTT) olivine. Instead, the BBS olivine data can be simulated more closely if a finite 

assimilation of a Mn-Zn-rich reservoir is considered (AFC Model Line C). For the AFC 

modeling, conservative partition coefficients were used for Mn-Zn between olivine and 

basaltic melt (DMnol/sil=1.3–1.6; DZnol/sil=1.5–2.2; e.g., Kohn and Schofield, 1994; Table 

3.1). We applied relatively simple conditions, using the AFC equation from DePaolo 

(1981), to calculate the incremental Mn-Zn enrichment of the residual melt (CL) adding 

10% of a potential contaminant (20,000 ppm Mn and 250 ppm Zn) to a silicate melt at 

25% crystallization (Fig.3.10C–D, 3.11C–D). The Mn-Zn variations with depth 
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(Fig.3.5E–F and 3.6E–F) indicate the limited extent of this contaminated melt and 

gneissic fragment mixture. With increasing depth in the BBS (e.g., 609m to 651m in 

VB266), Mn and Zn contents in olivine increase from 4,000 to a maximum of ~9,000 

ppm (subsolidus enrichment not considered), and 420 to 680 ppm, respectively. The Fo 

content, on the other hand, remains stable at close to Fo62. This implies that even though 

the Fe content of the melt was fairly homogeneous, the Mn and Zn concentrations were 

able to increase strongly with depth. The implied increased availability of Mn and Zn in 

the BBS magma is also consistent with the observed Mn-Zn enrichment of hercynite from 

the Reid Brook Zone to the EDI (Li and Naldrett, 2000). 

The enderbitic orthogneiss (±Nain orthogneiss at depth) and the Tasiuyak paragneiss – 

the host rocks of the Eastern and Western Deeps Intrusions, respectively – can be 

considered as potential contaminants. The enderbitic orthogneiss suite (referred to as 

metaplutonic rocks by Rawlings-Hinchey et al., 2003) contains average Mn and Zn 

concentrations of 790 ppm Mn and 40 ppm Zn, respectively (Rawlings-Hinchey et al., 

2003). However, especially along their western contact with the Nain orthogneiss, 

intercalations of presumably Tasiuyak paragneiss occur (Rawlings-Hinchey et al., 2003). 

Some orthogneiss samples, particularly from the Nain orthogneiss, have very high Mn 

contents (up to 4.5 wt.% MnO, up to 200 ppm Zn; Vale, unpublished data). The Tasiuyak 

paragneiss on the other hand contains less Mn (~570 ppm Mn; Thériault and Ermanovics, 

1997), but more Zn (~140 ppm Zn; Vale, unpublished data). Consequently, the enderbite 

and Nain orthogneisses are regarded as the most likely source of Mn. Zinc on the contrary 

might have been supplied primarily by the Tasiuyak paragneiss – with Zn presumably 
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concentrated in the most pelitic, sulfide-rich intervals. Again, only a minor increase of Zn 

in the silicate melt (from 140 ppm in the parental melt to 250 ppm in the contaminated 

melt) seems to have been sufficient to generate the elevated values observed in the BBS 

olivine, because partition coefficients for both Mn and Zn gradually increase with melt 

SiO2 (Kohn and Schofield, 1994). 

The chemical trends of olivine from the BBS may reflect crystallization from a melt that 

became enriched in Mn and Zn in several stages – thermal constraints favor an initial 

contamination by enderbite and Nain orthogneiss (~54 wt.% SiO2; Rawlings-Hinchey et 

al., 2003), followed by a progressively more significant input from the entrained Tasiuyak 

paragneiss fragments (~66 wt.% SiO2; Thériault and Ermanovics, 1997; Ryan, 2000), as 

indicated by the higher degree of xenolith reaction from the WDI towards the EDI (Li and 

Naldrett, 2000). This later stage may have been penecontemporaneous with the entry of 

fragment-laden magmas near the base of the EDI. The final enrichment of olivine in Mn 

(±Zn) occurred after crystallization, by solid-liquid diffusion with surrounding sulfide 

melt. The near symmetrical zonation patterns (Fig.3.4) for one olivine from VB266-43 

demonstrates a core-rim increase of up to 3,500 ppm Mn (and a less-pronounced decrease 

in Ni and Co). BBS olivine grains were hence further enriched in Mn beyond their 

already high background concentration (~8,000 ppm), whereas Fe-Mg-Zn remained 

largely unaffected. Modeling of Mn diffusion profiles (vertical and horizontal; Fig.3.4) 

based on Fick’s Second Law of diffusion (e.g. Petry et al., 2004; Costa and Dungan, 

2005) predicts an equilibration time span between ~30 yrs to ~160 yrs at 1,100°C and 

1,000°C, respectively (Fig.3.4; for calculation see Appendix 6.3.). Even at temperatures 
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below 1,000°C this number will probably remain <1,000 yrs, which is similar to the time 

calculated for oxygen isotope homogenization of corundum-hercynite pairs (as part of the 

BBS xenolith inclusion mineral assemblage; Mariga et al., 2006b). 

Sulfide saturation and sulfide segregation appears to have occurred after crystallization of 

olivine commenced, perhaps contemporaneous with the BBS intrusion into the EDI. BBS 

olivine still has relatively high Ni and Co concentrations (albeit with a core-rim decrease) 

relative to their Fo content, implying that most of the Ni and Co was already partitioned 

into olivine before sulfide saturation. During subsequent immersion in sulfide, only minor 

amounts of Ni could diffuse out of the olivine (Fig.3.4), emphasizing that the diffusion 

process is rather ineffective in upgrading the metal tenor of a surrounding sulfide liquid at 

this stage of petrogenesis. This effect may have limited the tenor of the associated 

massive sulfides at the base of the EDI (3–4 wt.% Ni; Lightfoot et al., 2012). 

 

3.4.2.2. Trapped Silicate Liquid Shift  

Substantial influence of the trapped silicate liquid shift (TLS) (e.g., Barnes, 1986; 

Chalokwu and Grant, 1987; Li and Naldrett, 1999) on the Mn-Zn composition of BBS 

olivine is considered improbable based on several observed characteristics. All measured 

olivine gains in the BBS display a zonation in Mn (±Zn) (and to a variable degree in Co 

and Ni; Fig.3.4), but not in Fe (or generally the Fo content). However, bivalent trace (Mn, 

Zn) and major (Mg, Fe) elements diffuse at similar rates within the olivine structure (Ito 

et al., 1999; Costa and Chakraborty, 2004; Petry et al., 2004; Costa and Dungan, 2005) 

and thus chemical homogenization of BBS olivine should have been achieved quasi-
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simultaneously during the cooling interval of the EDI. This chemical zonation is also 

most prominent in olivine that is partly or completely immersed in sulfide, or shows 

textural signs of resorption (Fig.3.3G–H, Fig.3.4). The morphological differences indicate 

that at least two generations of olivine crystals are present in the BBS (Fig.3.13); a first 

generation that likely crystallized early (stage 1) and was transported through the magma 

conduit before it was partly dissolved (embayment through corrosion) by the increasingly 

contaminated and differentiated silicate melt (stage 2) (Tsuchiyama, 1986; Boudier, 1991) 

(Fig.3.13A), and a second generation that was enclosed by sulfide liquid after 

crystallization from the differentiated silicate melt (stage 1) and thus preserved in 

euhedral form (stage 2) (Fig.3.13B). Sulfide liquids have a limited tendency to percolate 

through partially crystallized zones (Barnes et al., 2008) and tend to accumulate only after 

transport through a magma conduit (Bremond d’Ars et al., 2001). As a result, the euhedral 

olivine likely crystallized upon entering the EDI and was enclosed when the entrained 

sulfides accumulated at the base of the intrusion. The BBS is therefore not a cumulate 

sensu stricto, but rather a section of highly mixed, sulfide- and xenolith-rich magmatic 

breccia, containing silicates that mostly crystallized during transport through the conduit 

rather than in situ in a static chamber (Li et al., 2000). We propose that the Mn-Fe-Zn 

enrichment of the BBS olivine is directly associated with the increasing assimilation of 

gneissic country rock, and a subsequent solid-liquid diffusive trace element exchange 

with the enclosing sulfide liquid resulted in further enrichment in Mn (±Zn) and depletion 

in Co and Ni of olivine rims, evident by their incongruent zonation (Fig.3.13A–B).  
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Fig. 3.13: Left Panel. Simplified schematic geological model for the basal area where the feeder dike enters 

the EDI. Entrained sulfide droplets (black) settle and accumulate (red arrows) at the base of the EDI. At 

least two generations of olivine crystals (green) interact (A) and precipitate (B) from contaminated and 

sulfide-rich melt. A (several?) meter-thick “contamination front” develops at the boundary between the 

BBS and the lower VTT with limited element exchange (purple arrows). Panels A)–B). Schematic models 

for the formation of the two texturally different olivine generations – Stage 1: crystallization; Stage 2: 

transport and interaction with more fractionated silicate melt; Stage 3: interaction and reequilibration with 

(partly) enclosing sulfide liquid. 
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3.5. Genetic Model for the Compositional Variations in EDI Olivine 

Figure 3.14 is a schematic representation of a conceptual section through the VBI, 

summarizing our interpretation of the timing of magmatic events in parts of the upper 

troctolitic unit (NT) and brecciated basal margin (BBS) of the EDI (Fig.3.14A–B) based 

on olivine trace element data. The magmatic sequence commenced with the emplacement 

of parts of the olivine gabbro (OG) unit at the top of the EDI, which were likely forced 

upwards and disrupted by subsequent pulse(s) of primitive troctolitic melt (containing 

olivine of relative homogeneous composition; Fig.3.14A). Suspended in the primitive 

troctolite melt were also fragments of serpentinized ultramafic material (up to several m), 

represented by the melatroctolite sample in VB544 that contains olivine compositionally 

similar to primitive mantle olivine. Other ultramafic intervals in the upper troctolite unit 

in VB266 (130m; Li et al., 2000; Lightfoot et al., 2012) might be of similar origin, and all 

are certainly derived from an earlier magmatic event. The presence of geochemically 

distinct olivine in the melatroctolite intervals high in the EDI stratigraphy compared to 

the ultramafic inclusions in the BBS also supports the recent idea that multiple magma 

conduits (Fig.3.14) transported the troctolitic melt(s) upwards, after branching off from 

the WDI or another concealed lower chamber (Lightfoot and Evans-Lamswood, 2012). 

Subsequently, pulses of more primitive (Ni-rich olivine interval) and chalcophile-depleted 

(Ni-poor interval) magma intruded episodically and promoted limited trace element 

exchange through mixing and mingling of trapped silicate and sulfide liquids in the 

partially crystallized zones (Fig.3.14A). Since both intervals are bracketed by NT 

containing olivine of more uniform Ni composition (~1,400 ppm Ni), sulfide saturation 



P a g e  | 146 

 

 

events must have occurred more frequently than previously thought, and in response to 

episodic contamination and silicate magma mixing (Scoates and Mitchell, 2000). The 

compositional diversity in olivine indicates that sulfides likely segregated from localized 

melt volumes (lower chamber – conduit(s) – upper chamber) and systematically depleted 

aliquots of mafic melt at varying R-factors, preceding or contemporaneous with olivine 

precipitation. With reference to the heterogeneity of olivine compositions, the difference 

in sulfide Ni (and Co) tenors between disseminated and massive sulfide mineralization 

(Evans-Lamswood et al., 2000; Lightfoot et al., 2012) might reflect not only variations in 

the R-factor, but also a contrasting point of origin of the sulfides in the VBI system (e.g., 

Ripley et al., 1999, 2000). 

Subsequent to the emplacement of the thick sequence of NT and VTT (Fig.3.14A), a final 

pulse of more contaminated mafic melt, carrying sulfides, recrystallized fragments of 

Tasiuyak paragneiss and reequilibrated ultramafic fragments, was transported upwards 

and intruded along the basal contact of the EDI, forming the BBS, and inducing a several 

meter-thick “contamination front” (contaminated silicate melt circulating through 

intragranular space) at the contact with the VTT. Upon entering the chamber, most of the 

entrained sulfides delivered with this pulse coalesced and rapidly accumulated as massive 

and semi-massive sulfides in a depression close to the bottom of the EDI. The gradual 

transition downward from the lower, weakly mineralized part of the VTT into the heavily 

mineralized BBS is marked by morphologically different olivine with progressively 

higher concentrations of Mn-Fe-Zn, which likely reflects continued olivine crystallization 

from an increasingly contaminated and sulfide-rich melt (Fig.3.14B). A subsolidus, 



P a g e  | 147 

 

 

diffusive trace element exchange between olivine and surrounding sulfide melt further 

enriched or depleted individual olivine grains. 

 

Fig. 3.14: Upper Panel. Simplified schematic conceptual model for the VBI showing the location of 

mineralization with respect to the chamber and conduit system (modified after Lightfoot et al., 2012). 

Panels A)–B). Schematic models for the formation of the intervals in the NT unit and the trace element-rich 
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BBS olivine at the basal margin of the EDI derived from observations of the olivine chemistry (insets on the 

right display the olivine composition with depth in VB266). Graphics denote olivine crystals (green), 

entrained sulfide liquid (yellow) and Fe-Ti oxides (black). Large red arrows indicate the inferred inflow 

direction of the melt/crystal mixture. Small red arrows imply a limited trace element exchange (mainly 

through magma mixing) between the different mafic magma pulses in the NT (through peritectic reaction – 

Fig.1.4), and the incorporated paragneiss fragments and the host enderbitic orthogneiss with the 

contaminated melt (BBS). 

 

3.6. Application to Mineral Exploration 

The trace element data indicate that the observed variations in olivine composition within 

the EDI are diagnostic of the stratigraphic position, the olivine host lithology, and the 

proximity to massive sulfide (Fig.3.5−3.7 and 3.9). The enrichment of Mn-Zn in olivine, 

which extends well above the basal massive sulfide layer and the BBS into the lower 

VTT (Fig.3.9), implies the utility of these elements, in particular, as first order indicators 

of proximity to economic ore mineralization (implying threshold values in Mn-Zn for 

prospective VTT and BBS olivine). Figure 3.9 demonstrates that the olivine Mn-Zn 

contents routinely increase with proximity to massive sulfide ore in the EDI. The visible 

increase in Mn-Zn concentrations in olivine from the studied DDH starts at less than 

450m proximity (RVP of 0.4) to massive sulfide (Fig.3.9). However, this simple bi-

element signature can be ambiguous; as some olivine from less mineralized OG-VTT-

BBS intervals (specifically from VB451) can also contain elevated Mn-Zn contents. For 

this reason, the Mn-Zn data must be augmented with Cr-Co-Ni data to provide a second 

level of discrimination – which will objectively eliminate olivine from olivine gabbro and 

normal troctolite (OG-NT). In a final step, a predicted RVP factor of remaining 
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prospective olivine can be calculated based on a multiple, full-model regression analyses 

including V-Cr-Mn-Fe-Co-Ni-Zn (see Appendix 6.4). Only olivine from VB266-VB544-

VB552 was used to calculate the coefficients of the initial regression, which yields a 

R
2
=0.78. Olivine with a high probability of being in the vicinity to massive sulfide has a 

calculated RVP (see Table 3.1) of ≥0.5 (in VTT) and ≥0.8 (in BBS). This effectively 

eliminates the VTT samples (RVP <0.5; Table 3.1) that fall in the green field in Figure 

3.9. However, the BBS sample VB451-7 has a calculated RVP (0.5) similar to that of 

BBS sample VB266-12 (0.5), even though VB266 intersects massive sulfide, and VB451 

does not. In this case the stratigraphic position in the BBS interval is vital – VB266-12 

samples the uppermost part of the first BBS occurrence in VB266, whereas VB451-7 is 

from the lowest part of the BBS interval in VB451, close to the contact with enderbitic 

orthogneiss. The BBS sample from VB266 thus implies a higher probability of 

intersecting massive sulfide mineralization further downhole than the BBS sample from 

VB451.  

The application of the multi-trace element signature (V-Cr-Mn-Fe-Co-Ni-Zn) of olivine 

in the EDI, may thus be used in conjunction with petrographic observation and the exact 

stratigraphic position of the sample within the specific host unit (e.g., upper BBS versus 

lower BBS), and will be most useful for DDH that terminate blindly in the VTT or BBS, 

to potentially predict if massive sulfide mineralization is expected in the proximity of the 

DDH terminus. 
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3.7. Summary and Conclusions 

(1) SIMS trace element measurements of olivine (V, Cr, Mn, Fe, Co, Ni, Zn, Sr, and Y) 

significantly expand and refine the information provided by traditional microanalysis 

using EPMA (Fo, Ni). 

 

(2) Olivine in the BBS enclosed by sulfides is compositionally zoned in some elements 

(Mn>Ni>Co). Modeling of the Mn-Ni diffusion profiles indicates an immersion time 

of olivine in the sulfide melt of <<1,000 yrs, likely during cooling and accumulation 

of sulfides at the base of the EDI.  

 

(3) Horizons of Ni-rich olivine in the NT likely precipitated from a primitive, sulfide 

undersaturated parental magma, whereas intervals of Ni-poor olivine crystallized 

after a batch of magma with a higher degree of differentiation experienced sulfide 

saturation and segregation that depleted the silicate melt in chalcophile elements 

(Ni>Co). Parts of this enriched sulfide fraction might now be preserved in the high 

Ni tenor disseminated sulfide mineralization in the lower VTT. These observations 

imply that discrete sulfide saturation events were more numerous than previously 

inferred in the VBI. 

 

(4) Increasing Mn-Fe-Zn concentrations in olivine from the lower VTT, which continue 

into the ore-hosting BBS in the EDI, are gradational and likely reflect olivine 
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crystallization from a increasingly country rock-contaminated, sulfide-saturated 

silicate melt, and subsequent trace element exchange with enclosing sulfide liquid. 

 

(5) Olivine associated with the lower tenor massive sulfides in the BBS displays the 

highest values of Mn and Zn, whereas olivine with elevated concentrations of these 

same elements is associated with the high tenor disseminated sulfide within the lower 

VTT.  

 

(6) The chemical composition (V-Cr-Mn-Fe-Co-Ni-Zn) of olivine from the EDI provides 

a potential vector for mineral exploration in terms of establishing the relative vertical 

proximity (up to 150m scale) to the economic massive sulfide mineralization 

associated with the contaminated BBS in the EDI. This may be particularly valuable 

when assessing exploration DDH that terminate blindly within the VTT lithology. 

 

(7) The olivine data support the interpretation that the EDI formed as part of an episodic, 

open-system magma conduit, in which successive injections of compositionally 

diverse mafic magma – some more differentiated and sulfide saturated and others 

more primitive and sulfide undersaturated – intruded into the EDI. A series of early 

pulses formed the upper troctolite sequence (NT and upper part of VTT). Subsequent 

silicate magma injections became progressively richer in sulfide and entrained 

gneissic fragments (lower part of VTT), before ultimately the fragment-laden and 

sulfide-rich BBS was injected, concluding the magmatic sequence preserved in the 
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EDI. Some of our observations also support the possibility of multiple magma 

conduits having fed the EDI during its formation. 
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Abstract 

Olivine from the olivine-gabbro to troctolite intrusions at Voisey’s Bay (VBI) and at 

Pants Lake (PLI), both Labrador was analyzed for multiple elements (Ca, Sc, Mg, Si, Ti, 

V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Y, and Zr) with Secondary Ion Mass Spectrometry 

(SIMS). Both intrusions have similar lithologies and petrographic characteristics and are 

approximately coeval (1.34 Ga and 1.32 Ga, respectively) members of the 

Mesoproterozoic Nain Plutonic Suite (NPS). The Voisey’s Bay Intrusion hosts a 

producing economic Ni-Cu-Co sulfide deposit. The Pants Lake Intrusion displays 

evidence of Ni-Cu sulfide mineralization but, to date, a viable ore deposit has not been 

discovered. Olivine from both barren and mineralized lithologies were analyzed to assess 

the potential of olivine trace element compositions for providing a record of silicate melt 

evolution and sulfide saturation related to ore localization.  

Two detailed transects were sampled, using 5 diamond drill holes that laterally approach 

the basal massive sulfide occurrence in the Voisey’s Bay Intrusion from the barren central 

part. Olivine displays distinct trace element distributions that vary coherently with host 

lithology and proximity to ore mineralization. In particular, olivine shows an increase in 

Fe (~Fo80 to ~Fo60), Mn (~2,500 to 5,000 ppm) and Zn (~280 to 700 ppm), generally 

coupled with a decrease in Ni (~1,600 to ~900 ppm), Co (~270 to ~190 ppm) and Cr 

(~110 to 45 ppm), from barren troctolite (normal troctolite – NT) and weakly mineralized 

troctolite (variable-textured troctolite – VTT) towards the heavily mineralized, brecciated 

basal succession (basal breccia sequence – BBS). The enrichment in Fe-Mn-Zn is most 

pronounced in samples that laterally approach, but are not directly in contact with the 
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massive sulfide deposit at the base of the intrusion, particularly in samples from the lower 

VTT and BBS lithologies.  

Olivine from gabbroic lithologies within the basal gabbro (BG) and upper gabbro (UG) of 

the PLI are fairly homogeneous (~Fo60, ~4,300 ppm Mn, ~460 ppm Zn, ~340 ppm Ni, 

~50 ppm Cr), with a more evolved composition (~2,100 ppm Ca, ~20 ppm Sc, ~300 ppm 

Ti, ~4 ppm Y) than the average of the VBI (~570 ppm Ca, ~6 ppm Sc, ~65 ppm Ti, ~0.3 

ppm Y). PLI olivine also commonly lack the mutually Mn-Zn-rich signature of olivine 

from the EDI BBS that is characteristic of contamination of the parent magma by country 

rock gneiss, and there reflects a close proximity to massive sulfides. In conjunction with 

petrographic observation and the stratigraphic context, a multiple-trace element (V-Cr-

Mn-Co-Ni-Zn) statistic can be applied to determine the predicted vertical and lateral 

proximity of measured olivine to massive sulfide mineralization in the EDI, over a 

distance exceeding 150m. 

The presence of strongly bimodal olivine populations (primitive and evolved; Ni-rich and 

Ni-depleted) in the EDI – as represented by abrupt changes in, for example, the Ni-Fo 

composition of olivine in several upper NT intervals – indicates that multiple, successive, 

sulfide saturated and unsaturated magma pulses contributed to the formation of the EDI. 

The homogeneous, generally Ni-depleted, and more evolved olivine grains from the PLI 

on the other hand, likely reflect crystallization from a single pulse of more differentiated 

parental melt that experienced early sulfide saturation. The silicate magma episodicity in 

the EDI, which has not been detected within the PLI, therefore promoted a higher R-

factor (integrated silicate:sulfide ratio) and the subsequent metal tenor upgrading of the 
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fractionated sulfide liquids. The distinct chemical variations in olivine from the economic 

EDI (bimodality, primitiveness) and the sub-economic PLI (homogeneous, evolved) 

provide potential as a regional-scale mineralogical indicator of fertility in mafic 

intrusions. 

 

Keywords: Cu-Ni sulfides, melt differentiation, mafic intrusion, Eastern Deeps Intrusion, 

Nain Plutonic Suite, Ni-exploration 
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4.1. Introduction 

The Voisey’s Bay Ni-Cu-Co deposit is hosted by a troctolite and olivine-gabbro intrusion 

in the Nain Plutonic Suite (NPS), Labrador a large Mesoproterozoic AMCG (Anorthosite-

Mangerite-Charnockite-Granite) intrusive complex (e.g., Emslie et al., 1994; Ryan, 2000, 

and references therein). Prior to the discovery of the Voisey’s Bay deposit, these highly 

differentiated igneous systems were not widely regarded as exploration targets for 

magmatic Ni-Cu-Co mineralization (e.g., Scoates and Mitchell, 2000). To date, the only 

other notable Ni-Cu sulfide occurrence in the NPS is found in another series of troctolitic 

to olivine-gabbroic intrusions in the Pants Lake area, ~80 km south of the Voisey’s Bay 

Intrusion (VBI) (e.g., Kerr, 1999; Li et al., 2001; Kerr, 2003). In addition to comparable 

host rocks, the VBI and the Pants Lake Intrusion (PLI) both display the presence of a 

country rock-contaminated basal sequence, a broadly similar style of sulfide 

mineralization – and both, at least in part, intrude the same sulfide-bearing Tasiuyak 

paragneiss unit (e.g., Lightfoot and Naldrett, 1999; Kerr, 2003). Compared to the VBI 

deposit ([Ni]100=~4%; Lightfoot et al., 2012), however, the sulfide mineralization 

discovered by initial exploration of the PLI has lower average Ni ([Ni]100=~2%) and Cu 

([Cu]100=<2%) tenors, with many of the massive sulfide intersections – which are 

generally <1m thick (Smith, 2006) – showing Ni grades of [Ni]100=~1% (e.g., Kerr, 

1999). Thus, although both intrusions display several comparable geological features, 

evidence of some important ore-forming processes, for example a high silicate melt to 

sulfide liquid ratio (R-factor; Campbell and Naldrett, 1979) and structural traps that favor 

dynamic accumulation of entrained sulfides (cf. perceived topology of magma conduits at 
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VBI; Evans-Lamswood et al., 2000; Lightfoot et al., 2012), have not yet been observed in 

the explored portions of the PLI (Li et al., 2001; Smith, 2006). 

Other essential factors in the global exploration for magmatic sulfide deposits are the 

presence of an olivine-normative and chalcophile element-rich parental melt, and an 

interaction of this parental melt with a sulfide-rich country rock during magma ascent, 

allowing either assimilation of crustal sulfur, or bulk-rock silica-enriching contamination 

(Naldrett, 1997, 1999; Arndt et al., 2005, and references therein). Since olivine is an early 

crystallizing phase, and one of the major rock-forming minerals in the gabbroic rocks 

throughout the VBI and PLI, its chemical composition records petrogenetic processes 

such as melt fractionation (e.g., Roeder and Emslie, 1970; Sato, 1977), magma mixing, 

country rock assimilation and contamination, as well as segregation and interaction with 

an immiscible sulfide fraction. As a result, the composition of olivine contains valuable 

information about the history, and mineralization potential, of a mafic intrusion and can 

provide indirect indications of the presence of magmatic sulfides (e.g., Fleet and McRae, 

1983; Lightfoot et al., 1984; Tyson and Chang, 1984; Barnes and Naldrett, 1985; 

Chalokwu and Grant, 1987; Li and Naldrett, 1999; Li et al., 2002; Li et al., 2003a; Li et 

al., 2004; Maier et al., 2010). The importance of olivine in tracing ore-forming processes 

has been established by this previous work, and its common association with magmatic 

Ni-Cu-Co sulfide mineralization provides a systematic petrogenetic record. Based on the 

synergetic behavior of Mg and Ni with progressive differentiation of the primitive melt 

(e.g., Sato, 1977), and the high sensitivity of Ni to sulfide saturation and segregation, a 

strong Ni depletion with respect to MgO in olivine is commonly interpreted as an 



P a g e  | 171 

 

 

indication of an earlier removal of Ni from the silicate melt by an immiscible sulfide 

liquid (e.g., Hart and Davis, 1978; Rajamani and Naldrett, 1978; Fleet et al., 1981). In 

contrast, if olivine is later immersed in a sulfide liquid, an oxygen fugacity-dependent 

(ƒO2) reequilibration occurs, in which Ni and Fe are exchanged, resulting in a positive 

correlation between the Ni and Fe concentration of the olivine (e.g., Clark and Naldrett, 

1972; Fleet and McRae, 1983; Brenan and Caciagli, 2000; Brenan, 2003). 

The Fo and Ni composition of VBI olivine, in particular, records fractional 

crystallization, sulfide saturation and isolated reequilibration, and the influence of the 

trapped silicate liquid shift. Previous literature data for olivine indicate that multiple 

pulses of compositionally diverse mafic magma contributed to the VBI, and the 

associated magmatic sulfide deposits (Li and Naldrett, 1999; Li et al., 2000; Venables, 

2003; Chapter 3).  

Our initial study of multi-trace element distribution in olivine established an olivine 

chemostratigraphy in a series of vertical profiles directly above the major mineralized 

zone in the Eastern Deeps deposit of the VBI (Chapter 3). The different styles of 

mineralization (disseminated versus massive) were linked to specific olivine 

compositions, and it was demonstrated that Mn-Zn-enrichment trends in olivine from the 

basal brecciated sequence, which is associated with massive sulfide mineralization, 

recorded their precipitation from mafic melt contaminated with country rock, and variable 

interaction with a contamination front that extended upwards into overlying gabbroic 

lithologies. The anomalous geochemical signature of olivine from mineralized units in the 
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VBI thus appears intimately related to ore formation, and therefore represents a potential 

tool for mineral exploration (Chapter 3).  

Existing literature data for olivine from the PLI, on the other hand, are limited to Fo and 

Ni compositions, and have been interpreted as indicative of a regular silicate melt 

differentiation trend with an early extraction of a sulfide liquid, and possible late stage 

reequilibration of some olivine with sulfide melt (Li et al., 2001; Smith, 2006). Multi-

trace element data for PLI olivine was generated during our current study to allow an 

additional means of comparison between the VBI and the PLI. 

The impetus of this study is the investigation of 1) lateral variations in olivine 

composition distal to the heavily mineralized base of the Eastern Deeps zone of the VBI, 

in order to identify geochemical vectors and anomalies in the mainly barren overlying 

intrusive rocks, 2) the comparison between the multi-trace element composition of olivine 

from the economic VBI and the barren to sub-economic PLI to determine the 

geochemical signature of ore-forming processes recorded by olivine from these two 

separate magmatic systems, and, 3) the potential of multi-trace element analyses in 

olivine as a geochemical tool in regional Ni-exploration. 

 

4.2. Geological Setting 

4.2.1. Regional Geology 

The VBI and PLI are mafic members of the anorogenic Mesoproterozoic Nain Plutonic 

Suite, which covers an area of almost 20,000 km
2
 in northern Labrador (Fig.4.1A) 
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(Emslie et al., 1994; Ryan, 2000; Kerr, 2003). The NPS mainly consists of massive 

anorthosite, granite, diorite and troctolite intrusions that punctured the Paleoproterozoic 

Torngat orogen between ~1,350 and 1,290 Ma, as a result of limited intracontinental 

rifting, mantle upwelling and crustal anatexis (Emslie et al., 1994; Ryan, 2000). The 

Archean Nain Province, which consists mainly of amphibolitic orthogneiss with 

retrogressed granulite- and amphibolite-facies mineral assemblages, lies east of this 

tectonic boundary, whereas the mostly Paleoproterozoic Churchill Province, comprising 

granulite-facies pelitic paragneiss, which is locally sulfide- and graphite-bearing and 

commonly known as “Tasiuyak gneiss”, and minor massive to lineated enderbitic 

orthogneiss (“metaplutonic rocks”; Rawlings-Hinchey et al, 2003), is situated to the west 

(e.g., Li and Naldrett, 1999; Ryan, 2000; Li et al., 2001). 

The 1,332.7 ±1.0 Ma VBI (Amelin et al., 1999) straddles this major tectonic boundary 

and consists of two olivine-gabbroic to troctolitic bodies; the buried Western Deeps 

Intrusion (or Reid Brook Zone; RBZ) intruded into Tasiuyak gneiss, and the partly 

exposed Eastern Deeps Intrusion (EDI) hosted mainly in Paleoproterozoic enderbitic 

gneiss and Archean orthogneiss, which are linked by a partially outcropping olivine 

gabbro dike (Fig.4.1B) (Lightfoot and Naldrett, 1999; Evans-Lamswood et al., 2000; 

Lightfoot et al., 2012). Major sulfide mineralization is recognized in this gabbroic feeder 

dike (e.g., Reid Brook Zone, Discovery Hill) and in bulges (Ovoid) and entry points of 

the dike into the magma chambers (EDI) (e.g., Lightfoot and Naldrett, 1999; Evans-

Lamswood et al., 2000; Lightfoot et al., 2012). Metal tenors in the sulfides vary 

systematically, with the highest found in a halo of disseminated mineralization in the 
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EDI, intermediate tenors in the massive sulfides of the EDI and the Ovoid, and the lowest 

in the immediate dike environment (e.g., Reid Brook Zone). These variations have been 

ascribed to variations in the integrated silicate:sulfide melt ratio (R-factor) during the 

segregation and emplacement of the immiscible sulfide liquid (Lightfoot et al., 2012).  

The PLI is broadly composed of two separate intrusions, the 1,337 ±2 Ma South Intrusion 

and the younger 1,322.2 ±2 Ma North Intrusion (Smith, 2006, and references therein; 

Fig.4.1C). Both intrusions are linked by a smaller (~1km long and ~150m thick) gabbroic 

body known as the Worm Intrusion or Central Gabbro (Smith, 2006), which is also 

regarded as a southern extension of the North Intrusion (Kerr, 2003). All parts of the PLI 

have a horizontal to sub-horizontal sheet-like geometry (Fig.4.1C inset) and mainly 

intrude Tasiuyak paragneiss of the Churchill Province ~15 km west of the above 

mentioned major terrane junction (Kerr, 2003; Smith, 2006). The recognized sulfide 

mineralization is largely disseminated with small lenses of massive sulfide (generally less 

than 1 meter wide; Smith, 2006), and is concentrated at the base of the intrusions. The 

basal contact of the North Intrusion has a “mineralized sequence” containing a “leopard-

textured gabbro” followed upwards by a xenolith-rich “composite gabbro”, whereas the 

South Intrusion has an up to 50m thick zone of disseminated sulfides in the basal 

“melagabbro” (Kerr, 1999, 2003; Smith, 2006). Absolute metal tenors observed to date 

are low, implying a lower overall R-factor than at the VBI (Li et al., 2001; Kerr, 2003). 
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Fig. 4.1: The inset A) shows the position of the VBI and PLI in the NPS and the regional tectonic 

framework of coastal Labrador (after Li and Naldrett, 1999). B) Schematic geological map of the EDI in the 

eastern part of the VBI (modified after Lightfoot et al., 2012). The position of the sampled DDH from 

transects A and B is marked with red and green circles/dashes and their identification number. Yellow 
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circles mark sampled DDH from Chapter 3. C) Simplified geological map of the North, South and Central 

Intrusions of the PLI. Sampled DDH are marked with green dots and their identification number (modified 

after Kerr, 2003; Smith, 2006). The cross section from the South Intrusion is modified after Kerr (2003). 

 

4.2.2. Petrology and Mineralogy 

This section presents a short review of the intrusive lithologies important to this study, 

and highlights the key mineralogical and textural characteristics of olivine from the VBI 

and the PLI. Detailed petrographic descriptions of VBI and PLI lithologies are presented 

elsewhere (e.g., Chapter 3, Lightfoot and Naldrett, 1999; Li and Naldrett, 1999; Li et al., 

2000; Lightfoot et al., 2012 for the VBI; e.g., Kerr, 1999; Kerr, 2003; Smith, 2006 for the 

PLI) (photomicrographs of all measured samples are also in Appendix 6.6.). 

 

4.2.2.1. The Eastern Deeps Segment of the Voisey’s Bay Intrusion 

The EDI (Fig.4.1B) contains a large portion of the economically important sulfide 

mineralization at Voisey’s Bay. Massive sulfide occurs at the base of the intrusion, where 

a feeder dike enters from the north, and is associated with a compacted “basal breccia 

sequence” (BBS), containing inclusions of ultramafic rocks (ultramafic fragments – 

UMF) and abundant heavily altered and reacted xenolith fragments presumed to have 

originated from the Tasiuyak paragneiss (Lightfoot and Naldrett, 1999; Li and Naldrett, 

1999; Lightfoot et al., 2012). The BBS is overlain by a very heterogeneous (e.g., grain 

size, texture, inclusion content, sulfide content) “variable-textured troctolite” (VTT), 

which has appreciable amounts of high-Ni tenor disseminated sulfides and xenolith 
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inclusions close to its contact with the BBS (Lightfoot and Naldrett, 1999; Li and 

Naldrett, 1999; Lightfoot et al., 2012). In the upper part of the EDI, the VTT is overlain 

by a homogeneous, dark-grey, sulfide-poor (<2 vol.%), olivine-plagioclase cumulate of 

uniform texture termed “normal troctolite” (NT). The NT unit is devoid of paragneiss 

inclusions and is overlain by a medium- to coarse-grained olivine gabbro (OG) that 

contains texturally and compositionally different olivine than the underlying NT and VTT 

units (Li and Naldrett, 1999; Li et al., 2000; Chapter 3). Olivine from the NT and VTT is 

medium-grained, generally sub- to euhedral, mostly prismatic crystals (Fig.4.2A). 

Epitaxial overgrowths of augite (±orthopyroxene) on olivine are common, especially in 

the VTT, whereas green-brown hornblende and biotite mostly occur as rims on olivine in 

contact with sulfide and Fe-Ti oxide phases. Olivine in the BBS is fine- to medium-

grained, irregular poikilitic or sub- to euhedral, and commonly embayed by alteration and 

resorption features where in contact with sulfide (Fig.4.2B). The UMF found in the basal 

part of the EDI contain olivine that range from fine- to medium-grained, pristine and 

euhedral cumulus crystals (Fig.4.2C) to fine-grained, strongly serpentinized, rounded 

grains. 

 

4.2.2.2. The Pants Lake Intrusion(s) 

The stratigraphy of the PLI is composed of several petrographically variable olivine 

gabbroic subunits with different texture, grain size, color etc. (Kerr, 1999; Kerr, 2003; 

Smith, 2006). Following the classification scheme of Smith (2006), the PLI can be 

subdivided into two major gabbro units, the Upper Gabbro (UG) and the mineralized 
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Basal Gabbro (BG), each composed of several subunits (Fig.4.1C). Despite their 

nominally common host and origin, the principal features of the subunits vary 

considerably between the North and South Intrusion, and Smith (2006) focused his 

detailed classification scheme solely on the North Intrusion. However, in order to keep 

the subdivision presented here clear and concise, it was also adopted for the South 

Intrusion. The UG basically comprises a coarse-grained massive olivine gabbro, found at 

the top of the North and Worm Intrusions, which is underlain by a finer-grained well-

layered olivine gabbro. This layered olivine gabbro unit dominates the South Intrusion 

(Kerr, 2003; Smith, 2006). The BG occupies the basal contact of the PLI and is 

distinguished from the UG mainly by the presence of partially digested paragneiss 

inclusions (presumably of Tasiuyak origin), disseminated to semi-massive sulfide 

mineralization, and the appearance of olivine as a major cumulus phase in the South 

Intrusion. The thickness varies significantly – between 6m in parts of the North Intrusion 

to almost 100m in a DDH intersecting the South Intrusion (Smith, 2006).  

The UG and BG have a relatively sharp contact, marked by the presence of a brecciated 

sequence termed “Transition Gabbro” (Smith, 2006). In contrast to the North Intrusion, 

the South Intrusion consists of peridotite to melagabbro cumulates in the lowermost part 

of the BG, which display interlayering and gradational contacts with the associated 

layered olivine gabbro (Kerr, 1999; Smith, 2006). Cumulus olivine is mostly sub- to 

euhedral (Fig.4.2F), but intercumulus olivine tends to be anhedral poikilitic or granular 

(Fig.4.2D). Olivine ranges from 10–15 vol.% in olivine gabbro to about 50 vol.% in 

melagabbro. The degree of alteration is gradational in many samples and ranges from 
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fresh to strongly serpentinized olivine, especially in proximity to xenolith inclusions in 

units from the BG (Fig.4.2E). Unlike olivine from the VBI, epitaxial overgrowth of augite 

(±orthopyroxene) is very rare, and the presence of green-brown hornblende and biotite as 

alteration products or intercumulus phases is mostly less than 2 vol.%. 

 

4.3. Previous Studies 

Previous microanalyses of olivine from the VBI indicate an extreme variability in Ni and 

forsterite contents (Fo). Values range from Fo42–83, with the lowest found in olivine in 

the feeder gabbro and the BBS, and the highest primarily in the NT. Average Ni contents 

range from 800–1,700 ppm, with a largely positive correlation with Fo values (Li and 

Naldrett, 1999; Li et al., 2000; Venables, 2003; Chapter 3). The Fo content and trace 

element concentration of olivine in the EDI exhibit systematic broad scale stratigraphic 

variations, for instance a decrease of the Fo and Ni content with depth (Li and Naldrett, 

1999; Li et al., 2000; Chapter 3), whereas Mn and Zn concentrations increase downward 

from the NT towards the BBS (Chapter 3). The most primitive olivine is found in the NT 

(and UMF) and in an altered melatroctolite horizon encountered in the NT, whereas the 

most evolved compositions occur in the OG and the BBS (Chapter 3). Li and Naldrett 

(1999) suggested that the distinct composition of OG olivine (more evolved, slightly Ni 

depleted) indicate their derivation from an earlier magma pulse than the more primitive 

NT and VTT sequences, which experienced sulfide fractionation prior to final 

emplacement. It has also been suggested in this study that olivine with distinct trace 

element enrichment or depletion signatures that appear in discrete intervals within the NT 
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and VTT sequences of the EDI might also be related to additional discrete magma batches 

that experienced isolated sulfide saturation events (Chapter 3).  

In summary, compositional data for olivine from the VBI have revealed important aspects 

of the petrogenesis and ore-forming processes, such as the differentiation and episodicity 

of the host gabbroic rocks, the timing and frequency of sulfide saturation events and the 

mineralogical signature of country rock contamination (Li and Naldrett, 1999; Li et al., 

2000; Venables, 2003; Chapter 3). The relationship between olivine composition and 

assimilation/contamination consequently suggests a potential vector to zones of economic 

sulfide mineralization (Chapter 3). 

Olivine from the PLI appears compositionally more homogeneous and has on average 

much lower Fo and Ni contents (~Fo58 with ~644 ppm Ni) (Li et al., 2001; Smith, 2006) 

than their VBI counterparts. In addition, systematic stratigraphic variations between 

olivine from different units in the intrusion (here the Upper and Basal Gabbro), as evident 

in NT and BBS samples from the VBI (Chapter 3), are noticeably absent in the PLI. Both 

UG and BG olivine display a very similar range of compositions (Fo31–48 and 63–240 

ppm Ni in the UG; Fo33–58 and 76–644 ppm Ni in the BG), and these variations are 

generally in accord with simple fractional crystallization of olivine (Li et al., 2001; Smith, 

2006). However, olivine from the sulfide-rich “leopard-textured gabbro” at the base of the 

North Intrusion, displays an increase in Ni with Fe content, which is attributed to a post-

crystallization exchange reaction with a coexisting sulfide liquid (Li et al., 2001). 
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Fig. 4.2: Photomicrographs of olivine grains that are texturally characteristic of their individual lithologies. 

XPL (A-D) and PPL (E-F). A) to C) are from the VBI, and D) to F) are from the PLI. A) VTT from VB307-

12. B) BBS with hercynite grains from VB513-24. C) Cumulus olivine in UMF from VB248-14. D) 

Coarse-grained gabbro with intercumulus olivine from SVB98-102-150. E) Hercynite-bearing transition 

gabbro from SVB96-10-91. F) Hercynite-bearing melagabbro from SVB97-79-144. See text for discussion. 

Key for minerals: ol=olivine, plag=plagioclase, bt=biotite, hrc=hercynite. 
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4.4. Scientific Approach 

4.4.1. Sampling Procedure 

4.4.1.1. Samples from the Eastern Deeps Intrusion 

Five DDH were sampled from two roughly N-S trending transects through the EDI 

(Fig.4.1A). The anchor point for both transects (A and B) was DDH VB-96-266 

(shortened to VB266), in the northern part of the EDI, a hole which was previously 

investigated in great detail for whole-rock geochemistry (Li et al., 2000; Lightfoot et al., 

2012) and olivine composition (Li and Naldrett, 1999; Li et al., 2000; Chapter 3). Except 

for VB266, none of the DDH sampled directly intersect the massive sulfide body or the 

halo of disseminated sulfide at the base of the EDI – VB266 is therefore regarded as the 

endpoint of a potential geochemical vector towards mineralization. 

Transect A trends N-S (Fig.4.1A) and comprises 18 samples from 2 DDH (VB-96-248 

and VB-99-516). The geometry of the EDI (steep north wall with a more gently north-

dipping southern margin) dictates that both of these DDH intersect NT at their tops, 

followed by a variably thick VTT interval, in which the furthest south DDH VB516 

terminates, whereas VB248 also intersects the BBS close to the center of the chamber.  

Transect B trends NW-SE (Fig.4.1A) comprises 37 samples from 3 DDH (VB-99-513, 

VB-96-332 and VB-96-307). Similar to Transect A, the DDH furthest to the south 

(VB307) only intersects NT and VTT, whereas VB332 also contains sporadic OG 

intervals, and VB513 samples an ultramafic (dunite to melatroctolite) interval and 

terminates in the BBS.  
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In all DDH, olivine-bearing lithologies were sampled from top to end of hole to provide 

the high sample resolution required to identify geochemical trends and to allow a 

potential spatial connection of intervals with anomalous olivine compositions, especially 

to those that were previously identified in a central vertical transect of the EDI (Chapter 

3). Both transects were specifically selected to move laterally away from the major 

mineralized horizon in the EDI, since a primary objective was the identification of 

variable olivine signatures in the sulfide-poor chamber troctolites (NT and VTT), which 

might be used as a potential exploration vector towards substantial sulfide mineralization. 

  

4.4.1.2. Samples from the Pants Lake Intrusions 

Samples from the PLI were made with permission of Mr. Rod Smith from off-cuts from 

his 2006 study. The sample numbers and codes were also kept consistent with those in 

Smith (2006). In total 12 samples, from 7 DDH, were utilized for olivine analyses. Figure 

4.1B shows the locations and identification codes of the sampled DDH. Samples were 

taken from throughout the PLI, with 8 from the North Intrusion, 2 from the Worm 

Intrusion (Central Intrusion) and 2 from the South Intrusion – representing both Upper 

(fine- to coarse grained olivine gabbro and transition gabbro) and Basal Gabbro 

subdivisions. Specific samples with textural features comparable to VBI rocks, especially 

from xenolith inclusion-rich mineralized sequences in the North and South Intrusion (BG 

and melagabbro) of the PLI, were selected. These sample selections were designed to 

determine how olivine trace element compositions from lithologies associated with 

economic mineralization at the VBI compare with those at the PLI. 
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4.4.2. Analytical Methods 

4.4.2.1. Secondary Ion Mass Spectrometry (SIMS) 

Olivine major and trace element analyses were performed with a Cameca IMS 4f SIMS 

instrument at the Memorial University microanalysis facility (MAF-IIC). An O
-
 primary 

beam (4.5 kV) with a beam current of ~20 nA, was focused with 40 to 50 m spot 

diameters onto the gold-coated sample. For each sample, several suitable olivine grains 

were analyzed, with a maximum of 8–10 spots per sample. Each analysis comprised 10 

cycles of peak counting on 
40

Ca
++

, 
45
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++
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25
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+
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Si
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+
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Cu

+
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Zn

+
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Sr

+
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89
Y

+
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Zr

+
, plus counting on a background position to 

monitor detection noise. The measured count rates were normalized to the count rate of 

30
Si

+
. Very low abundance elements were measured for 6 to 10 s per cycle, whereas major 

elements plus background and first order transition metals were measured for 2 to 6 s per 

cycle, respectively. Absolute detection limits were estimated following the procedure of 

Jones and Layne (1997). Typical interference-free detection limits calculated based on the 

accepted composition of San Carlos olivine ranged from 5 ppb for V, Cr, Mn, Cu, Sr, Y, 

Zr; to 10–40 ppb for Ca, Ti, Co, and Ni; to ~90 ppb for Sc and Zn. Measured secondary 

ion intensities were quantified using a calibration curve method (e.g., Shimizu et al., 

1978; Yurimoto et al., 1989; Jones and Layne, 1997), with adjustments as described in 

detail in Chapter 2. The relative analytical error (internal precision), which is described as 

the standard deviation (2s) of a single spot analysis (comprising a maximum of 10 

cycles), is on average 1.5% for Mg, Mn and Fe, 4.0% for Cr, Co, Ni, and Zn, 15% for Ca, 

Ti and V, and ~20% for Cu, Sr, Y and Zr.  
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4.4.2.2. Scanning Electron Microscopy 

For further post-SIMS characterization of selected high-Ti olivine samples, the Quanta 

FEI 650 FEG ESEM at Memorial University’s MAF-IIC microanalysis facility was used 

to image micro-inclusions in olivine in secondary electron (SE) and backscattered 

electron (BSE) mode. Additionally, energy-dispersive X-ray spectroscopy (EDS) was 

used to qualitatively determine the mineralogy of the inclusions. 

 

4.5. Results 

The concentration of several trace elements and the forsterite content of olivine from the 

VBI and PLI are shown in Figures 4.4 to 4.13 (and summarized in Table 4.1). In these 

Figures, individual plotted data points represent the mean of 8–10 spots, on several 

olivine grains per sample (e.g., VB516-4, n=10), with the plotted 1 sigma uncertainty (1s; 

standard deviation based on n analyses) reflecting the magnitude of the intra-sample 

chemical variability. In general, olivine from VBI and PLI are unzoned in major 

elements, whereas minor variations in trace element composition in some grains (mainly 

in VTT and BBS olivine from EDI) likely reflect a weak chemical zonation. However, 

relative individual concentration gradients are less than ±10% (total element 

concentration), which is much less than previously reported values for olivine from the 

mineralized BBS in the EDI (e.g., up to ±40% in VB266; Chapter 3). The intra-sample 

variability is in general very similar to the average SIMS analytical uncertainty (e.g., 

sample VB332-15, n=9, 1,365 ±37 ppm 1s Ni with an average analytical spot precision 
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of ±24 ppm 1s). Notable exceptions are the elevated Ti concentrations of some EDI 

olivine, in particular in samples from VB248 and VB513 (Fig.4.3A–B; Table 4.1). The 

high Ti values are coupled with a very high intra-sample variability (e.g., VB248-1, n=10, 

280 ±180 ppm 1s Ti). 

 

Fig. 4.3: Photomicrographs of SIMS spots on high-Ti olivine grains with A) and without B) exsolution of 

Fe-Ti oxides. Plane-polarized light (PPL). C) and D) show BSE images of the same locations and 

immediate surrounding area, overlain by a qualitative EDX map detecting the higher Ti concentrations 

(blue) in the exsolved oxides (shown with arrows). 
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Post-SIMS SEM analyses (BSE and EDX) revealed the presence of abundant smaller than 

2 m round to lath-shaped micro-inclusions of Fe-Ti oxides (likely ilmenite 

±titanomagnetite) within SIMS spot sputter craters in the high-Ti olivine (Fig.4.3A and 

4.3C). The distribution and abundance of these is uniformly high in EDI olivine of more 

primitive composition (VB248 and VB513), resulting in “positively biased” Ti 

concentrations. More evolved olivine from other samples in the EDI generally lack 

micro-inclusions of Fe-Ti oxides and the resulting uncontaminated (“true”) Ti 

concentrations are low with a lower intra-sample variability (e.g., VB332-9, n=9, 51 ±8 

ppm 1s Ti). Micro-inclusions are also very rare in olivine from the PLI (Fig.4.3B and 

4.3D), and thus the high Ti contents represent “true” values (e.g., SVB97-79-144, n=7, 

423 ±20 ppm 1s Ti). 

 

4.5.1. Chemostratigraphy of the Olivine Composition in the EDI 

4.5.1.1. Transect A – VB516 and VB248 

This transect comprises 2 DDH (VB516 and VB248) analyzed in this study, as well as 

data for VB266 from Chapter 3. Results are presented in Figure 4.4 and Table 4.1. The 

transect stretches from the shallow DDH VB516 (~300m to end of hole) drilled near the 

southwest terminus of the EDI, through the almost 600m VB248 (~531m north of 

VB516), towards the ~700m VB266 (~140m northeast of VB248) in the north of the EDI 

that represents the deepest part of the magma chamber. At various stratigraphic intervals, 

the younger Voisey’s Bay granite is intercalated with the mafic lithologies of the EDI, 
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intruding the chamber primarily from the east to southeast (e.g., Lightfoot and Naldrett, 

1999; Lightfoot et al., 2012).  

Olivine compositions in the NT of VB516 deviate significantly from data trends 

previously reported for olivine in the EDI (Li and Naldrett, 1999; Venables, 2003; 

Chapter 3). Specifically, olivine samples from NT in VB516 contain, on average, less Cr 

(58 ppm ±4.8 1s) than olivine from the underlying VTT (Cr 75ppm ±10 1s) (Fig.4.4A) 

and other NT intervals. In contrast to the high Ni and Co concentrations of average NT 

olivine (~1,500 ppm Ni and 255 ppm Co; Fo76 ±4 1s; Chapter 3), the NT interval in 

VB516 contains olivine with anomalously low average Ni (106 ppm ±22 1s) and Co (203 

ppm ±11 1s) contents, that are coupled with low average Fo compositions (61 mol.% ±3 

1s) and relatively high Mn concentrations (3,240 ppm ±230 1s) (Fig.4.4D). The entire 

NT succession in VB516 is petrographically characterized by the presence of up to 35 

vol.% of (cumulus) Fe-Ti oxide(s) (probably ilmenite ±titanomagnetite), and a higher 

modal abundance of (clino)pyroxene at the expense of primarily plagioclase.  

In samples from the underlying VTT, however, olivine has an average Fo content of Fo72 

(±4 1s), whereas Ni and Co concentrations also return to the EDI average range, with 

1,480 ppm (±83 1s) Ni and 233 ppm (±11 1s) Co, respectively (Fig.4.4B and 4.4E). The 

Mn content mimics the above-mentioned trends in Ni and Co, with an overall decrease in 

Mn from ~3,240 ppm in NT olivine to 2,770 ppm in VTT olivine. Previous work 

demonstrated that Mn and Zn concentrations are predominantly positively correlated 

(VB266; Chapter 3), however, in olivine from VB516 these two elements are largely 

decoupled, even though Zn concentrations are slightly higher in the basal, xenolith-
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bearing part of the VTT (~303 ppm Zn) than in the uncontaminated upper NT (~286 ppm 

Zn). The positive correlation of Mn and Zn on the other hand is again typical for olivine 

from the contaminated BBS and lower VTT, and becomes increasingly pronounced 

towards the center of the EDI (VB248 to VB266; Fig.4.4A–F). 

Olivine from VB248 exhibits a combined increase in Mn and Zn with depth; from 2,037 

ppm (±29 1s; VB248-9) to 2,509 ppm (±48 1s; VB248-14) Mn and 214 ppm (±9 1s; 

VB249-9) to 313 ppm (±6 1s; VB248-12) Zn in the overlying NT and VTT, increasing to 

4,375 ppm (±118 1s; VB248-15) Mn and 724 ppm (±21 1s; VB248-15) Zn in olivine 

from the BBS (Fig.4.4E). This trend partly resembles the Mn and Zn enrichment of BBS 

olivine from VB266 (Fig.4.4F; Chapter 3), although the absolute increase in Mn is less 

dramatic in VB248 (~4,400 ppm) than in VB266 (~10,000 ppm), which intersects a 

greater thickness of the BBS associated with massive sulfide. Also in accordance with the 

general depth progression originally observed in VB266, Ni, Co and Fo contents display a 

variably pronounced decrease in the BBS, from a maximum of Fo82 (±0.4 1s) with 

~1,466 ppm Ni and 255 ppm Co in the upper VTT, to Fo62 (±0.7 1s) with around 935 

ppm Ni and 196 ppm Co in the BBS (Fig.4.4B and 4.4E). Sample VB248-14 is a 

melatroctolite (UMF; Fig.4.2C) that contains recrystallized paragneiss inclusions (now 

mainly hercynite) and has a sulfide content of ~10 vol.% – as such, this olivine displays a 

more primitive composition for Fo and most trace elements (~Fo80; 1,877 ppm Ni; 220 

ppm Co; 135 ppm Cr; 2,591 ppm Mn), whereas the Zn content (237 ppm) is elevated with 

respect to the apparent Fo composition. The Cr content in the olivine also decreases 
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towards the base of VB248 (from ~93 ppm in the VTT to less than 65 ppm in the BBS) 

with the exception of the melatroctolite sample at 442m (Fig.4.4).  

The downhole olivine data for VB266 are taken from Chapter 3. Besides the presence of 

several distinct Ni, Co and Cr excursions in the NT and VTT sequences, with the highest 

Ni values (~2,450 ppm) encountered in olivine at 108m (Fig.4.4C and 4.4F), a key 

observation is the presence of a distinct gradual Mn and Zn enrichment in olivine from 

the lower part of the VTT that continues into the BBS. This signature is associated with a 

systematic downward decrease in Ni, Co, Cr, and the Fo content (Chapter 3; Fig.4.4C and 

4.4F).  

In summary, the key aspects of the olivine chemostratigraphy in Transect A are: 

1. The presence of strongly Ni-Co-Cr-depleted, Mn-Fe-enriched olivine throughout the 

~140m thick, Fe-Ti oxide-rich NT succession at the top of VB516. 

2. The pronounced decrease in Ni-Co-Cr-Fo concentrations in olivine from the BBS of 

VB248 (530m north of VB516). 

3. The Zn enrichment relative to the Fo content of olivine in the UMF sample from the 

contaminated, lower VTT in VB248. 

4. The Mn-Zn enrichment in lower VTT and BBS olivine from VB248, which closely 

resembles the Mn-Zn contamination signature of the VTT and BBS olivine from 

DDH VB266, where it intersects the massive sulfide deposit at the base of the EDI, 

approximately 140m to the northeast. 
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Fig. 4.4: Chemostratigraphic profiles of sampled olivine from transect A (VB516–VB248–VB266) in the 

EDI. Data for VB266 are from Chapter 3. The transect is depicted from S to N with the concentrations of Cr 

and Co in olivine in the upper row, and Mn, Ni, and Zn in the lower row. Error bars show standard 

deviations of averages (1s). The forsterite content is displayed in the lower row as light grey bar with the 

corresponding scale. 
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Fig. 4.5: Chemostratigraphic profiles of sampled olivine from transect B (VB307–VB332–VB513) in the 

EDI. The transect is depicted from S to N with the concentrations of Cr and Co in olivine in the upper row, 

and Mn, Ni, and Zn in the lower row. Error bars show standard deviations of averages (1s). The forsterite 

content is displayed in the lower row as light grey bar with the corresponding scale. 

 



P a g e  | 193 

 

 

4.5.1.2. Transect B – VB307, VB332, and VB513 

This transect is 250 – 400m further east in the EDI than Transect A, and comprises 3 

DDH (Fig.4.1 and 4.5). VB307, which is ~780m southeast of VB266, intersects a thin cap 

of OG, followed by 775m of troctolitic rocks (NT, VTT) containing several variably 

thick, intruding granitic dikes. VB332 is ~400m north of VB307 and contains a 676m 

sequence of NT, erratically crosscut by granitic dikes, followed by a ~65m interval of 

VTT with locally developed BBS and thin veins of massive sulfide. VB513, which is 

another 210m northwest of VB332 and ~180m southeast of VB266, is closest to the 

known massive sulfide deposit at the base EDI. This drill hole contains ~300m of NT, 

followed by ~410m of VTT with meter-thick intercalations of OG, NT and granite. The 

base of the hole comprises a 60m succession of BBS, containing disseminated and 

blotchy sulfides, as well as recrystallized and sheared paragneiss fragments. 

Olivine from VB307 exhibit, independent of their specific host rocks (NT and VTT), a 

fairly homogeneous Cr and Zn distribution, with 73 ppm (±13 1s) Cr and 296 ppm (±44 

1s) Zn, and forsterite contents ranging from Fo67 (±2 1s) in NT olivine (VB307-7; Table 

4.1) to Fo80 (±1 1s) in VTT (VB307-12) olivine (Fig.4.5A and 4.5D). In contrast, the Ni, 

Co and Mn compositions vary considerably in VB307. The lowest Ni and Co values 

occur in olivine from a NT interval (VB307-6 and -7 at 106 to 108m), and those contain 

~161 ppm Ni and 249 ppm Co, whereas Mn concentrations are high with up to 3,285 ppm 

(Fig.4.5A and 4.5D). The olivine with this anomalous trace element distribution has a 

mean Fo of 69 mol.% (±3 1s) and is associated with a very high Fe-Ti oxide (cumulus) 

content (up to 45–50 vol.% in VB307-6), and is petrographically similar to the low-Ni 
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olivine samples (NT) in VB516. However, the NT samples above and below this interval 

(VB307-4 at 10m; VB307-9 at 280m) have no cumulus Fe-Ti oxides, an olivine 

composition of Fo75 (±0.2 1s), and average 696 ppm (±25 1s) Ni and 980 ppm (±23 1s) 

Ni, respectively, ~250 ppm (± 8 1s) Co, 2,689 ppm (± 298 1s) Mn, and 76 ppm (±0.1 

1s) Cr (Fig.4.5A and 4.5D). The VTT samples at the base of VB307 indicate an increase 

in Fo and trace element content (Fig.4.5D) rather than the usual decrease with proximity 

to BBS (VB248, VB266), but a detectable depletion is not expected because of distance 

from the mineralized VTT and BBS horizons. The increase occurs mainly because the 

terminal sample VB307-12 (565m) is a fairly primitive troctolite with almost 30 vol.% 

olivine and only small amounts of interstitial sulfide (~2 vol.%). 

VB332 (Fig.4.5B and 4.5E) contains compositionally heterogeneous olivine, and has been 

subdivided into three general subsections. The first section includes the upper part of the 

NT (7–45m; VB332-1 and -2), which comprises olivine of “typical” NT composition; 

Fo73–78, 635–1,093 ppm Ni, ~218 ppm Co, ~2,850 ppm Mn and ~57 ppm Cr. Deeper 

samples from NT and interbedded OG intervals are distinctly different. In particular, 

olivine from the second section at VB332 (92 to 230m) have much more fractionated 

compositions, with Fo62–68, less than 398 ppm Ni and 225 ppm Co. On the other hand, 

Mn and Zn are consistently high, with up to 4,105 ppm Mn and 393 ppm Zn. In contrast 

to the low-Ni olivine samples from VB516 and VB307, those in this section are devoid of 

(cumulus) Fe-Ti oxides. Sample VB332-4 (92m), which exhibits a prominent 

compositional excursion, especially in Mn and Fo content (Fig.4.5E), occurs at a sharp 

contact between the NT and an intruding granitic dike (see photomicrograph in Appendix 
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6.6.). This sample contains two distinct populations of olivine (Ol1 and Ol2), mainly 

characterized by their degree of (metasomatic) alteration. Contact metamorphism during 

the intrusion of the dike pervasively metasomatized the NT mineralogy in the contact area 

(modal metasomatism), and as a result, the overprinted olivine has preserved cores, which 

display strong serpentinization and are enclosed by a complex polymineralic alteration 

corona of primarily (clino)pyroxene, green hornblende and green biotite overgrowths (see 

Appendix 6.6.). This low-grade metamorphic overprint caused a major and trace element 

migration (cryptic metasomatism), resulting in a compositionally distinct olivine (Ol1) 

with low Mg, Cr, Co, and Ni contents (Fo47 (±0.3 1s); 40 ppm (±1 1s) Cr; 201 ppm (±2 

1s) Co and 329 ppm (±8 1s) Ni; Table 4.1) and high Fe, Mn and Zn contents (5,595 ppm 

±58 1s Mn; 506 ppm ±6 1s Zn). Conversely, the less altered olivine (Ol2) has a 

composition similar to those primary olivine described above for this specific section in 

VB332 (Fig.4.5; Table 4.1). The last three samples define the final section in core VB332 

(460 to 719m) and illustrate the expected enrichment in Mn and Zn of olivine towards the 

mineralized and contaminated units at the base of the EDI, with an increase to 4,718 ppm 

(±158 1s) Mn and to 360 ppm (±47 1s) Zn. The concentrations of Cr, Co, and Ni also 

increase, whereas the Fo content displays a minor decrease towards the base of the hole 

(Fo71 ±1 1s) (Fig.4.5B and 4.5E). 

Even though olivine from VB513 has diverse trace element compositions, the general 

downhole trend resembles that of VB266, which lies 180m further to the north (Fig.4.4 

and 4.5). A prominent basal decrease in Cr, Ni, and Fo content is visible, and local 

excursions of those elements and Co and Mn occur in the VTT sequence (Fig.4.5C and 
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4.5F). Samples at 384m and 386m in particular, taken from an ultramafic interval (UMF) 

of melatroctolitic to dunitic composition, contain olivine of primitive composition, with 

~Fo82, ~1,650 ppm Ni, ~105 ppm Cr, ~2,160 ppm Mn and ~136 ppm Zn (Table 4.1). 

Another sample with more primitive olivine is encountered in a thin NT interval at 650m 

(Fig.4.5F). The upper part of VB513 is composed of regular and homogeneous NT. 

However, olivine shows a steady downward increase in Fo (~Fo79–82), Co (~227–271 

ppm) and Ni (~1,247–1,524 ppm) content, with the peak values at around 111m (Fig.4.5C 

and 4.5F). The spatial position of this interval coincides with the high-Ni olivine 

excursion at ~108m in VB266, which contains olivine with the highest average Ni 

concentration in the EDI (~2,450 ppm; Chapter 3). Close to the end of the hole, VB513 

intersects the BBS (710–740m) at the base of the EDI, and the olivine here are variably 

enriched in Mn (~4,576 ppm) and Zn (~352 ppm). However, the highest Zn content (~498 

ppm) is actually found in olivine from a VTT sample – VB513-19 at 583m (Fig.4.5F). 

The Mn content in olivine in VB513-19 is lower than in BBS olivine (~3,500 ppm), 

which indicates that Mn and Zn concentrations are likely decoupled in this interval. 

In summary, the key observations from Transect B are: 

1. The reappearance of Fe-Ti oxide-rich, low-Ni olivine-bearing intervals at the top of 

the NT sequence in VB307 in a similar stratigraphic horizon as in VB516 (Transect 

A). 

2. The presence of a ~140m thick interval of “regular” NT (with intercalated OG) in the 

upper part of VB332 (“second section”; 92m to 230m) that also contains olivine with 

low Ni concentration. 
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3. That contact metamorphically altered olivine in VB332 is compositionally distinct 

from the most differentiated and trace element-rich olivine found in the BBS (e.g., 

VB266). 

4. That two UMF samples from the upper, less contaminated VTT in VB513 contain 

primitive olivine with low Zn concentrations. 

5. The basal enrichment in Mn-Zn-Fe increases from VB332 towards VB513, which 

intersects the EDI in close proximity to the known occurrence of massive and 

disseminated sulfide in VB266 a further 180m to the north. 

 

4.5.2. Trace Element Relationships in Olivine 

Olivine data are presented in Figures 4.6–4.8 to show trace element variations with Fo 

content (mol.%; Fig.4.6), incompatible versus compatible trace element variations 

(Fig.4.7), and modified multi-trace element “spidergram” plots comparing petrologically 

important lithologies of the VBI and PLI (Fig.4.8). The trace element selection in Figures 

4.6 to 4.7 is based primarily on geochemical affinities, in order to best visualize the three 

primary petrological processes active in mafic magmatic and ore-forming environments – 

differentiation and fractional crystallization (FC model lines – see discussion), sulfide 

saturation and interaction with segregated sulfide, and assimilation and contamination by 

country rock (AFC model line – see discussion). Four possible FC-AFC scenarios were 

modeled (see caption Fig.4.6) – for each step (5% increments) in the FC-AFC models the 

Fo content of crystallizing olivine was calculated based on the (FeO/MgO)liquid (Li et al., 
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2007), and the concentration of specific trace elements was computed according to the 

equation: 

CL = COF
(D-1)

 

Here the trace element content of the initial melt (CO; inferred from average composition 

of Proterozoic basalts; Condie, 1993; Table 4.1), the partition coefficients (e.g., DNiol/sil = 

concentration in olivine / concentration in liquid) for olivine, plagioclase, clinopyroxene, 

sulfide liquid, and Fe-Ti oxide (Table 4.1), the degree of fractionation, and the proportion 

of the remaining liquid (F) (used to compute the bulk D), were used to calculate the 

composition of the fractionating residual liquid (CL). 

Melt differentiation and FC of olivine is primarily characterized by a decrease in 

compatible elements like Mg, Ni, and to a lesser degree Co and Cr, reflecting their 

depletion in the melt during this process. On the other hand, the concentration of highly 

incompatible trace elements such as Ca, Sc, V, Ti, Cu and (variably) Sr and Y increases. 

Due to their high oxidation states, systematic variations in V (mainly 3
+
 or 4

+
) and Ti (4

+
) 

contents in the melt/olivine system are also a function of the prevalent oxygen fugacity 

(ƒO2) (e.g., Gaetani and Grove, 1997; Canil and Fedortchouk, 2001; Zanetti et al., 2004; 

Papike et al., 2005; Shearer et al., 2006, and references therein). In addition, V, Ti, and Cr 

concentrations in olivine likely reflect the onset of Fe-Ti oxide(s) crystallization and 

therefore further constrain the melt evolution of magma systems like the VBI and the PLI 

(e.g., Snyder et al., 1993; Jang et al., 2001, and references therein).  

Since Ni, Cu and to a lesser extend Co, are very sensitive to sulfide saturation (e.g., Hart 

and Davis, 1978; Rajamani and Naldrett, 1978; Fleet et al., 1981; Gaetani and Grove, 
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1997; Li et al., 2003b), very low Ni values in olivine indicate an earlier removal of Ni 

(±Co) by sulfide melt, whereas more erratic distributions are interpreted to result from 

reequilibration with a sulfide liquid (e.g., Clark and Naldrett, 1972; Li and Naldrett, 

1999).  

Other trace elements (e.g., Ca, Sc, Mn, Zn, Sr, and Y), however, are relatively unaffected 

by the fractionation of a sulfide melt, but may instead record the assimilation of country 

rocks such as the Tasiuyak and Nain gneisses. For example, contamination of the primary 

mafic melt by externally derived Mn and Zn is the most likely explanation for their 

dramatic increase in BBS olivine of VB266, which is several magnitudes higher than their 

expected enrichment due to fractional crystallization (Chapter 3). 

The multi-trace element plots presented in Figure 4.8 depict all measured elements from 

left to right in a sequence of increasing compatibility in olivine (D
element

ol/sil) – and thus 

form sub-groups with certain geochemical affinities. The concentration of the lithophile 

elements from Zr through Cr is primarily controlled by melt differentiation and fractional 

crystallization, whereas Mn and Zn are also introduced by the assimilation of upper 

crustal rocks. The siderophile and chalcophile elements from Fe through Cu are, in 

ascending order, progressively more sensitive to sulfide saturation and thus partition 

strongly into a fractionating sulfide liquid (D
element

ol/sul) (MacLean and Shimazaki, 1976; 

Hart and Davis, 1978; Rajamani and Naldrett, 1978; Fleet et al., 1981; Gaetani and 

Grove, 1997; Li et al., 2003b). 
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Table 4.1: SIMS analytical data for olivine (averages) from the EDI and PLI 

 

Sample Rock type depth RVP calc
a

n forsterite 1s
3

MgO FeO Ca 1s Sc 1s Ti 1s V 1s Cr 1s

VB307-4 NT 101 0.26 11 74.9 1.4 39.08 21.80 671 159 5.56 1.47 89.1 67.6 3.35 0.59 78.0 3.2
VB307-6 NT 106 0.24 10 70.9 1.7 36.59 24.85 748 144 9.53 1.83 90.2 45.0 4.08 0.55 60.4 1.9
VB307-7 NT 108 0.33 9 67.4 2.1 34.35 27.60 1031 193 13.0 1.58 68.6 19.1 3.57 1.44 58.7 2.7
VB307-9 NT 280 0.28 10 75.1 1.6 39.22 21.62 778 198 3.42 0.61 88.5 57.2 3.08 0.32 77.9 2.8
VB307-11 VTT 545 0.44 7 70.7 2.3 36.43 25.05 1385 216 3.27 0.60 82.8 42.6 3.44 0.29 68.5 4.2
VB307-12 VTT 565 0.18 11 79.5 1.0 42.11 18.09 393 163 5.19 0.74 126 94.9 5.14 0.93 92.4 5.7
VB332-1 NT 7 0.33 7 72.9 0.8 37.15 24.15 647 95 9.14 1.50 57.2 23.8 3.21 0.27 53.4 1.2
VB332-2 NT 45 0.28 10 77.7 0.6 40.34 20.22 433 70 6.50 0.99 166 100 3.64 1.14 66.1 2.6
VB332-4 Ol1 NT 92 0.88 4 47.0 0.3 21.51 43.48 674 161 1.62 0.48 9.6 1.7 0.72 0.05 40.1 0.9
VB332-4 Ol2 NT 92 0.52 4 65.2 1.0 32.25 30.18 544 94 4.12 0.67 44.0 13.5 1.66 0.10 61.7 1.1
VB332-6 NT 107 0.50 9 65.2 0.6 32.24 30.20 658 147 7.20 1.57 67.1 48.7 2.18 1.19 46.0 2.1
VB332-7 NT 108 0.45 9 65.5 0.7 32.43 29.96 576 164 10.0 1.24 74.8 26.1 2.91 0.56 66.1 2.7
VB332-9 NT 140 0.41 9 67.6 0.7 33.74 28.35 614 190 6.28 1.85 51.1 8.3 3.05 1.00 65.6 3.1
VB332-10 OG 169 0.62 9 62.3 0.7 30.45 32.41 683 144 5.36 2.21 38.4 21.5 1.26 0.21 43.9 1.5
VB332-11 OG 175 0.54 6 62.1 0.3 30.33 32.55 738 268 10.4 1.10 120 128 3.11 1.35 46.1 2.0
VB332-12 NT 200 0.47 6 66.0 0.4 32.72 29.60 637 148 6.56 1.05 40.9 6.5 2.25 0.29 70.3 2.9
VB332-13 OG 230 0.47 6 66.2 0.4 32.85 29.44 750 395 5.13 1.28 41.2 11.4 1.97 0.20 65.4 3.6
VB332-15 NT 460 0.41 9 74.9 1.4 38.47 22.51 290 52 1.57 0.62 31.1 29.7 1.77 0.19 59.1 4.3
VB332-16 VTT 680 0.43 9 73.2 0.5 37.32 23.93 319 59 4.00 1.53 35.9 7.9 2.17 0.20 57.5 2.5
VB332-17 VTT 719 0.58 11 71.2 1.1 36.03 25.52 499 144 7.49 2.66 40.7 7.4 2.10 0.26 70.5 3.7
VB513-1 NT 15 0.29 7 78.7 0.4 41.01 19.39 416 43 4.17 1.43 271 200 3.77 1.46 66.3 4.6
VB513-2 NT 80 0.30 6 79.9 0.3 41.82 18.39 289 50 4.40 1.21 270 163 3.23 0.86 66.4 4.1
VB513-4 NT 105 0.30 9 81.2 0.3 42.69 17.32 294 61 3.69 1.10 183 98.3 2.87 0.65 71.3 4.8
VB513-5 NT 108 0.31 7 80.4 0.5 42.13 18.02 299 46 4.12 2.07 91.1 80.7 2.63 0.32 68.0 5.1
VB513-6 NT 110 0.30 8 80.9 0.4 42.48 17.59 292 73 3.68 1.40 117 119 2.79 0.42 71.8 6.3
VB513-7 NT 111 0.32 8 82.0 0.3 43.26 16.63 218 63 2.74 1.38 143 134 2.16 0.18 64.2 3.8
VB513-8 NT 160 0.29 8 82.2 0.5 43.36 16.50 372 50 3.68 1.19 268 126 2.82 0.46 66.8 5.2
VB513-10 NT 291 0.25 8 81.6 0.1 43.01 16.94 311 39 4.14 1.01 239 135 3.79 0.42 92.3 5.9
VB513-12 VTT 340 0.27 9 77.3 0.2 40.06 20.56 375 57 6.65 1.31 70.1 48.1 3.23 0.25 83.2 7.4
VB513-13 UMF 384 0.19 12 80.7 0.6 42.33 17.77 293 135 4.90 1.61 185 130 5.27 1.14 112 13.0
VB513-14 UMF 386 0.29 9 81.8 0.2 43.14 16.77 143 16 5.19 0.77 113 72.5 4.34 0.65 97.4 8.2
VB513-16 OG 560 0.39 8 72.6 3.5 36.95 24.39 684 144 5.76 1.71 187 127 3.57 2.12 64.0 18.3
VB513-19 VTT 583 0.44 7 68.5 0.7 34.30 27.66 540 92 6.48 2.37 54.8 19.9 2.35 0.29 55.7 2.4
VB513-21 NT 650 0.35 9 73.2 1.0 37.31 23.94 357 52 1.93 0.79 238 190 1.89 0.27 64.7 1.9
VB513-23 VTT 705 0.66 10 64.8 1.7 31.97 30.53 463 86 7.05 1.19 37.7 7.9 1.60 0.16 59.6 2.2
VB513-24 BBS 710 0.67 9 64.1 0.8 31.54 31.05 366 63 10.2 2.00 35.8 9.0 1.69 0.26 58.1 3.6
VB513-25 BBS 740 0.75 7 59.9 1.7 29.00 34.20 416 169 10.4 1.20 52.2 8.0 1.31 0.15 45.6 5.1
VB516-1 NT 12 0.45 9 61.2 1.5 30.60 32.22 787 146 14.8 1.78 66.8 16.6 3.43 0.43 56.4 3.1
VB516-4 NT 106 0.51 10 57.2 1.8 28.17 35.22 1685 284 6.80 1.98 76.5 12.5 2.79 0.51 51.0 1.4
VB516-6 NT 108 0.49 7 58.3 2.6 28.88 34.34 1102 219 13.5 1.17 69.6 12.3 3.25 1.17 54.9 2.6
VB516-7 NT 110 0.30 7 66.7 2.8 33.96 28.09 597 115 11.2 1.06 67.5 12.2 4.15 0.72 65.0 3.1
VB516-9 NT 116 0.35 8 63.2 2.8 31.81 30.73 1198 316 8.50 0.85 90.4 40.6 4.14 1.40 60.7 3.8
VB516-10 NT 140 0.41 10 61.5 2.0 30.75 32.04 1395 165 6.34 0.99 81.4 26.8 3.80 1.49 58.3 3.0
VB516-11 VTT 199 0.42 7 71.5 1.2 36.97 24.39 252 42 1.65 0.49 34.8 12.5 2.49 0.22 73.6 3.6
VB516-13 VTT 240 0.33 11 76.2 0.6 39.92 20.76 394 106 3.89 0.44 49.1 8.4 4.02 0.36 84.8 4.2
VB516-16 VTT 280 0.46 10 67.3 1.5 34.32 27.64 1044 473 9.46 3.51 59.1 18.9 3.35 0.77 65.0 6.0
VB248-1 NT 104 0.17 10 78.4 0.6 41.37 18.99 687 193 5.71 1.37 289 180 5.46 1.39 76.9 3.6
VB248-2 NT 106 0.22 8 81.7 0.4 42.96 16.88 361 52 2.75 0.70 220 157 3.54 0.42 90.4 7.1
VB248-5 NT 182 0.26 11 79.0 0.6 41.10 19.18 302 60 3.86 1.26 206 129 3.37 0.56 85.1 4.8
VB248-7 VTT 260 0.27 8 78.1 0.3 40.54 19.87 228 50 4.08 0.58 189 125 3.41 0.67 76.3 2.6
VB248-8 VTT 290 0.18 9 80.6 0.4 42.19 17.83 298 54 5.72 1.54 209 115 4.00 0.88 92.8 15.3
VB248-9 VTT 297 0.17 12 79.8 0.8 41.66 18.49 465 112 4.43 1.24 324 124 5.34 1.20 93.4 16.3
VB248-12 VTT 378 0.39 9 74.7 0.6 38.28 22.66 550 64 4.14 0.95 418 80.9 4.17 1.27 65.2 4.6
VB248-14 UMF 442 0.18 8 79.6 0.6 41.60 18.66 470 112 7.66 1.45 223 161 7.41 1.40 124 9.1
VB248-15 BBS 559 0.54 6 61.7 0.7 30.06 32.89 501 116 6.11 1.54 54.1 30.4 1.67 0.32 65.1 1.7
SVB96-02-02 OG 8 10 60.3 0.8 29.19 33.96 1890 383 18.0 2.49 272 10.4 7.61 1.35 46.9 1.9
SVB96-02-03 OG 22 8 57.0 0.9 27.25 36.36 2093 478 22.8 5.49 297 25.4 9.93 3.03 44.6 2.3
SVB96-02-05 OG 69 9 52.6 1.5 24.69 39.53 2409 502 21.0 3.99 324 87.1 5.57 1.71 47.9 3.5
SVB96-10-90 TG 21 8 55.2 1.8 26.17 37.69 3299 702 25.0 3.08 307 52.6 11.93 2.44 47.1 5.0
SVB96-10-91 TG 30 8 58.1 1.3 27.88 35.58 1828 504 24.4 4.41 294 29.2 8.12 2.08 45.4 2.9
SVB96-27-08 Cg G 1.2 6 58.2 2.0 27.95 35.49 3089 889 18.1 3.99 318 55.9 9.93 1.19 40.6 3.7
SVB98-113-168 Fg G 98.9 10 57.7 3.5 27.66 35.85 821 222 13.3 2.96 263 61.6 4.78 1.84 60.2 9.2
SVB97-92-161 Fg G 246.6 9 61.1 1.4 29.71 33.32 843 183 18.8 5.22 192 57.4 6.14 1.52 58.7 4.3
SVB97-79-144 Mg G 632.6 7 79.6 0.3 41.60 18.67 1057 166 11.2 1.94 423 20.7 9.52 1.03 81.5 5.7
SVB97-79-147 Mg G 729.3 9 62.1 0.7 30.28 32.61 5785 356 10.7 1.98 473 32.2 2.72 0.43 54.2 4.4
SVB97-92-03-Ol1 Cg BG 186.8 4 43.0 1.4 19.34 46.18 1384 107 22.1 3.09 266 169 4.86 2.87 36.3 1.0
SVB97-92-03-Ol2 Cg BG 186.8 4 64.4 3.4 31.76 30.78 993 398 15.2 3.21 244 52.9 7.62 3.33 71.6 14.4
SVB98-102-150 Cg BG 75.8 9 49.4 3.1 22.90 41.75 905 238 21.6 3.61 259 92.2 2.37 0.67 37.9 4.7

Parameters for AFC modeling (compositions of model liquids)
1

basaltic liquid
X

8.0 10 160 140

model gneiss
Y

4.3 10.8 108 80

Partition coefficients (Dmin/melt) for basaltic melt
2

olivine 5.2 1.6 0.03 0.80

plagioclase 0.04 0.10 0.20 0.02

clinopyroxene 2.5 0.65 6 34

sulfide 9 0.60 0.90

Fe-Ti oxide
Z

1.3 60 15
a
: relative proximity factor calculated based on results from multiple regression of V-Cr-Mn-Fe-Co-Ni-Zn and RVP with data from Chapter 3 (see Appendix 6.4.)

1
: FC calculation: CL / CO = F

(D-1) 
(Rollinson, 1993; Li et al., 2007); AFC modeling was performed using the equation CL / CO=f'+r / (r-1+D) * CA / CO(1-f') from DePaolo (1981)

X
: basaltic liquid composition inferred after Condie (1993) Proterozoic basalts

Y
: model gneiss composition  - Mn based on Mn-rich enderbitic/Nain orthogneiss (Vale, unpublished data); Zn based on Tasiuyak paragneiss (Vale, unpublished data)

2
: sources for mineral D values are given in Chapter 3

3
: 1s error is standard deviation of n analyses on individual sample ("inter-sample variability") - average analytical error in Analytical Method section; (N.M.) - not measured

light grey: BG from North Intrusion; OG-olivine gabbro; TG-transition gabbro; Cg-fg G-coarse- to fine-grained gabbro
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Table 4.1 (cont): SIMS analytical data for olivine (averages) from the EDI and PLI 

 

Sample Rock type depth Mn 1s Co 1s Ni 1s Cu 1s Zn 1s Sr 1s Y 1s Zr 1s

VB307-4 NT 101 2899 55 245 4.8 696 25.2 2.22 0.64 291 6 0.824 0.483 0.545 0.201 0.359 0.170
VB307-6 NT 106 3097 95 250 6.1 165 4.6 3.94 1.03 306 6 0.547 0.145 0.135 0.023 0.225 0.045
VB307-7 NT 108 3472 145 249 9.0 158 4.5 3.14 0.83 330 7 0.694 0.170 0.267 0.057 0.261 0.056
VB307-9 NT 280 2478 39 256 9.1 979 22.8 3.54 0.64 260 11 1.644 0.921 0.246 0.057 0.422 0.131
VB307-11 VTT 545 2912 83 219 7.5 1652 75.0 7.21 1.62 355 8 3.573 1.269 1.496 0.659 1.407 0.928
VB307-12 VTT 565 2237 67 249 8.7 1443 48.4 3.85 0.91 236 16 0.578 0.293 0.335 0.218 0.813 0.604
VB332-1 NT 7 2990 35 218 3.3 634 9.4 3.44 0.58 327 9 0.657 0.285 0.704 0.112 0.296 0.051
VB332-2 NT 45 2705 30 221 4.0 1093 22.6 5.03 1.48 306 10 0.378 0.059 0.361 0.095 0.779 0.570
VB332-4 Ol1 NT 92 5595 58 201 2.0 329 7.7 3.68 0.37 506 6 0.269 0.068 0.143 0.078 0.154 0.016
VB332-4 Ol2 NT 92 4105 188 225 1.4 398 7.7 4.06 0.65 368 7 0.255 0.048 0.147 0.059 0.256 0.053
VB332-6 NT 107 3978 48 197 5.0 306 6.7 3.49 0.68 393 10 0.345 0.089 0.910 0.336 0.205 0.057
VB332-7 NT 108 3991 99 207 5.9 286 3.0 3.42 0.74 381 11 0.339 0.125 0.255 0.087 0.298 0.058
VB332-9 NT 140 3839 80 209 8.9 290 8.4 4.34 0.56 374 7 0.460 0.121 0.218 0.045 0.357 0.070
VB332-10 OG 169 3836 42 195 3.8 377 9.0 3.16 1.10 278 8 0.508 0.176 0.098 0.042 0.267 0.089
VB332-11 OG 175 3643 76 179 2.0 344 4.3 3.33 0.69 286 14 0.506 0.087 0.497 0.166 0.289 0.135
VB332-12 NT 200 3931 36 207 1.7 284 7.4 2.97 0.56 340 10 0.500 0.221 0.332 0.107 0.220 0.047
VB332-13 OG 230 3819 46 215 4.1 285 9.5 3.89 0.82 328 9 0.763 0.761 0.291 0.252 0.210 0.044
VB332-15 NT 460 2547 45 256 11.7 1365 36.6 3.14 0.73 278 31 0.600 0.216 0.069 0.020 0.382 0.427
VB332-16 VTT 680 2989 36 216 6.5 1109 23.8 2.42 0.41 312 5 0.626 0.679 0.124 0.065 0.289 0.259
VB332-17 VTT 719 4718 157 249 17.1 1277 51.9 3.35 0.46 360 47 0.715 0.283 0.508 0.377 0.259 0.034
VB513-1 NT 15 2598 37 227 2.6 1247 17.6 3.50 1.49 262 11 0.368 0.038 0.205 0.046 0.942 0.803
VB513-2 NT 80 2621 27 241 5.2 1417 30.4 3.50 1.21 276 7 0.365 0.049 0.134 0.036 1.380 0.820
VB513-4 NT 105 2642 28 250 4.8 1524 39.7 2.99 0.86 284 14 0.381 0.051 0.114 0.032 0.790 0.445
VB513-5 NT 108 2748 92 248 7.2 1418 33.5 2.72 1.11 292 12 0.334 0.032 0.123 0.030 0.489 0.279
VB513-6 NT 110 2713 103 258 11.4 1491 31.7 2.01 0.73 281 15 0.402 0.150 0.074 0.011 0.558 0.492
VB513-7 NT 111 2701 56 271 8.8 1524 38.9 3.23 0.97 272 18 0.442 0.075 0.060 0.011 0.650 0.568
VB513-8 NT 160 2795 74 260 10.9 1455 23.9 4.99 1.78 284 16 0.502 0.019 0.145 0.045 1.237 0.734
VB513-10 NT 291 2511 28 252 3.4 1633 23.6 3.60 0.98 259 12 0.401 0.025 0.082 0.022 1.180 0.834
VB513-12 VTT 340 3106 89 242 3.5 895 12.8 2.28 0.50 319 15 0.385 0.157 0.412 0.149 0.374 0.236
VB513-13 UMF 384 2183 46 224 8.3 1472 62.4 2.93 1.03 163 16 0.361 0.054 0.061 0.021 0.528 0.303
VB513-14 UMF 386 2136 16 229 2.4 1830 82.3 3.28 1.12 108 24 0.471 0.106 0.061 0.018 0.501 0.278
VB513-16 OG 560 3341 327 247 12.9 1248 128.9 3.44 0.64 369 69 0.547 0.094 0.111 0.035 0.347 0.265
VB513-19 VTT 583 3518 74 213 15.5 921 33.8 2.27 0.29 498 16 0.474 0.067 0.310 0.175 0.261 0.040
VB513-21 NT 650 2548 57 239 7.0 855 17.2 4.09 1.71 302 9 0.624 0.208 0.070 0.015 0.831 0.628
VB513-23 VTT 705 4261 58 251 12.4 1556 43.2 2.80 0.52 428 11 0.644 0.182 0.365 0.177 0.263 0.017
VB513-24 BBS 710 4473 71 259 6.6 1371 42.6 3.58 0.55 392 15 0.619 0.140 0.877 0.138 0.297 0.034
VB513-25 BBS 740 4680 170 261 11.0 1004 42.6 4.89 1.39 311 16 0.990 0.852 0.521 0.159 0.307 0.038
VB516-1 NT 12 3406 54 190 2.7 66 2.2 2.20 0.31 272 5 0.296 0.052 0.366 0.115 0.228 0.029
VB516-4 NT 106 3314 48 204 6.0 111 6.9 5.29 0.83 290 8 1.475 0.587 0.247 0.164 0.442 0.140
VB516-6 NT 108 3558 37 190 5.6 98 3.0 4.21 1.07 321 7 0.852 0.309 0.639 0.134 0.447 0.122
VB516-7 NT 110 2931 159 212 6.8 112 3.0 2.28 0.44 267 9 0.360 0.188 0.134 0.050 0.159 0.034
VB516-9 NT 116 3042 48 214 11.9 115 6.4 4.58 1.19 295 11 0.928 0.303 0.186 0.040 0.639 0.329
VB516-10 NT 140 3189 66 207 7.8 131 5.8 5.28 1.16 267 10 0.914 0.222 0.236 0.035 0.811 0.427
VB516-11 VTT 199 2619 69 245 18.4 1539 89.4 3.16 0.66 310 6 0.740 0.174 0.069 0.017 0.234 0.023
VB516-13 VTT 240 2753 29 225 12.5 1516 92.4 2.21 0.63 275 18 0.498 0.057 0.143 0.034 0.320 0.058
VB516-16 VTT 280 2936 86 227 10.2 1385 96.8 4.01 1.12 324 9 1.404 0.758 0.615 0.116 0.630 0.224
VB248-1 NT 104 2480 22 235 4.0 1180 25.0 6.22 1.80 291 11 0.977 0.410 0.428 0.131 2.023 1.336
VB248-2 NT 106 2476 64 255 6.5 1466 40.7 4.50 0.95 285 15 0.448 0.077 0.100 0.041 1.171 1.112
VB248-5 NT 182 2075 15 236 4.0 1457 19.7 5.13 1.01 240 4 0.522 0.116 0.115 0.022 1.001 0.632
VB248-7 VTT 260 2096 17 271 10.8 1486 60.1 4.58 0.81 241 6 0.414 0.045 0.106 0.031 0.911 0.664
VB248-8 VTT 290 2209 48 238 2.7 1091 14.8 3.56 0.71 219 5 0.316 0.032 0.139 0.028 1.030 0.773
VB248-9 VTT 297 2036 29 232 4.2 1389 28.2 4.23 0.96 214 9 0.495 0.215 0.416 0.432 2.527 1.161
VB248-12 VTT 378 2509 48 192 14.5 1760 74.0 4.82 1.41 313 6 0.810 0.187 0.211 0.070 1.267 0.304
VB248-14 UMF 442 2591 51 220 8.4 1877 70.2 4.49 1.44 237 47 0.559 0.125 0.402 0.205 1.285 0.694
VB248-15 BBS 559 4375 118 196 12.0 935 34.6 3.77 1.16 724 21 0.546 0.108 0.251 0.130 0.533 0.446
SVB96-02-02 OG 8 3846 59 224 8.6 512 32.5 3.39 0.31 443 8 0.372 0.088 5.215 2.021 1.894 0.408
SVB96-02-03 OG 22 3919 32 262 6.1 581 48.9 4.09 0.65 463 12 0.508 0.204 5.721 1.080 2.204 0.412
SVB96-02-05 OG 69 4746 208 233 7.9 186 15.9 4.56 1.15 541 16 0.532 0.194 8.008 1.173 2.223 0.471
SVB96-10-90 TG 21 4496 237 241 14.9 635 20.5 4.53 0.62 539 23 0.621 0.376 8.319 2.072 1.896 0.505
SVB96-10-91 TG 30 4042 320 238 8.8 281 93.2 3.80 0.76 437 36 0.508 0.132 6.126 2.414 2.941 0.823
SVB96-27-08 Cg G 1.2 4237 125 184 6.0 178 9.1 5.23 1.73 410 7 0.407 0.289 5.770 2.463 1.926 0.929
SVB98-113-168 Fg G 98.9 3723 109 284 12.1 498 37.6 6.28 1.16 525 40 0.468 0.123 0.983 0.520 0.989 0.416
SVB97-92-161 Fg G 246.6 4332 97 235 33.1 360 43.3 6.80 0.65 524 22 0.534 0.269 1.683 0.889 0.406 0.066
SVB97-79-144 Mg G 632.6 2598 38 209 11.7 1437 66.2 4.55 1.82 280 11 0.679 0.262 1.705 0.185 2.258 0.294
SVB97-79-147 Mg G 729.3 4290 82 219 9.2 440 28.9 6.76 1.43 484 21 0.731 0.125 3.558 0.902 1.702 0.699
SVB97-92-03-Ol1 Cg BG 186.8 5378 145 178 2.1 117 2.4 6.61 0.99 455 29 0.540 0.262 2.316 0.924 0.897 0.632
SVB97-92-03-Ol2 Cg BG 186.8 3948 358 220 3.9 192 28.6 6.74 1.24 321 30 0.377 0.039 0.820 0.398 0.578 0.162
SVB98-102-150 Cg BG 75.8 4635 336 186 13.0 137 5.2 5.04 1.05 396 23 0.294 0.127 2.389 1.756 1.617 0.888
Parameters for AFC modeling (compositions of model liquids)

1

basaltic liquid
X

1600 75 290 140
model gneiss

Y
20000 30 50 250

Partition coefficients (Dmin/melt) for basaltic melt
2

olivine 1.3-1.6 3.5 9.0 1.5-2.2

plagioclase 0.04 0.10 0.06 0

clinopyroxene 1.2 1.3 2.1 0

sulfide 0.30 61 200 1

Fe-Ti oxide
Z

1.9 2.2 3.8 0



P a g e  | 202 

 

 

 



P a g e  | 203 

 

 

Fig. 4.6 (previous page): Plots of selected trace elements versus forsterite content of VBI and PLI 

(abbreviated as SVB for South Voisey’s Bay) olivine. The samples are plotted as averages from individual 

lithologies. In brackets is the number of samples per lithology and the total number of measured olivine 

data points. Error bars denote 1s sample internal error (variability). Colored fields enclose olivine from 

similar host rocks. Inlet in A) implies the potential change in composition due to the trapped liquid shift and 

reequilibration with sulfides (after Li et al., 2000). Ellipses with MO indicate the composition of primitive 

mantle olivine (partly from DeHoog et al., 2010; partly unpublished data from WGR olivine – Chapter 2). 

Fields of VB266 in E) and F) are BBS samples from Chapter 3. Black lines denote calculated Rayleigh 

fractionation model lines (FC and AFC ML) to replicate the apparent olivine trends derived from four 

possible scenarios (see Chapter 3 for details): 1 – the crystallization of ol:plag:cpx, in a ratio of 1:3:0.2 

(solid lines with circles; 1290 and 160 have an initial melt Ni content of 290 and 60 ppm, respectively); 2 – 

the segregation of a sulfide liquid after 10% crystallization of ol:plag:cpx in a ratio of 1:3:0.2 to 0.08 sulfide 

(solid line with triangles); 3 – the crystallization of ol:plag:cpx and a Fe-Ti oxide phase (ilmenite 

±titanomagnetite ±magnetite) in a ratio of 1:3:0.45:0.3 (solid line with squares); 4 – is based on model 

curve FC-1 with the fractionated melt assimilating 10% of Mn-Zn-rich upper crustal rock (solid line with 

diamonds) after 45% crystallization. Symbols (and numbers) on model lines indicate the degree of 

crystallization in 5% increments. Parameters used for calculations are listed in Table 4.1 and described in 

detail in Chapter 3. 

 

 



P a g e  | 204 

 

 

 

Fig. 4.7: Plots of selected trace elements from EDI and PLI olivine. See Fig.4.6 for description of model 

lines. 
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4.5.2.1. Olivine from the Voisey’s Bay and Pants Lake Intrusions 

(1) Nickel. Ni concentrations in the VBI vary considerably in accord with the Fo 

content, from 66 ppm (Fo61; VB516-1-NT) to 1,877 ppm (Fo80; VB248-14-UMF) 

(Fig.4.6A). UMF samples contain the most primitive olivine (high Ni-Fo; Fig.4.6A – 

green field), and BBS, the lower part of the VTT, and the OG the most evolved (low Ni-

Fo; Fig.4.6A). There are also some exceptional excursions – the low-Ni olivine from the 

Fe-Ti oxide-rich succession in the NT (VB516 and VB307) and the Ni-depleted interval 

in VB332 (92–230m). Two general groups can be subdivided; group one contains olivine 

with more than 500 ppm Ni and group two comprises olivine with less than 500 ppm Ni 

(Fig.4.6A). Olivine from the PLI has on average low Ni concentrations, coupled with 

higher Fo contents (117 ppm to 635 ppm Ni; Fo43 to Fo64) and falls in group two 

(Fig.4.6A – purple field). However, a single melagabbro sample from the SI (SVB97-79-

144) has a more primitive composition (1,437 ppm Ni and Fo80) and lies in the group one 

field for EDI olivine (Fig.4.6A). Nickel is negatively correlated with the Fo content, and 

decreases with proceeding differentiation of the melt, whereas the Fo-Ni heterogeneity in 

most NT-VTT olivine from the EDI is most likely a result of the trapped liquid shift, 

where interaction with an intercumulus silicate liquid caused a (disequilibrium) increase 

in Fe relative to Ni (Barnes, 1986; Chalokwu and Grant, 1987; Fig.4.6A inset). The 

positive correlation of Fo-Ni in some BG olivine from the PLI implies a reequilibration 

with a sulfide-liquid (Li et al., 2001). 

(2) Cobalt. Co varies from 179 ppm (VB332-11-OG) to 271 ppm (VB248-7) in VBI 

olivine and from 178 ppm (SVB97-92-03) to 284 ppm (SVB98-113-168) in PLI olivine 
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(Fig.4.6B). The Co concentration in olivine is, in both intrusions, positively correlated 

with the sulfide content of the sample. For example, the highest Co sample from the PLI 

contains ~20 vol.% sulfide, whereas the lowest Co samples have less than 1.5 vol.% 

(Fig.4.6B – purple field). Only in samples from the EDI does Co show a weak negative 

correlation with Fo (Fig.4.6B – blue-red fields). The lack of a systematic relationship 

between Ni and Co (Fig.4.7A) in EDI olivine indicates that the Co composition was also 

influenced by sulfide saturation and reequilibration processes in an open magma system, 

although to a lesser extend than Ni. The Co content in olivine from the PLI displays a 

weak positive correlation with Ni (Fig.4.7A – purple field) that might indicate a 

systematic decrease through FC or an increase through subsolidus reequilibration with 

sulfides. 

(3) Chromium. Cr is a refractory element, even though slightly incompatible in olivine 

(D
Cr

ol/sil~0.8; Beattie, 1994; Gaetani and Grove, 1997), and displays an overall gradual 

and continuous decline with increasing Fo content in EDI olivine (from primitive Mg-rich 

to more evolved Fe-rich); from 124 ppm (VB248-14-UMF) to 44 ppm (VB332-10-OG), 

(Fig.4.6C). In the PLI, olivine has an average Cr content of ~50 ppm and falls on the 

lower end of the Cr-Fo trend (Fig.4.6C – purple field). The Cr content of most VBI 

olivine also decreases in tandem with the V concentration (Fig.4.7B), which is 

attributable to the preferred partition of both elements by co-crystallizing Fe-Ti oxides – 

as evident by the low Cr contents of NT olivine associated with cumulus Fe-Ti oxides 

(e.g., VB513). 
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(4) Titanium. Ti ranges from 32 ppm (VB332-15-NT) to 418 ppm (VB248-12-VTT) in 

EDI olivine, and from 192 ppm (SVB97-92-161) to 473 ppm (SVB97-79-147) in PLI 

olivine (Fig.4.6D). The uncontaminated Ti values in the PLI are consistently high and 

have no systematic correlation with the Fo content (Fig.4.6D – purple field). In the EDI, 

only the “contaminated” olivine from DDH VB248 and VB513 contain anomalously high 

Ti contents (circa >120 ppm Ti), whereas all other samples exhibit a narrow 

compositional range (30–80 ppm) and a weak positive correlation with Fo (Fig.4.6D). 

These low values are common for mantle olivine (e.g., O’Reilly et al., 1997; DeHoog et 

al., 2010) and reflect the very low partition coefficient of Ti between olivine and silicate 

melt (D
Ti

ol/sil ~0.052; Zanetti et al., 2004 and references therein).  

(5) Manganese. Mn varies from 2,037 ppm (VB248-9-VTT) to 4,718 ppm (VB332-17-

VTT) in EDI olivine and generally increases from the upper NT to the lower part of the 

VTT and BBS (Fig.4.6E – blue and red fields). Concentrations in olivine from the PLI are 

higher, with an average of ~4,299 ppm Mn (Fig.4.6E – purple field). The melagabbro 

sample SVB97-79-144 has the lowest Mn content (2,598 ppm ±39 1s) (Fig.4.6E). All 

samples show a positive correlation of Mn with the Fe content, and the average Fe/Mn 

ratio of VBI olivine is ~62 and of PLI olivine ~64. This is much higher than the average 

Fe/Mn ratio of ~25 for BBS olivine from VB266 (Chapter 3; shown as a separate field 

outline in Fig.4.6E) and of ~7 for average mantle olivine (e.g., O’Reilly et al., 1997). 

Manganese is also positively correlated with Zn, reflecting their mutual correlation with 

Fe (Fig.4.7D), with a progressive increase in both elements from the most primitive 

olivine (UMF interval of VB513) towards the most evolved olivine (lower VTT and BBS 
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samples). Olivine from the PLI is generally even more differentiated than those from the 

VBI, and most plot in the highest Mn-Zn segment (Fig.4.7D – purple field). 

(6) Zinc. Zn ranges from 108 ppm (VB513-14-UMF) to 724 ppm (VB248-15-BBS) in 

EDI olivine, and from 281 ppm (SVB97-79-144) to 541 ppm (SVB96-02-05) in PLI 

olivine (Fig.4.6F). The low Zn values from UMF sample VB513-14 fall in the field for 

presumably uncontaminated ultramafic samples (VB544-1; Chapter 3) and thus represent 

the most primitive olivine found in this study. In general, Zn exhibits a negative 

correlation with the Fo content and describes a FC trend whereby the PLI olivine are the 

most evolved, occupying the high-Zn, low-Fo area (Fig.4.6F – purple field). In addition, 

PLI samples form two sub-groups with different Zn-Fo(-Mn) slopes (Fig.4.6F and 4.7D). 

Olivine from the UG has less Zn with decreasing Fo than olivine from the BG (Fig.4.6F – 

grey and purple symbols, respectively). The barren troctolitic lithologies in the EDI (NT 

and upper VTT) contain olivine with lower Zn concentrations than the mineralized lower 

VTT and the BBS, and the highest Zn sample (VB248-15-BBS) also lies in the field for 

BBS olivine from VB266. However, in contrast to the high Zn and high Mn samples from 

VB266 (Fig.4.7D), EDI samples from this study have much less Mn.  

(7) Vanadium. V ranges from 1.3 ppm (VB332-10-OG) to 7.4 ppm (VB248-14-UMF) 

in VBI olivine, and from 2.4 ppm (SVB98-102-150) to 12 ppm (SVB96-10-90) in PLI 

olivine (Fig.4.7B). The average value of ~6.8 ppm V for PLI olivine is higher than values 

of typical mantle olivine (~4.3 ppm V; DeHoog et al., 2010) and is twice as high as for 

the EDI (~3.2 ppm V). However, olivine from the EDI trend from a higher to lower V-Cr 

composition with increasing grade of differentiation (UMF-NT-VTT-OG-BBS), 
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reflecting a decrease in V-Cr concentration from UMF and NT olivine to OG and BBS 

olivine (Fig.4.7B). Samples from the PLI have very diverse V compositions but lack the 

systematic relationship with Cr content (Fig.4.7B – purple field). 

(8) Calcium. The large divalent Ca cation is highly incompatible in olivine (D
Ca

ol/sil= 

~0.052; Zanetti et al., 2004 and references therein), but readily fractionates into anorthite-

rich plagioclase, which co-precipitated with olivine in the EDI and PLI. Concentrations in 

EDI olivine vary from 143 ppm Ca (VB513-14-UMF) to 1,685 ppm Ca (VB516-4-NT). 

PLI olivine has much higher Ca contents (821 ppm to 5,785 ppm). Variable pronounced 

positive correlations exist between Ca and Fo in EDI olivine, and Ca and Ti in olivine 

from the PLI (Fig.4.7C). However, the Ca and “true” Ti values of NT-VTT olivine from 

VB516 (Fig.4.7C) exhibit an almost identical slope to those from the PLI, except the 

lower total element concentration, whereas the biased Ti-rich olivine from the VBI has 

lower Ca concentrations. 

 

4.5.2.2. Trace Element Abundance Distribution in EDI and PLI Olivine 

In Figure 4.8A olivine from all sampled UMF from the EDI (from VB513 and VB248), 

the melagabbro sample from the South Intrusion at Pants Lake (SVB97-79-144), and two 

UMF samples previously presented in Chapter 3 (VB552-15B and VB544-1) are 

normalized to the composition of primitive mantle olivine (MO, Western Gneiss Region, 

Norway; unpublished data – Chapter 2). The olivine compositions are more variable from 

Zr to Cr, although with very uniform values for Sr and Cr, than from Mn to Cu. The PLI 

melagabbro contains the most evolved olivine, whereas olivine from the melatroctolite 
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VB544-1 is the least evolved. Figure 4.8A also demonstrates that UMF olivine is fairly 

heterogeneous in composition, based on the overall distribution of incompatible elements. 

 

Fig. 4.8: Multi-trace element diagrams showing the average olivine composition of selected lithologies 

from the EDI and PLI. Primitive mantle olivine normalized (MO WGR, unpublished data – Chapter 2) 

multi-trace element diagrams displaying the average olivine composition from A) UMF olivine from this 

study and samples VB552-15B and VB544-1 (presented in Chapter 3) and B) Olivine from the UG and BG 

sequence of the PLI. C) and D) depict enrichment-depletion diagrams relative to average lower VTT olivine 

from VB266 and VB552 (Chapter 3) for the trace element composition of EDI olivine from the BBS and 

lower VTT intervals, and the UG and BG sequence from the PLI, respectively. 
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In Figure 4.8B, samples from the PLI are subdivided into Upper and Basal Gabbro (UG 

and BG) successions from the NI and the SI respectively. The olivine compositions are 

relatively homogeneous, and all PLI gabbro samples illustrate pronounced enrichments in 

Zr, Y, Ti, Sc, and Ca content (up to 200x MO). The transition metal concentrations (plus 

Mn and Zn), especially, are nearly constant in all samples (Fig.4.8B), with the highest 

enrichment values in Mn and Zn (~6x MO). The one exception is the Ni distribution, 

which is distinctly lower in olivine from the PLI, with the lowest concentrations in UG 

olivine (0.04x MO). 

In Figures 4.8C and 4.8D, respectively, EDI samples from the BBS and lower part of the 

VTT that contain potentially prospective olivine compositions for Ni-exploration, and the 

grouped gabbro samples from the PLI (from Fig.4.8B), were plotted relative to the 

average composition of olivine from the mineralized, lower VTT that is intersected in 

VB266-VB552 (Chapter 3). The mineralized, lower VTT contains olivine with elevated 

Mn and Zn contents, which reflect a transition from the nominally barren upper VTT 

towards the BBS sequence, which is associated with massive sulfide mineralization in 

VB266-VB552. The progressively Mn-Zn-rich composition most likely represents 

crystallization (±olivine-sulfide liquid interaction) in a very favorable sulfide ore-forming 

environment and proximity to massive sulfide mineralization, and as such is of great 

interest as a geochemical indicator of proximal ore mineralization (Chapter 3). Unlike 

VB266 (or VB552), the additional BBS (VB513 and VB248) and VTT (VB332) samples 

from this study do not explicitly transect the massive sulfide mineralization at the base of 

the EDI and the immediately proximal BBS. In that specific case, olivine from the 
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troctolitic chamber horizons is expected to be less enriched in Mn and Zn than olivine 

from the heavily contaminated and sulfide-rich VB266 (and other DDH) (Fig.4.8C). The 

distribution of most other trace elements in olivine from BBS and VTT, however, is quite 

similar to lower VTT olivine, with the notable exception of Y and Sc, which are 2 to 5 

times more enriched (Fig.4.8C), and Ti and V, which are slightly depleted (0.4 to 0.6x). 

The gabbroic rocks from the PLI on the other hand, contain olivine of very different 

composition (Fig.4.8D). All measured olivine grains from UG and BG lithologies are 

strongly enriched in the incompatible elements Zr, Y, Ti, Sc, and Ca, with enrichment 

factors of 2 (for V) to almost 40 (for Y). The mafic melt reservoir crystallizing the PLI 

olivine must have been much richer in lithophile incompatible elements (more 

differentiated) than the contaminated (BBS and VTT) melt(s) at the EDI. The Cr and Ni 

contents of PLI olivine are uniformly depleted with respect to lower VTT olivine from the 

EDI. This observation is in accord with the derivation of PLI olivine by FC from a melt 

with a higher degree of differentiation that experienced late sulfide segregation and 

concomitant Ni depletion.  

In summary, the key trace element variations in olivine from the EDI and PLI are: 

1. The olivine chemistry in the EDI is characteristic of their specific host lithologies – 

UMF and the NT contain the most primitive olivine (Fo-Ni-Cr-rich), the VTT 

contains olivine of intermediate composition, and the lower VTT, BBS and OG have 

the most evolved olivine (Fe-Mn-Zn-rich).  

2. EDI olivine is on average more primitive than PLI olivine, with higher Fo-Cr-Co-Ni 

contents – exceptions are the Ni-poor NT intervals in the EDI. 
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3. PLI olivine has much higher contents of incompatible, lithophile elements such as Y, 

Ti, Sc, and Ca than EDI olivine, and is generally Ni poor (<500 ppm). 

4. UMF olivine shows a range in chemistry (e.g., low to high Zn) with respect to its 

stratigraphic position in the EDI (upper VTT or contaminated, lower VTT). 

5. Olivine from DDH that intersect the VTT and BBS distal to the massive sulfide 

mineralization in the EDI shows an increase in Mn-Zn, but are not as enriched in 

these elements as olivine in direct proximity to massive sulfides (e.g., VB266 and 

VB552 – Chapter 3). 

 

4.6. Discussion 

4.6.1. The Petrogenetic Importance of Ultramafic Rocks in the Formation of 

the EDI 

Ultramafic inclusions in the EDI (UMF) primarily comprise fragments of dunite to 

melatroctolite, and are most commonly associated with the BBS and the lower part of the 

VTT (e.g., Lightfoot and Naldrett, 1999; Li and Naldrett, 1999; Li et al., 2000). They are 

centimeter-sized, irregularly-shaped and commonly highly serpentinized. The most 

primitive olivine composition observed within the UMF (Fo81 and 2,619 ppm Ni; Li and 

Naldrett, 1999) is commonly used as a starting point for VBI fractional crystallization 

models, since the UMF are interpreted as disrupted remnants of early (primary) magmatic 

cumulates (Lightfoot and Naldrett, 1999; Li and Naldrett, 1999; Li et al., 2000). 

However, olivine from UMF, overall, displays considerable variations in Fo and Ni 
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contents (Fo71 and 1,283 ppm Ni to Fo81 and 2,619 ppm Ni; Li and Naldrett 1999), 

which may reflect more their spatial position in the VBI magmatic system (conduit-

mineralized versus chamber-sulfide-bearing to sulfide-free environment; RBZ versus EDI 

etc.) than their magmatic origin. It is therefore essential to first link UMF olivine 

compositions to a specific magmatic environment before using them as a compositional 

anchor in petrogenetic studies. 

This consideration is especially important because UMF are also reported from the NT at 

the top of the EDI stratigraphy (e.g., VB266 – Lightfoot et al., 2012; VB544 – Chapter 3), 

and a continuous melatroctolite horizon is partly exposed on surface for several hundred 

meters (P. Lightfoot pers. comm.). This same outcropping sequence of sugary-textured 

and weakly layered melatroctolite appears intersected by VB544 (VB544-1; Chapter 3) 

where it contains strongly serpentinized olivine of very primitive composition, distinctly 

different to that found in the partially mineralized UMF from the BBS (Fig.4.8A; Chapter 

3). Consequently, it was concluded in Chapter 3 that at least two compositionally 

different UMF generations (UMF in NT versus UMF in the BBS) occur in the VBI, 

which may record, 1) multiple generations of variably primitive early-magmatic 

cumulate(s) transported upwards episodically (with NT, VTT and finally BBS) from a 

lower (staging) chamber at various times during the petrogenesis of the VBI, or 2) a 

diffusive reequilibration of UMF olivine entrained and turbulently transported in a 

contaminated and sulfide-rich carrier melt that eventually produced the BBS in the EDI 

(Chapter 3), or 3) several alternative (early-genetic, in the case of the UMF in the NT) 
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emplacement routes (feeder conduits) into the EDI (see Lightfoot and Evans-Lamswood, 

2012; Lightfoot et al., 2012). 

We examined these hypotheses with specific reference to UMF samples from two 

intervals in the VTT (VB248-14; VB513-13 and-14) and a comparative ultramafic sample 

from the PLI (SVB97-79-144). Samples from VB513 are dunitic in composition and 

occur in a VTT succession about 400m above the BBS, whereas the UMF from VB248 is 

a melatroctolite from a variably contaminated VTT sequence ~110m above the BBS 

(Vale, unpublished DDH logs). In accord with hypothesis 2), the two VBI intervals 

contain compositionally different olivine (Fig.4.8A), VB248-14, from the more 

contaminated VTT, has a higher concentration of incompatible trace elements (Zr, Y, Ti, 

Sc, V, Ca) for its nominal Fo content than the UMF from VB513, and also Mn and Zn 

contents closer to UMF from the BBS (VB552-15B; Chapter 3). Conversely, the two 

dunitic samples from VB513 have compositions similar to the more primitive UMF from 

the NT (VB544-1; Chapter 3), including equally low Mn and Zn (see also Fig.4.7D) – the 

element concentrations that are most obviously increased by assimilation of country rock.  

In addition to UMF from VBI, the cumulate melagabbro sample (SVB97-79-144) from 

the BG in the South Intrusion of the PLI was plotted on Figure 4.8A. This altered, 

serpentinized melagabbro contains reacted (Tasiuyak) paragneiss inclusions (hercynite 

±albite-rich plagioclase assemblage; Fig.4.2F). The olivine analyzed in the direct vicinity 

of these inclusions is found to be as trace element enriched and reequilibrated as the UMF 

from the BBS at VBI (VB552-15B; Fig.4.8A). Except for the Fe and Mn contents, which 

are more primitive in the PLI, their composition is in fact quite similar, and thus, on a 
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geochemical basis, two endmember compositions for olivine from UMF can be 

established; 1) an enriched composition (VBI BBS and to a lesser extent the PLI 

melagabbro), and 2) a primitive composition (NT UMF – VB544-1). All other measured 

UMF samples fall approximately in a compositional array between those two 

endmembers (Fig.4.8A). This implies that the presence of, and the proximity to, partially 

reacted (paragneissic) xenolith inclusions induces an olivine trace element enrichment, 

whereas UMF further removed from contaminated sequence(s) retain their more primitive 

olivine composition.  

As a potential explanation, diffusive reequilibration (solid-liquid) of especially Mn, Zn 

and Fe into the olivine, and Ni and Mg out of the olivine into the surrounding melt has 

likely caused the selected element enrichment in UMF olivine entrained in the BBS 

(Chapter 3). In fact, the partial assimilation of ultramafic cumulates by ascending basaltic 

melts and the simultaneous diffusive reequilibration of remnant olivine xenocrysts has 

been demonstrated for very short timescales in volcanic environments (Costa and 

Dungan, 2005) and also for BBS olivine enclosed by sulfide (Chapter 3). Divalent cations 

such as Fe-Mg, or Co, Ni, Mn and Zn have the highest diffusivity in olivine, depending 

on temperature, pressure, oxygen fugacity and composition (e.g., Ito et al., 1999; Petry et 

al., 2004; Costa and Dungan, 2005; Chakraborty, 2008; Spandler and O’Neill, 2010; 

Quian et al., 2010). In UMF olivine, these particular elements are preferably enriched (Fe, 

Mn, Zn) or depleted (Mg, Ni) relative to the most primitive olivine composition. It was 

shown in Chapter 3 that ~3,000 ppm Mn can diffuse a distance of 0.7mm in the olivine 

structure in less than 160 yrs at 1,000ºC. In a scenario where centimeter-sized xenoliths of 
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UMF containing olivine in the size range smaller than 0.5mm are entrained and 

transported in a contaminated basaltic melt, solid-liquid diffusive reequilibration between 

olivine and surrounding melt can thus rapidly modify and homogenize the olivine 

composition depending on the temperature and immediate melt environment (strong 

chemical gradient) (e.g., Costa and Dungan, 2005).  

In conclusion, the observed trace element enrichment and chemical homogeneity at 

crystal-scale and at xenolith-scale in UMF olivine incorporated in the contaminated BBS 

and lower VTT is likely obtained through diffusion during transport in a contaminated 

and sulfide-rich basaltic carrier liquid, after disaggregation of initial cumulate layers in a 

lower staging chamber, and thus does not necessarily reflect a primary magmatic feature. 

The UMF (melatroctolite horizon) in the NT (VB544-1), on the other hand, did not 

experience this reequilibration process, since the lack of a chemical gradient between the 

incorporated UMF and the primitive and uncontaminated primary melt of the NT 

probably retarded any subsequent trace element diffusion and thus compositional 

modifications of the olivine. In addition, an alternative emplacement route into the EDI 

may have aided in the preservation of their original composition. 
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4.6.2. Compositional Variability of Olivine as a Response to Open-System 

Processes 

4.6.2.1. Link between Ti and V in Olivine, Precipitation of Fe-Ti oxides, and ƒO2 

Ti and V are similarly incompatible in olivine (e.g., Colson et al., 1988; Beattie, 1994; 

Zanetti et al., 2004), but the partitioning behavior of V between olivine and basaltic melt 

is strongly governed by the valence of V (which is either V
3+

 and V
4+

 in most terrestrial 

magmas), and thus depends strongly on the prevalent ƒO2 (Canil, 1997; Canil and 

Fedortchouk, 2001; Papike et al., 2005). Olivine prefers to incorporate V
3+

 – and since the 

V
3+

/V
4+

 ratio of a mafic melt decreases substantially with increasing ƒO2, the bulk 

partition coefficient D
V

ol/sil decreases as well. Therefore, V partitioning into olivine has 

been used as an alternative oxygen barometer in various studies of terrestrial and 

extraterrestrial basalts (Canil, 1997; Canil and Fedortchouk, 2001; Papike et al., 2005; 

Shearer et al., 2006).  

Titanium, in contrast, is only present as Ti
4+

 under terrestrial ƒO2 conditions and the 

substitution into olivine is, paradoxically, unaffected by small changes in the oxygen 

fugacity of a mafic melt (Papike et al., 2005 and references therein). This behaviour is 

similar to Cr (D
Cr3+

ol/si and D
Cr2+

ol/si), which is also consistent over a range of ƒO2 

conditions. As a result, the co-variation of V with Ti and Cr (and other trace elements) 

during crystallization is affected by the ƒO2 via changes in V partitioning. However, the 

co-precipitation of Fe-Ti oxides such as ilmenite and titanomagnetite, which have 

variable, but strong, preferences for V, Ti and Cr (e.g., Klemme et al., 2006) will deplete 

the melt in all three (as reflected by model line FC-3 in Fig.4.6C–D and 4.7B). This latter 
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process is recorded by the positive correlation of V-Cr (Fig.4.7A – FC-3) in EDI olivine. 

Olivine from the PLI on the other hand, has erratic V-Cr (Fig.4.7A – purple field) 

distributions, and this decoupling (and the generally elevated V and Ti concentrations) 

could be a reflection of the observed absence of Fe-Ti oxides co-crystallizing with olivine 

on the liquid line of descent (e.g., Smith, 2006). Most of the high Ti (more than 200 ppm) 

values in VBI olivine reflects the incorporation of m-sized lamellae of Fe-Ti oxide(s) 

(Fig.4.3) into the analyses, and these likely exsolved from the host olivine during cooling 

of the intrusion. Similar occurrences have been identified in olivine from layered 

intrusions, such as the Upper Zone in the Skaergaard Intrusion, or the Eucrite Series in 

the Cullin Complex, Isle of Skye, and may in fact be common in slowly cooled mafic 

intrusions (Moseley, 1981). During the crystallization of olivine, Ti
4+

 likely substituted 

for tetrahedral-coordinated Si
4+

 and subsequently exsolved during subsolidus cooling, 

forming a stable separate phase (ilmenite ±titanomagnetite) (Moseley, 1981). 

Intercumulus Fe-Ti oxides in these exsolution-bearing olivine samples indicate the 

availability of Ti
4+

 in the primary melt. In contrast, several samples from VB516 and 

VB307 that contain early-crystallizing liquidus Fe-Ti oxides have olivine with low, 

“uncontaminated” Ti and V concentrations, and which are largely devoid of any 

exsolution lamellae. This correlation indicates that Fe-Ti oxides are equilibrium, liquidus 

minerals in this sequence of the NT. The associated olivine, however, are also highly Ni-

depleted (Fig.4.6A). This Ni (±Co) depletion can result from sulfide segregation after 

10% FC (Fig.4.6A–B – FC-2) or an interaction with a Ni-poor sulfide fraction that 

initially scavenged the primitive melt (FC-1290) of chalcophile elements (primarily Ni and 
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Co) before olivine crystallization commenced (FC-160), leaving behind a depleted silicate 

melt reservoir (~12 ppm Ni at 45% crystallization – Fig.4.6A; with D
Ni

ol/sil = 9, Li et al., 

2003b). This reequilibration may also have caused a concomitant increase in ƒO2 due to 

an increase in melt Fe
3+

 (e.g., Baker and Moretti, 2011 and references therein), which in 

turn may have provoked the crystallization of ilmenite ±titanomagnetite (e.g., Snyder et 

al., 1993). The petrogenesis of this Fe-Ti oxide-rich, and Ni-depleted, interval in the NT 

may thus be intimately related to the observed process of metal tenor upgrading in the 

VBI – with the high tenor disseminated sulfides in the “chamber” of the EDI (e.g., [Ni]100 

= 4–8%; Lightfoot et al., 2012) derived from the same process that produced primary 

titanomagnetite and induced the Ni depletion in olivine. 

In contrast, the gabbroic rocks of the PLI have no Fe-Ti oxides (ilmenite or 

titanomagnetite) and only minor occurrences of magnetite (as a late-crystallizing or 

alteration phase), with the exception of some rare “early” magnetite in the sulfide-rich 

fractions of the PLI (e.g., in disseminated sulfides of the “leopard-texture gabbro”; e.g., 

Kerr, 1999). Consequently, V-Cr (Fig.4.7A) values of olivine display no correlation, and 

absolute V and Ti concentrations are generally higher than at the VBI. Further, the 

elevated Ti contents are much more homogeneous (lower intra-sample variation; Table 

4.1) than for the lamellae-bearing “biased” EDI olivine. Post-SIMS characterization of 

two PLI samples by SEM revealed that exsolution lamellae of Fe-Ti oxides are generally 

absent (Fig.4.3B and 4.3D). This implies that the PLI olivine precipitated from an Fe-Ti 

oxide undersaturated magma, very likely at lower prevalent ƒO2 than the EDI. In addition, 
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conditions in the PLI favored a higher V
3+

/V
4+

 ratio and thus a preferred partitioning of V 

into olivine (e.g., Canil and Fedortchouk, 2001).  

As is the case for the VBI, the assimilation of Tasiuyak paragneiss, which is both sulfide- 

and graphite-bearing, by PLI magma(s), might have acted as a significant reducing agent 

(Brenan and Li, 2000; Brenan and Caciagli, 2000). In comparison to the EDI, however, 

the PLI was deprived of subsequent fresh surges of primitive, more oxidized (and 

potentially sulfur saturated) mafic melts, and hence the oxygen fugacity probably 

remained too low for the precipitation of primary Fe-Ti oxides – instead producing only 

minor late-stage magnetite. The lower average Cr contents of PLI olivine also support this 

hypothesis. Partitioning of Cr into olivine is relatively unaffected by ƒO2 variations 

(Papike et al., 2005 and references therein), and the Cr distribution shows no correlation 

with V and is hence also unaffected by oxide fractionation. The uniformly low Cr 

concentration must therefore either reflect an earlier Cr depletion of the primary magma 

of the PLI (e.g., higher differentiation state) or retention of Cr in the mantle source, as 

opposed to the more primitive Cr-rich composition of the VBI magma(s). 

In summary, the presence of abundant liquidus Fe-Ti oxides associated with Ni-depleted 

olivine in a laterally correlatable NT succession in the EDI may be a petrological record 

of an early silicate:sulfide melt interaction in this batch of mafic magma, which was 

conducive to high R-factor metal tenor upgrading of an existing sulfide fraction – a 

process considered extremely beneficial to the formation of an economic Ni-Cu sulfide 

deposit (e.g., Naldrett, 1997, 1999; Maier et al., 2001). Thus far, a similar record has not 

been detected within the PLI (Li et al., 2001). 
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4.6.2.2. Link between Contamination and Economic Sulfide Ore Formation 

The requirement for a primitive basaltic melt to incorporate external sulfide or silica-rich 

crustal material in order to achieve timely sulfide saturation is commonly regarded as a 

necessity in the formation of economic Ni-Cu sulfide deposits (e.g., Naldrett, 1997, 1999; 

Arndt et al., 2005; Keays and Lightfoot, 2010; Ripley and Li, 2013). The VBI is no 

exception, and several studies have proposed that the Tasiuyak paragneiss is the likely 

source of external sulfur that promoted sulfide saturation in VBI magmas (e.g., Lightfoot 

and Naldrett, 1999; Ripley et al., 2002). However, contributions from the surrounding 

orthogneiss lithologies (Nain and Enderbitic Gneisses) are also evident (e.g., Lightfoot 

and Naldrett, 1999; Lambert et al., 2000; Amelin et al., 2000) and display an apparently 

increasing role from the western part (RBZ) towards the EDI (Ripley et al., 2002 and 

references therein), which is mainly emplaced in enderbitic orthogneiss. A clear 

discrimination between the multitude of potential contaminants based solely on bulk rock 

chemistry (isotope and elemental) is still highly ambiguous, and very likely impossible 

due to the inherent mixing and mechanical mingling of all components in the VBI. 

Although a deconvolution of the major contaminants at the VBI is hence problematic 

(Lambert et al., 2000; Ripley et al., 2002; Chapter 3), the contaminated basal sequence 

(BG) in the PLI is probably unbiased by these multiple mixing signatures, and should 

reflect exclusively the input of its Tasiuyak paragneiss host (e.g., Kerr, 1999; 2003). The 

fact that economically significant sulfide mineralization is currently only recognized in 

the VBI may be used as starting point to examine the link between contamination, sulfide 

mineralization and olivine composition. 
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Stable isotope (
34

S, 
18

O; Ripley et al., 2002 and references therein) and radiogenic 

isotope (Re-Os, Rb-Sr, Sm-Nd, U-Th-Pb; Amelin et al., 1999, 2000; Lambert et al., 2000; 

Li et al., 2000) analyses (of both sulfide minerals and whole-rock) have previously been 

used to characterize the degree of crustal contamination in the VBI. Quantifications for 

the VBI range from 5 to 30% assimilation of Tasiuyak paragneiss (Ripley et al., 1999; 

Amelin et al., 2000) to ~16% of Nain orthogneiss (Lambert et al., 2000). Petrographic 

evidence at VBI and PLI – such as the presence of the highly reacted paragneissic 

inclusions in the BBS, VTT, and BG respectively – also indicates the significant 

contribution of crustal material and the accompanying modifications to the bulk 

chemistry of the melt (e.g., Li and Naldrett, 2000; Li et al., 2001). Based on olivine 

analyses from the EDI of the VBI, it was demonstrated in Chapter 3 that the Mn and Zn 

concentrations of olivine records assimilation-induced changes in the bulk composition of 

the melt. Olivine from several BBS and LTT samples related to the major massive sulfide 

mineralized zone at the base of the EDI contains very high concentrations of Mn and Zn 

(VB266 in Fig.4.6E–F), which are decoupled from their Fo contents and can therefore not 

result solely from fractional crystallization (Chapter 3). Instead, the progressive reaction 

of entrained paragneissic inclusions from the RBZ during transit through the magma 

conduit(s) into the EDI has locally enriched the melt in incompatible elements, especially 

Mn and Zn (Fig.4.6E–F – model line AFC-4; Chapter 3). Most of the enriched olivine is 

also chemically zoned with regard to Mn, Ni, Co when in direct contact with, or enclosed 

by, sulfides (Chapter 3). This disequilibrium zoning indicates a solid-liquid diffusive 

element exchange between olivine and surrounding sulfide melt, and diffusion profiles 
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show similar trends to those reported from volcanic xenocrysts (Costa and Dungan, 

2005), with a slight center to rim decrease in Ni-Co and an increase in Mn (~2,700 ppm) 

and partially Zn (~60 ppm) (Chapter 3). In addition, the composition of the recrystallizing 

hercynite, a component of the xenolith-replacement mineralogy of the original 

paragneissic mineral assemblage, also changes from the RBZ towards the EDI, 

presumably as response to an advancing degree of xenolith-melt reaction (Li and 

Naldrett, 1999; Li and Naldrett, 2000). The hercynite composition displays an increase in 

FeO at the expense of MgO (transition from spinel-dominated to hercynite-dominated 

composition), and simultaneous increases in Mn (from ~1,000 to ~1,800 ppm) and Zn 

(from ~2,000 to ~9,000 ppm) (Li and Naldrett, 2000). This observation supports the 

hypothesis of an incremental addition of Mn and Zn to the contaminated melt 

environment, whereas the contrasting element enrichment vectors in hercynite (high Zn) 

and olivine (high Mn) result from their specific mineral/melt partition coefficients.  

It was demonstrated earlier (Section 4.5.2.) that even though a general increase in Fo, Mn 

and Zn exists in olivine from the southern and central part of the EDI, it is far less 

pronounced than in olivine from the heavily mineralized BBS (e.g., VB266, VB552; 

Chapter 3). Olivine from this study displays the highest Mn and Zn contents in the DDH 

that are closest to the massive sulfide mineralized horizon in the EDI (VB248 and 

VB513; Fig.4.1A, Fig.4.4B–D and 4.5C–F). Although the Zn contents of two samples 

(VB513-19 and VB248-15) are in the range of potentially contaminated olivine 

(Fig.4.6F), they are decoupled from the corresponding Mn concentrations (Fig.4.6E and 

4.7D). In the VB266 olivine, the mutually high Mn and Zn contents are the prime 
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diagnostic signature for contamination and it was speculated in Chapter 3 that this reflects 

the joint incorporation of Tasiuyak paragneiss (primarily Zn) and enderbitic orthogneiss 

(primarily Mn) (AFC-4 in Fig.4.6E–F and Fig.4.7D). The apparent lack of correlation 

displayed in the more distal (from the mineralized sequence in the EDI) samples from this 

study supports this speculation, since the chemical interaction with the Enderbite Gneiss 

is probably limited to the immediate footwall contact area in the EDI and is generally less 

extensive due to thermal constraints, whereas Tasiuyak paragneiss fragments are 

entrained and dynamically mixed with higher relative volumes of mafic melt during 

transport. Even this signature, however, is restricted to a halo directly above (~150m; 

Chapter 3) and further south (~180m; Fig.4.5F) of the massive and disseminated 

mineralization in the EDI suggesting that contamination is localized at this 100m scale.  

Although the Mn content in most non-BBS olivine from this study is primarily explained 

by regular FC (Fig.4.6E – model line FC-1), some very high Zn values still require an 

external input (Fig.4.6F – model line AFC-4). In this regard, olivine compositions from 

the PLI are very informative; the Zn concentrations in olivine from BG samples (one 

criteria for the original subdivision between UG and BG was the presence of Tasiuyak 

paragneiss xenoliths in the BG) are on average higher than those from the UG at similar 

or even lower Fo contents (Fig.4.6F – purple circles). These elevated Zn concentrations in 

BG olivine might then be derived from the exclusive assimilation of Tasiuyak paragneiss, 

as the single major contaminant in the PLI, whereas the Mn contents simply reflect 

regular FC (Fig.4.6E – model line FC-1). The lower overall Zn content compared to 

VB266 olivine on the other hand is likely caused by the lower degree of integrated 
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reaction between xenoliths and mafic melt at the PLI (as also evidenced by MgO-rich 

hercynite composition, presence of corundum in residual assemblage etc.; Li et al., 2001).  

The assimilation of Tasiuyak paragneiss likely resulted in sulfide saturation event(s), 

which triggered the fractionation of sulfide liquid(s), while promoting contemporaneous 

trace element transfer into the mafic melt at both the VBI and PLI. These processes are 

recorded in associated olivine by their overall lower Ni contents, uncharacteristically high 

Mn and Zn concentrations, and the apparent chemical zonation of BBS olivine in contact 

with sulfides (Chapter 3). In the EDI, this geochemical signature is detectable vertically 

and laterally in olivine from BBS associated with massive sulfide mineralization, the 

lower disseminated sulfide-bearing VTT, and for some distance beyond these zones. 

Approaching this major sulfide zone in the EDI from the unmineralized troctolitic parts of 

the magma chamber yields an olivine geochemical vector of increasingly pronounced Mn 

and Zn enrichment (Fig.4.4 and 4.5) that culminates in the presumably maximum values 

in the BBS of VB266 and other DDH that transect the basal massive sulfide body 

(Chapter 3). Even though the BG of the PLI is also characterized by reacted Tasiuyak 

paragneiss inclusions, significant massive sulfide occurrences remain to be discovered. 

Amongst other factors (e.g., low R-factor; Li et al., 2001; higher differentiation grade of 

the mafic melt; Fig.4.8B), the lower degree of integrated xenolith-melt interaction has 

likely not permitted the adequate incorporation of crustal sulfides, and has concomitantly 

retarded the enrichment of Mn (absence of a second contaminant), and Zn, in olivine. 

Based on our data, the observed olivine chemistry at PLI therefore documents a less 
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favorable environment for economic sulfide mineralization, at least in the portions of the 

intrusive complex explored to date. 

In summary, the assimilation of the sulfide-rich Tasiuyak paragneiss recorded in BBS, 

VTT and BG alone is not diagnostic for the presence of massive sulfide mineralization. 

However, if a favorable degree of interaction between paragneiss and mafic melt has 

occurred, the probability of significant ore mineralization increases dramatically as 

evident at the EDI. The trace element composition of olivine records this process in both 

the EDI and PLI. However, only the chemical signature recognized in BBS and other ore-

proximal olivine at VBI may exactly reflect the most favorable ore-forming conditions in 

evolved mafic magmatic systems.  

 

4.6.3. Trace Element Distribution in Olivine as a Ni-Exploration Tool 

4.6.3.1. Lateral Variations in Olivine Chemistry in the EDI 

The economic massive sulfide mineralization within the EDI is intimately associated with 

the BBS, whereas the lower VTT contains mainly disseminated sulfides (e.g., Lightfoot 

and Naldrett, 1999; Li and Naldrett, 1999). Vectoring laterally towards the massive 

sulfide mineralization based on the olivine chemistry from DDH that terminate in the 

barren to weakly mineralized VTT in the EDI would thus be a major asset. The Ni and Fo 

composition of EDI olivine is geochemically oblivious to the relationship between host 

rock and sulfide mineralization, unless augmented with values for multiple elements (V, 

Cr, Mn, Co, Fe, Ni, and Zn). It was demonstrated in Chapter 3 that a characteristic olivine 
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composition records the genetic link between crystallization of olivine, sulfide 

fractionation caused by contamination, and the possible subsolidus equilibration of 

olivine with sulfide liquid of economically favorable composition. This specific 

composition was then linked to the relative vertical proximity to massive sulfide (RVP 

factor – 1.0 directly associated with massive sulfide, 0.0 completely remote from major 

sulfide mineralization, Chapter 3, Fig.3.9). For DDH that intersected massive sulfide 

mineralization, the relative vertical proximity factor (RVP) was calculated as the depth of 

the sample divided by the depth of the first occurrence of mineralization in the measured 

DDH multiplied by the relative sulfide content (e.g., VB552-13.1 VTT, 792m, first 

occurrence of massive sulfide at 911m with 95% sulfide – from unpublished Vale log 

files; RVP=792/(911*0.95)=0.83; Chapter 3, Table 3.1). A multiple regression based on 

these data was then used here to calculate a predicted relative proximity for the samples 

from this study (Fig.4.9 and 4.10). The multiple regression has a R
2
 of 0.78 plus 

individual uncertainties related to the regression coefficients (Appendix 6.4.) and should 

thus be only applied in conjunction with petrographic and stratigraphic observations – to 

exclude obviously non-prospective olivine that yield apparently high relative proximity 

factors (e.g., metasomatized olivine, non-prospective VTT olivine; Fig.4.9). In general, 

the compositional variations in olivine are stratigraphically sensitive and detectable in 

DDH that terminate in VTT (VB332; Fig.4.10E), and in BBS intervals not associated 

with massive sulfides (VB248 and VB513; Fig.4.9, Fig.4.10B and 4.10F). The lateral 

proximity to massive sulfide mineralization relative to the occurrence in VB266 is 

predicted with high probability at up to 180m (Fig. 4.10). As shown in Figures 4.9 and 
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4.10, results from the multiple regression analysis provide a readily calculable, potential 

olivine geochemical vector towards mineralized parts in the EDI based on host rock 

(Fig.4.9) and stratigraphic depth (Fig.4.10). This analytical and geochemical approach 

could thus prove valuable in further exploration activities at the VBI, especially in 

prospective areas in the EDI and comparable zones elsewhere in the magma conduit 

system (e.g., RBZ). 

 

Fig. 4.9: Mn and Zn variations in olivine with the predicted relative proximity (RVP) to massive sulfide 

mineralization ordered in the EDI. Bubble sizes correspond to the Mn content (ppm), which exceeds the 

2,000 ppm threshold commonly at predicted RVP values greater than 0.5. Values for the predicted RVP 

close to 1 imply an immediate proximity to massive sulfide mineralization, whereas olivine with values 

below 0.4 is not associated with major mineralization. The predicted RVP was calculated based on the 

results from the multiple regression statistics with data from Chapter 3 (Appendix 6.4.). Data are given in 

Table 4.1. See text for discussion. 
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Fig. 4.10: Lateral variations of the predicted relative proximity to massive sulfide with depth. With few 

exceptions, the lateral proximity to the massive sulfides at the base of the EDI (VB266 as reference) is 

reflected in the predicted relative proximity values (potential) of VTT and BBS lithologies not directly 

associated with massive sulfides (predicted RVP calculated based on regression equation in Appendix 6.4.). 

 

4.6.3.2. Olivine as a Fertility Indicator for Mafic Intrusions on a Regional Scale 

Utilizing the olivine data from Chapter 3, and from this study, enables a comprehensive 

compositional comparison of olivine populations from the major lithologies at the VBI 
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with those from the PLI (Fig.4.11 to 4.13). The kernel density estimates (KDE; see 

Appendix 6.5.) in Figure 4.11 and 4.12 display the distribution of Ni, Co, Mn and Zn in 

olivine from major lithologies in the VBI and the PLI on the basis of frequency (as 

reflected by the density function) of spot analyses versus elemental composition. The data 

in these Figures show the progression from homogeneous olivine in the NT (single 

pronounced peak – except for the bimodality in Ni contents when Fe-Ti oxide-rich and 

Ni-rich (108m, VB266, Chapter 3) horizons are considered) to the increasingly more 

compositionally heterogeneous olivine in VTT and BBS (multiple peaks). This 

progression reflects their common co-genesis and petrological correlation through 

differentiation, contamination and sulfide saturation (Fig.4.6 and 4.7; FC–AFC model 

lines). The UMF and OG on the other hand, contain chemically distinct, yet bimodal, 

olivine populations, indicative of a discrete (earlier) petrogenesis, mostly unrelated to the 

(later) troctolitic lithologies of the VBI – as was proposed by Li and Naldrett (1999) and 

others (Fig.4.12). 

Olivine from the PLI is compositionally very similar to OG olivine (Fig.4.12), except that 

the Zn concentration is higher which, as is discussed above, likely relates to dominantly 

Tasiuyak paragneiss contamination, an input that appears absent in the measured OG 

olivine from VBI. This apparent chemical resemblance is informative from an exploration 

standpoint and supports the observation of Li et al. (2001), that the sampled portion of the 

PLI may be deficient in economic sulfide concentrations since the host rocks essentially 

fractionated from a single pulse of more evolved mafic magma that experienced low R-

factor sulfide saturation – as opposed to the multiple (chalcophile-undepleted) magma 
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surges (high R-factor) that generated the EDI and other ore zones in the VBI and, most 

importantly, upgraded the metal-tenor of the already existing sulfides (e.g., Lightfoot and 

Naldrett, 1999; Lightfoot et al., 2012).  

In order to better visualize the primary compositional dependences of the diverse olivine 

populations from the economic VBI and the sub-economic PLI, and to further distinguish 

them on a regional scale, a principal component analysis (PCA) was performed using the 

PAST software (Hammer et al., 2001). The results of the data reduction are depicted in 

the biplot in Figure 4.13 and demonstrate that ~60% of the variation in our multivariate 

dataset can be explained by the first two principal components, or axes of maximal 

variance, (PC 1 and PC 2) (Fig.4.13 inset). As expected, the olivine from the VBI and PLI 

occupy distinct areas in the biplot, whereas the discrete vectors for individual elements 

further characterize specific olivine populations (Fig.4.13). Olivine from the VBI is 

characterized by a pronounced bimodality of primitive and evolved compositions. The 

more primitive troctolitic olivine are best described by the distribution of MgO, Ni, Cr 

and Co, whereas the more evolved olivine from the VTT, the OG, and especially the 

BBS, can be described largely by the distribution of FeO, Zn and Mn. The PLI olivine is 

described mainly by Y, Sc and Ca, without the obvious signs of bimodality (except for 

olivine in the melagabbro from the PLI, Fig.4.12I–L). Even though the PCA itself has no 

definitive significance, with the principal components representing only hypothetical 

variables, the results clearly discriminate the prospective olivine populations in the VBI 

from the non-prospective olivine in the PLI. 
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Fig. 4.11: Kernel Density Estimates of lithology-specific olivine populations from the VBI (NT, VTT, and BBS). The optimal bandwith (h) was 

automatically calculated with the AMC KDE MS-Excel® Add-in (see Appendix 6.5.). A), E), I) show the Ni distribution, B), F), J) the Co concentrations, 

C), G), K) the Mn contents, and D), H), L) the Zn concentrations. Data are combined from this study and Chapter 3. See text for further discussion. 
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Fig. 4.12: Kernel Density Estimates (see Appendix 6.5.) of lithology-specific olivine populations from the VBI (UMF, OG) and the unseparated data from 

the PLI. A), E), I) show the Ni distribution, B), F), J) the Co concentrations, C), G), K) the Mn contents, and D), H), L) the Zn concentrations. Data are 

combined from this study and Chapter 3. See text for further discussion. 
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Fig. 4.13: Depicted are the results from the principal components analysis (PCA). The PAST software from Hammer et al. (2001) was used for the data 

reduction. The biplot of scores and loadings on PC 1 and PC 2 contains all olivine data (this study and Chapter 3). Insets show the scree plot with the 

relative importance of the individual principal components, and the loadings for PC 1 and PC 2. See text for further discussion. 
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Further expanding the olivine dataset to other developed Ni-Cu sulfide deposits and 

prospects of similar genesis, the compositional information can be precisely adjusted for 

specific ore-forming environments (chamber versus conduit; dynamic accumulation 

versus gravitational settling etc.), and thus elevate the multi-trace element distribution in 

olivine to a more universally applicable mineral exploration tool (Fig.4.14). In 

conjunction with other commonly applied geochemical exploration methods, for example 

in-situ stable/radiogenic isotope analyses and whole-rock geochemistry, the multi-trace 

element method could then be deployed as a valuable fertility indicator and vectoring tool 

in greenfield Ni-exploration on a regional scale (Fig.4.14). 

 

Fig. 4.14: Generalized geochemical identification criteria for sulfide mineralization based on the multi-trace 

element distribution in olivine from the VBI and PLI. Check marks and cross marks indicate that criteria are 

either satisfied or not satisfied. 
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4.7. Summary and Conclusions 

1. Correlatable stratigraphic horizons containing olivine populations of discrete 

composition are found in the NT (Ni-rich and Ni-depleted), VTT (higher Mn and 

Zn), OG (high Fe and low Ni), and BBS (high Fe, very high Mn and Zn) lithologies 

of the EDI. The chemistry of these olivine grains varies closely with the specific host 

lithology, and clearly reflects FC (NT, VTT, OG), AFC (BBS) processes and 

interaction with a sulfide fraction (Ni-depleted in NT). 

 

2. Strongly Ni-depleted olivine occurs exclusively in the NT, in a laterally correlatable 

horizon found so far in 3 DDH. This olivine is mostly associated with Fe-Ti oxide-

rich intervals, where ilmenite (±titanomagnetite) is an early crystallizing liquidus 

phase. The Ni depletion of the primary silicate melt (and hence the potential 

upgrading of a sulfide melt), and the precipitation of Fe-Ti oxides may be intimately 

related to interaction with a sulfide fraction, and the accompanying increase in melt 

ƒO2.  

 

3. There are at least two distinct populations of UMF present in the EDI, which contain 

compositionally distinct, bimodal olivine populations (primitive versus evolved). The 

chemistry of the more evolved olivine found in UMF entrained in BBS may be the 

result of a solid-liquid diffusive reequilibration during transit in the contaminated 

melt that eventually crystallized to form the BBS. The UMF in the NT on the other 
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hand, comprise very primitive olivine that likely represent disrupted, primitive, early 

magmatic cumulates. 

 

4. BBS olivine (and olivine from the overlying VTT) with mutually high Mn-Zn contents 

probably precipitated from an Mn-Zn-enriched melt, contaminated by enderbitic 

orthogneiss and Tasiuyak paragneiss (FC-AFC modeling). In contrast, olivine from 

the PLI has high Zn concentrations only, which may be a result of the largely 

exclusive assimilation of Tasiuyak paragneiss as the primary contaminant in the 

region. 

 

5. PLI olivine is compositionally similar to OG olivine from the EDI and very likely share 

a similar petrogenesis. The absence of economic sulfide mineralization in the 

portions of the PLI explored to date is best explained by fractionation from a single 

magma pulse (closed system) – rather than from the multiple pulses apparent in the 

EDI (open system) – which experienced a sulfide saturation event, likely through the 

addition of limited Tasiuyak paragneiss material (as recorded by the elevated Zn in 

PLI olivine). However, due to a low degree of xenolith-melt reaction and the paucity 

of further episodic intrusions of undepleted mafic magma, the fractionated sulfides 

were not upgraded in metal tenor (low R-factor) and remained sub-economic. 

 

6. The apparent Fe-Mn-Zn enrichment of olivine from the lower VTT and the BBS 

increases from the barren parts in the south of the EDI towards the mineralized basal 
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succession in the northern part, and hence constitutes a potential first-order 

geochemical vector towards massive sulfide mineralization. In conjunction with 

petrographic and stratigraphic observation, a multiple regression based on the 

distribution of V-Cr-Mn-Fe-Co-Ni-Zn in EDI olivine can effectively predict the 

lateral proximity of lower VTT and BBS olivine (VB513, VB248 and VB332) to 

massive sulfides in the EDI.  

 

7. Olivine from the VBI and the PLI is compositionally distinct. Based on the multivariate 

olivine data (PCA loadings) presented here and in Chapter 3, the bimodal and 

mutually Mn-Zn-rich composition of VBI olivine records a petrogenetic link to 

massive sulfide mineralization in an evolved mafic magma system. In the PLI, 

olivine of that prospective composition has not yet been observed, even though the 

lithology, texture and petrographic characteristics of the intrusive rocks are generally 

similar to those of the VBI. Therefore, trace element distribution in olivine can be a 

fertility indicator for ore mineralization in evolved mafic intrusions on a regional 

scale and after defining PCA vectors for other mafic intrusions, may provide a 

valuable tool for Ni-exploration.  

 

8. The olivine data demonstrate that the element distribution of Cr, Mn, Fe, Co, Ni, and 

Zn is highly sensitive to a) assimilation and contamination through country rock and 

b) sulfide segregation and equilibration. Therefore, this selection comprises the key 

elements for the exploration-relevant trace elements-in-olivine routine. 
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CHAPTER 5  - Summary and Conclusions 

5.1. Scientific Objectives 

The major aims were to: 

1) Develop a SIMS analytical routine that allows the accurate determination of several 

major and trace elements in the forsterite-fayalite solid solution. 

2) Identify systematic olivine trace element variations in the Voisey’s Bay Intrusion 

(VBI) that can be related to key ore-forming processes and thus enable a more 

precise geochemical characterization of the VBI and the existing geological model. 

3) Determine whether trace element-in-olivine analyses can be used to discriminate 

between barren and mineralized environments and provide a potential geochemical 

vector towards massive sulfide concentrations in the VBI and other evolved mafic 

intrusions. 

 

5.2. Key Results  

5.2.1. Analytical Set-up  

In the course of this study, a SIMS analytical approach for the determination of multiple 

trace elements and the forsterite content of compositionally variable olivine was 

developed: 
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1) A set of forsterite-fayalite (Fo100 to Fo6) reference materials was geochemically 

characterized and used for SIMS analyses to quantify major (MgO, SiO, FeO) and 

trace elements (Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Sr, Y, Zr). 

2) Key isobaric interferences (mostly Mg-, Si-, Fe-species on the transition elements Cr, 

Mn, Co, Ni, Cu, and Zn) were suppressed by applying energy filtering, and SIMS 

matrix effects (most vigorous for transition elements with geochemical similarity to 

Mg and Fe, such as Mn, Co, Ni, Cu, and Zn) were overcome by standardization with 

a set of 5 olivine reference materials. 

3) In the sequential empirical approach utilized in this study, the Fo content, the major 

element concentrations (wt.%) and the concentrations (ppm) of Ca, Cr, Mn, Co, Ni, 

and Zn were calculated based on the analyses of olivine reference materials. Low 

abundance elements (Sc, Ti, V, Cu, Sr, Y, Zr) were quantified conventionally using 

NIST (610 and 612) silicate glasses and San Carlos mantle olivine. 

4) The applicability and accuracy of the SIMS analytical and empirical approach for 

olivine analysis (primarily the major and minor element content) was further 

investigated with an inter-technique (SIMS and EPMA) comparison using highly 

homogeneous mantle olivine (Fo90) and more compositionally variable volcanic 

olivine (Fo74–89). The SIMS results were comparable (empirically and statistically) 

with those determined by EPMA. 
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5.2.2. Olivine Major and Trace Element Composition  

Compositional characteristics of olivine from a series of DDH intersecting the olivine-

gabbroic to troctolitic lithologies and the major mineralization at the base of the EDI were 

analyzed with SIMS: 

5) Although petrographically similar, olivine from the five major lithologies in the EDI 

(OG, NT, VTT, BBS, UMF) is compositionally variable on a vertical scale. 

Especially the Fo content (most primitive in NT olivine; ~Fo82 – most evolved in 

BBS olivine; ~Fo62), as well as the Mn, Co, Ni, and Zn concentrations vary 

systematically with depth (with some exceptions) from the most primitive 

composition in the NT (~2,500 ppm Mn, ~250 ppm Co, ~2,500 ppm Ni, ~100 ppm 

Zn) to the most evolved composition in the BBS (~12,155 ppm Mn, ~200 ppm Co, 

~850 ppm Ni, ~680 ppm Zn). 

6) Olivine from the OG differs compositionally from NT, VTT, and BBS olivine, and is 

generally rich in Mn and Zn, variably depleted in Ni (Ni-poor group with less than 

550 ppm and Ni-rich group with more than 900 ppm) and has a lower Fo content 

(~Fo66). 

7) Exceptionally Ni-rich (up to 2,600 ppm) and Ni-poor (~80 ppm) olivine intervals 

occur in the upper NT at around 108m and 67m, respectively. 

8) Primitive olivine, with Zn contents ~100 ppm, ~2,000 ppm Ni, and ~Fo80, is found 

in an ultramafic interval in the NT at the top of the EDI (VB544). 
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9) The Fo content of EDI olivine correlates with the sulfide content and the amount of 

incorporated Tasiuyak paragneiss material in the various lithologies 

(NT>VTT>OG>BBS). 

10) Olivine in the BBS associated with massive sulfide has a unique geochemical 

signature and is strongly enriched in Mn (~12,000 ppm vs. 2,500 ppm in NT) and Zn 

(~650 ppm vs. 250 ppm in NT) compared to NT and upper VTT olivine. 

11) BBS olivine (VB266-43) enclosed by sulfides displays a variable trace element 

zonation (Mn>Ni>Co). Mn (±Zn) shows a coupled increase, whereas Co and Ni 

decrease towards the olivine-sulfide contact, and vice versa towards the interior of 

the grain. 

12) At least two different (~Fo80 vs. ~Fo60) UMF olivine populations (UMF interval in 

NT and UMF in BBS) are present in the EDI. 

 

In addition, olivine from several DDH spanning two approximately N-S trending 

transects through the EDI was analyzed to further detect compositional variations on a 

lateral scale. The EDI olivine data were also compared to olivine data from the barren to 

sub-economic PLI: 

13) The observed vertical variations (increase in Fe, Mn, Zn) in olivine composition with 

proximity to the BBS (and associated massive sulfide accumulation) at the base of 

the EDI are also detectable on a lateral scale when approaching the BBS (with the 

basal ore-zone) from the south. 
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14) Both lateral transects include, stratigraphically correlative intervals of variable 

thickness of NT with Ni-(Co)-poor (less than 110 ppm Ni; less than 200 ppm Co) 

olivine that coincides with higher amounts of Fe-Ti oxides (up to 45 vol.%). 

15) The additional UMF samples from the EDI and a melagabbro sample from the PLI 

contain olivine that spans a bimodal compositional array from enriched compositions 

(UMF, BBS and to a lesser extend the PLI melagabbro) to more primitive 

compositions (NT, UMF – VB544-1). 

16) Enrichments in Mn-Zn are apparent in olivine from the lower part of the VTT and the 

BBS, and are most pronounced in vicinity to major sulfide mineralization (e.g., base 

of VB513). 

17) Kernel density estimates (KDE) of the VBI olivine populations demonstrate a 

systematic differentiation trend (enrichment – depletion) for several elements (e.g., 

Mn, Co, Ni, Zn) in olivine from the most primitive NT, over the VTT, to the most 

evolved BBS compositions. 

18) PLI olivine are in general texturally and compositionally similar to OG olivine 

populations from the VBI, featuring the same average evolved geochemical signature 

(low Fo content, low Ni, high Mn and Zn), and also the same compositional disparity 

between evolved and reasonably primitive olivine (Ni variability ~100 to ~1,500 

ppm). 

19) The observed pronounced bimodality of the VBI olivine population (NT, VTT, BBS) 

is absent at the PLI, where the most primitive olivine (melagabbro from South 

Intrusion) has a composition similar to the most primitive OG olivine from the EDI. 
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20) A Principal Components Analysis (PCA) revealed that the variation in PLI olivine is 

best described by the distribution of the incompatible elements Y, Sc, and Ca, as 

opposed to the bimodal (primitive and evolved) olivine population from the VBI, 

which is either controlled by the distribution of MgO, Ni, Cr, and Co (primitive – 

UMF, NT, and upper VTT), or by the concentrations of FeO, Zn and Mn (evolved – 

lower VTT, BBS). 

 

5.3. Major Conclusions 

In concurrence with the tripartite research objective of this thesis, the individual 

conclusions from Chapters 2 to 4 are condensed at this point and only the key conclusions 

are reiterated as follows: 

1) Major and trace elements in olivine can be routinely and accurately measured with 

SIMS, if energy filtering and a set of compositionally versatile, well-characterized 

olivine reference materials is utilized to correct isobaric interferences and the 

occasionally strong matrix effects on some transition metals. 

2) In this analytical and empirical approach, the high spatial resolution (~40 m) and 

high sensitivity (ppb-level detection limit) of the SIMS technique can be fully 

utilized with an accuracy of ~9% and precision of ~8% for Mg, Fe, Si, Mn, and Ni 

concentrations, comparable to or better than EPMA for the same elements measured 

at wt.% levels. 

3) An analytical protocol (“geochemical exploration package”) could be specifically 

designed to allow the routine determination of the major elements (primarily Fo 
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content) and the petrology- and exploration-relevant trace elements (±Ca, ±Ti, ±Sc, 

±V, Cr, Mn, Co, Ni, Cu, Zn, and ±Y; ± optional) in olivine in one analytical step in 

less than 10 to 12 min. 

4) Olivine from the EDI in the VBI crystallized either from sulfide saturated (Ni-

depleted) mafic magma batches (e.g., Ni-poor olivine interval in NT), Ni-undepleted 

primitive mafic melts (Ni-rich olivine interval in NT), variable Ni-depleted and 

differentiated mafic melts (VTT) and variable sulfide saturated and country rock 

contaminated mafic melts (BBS) in open-system processes. 

5) The apparent Ni-(Co)-depletion of olivine and the presence of cumulus Fe-Ti oxides 

in specific NT intervals possibly both result from either a pre-crystallization sulfide 

saturation event or from the interaction of the mafic melt with an existing sulfide 

fraction, which depleted the melt in Ni and Co and increased the melt ƒO2. 

6) The “exceptional” composition of (most) OG olivine indicates precipitation from an 

earlier episode of mafic magmatism, pre-dating the later troctolitic pulses. The OG 

attained sulfide saturation through a combination of country rock contamination and 

fractional crystallization (lower Fo content, elevated Mn and Zn concentrations) 

before or during olivine crystallization (variable Ni depletion). 

7) UMF containing primitive olivine compositions likely represent disrupted, early 

magmatic cumulates, whereas the more evolved olivine found in UMF entrained in 

BBS may have been subjected to a solid-liquid diffusive reequilibration during 

(dynamic) transit in the contaminated melt that eventually crystallized to form the 

BBS. 
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8) The EDI olivine data demonstrate that the trace element distribution of Cr, Mn, Co, 

Ni, and Zn is highly sensitive to a) assimilation and contamination through country 

rock and b) sulfide segregation and equilibration. Therefore, this selection comprises 

the key elements for the exploration-relevant trace elements-in-olivine routine. 

9) BBS olivine from the EDI likely gained the Mn-Zn-rich signature through 

assimilation of both Tasiuyak paragneiss and enderbitic orthogneiss, whereas the 

only-Zn-rich olivine from the PLI might be the result of an exclusive assimilation of 

Tasiuyak paragneiss as the main Zn reservoir. 

10) In the petrogenetic model for the EDI, a tentative order of crystallization is 

established on the basis of the olivine data, from early to late; UMF>OG>NT-

VTT>BBS, with the key ore-forming events likely being co-eval with the NT-

VTT>BBS interval. 

11) The EDI olivine trace element data display clear geochemical trends and relate to 

some of the key ore-forming processes in a magmatic Ni-Cu-Co sulfide system 

(Fig.5.1), namely – A) primitiveness of mafic melt, B) country rock contamination, 

C) sulfide saturation and segregation (multiple events – open-system), D) mafic 

magmatic episodicity (high R-factor), E) dynamic transport through magma 

conduit(s), and F) the accumulation and concentration in a contaminated 

environment. 
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Fig. 5.1: Schematic illustration of how the key olivine compositions from the major lithologies (from UMF 

to OG) at the VBI reflect key ore-forming processes in the magmatic system. This conceptual figure 
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integrates the conclusions from the VBI olivine data. For example, following the Mn-Zn-rich (+) olivine 

from the VTT, their composition likely reflects crystallization from a silicate melt that experienced 

assimilation and contamination early in the differentiation history, which led to sulfide saturation and 

segregation and the syn-precipitation of olivine with lower Ni and higher Mn and Zn contents than those 

from average VTT, which likely crystallized earlier from a less Mn-Zn enriched and Ni depleted melt. From 

left to right (UMF in NT to Mn-Zn-rich BBS), the degree of silicate melt differentiation and country rock 

contamination increases. Capital letters (A to F) indicate stages in the igneous system where key ore-

forming events occurred: A) “primitive” parental melt (A+ represents more fractionated parental melt), B) 

“sulfidic” country rock contamination, C) sulfide saturation and segregation (multiple events at various 

stages), D) mafic magmatic episodicity (fresh pulses of mafic magma), E) dynamic transport through 

magma conduit(s), and F) the accumulation and concentration in a contaminated environment (partly 

resulting in trace element zonation of BBS olivine). 

 

12) Olivine from the VBI (primarily EDI) is compositionally distinct and the multivariate 

dataset (PCA vectoring) allows the geochemical separation of prospective olivine in 

proximity to massive sulfides at the base of the EDI from non-prospective olivine in 

the barren parts of the EDI. 

13) The composition of the more evolved PLI olivine is in accord with their derivation 

through fractional crystallization from a single pulse of silicate melt with a higher 

degree of differentiation (closed-system) that experienced late sulfide segregation. 

14) The distinct compositional diversity of VBI and PLI olivine can be used to 

discriminate the prospective olivine in the VBI from the non-prospective olivine in 

the PLI and thus potentially identify fertile mafic intrusions on a regional scale. 

15) For application in other mafic intrusion it might be necessary to adjust the multi-trace 

element selection to the intrusion-specific relative proximity values and to establish 

an intrusion-specific multivariate (PCA vector) baseline. 
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5.4. Advantages and Broader Impact  

As opposed to the traditional Fo- and Ni-in-olivine analyses, which are only useful for the 

detection of chalcophile element depletion resulting from sulfide saturation (just one of 

various key ore-forming processes), the trace element-in-olivine approach on the other 

hand, adds several important petrological dimensions. The distribution of numerous trace 

elements that are sensitive to melt differentiation through fractional crystallization of 

other phases (plagioclase, pyroxenes, oxides etc.), sulfide saturation event(s), melt 

contamination (through assimilation of crustal rock), and a dynamic interaction with 

sulfide/silicate melt (e.g., in conduit environment), promotes the identification of these 

processes and thus advances the geological and petrogenetic model of the VBI and PLI.  

This approach utilizes the analytical advantages of the SIMS (with respect to EPMA), 

while it also drastically increases the geochemical resolution. Processes identified in-situ 

on the micro-scale, for instance, trace element zonation of olivine, are translated and 

interpreted on macro-scale (e.g., zonation results from variable enrichment and 

reequilibration in contaminated and sulfide saturated environment) and thus yield 

important information about the magma dynamics. Finally, olivine from various Ni-Cu-

Co-(PGE) sulfide deposit-types can be analyzed without difficulty and the existing Ni-in-

olivine database can consequently be supplemented in order to improve the 

discrimination of an economically mineralized mafic intrusion from a barren, uneconomic 

mafic intrusion. In addition, the trace element data (especially Mn-Zn) can potentially 

provide a geochemical vector towards zones of sulfide mineralization in the VBI, which 

in turn further calibrates an existing geological model. 
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5.5. Open Questions and Recommendations for Future Research 

This study has significantly advanced understanding of analytical and petrogenetic 

aspects of olivine trace element chemistry for two specific ore deposits in Labrador. 

However, implementation of the trace element-in-olivine approach for mineral 

exploration, even as a routine application at the VBI, requires a more holistic database 

including critical samples from other major parts of the deposit (Reid Brook Zone, base 

of the Ovoid, conduit at Discovery Hill etc.). This is essential in order to assure that the 

prospective olivine compositions, such as the Mn-Zn-rich varieties in the BBS, are indeed 

exclusively indicative for higher Ni tenor mineralized environment(s) in the EDI and 

similar magmatic environments, and that the lower Ni tenor conduit mineralization, for 

instance, is associated with different olivine characteristics. The demonstrated systematic 

olivine characteristics are thus only legitimately applicable to the EDI and extrapolation 

to other parts of the VBI, or even other potential target intrusions in the NPS or 

elsewhere, should strictly occur based on geological and petrological similarities, and 

must be carefully evaluated on the individual basis. In this regard, the SIMS analyses and 

comparison with olivine from the PLI assisted greatly in isolating important olivine trace 

element signatures and emphasizing the petrological importance of various trace element 

distributions (especially Cr, Mn, Co, Ni, Zn). In conjunction with a suitable geological 

model, the olivine data are a valuable fertility indicator and thus exploration- and target 

generation-relevant information can be extracted for the VBI (EDI) and (with restrictions) 

for the PLI, but must be approached cautiously and with an adjusted multi-trace element 

vector (“baseline”) for other mafic intrusions on a regional scale. 
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Future research should focus on the expansion and refinement of the olivine trace element 

database to improve existing geological/petrogenetic models (VBI, PLI other applicable 

NPS intrusions) and in turn allow a more confident and statistically more robust 

prediction of the Ni-Cu-Co sulfide mineralization potential of mafic intrusions. The 

geochemical and partitioning behavior of promising elements, such as Cr, Mn, Co, and 

Zn in sulfide saturated and contaminated mafic melts (“open-system” conditions) must be 

further examined and thoroughly explored. The dynamic interaction and the resulting 

solid-liquid diffusion processes of entrained olivine and surrounding (cooling and 

crystallizing) sulfide liquid needs to be evaluated on the trace element scale (element 

transfer vectors). A proper quantification of diffusion rates is necessary in order to predict 

time scales for melt contamination, onset of sulfide saturation and chemical 

homogenization of olivine enclosed or surrounded by sulfide liquid or contaminated 

mafic melt. Recent olivine diffusion studies have demonstrated the potential of olivine in 

constraining the timing and duration of magma migration, interaction, and transport in 

volcanic systems (e.g., Costa and Dungan 2005; Turner and Costa 2007). An extension of 

this approach to dynamic mafic intrusive systems like the VBI would yield valuable 

quantitative information about crystallization, equilibration and reequilibration processes 

of olivine in ore-forming environments. This understanding could then be applied to 

enhance olivine trace element studies of mineralized mafic intrusions to a uniformly 

applicable exploration tool (“fertility indicator”) even for other classes of mineralized 

mafic magmatic systems (e.g., Naldrett, 2010a-b), and then ultimately permit a more 

confident prediction of the mineralization potential of mafic intrusions. 
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CHAPTER 6  - Appendix  

6.1. Detailed Calibration of SIMS Determinations 

Based on the calibration analyses of the olivine reference materials (RM), quantification 

of major and trace elements in olivine measured by SIMS must be performed following a 

stepwise empirical approach, which fully accommodates the influence of significant 

matrix effects and isobaric interferences. In the initial step, the forsterite content is 

calculated. This is subsequently used in quantifying trace elements (Mn, Co, Ni, and Zn) 

that are significantly affected by major element matrix effects. Unaffected elements (Ca, 

Sc, Ti, V, Cr, Cu, Sr, Y, and Zr) are quantified using conventional working lines with one 

olivine RM and NIST glasses (610/612), as discussed in Section 6.1.3. A complete 

sequential empirical approach is presented below. 

 

6.1.1. Determination of Forsterite and Major Element Content by SIMS 

Step 1 

Initially, SI intensities measured with SIMS are used to calculate the ratio RFo = 

(I
25

Mg
+
/I

30
Si

+
)/(I

25
Mg

+
/I

30
Si

+
 + I

57
Fe

+
/I

30
Si

+
), which is then plotted against the EPMA-

derived accepted Fo values (Fo (EPMA)ACCPT) to produce a calibration curve (Chapter 2 – 

Fig.2.3A). Axis intercepts are fixed at (0,0) and (1,1) and this curve is fitted using a non-

linear, rational equation regression. The resulting expression, of the form (Eq.1): 
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is then used to compute the Fo values of unknown samples measured by SIMS (Chapter 2 

– Fig.2.3A). The MgO, FeO and SiO2 contents are then easily calculable from the Fo 

content following Step 2 based on the known stoichiometry of the ideal forsterite-fayalite 

series. 

 

Step 2 

By utilizing olivine crystals with a wide range of compositions as potential RM, our 

empirical approach accounts for the major element variations within the olivine solid 

solution. The major element concentrations (MgO-FeO-SiO) vary almost linearly 

between Fo100 and Fo0 (Chapter 2 – Fig.2.3B). Our most forsteritic olivine (Ol-4, Chapter 

2 – Table 2.1) has 56.66 wt.% MgO and 42.44 wt.% SiO2 with no detectable FeO, 

whereas a theoretical pure fayalite (calculated value, Table 2.1) would have 70.51 wt.% 

FeO and 29.49 wt.% SiO2. Therefore, common natural olivine, in the range of Fo85 to 

Fo40 (Deer et al., 1997), will fall on stoichiometrically determined curves between these 

endmembers since minor and trace element concentrations are generally less than 1 wt.%. 

This is portrayed graphically by plotting the wt.% of the major elements (MgO-FeO-SiO) 

versus the Fo contents (accepted values as determined by EPMA) of the reference olivine 

grains selected for this study (Chapter 2 – Fig.2.3B). The Fo value of an unknown olivine 
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computed through Step 1 can now be inserted to solve the individual equations for the 

major element concentrations in stoichiometric olivine. For example, MgO (Eq.2): 

 

 

 

where, in this case, XMgO is the relative cation fraction of MgO to FeO and SiO2 in 

stoichiometric olivine (e.g., Fo90 has 1.8 wt.% MgO, 0.2 wt.% FeO and 1.0 wt.% SiO2) 

and mMgO is the molecular weight of MgO (40.30 Da). This procedure is repeated to 

calculate the FeO and SiO2 concentrations. 

 

6.1.2. Quantification of Elements with Conventional Working Lines 

Step 3  

The trace elements Ca, Sc, Ti, V, Cr, Cu, Sr, Y, and Zr may be adequately quantified with 

a conventional working line approach (e.g., Shimizu et al., 1978; Yurimoto et al., 1989; 

Ottolini et al., 1993; Weinbruch et al., 1993; Jones and Layne, 1997). For each element 

M, the measured 
N
M

+
/
30

Si
+
 ratios are fitted against the atomic ratios M/Si, for example, 

for Cr (Eq.3): 
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where Cr (ppm)ACCPT is the accepted concentration of Cr in the RM (olivine or NIST 

glass) determined by an independent analytical technique (EPMA or ICP-MS) and mCr is 

the atomic weight of Cr (51.9961 Da). This empirical relationship yields linear 

regressions that can then be used to easily quantify the selected element, and is 

quantitatively adequate for many of the trace elements assessed in this study. 

 

6.1.3. Quantification of Elements with RSF-based Working Lines 

Step 4A 

The trace elements Mn, Co, Ni, and Zn are prone to significant matrix effects, and for 

quantification, an alternative to Step 3 has to be applied, where element-specific Relative 

Sensitivity Factors (RSF) are fitted against the Fo (EPMA)ACCPT of the measured RM. 

Element-specific RSF are calculated as follows (Eq.4) (e.g., for 
60

Ni
+
): 

 

 

 

where the SIMS-RM term incorporates measured SI intensities of the individual olivine 

RM and the ACCPT-RM term incorporates the accepted concentration of SiO2 (wt.%) 

divided by the accepted concentration of the element of interest in the RM. Polynomial 

regressions of Equation 4 (Chapter 2 – Fig.2.4 and 2.5) are subsequently used for 

quantification of elemental concentrations in unknown samples. 
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Step 4B 

For elements with non-linear variations in RSF with Fo composition, we also applied a 

statistical analysis (full-model multiple regression) to determine the dependency of RSF 

on the three major components of olivine (MgO, FeO and SiO2). Element-specific RSF 

are calculated following Eq. 4, but then fitted as a function of these three components in 

the form (aSiO2 + bMgO + cFeO). This approach has previously proven highly 

informative in SIMS chlorine stable isotope (
37

Cl) analysis for calibration of the 

instrumental mass fractionation (IMF) (Godon et al., 2004). Here, strong correlations (R
2
 

0.983) are achieved for some elements, notably Cr, Mn, Co, Ni, Cu and Zn (Chapter 2 – 

Fig.2.6), when the RSF is expressed as a function of the three components. This routine 

therefore offers a potentially superior option to Step 4A for a matrix effect-corrected 

quantification of some trace elements in olivine. 

 

Step 5 

Once an individual working curve (i.e., polynomial regression (Step 4A) or linear 

regression (Step 4B)) is calculated for each trace element, it is most convenient to simply 

solve the associated regression equation to obtain the element-specific RSF based on the 

Fo value or the major components (MgO-FeO-SiO2) of the olivine as determined in Steps 

1 or 2. The elemental RSF can then be inserted in the following equation (Eq. 5) to 

determine the “matrix effect”-corrected trace element concentrations of an unknown 

sample (e.g., for 
60

Ni
+
): 
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where RSFNi stands for the element-specific RSF obtained through Steps 4A or 4B, the 

SIMS-Sample term incorporates measured SI ratios of an unknown sample and SiO2 

(wt.%)Sample is the SiO2 concentration of the sample calculated in Step 1. 

In summary, all elements that display straight linear regressions of SI intensity ratios 

versus atomic weight ratios (or 
N
M

+
/
30

Si
+
 x SiO2 wt.% versus concentration in ppm) can 

be adequately quantified via the conventional working line method (Step 3), whereas 

elements that yield non-linear regressions need to be quantified through RSF-based 

working lines generated by fitting them versus the Fo content, or versus all three major 

components in olivine (Steps 4A/4B and 5). 

 

6.2. Analytical Uncertainty and Error Propagation 

The analytical uncertainty is calculated based on 10 cycles of peak counting on an 

individual spot and is reported for each element as 2s. It strongly depends on counting 

statistics and the counts per second (c/s) of a specific element in the matrix. Generally, a 

low element abundance also translates into low c/s and conversely into a higher 2s error. 

For example, 
25

Mg
+
/
30

Si
+
 has a relative 2s error of 0.9% in Ol-1, whereas Ol-5 has 2.4%. 

On the other hand, 
40

Ca
++

/
30

Si
+
 has a relative uncertainty (2s) of 4% in Ol-5 and circa 
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13% in Ol-1. To quantify (ppm) this error, the 2s values are processed in a similar 

manner to isotope ratios (see Appendix 6.1.). 

Error propagation was used for the calculation of the RFo analytical uncertainty (see also 

Chapter 2.4.3.). However, since the individual errors on 
25

Mg
+
/
30

Si
+
 and 

57
Fe

+
/
30

Si
+
 are 

extremely small, the resulting SIMS error on RFo is negligible with a range of, for 

instance, 0.02% for WGR and 0.11% for ICE olivine populations. A noticeable error, on 

the other hand, is inserted during the determination of the Fo content (see Appendix 6.1.). 

This 2s empirical error is reflected by the uncertainty of the non-linear regression model 

used in the calculation and the associated 95% confidence interval and has a mean of 

1.4%, which is based on 341 spots on seven RM from 2009-2011 (Chapter 2 – Fig.2.3A). 

This is circa 3x higher than the mean Fo error from EPMA measurements (circa 0.5% 

2s).  

 

6.3. Modeling of Olivine Diffusion Profiles 

To calculate the diffusion time from the trace element profiles in olivine from VB266-43 

(Chapter 3 – Fig.3.9), Fick’s Second Law for one-dimensional diffusion into a semi-

infinite medium with a constant concentration at a fixed crystal-sulfide melt boundary and 

a constant diffusion coefficient (D) was applied in the form (Eq.6): 
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where C is the concentration (ppm), t is the time (y), D is the diffusion coefficient 

(mm
2
/y), and x is the distance (mm) (e.g., Costa and Chakraborty, 2004; Petry et al., 

2004; Costa and Dungan, 2005; Quian et al., 2010). The following initial (t=0) and 

boundary (t>0) conditions were used: 

 

 

 

where r reflects the coordinate at the rim of the crystal with a time invariant constant 

composition (C(r)). For the diffusion calculation, the composition of the homogeneous 

core plateau represents the initial condition (C0=uniform olivine composition), whereas 

the composition at the edge of the crystal (C1) is taken as the boundary condition (e.g., 

Costa and Dungan, 2005).  

All variables except the diffusion coefficients (D) for Ni and Mn were measured. To 

calculate the immersion time of olivine in the sulfide melt (before diffusion effectively 

subsided), literature values for D were utilized. In the absence of (experimental) diffusion 

data for olivine-sulfide melt pairs, existing values for diffusion coefficients between 

olivine-silicate melt were used (Petry et al., 2004). Experimental determinations of cation 

diffusivities in olivine demonstrate the strong dependence of D on temperature (T), 

oxygen fugacity (ƒO2), crystallographic direction and chemical composition (Costa and 

Chakraborty, 2004; Petry et al., 2004, and references therein). Diffusion rates in olivine 

are also strongly anisotropic, and for Fe-Mg, Ni and Mn at least 6x faster parallel to the 
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(crystallographic) c-axis than to a or b (Costa and Chakraborty, 2004; Petry et al., 2004, 

and references therein).  

The olivine grain in VB266-43 is probably oriented approximately parallel to the c-axis, 

which means that the measured transects would be parallel to a and b and thus ≤90° or 

≥90° to the c-axis. However, because of the strong anisotropy and the uncertain 

crystallographic orientation of the sample olivine, D values parallel to the c-axis, in other 

words maximum D values, were used for the calculation. The Ni and Mn diffusion 

coefficients were taken from Petry et al. (2004), for ~1100°C and ~1000°C, respectively, 

for an approximate ƒO2 of 10
-11

 (bar), which is close the published value of 10
-11.1

 for the 

BBS in the EDI (Brenan and Li, 2000). Furthermore, the experiments from Petry et al. 

(2004) were performed on olivine with Fo90 as compared to the VB266-43 sample 

olivine with Fo62. Since DNi varies with the Fe content of the olivine (Petry et al., 2004), 

our calculation of t with DNi is likely an underestimation, and is probably closer to the 

minimum value(s) calculated with DMn for 1100°C (Chapter 3 – Fig.3.9). D values for Mn 

are unaffected by the apparent Fo content of olivine (Petry et al., 2004). 

In contrast, the intensive parameters (e.g., T and ƒO2) and the D values for the olivine-

sulfide melt pair are not well constrained for environments similar to the BBS, and the 

equilibration temperature might well be below a 1000°C. Since diffusion rates decrease 

rapidly with decreasing temperature (Ito et al., 1999; Petry et al., 2004), the maximum 

time span might be closer to 1,000 yrs than the calculated ~160 yrs, which, however, is 

still considered “rapid” in a plutonic magmatic system. The results imply that segregating 

sulfide melt enclosed the olivine shortly after crystallization (silicate melt was not yet Ni 
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depleted), probably already in the EDI or somewhere close to the final emplacement. 

Thus, in less than 1,000 yrs olivine and sulfide melt equilibrated in the dike, close to or at 

the base of the EDI (Fig.3.13). This sulfide-upgrading process was likely more static, 

with a lower R-factor, and thus less effective than the more dynamic upgrading of the 

high-tenor net-textured sulfides in the immediate dike environment. This prevented the 

massive sulfides in the BBS from achieving similar tenors to the net-textured sulfides in 

the VTT. 

In summary, the presented time span is only a first-order approximation and needs to be 

confirmed by additional samples from the BBS and the LTT to make a reasonable 

assumption about the equilibration time of the olivine-sulfide melt pair, and to further 

yield the exact timing of initial immersion and thus the likely onset of sulfide saturation 

and segregation. However, initial modeling of these diffusion profiles in olivine from the 

BBS provides an opportunity to quantify the documented trace element exchange process 

and subsequently extract a time span for the onset of sulfide saturation (residence time of 

immersed olivine) and late-stage sulfide melt upgrading. 

 

6.4. Relative Vertical Proximity Factor and Multiple Regression 

Analysis 

As described in Chapter 3, the relative vertical proximity factor (RVP) is calculated as the 

depth of the sample divided by the depth of the first occurrence of mineralization in the 

DDH intersecting massive sulfide (VB266-VB544-VB552) multiplied by the relative 
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sulfide content (see Chapter 3 and 4). The RVP data and the composition of olivine from 

VB266-VB544-VB552 where then used in a full-model multiple regression (also 

performed in Chapter 2; see Appendix 6.1.) based on the distribution of Fe-V-Cr-Mn-Co-

Ni-Zn. The resulting regression has a R
2
=0.78, and was further used to calculate the 

predicted relative proximity to massive sulfide of EDI olivine from the lateral transects 

presented in Chapter 4 (Fig.4.9 and 4.10). Although the predicted proximity has a 

relatively high uncertainty (see R
2
), the predicted values are, as expected, lithology-

dependent and increase towards the base of DDH from the barren south to the mineralized 

north of the EDI. In conjunction with petrographic observations (degree of alteration, 

enclosure by sulfides, modal abundance of olivine etc.) and stratigraphic information 

(exact depth of sample in the context of the EDI), prospective olivine grains can be pre-

selected for this regression analysis, to exclude non-prospective “impostor” olivine, such 

as the metasomatized olivine in NT sample VB332-4 (Fig.4.9). The multiple regression 

analysis was performed with CoStat Version 6.4 from CoHort Software.  

The regression equation for the predicted RVP is:  

2.293e
-6

(Fe)-0.038(V)-0.001(Cr)+8.724e
-5

(Mn)-5.763e
-4

(Co)+1.418e
-4

(Ni)-4.008e
-4

(Zn) 

 

6.5. Kernel Density Estimation (KDE) 

Histograms as a means to graphically display large datasets were recently replaced by 

Kernel Density Estimation (KDE), a non-parametric method for the estimation of a 

probability density function (e.g., Thomson and Maclennan, 2013 and references therein). 

This method provides more statistical and physical meaning than normal histograms, for 
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which the plotted form of the density distribution of the data depends strongly on the 

selected class intervals, or the physically meaningless bin-size parameter (e.g., Thomson 

and Maclennan, 2013 and references therein). To avoid this, each data point in a KDE is 

replaced by a Gaussian (normal) function that is defined by a standard deviation (1s), 

known as the bandwidth (or smoothing) parameter (h). The normal distributions are then 

summed and result in a smooth curve, the kernel density estimate, which offers a good 

estimate of the probability density function without assuming, for instance, that the data 

are normally distributed (e.g., Thomson and Maclennan, 2013 and references therein). 

The optimal bandwidth is automatically calculated to prevent over- or under-sampling of 

the data and in this context reflects the compositional uncertainty of the dataset (see 

Chapter 4, Fig.4.11 and 4.12). The calculations were performed with 512 steps in the 

AMC Kernel density MS-Excel
®
 Add-in. 

 

6.6. Sample Petrography 

6.6.1. Thin-Sections of Samples Used for SIMS Analyses 

In the following all samples utilized for olivine analyses in Chapter 3 and Chapter 4 are 

displayed with their individual DDH identification number, their specific sample code (as 

used in Chapter 3 and Chapter 4), the sample depth and sample lithology. The first six 

plates represent samples used in Chapter 3, and the last six plates samples from Chapter 

4. The shown thin-sections have approximately a 1 inch (~2.5 cm) diameter. 
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6.6.2. Photomicrographs of Samples Used for SIMS Analyses 

Photomicrographs of representative olivine grains from the measured samples are 

presented. The scale is 5x (field of view – 4.4mm), 10x (field of view – 2.2mm), etc. 
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6.7. SIMS Raw Data 

The SIMS raw data are available on request. 
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