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Abstract

The two-dimensional Tsing model with a dipolar and supereschange interaction will he

examined. Tlis model will be studied using Monte Carlo sinlations. The vesnlts of this

sty will he disenssed in two ways. First, the resalts will he analy

1 treating the system

as a possible model for the rare carth ordering in the componnds REBa

4070 where

RE one of the Kramers vare carth jons. A comparison between the Neéel tempe

i pure dipolar system and the experimental Néel temperatnre of these componnds will

be done, As well. the results will he analysed in terms of what may be learned abont

dipolar systems

ar. the N

in general. In partien fol temperatire and the statie

ieal

exponents will be disenssed.



Chapter 1

Introduction

between the

agnetic interact i

In this work we will be i sted in ining the

»

YBayCiy 0O

rare carth jons ina class of superconductors based on the componn

discovered by Maw- Kien Wi and Ching-Wa Cliin 1987.(1] I the componnds of interest.
the vitrinm jons will he replaced with the rare carth Kramers ions from the Tanthanide
serien, which may he fownd in the periodie talle hoginuing with corium (Ce) and ending
with yiterhinm (Yh). Interest in these componnds is very high. not simply due to the

but also hecanse of the novel magnetic

supereonducting properties of the materi

The

of superconductivity and magnetic ordering

study of

s even more intrigning as they are ideal systems for 11

ductivity and magnetism in layered sys

erplay between s ems.

we will look at some of the expe I work which has been

nen!

Tn this introduetic

nentron scatter-

. In particular we will look

ny of the rare carth

on

mpoun

cince these experiments vield information conceniing

| specific heat experiment

e

terpretation of the informa-

the magnetic properties of the material under study.

tion provided by neutron scattering and specific heat experiments. unfortumately. can

e difticult and sometimes inconelusive, Therefore claims made in experimental papers

st always be treated carefully. as one will see in the following discussion. From these

essful model of th

experiments, we will develop a picture of the propertios which a sue

nels st reproduce. Chapter 2 di es the fundamental theory behind Monte

rlo simulations. I chapter 3 we will disenss onr implementation and study of our
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model using Monte Carlo simulations. Chapter £ will present the results of onr jnvesti-

gation and a discussion of 1he success and applicability of our madel. In chapter 5 we

will smm

e the results of onr computer simulations, and discuss further work which

SE

will be carried ont. Reports containing some of this work have appeared elsewhe

1.1 Experimental Survey

The first of the high temperature superconductors was Lig_, B, Cu0  aliscoverad by K.

Alex Miiller and George Bednorz in 1986, Maw-Kuen Wicand Ching-Wa Chin hegan ex

perimenting with the substitution of the Janthanum ions in Lay_, Ba, CuOg with the

carth element yttrinm. They were able to ereate a componnd which had a superconduet

ing transition temperature above

Kelvin, the temperature of liguid nitrogen, making

diffienlt. to handle and expensive liquid helinm unnee

y Lo achieve the superconduet-

ing temperature. The chemical composition of e resulting compound wis determined

by Robert M. Hazen «f al. at the Geophysical Laboratory of the Carnegie Institution of
Washington. [1] The chemical formula of this new superconduetor is ¥ BayCiugOq 2y, and

figure 1.1 shows the positions of the varions ions.

Note that the rare

o s ocated in the conter enbe of & quasi-perovskite st

tre. The rare carth on has & copper-oxygen plane located direetly above and helow.

1t is thought, that, the o

is essential to U superconductivity of

these compounds. In the rare carth sublattice, one finds that the a and b laltice veetors,

both paraliel to the copper-oxygen planes, are approximately equal and about, tree ines

smaller than the ¢ lattice veetor. Typically ones finds a and b to be approximately 4 A

and ¢ equal to abont 12 A, This one will have an anisotropic system and, in partieular,

one has a layered system. Experiments diseussed below will support this observation.

One notes that the oxygen content of YBayCuiyOr_y is generally noted as Or_y. The
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Fignre L1z Chemical unit cell of YBagCuyOr-s
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oxygen deficiency. . is a critical parameter in determining the erystal strueture and the

superconducting propertics. The fully oxygenated compound, 8 = 0, is a supercanductor

and forms an orthorombic phase. As & incrcases there is a transition from the super-

Toillustrate we

conducting, orthorombic phase Lo a tetragonal, semi conducting phi

include an approximate phase diagram of YBagCuaOz_y in fignre 1.2, We are nol gen-

Tetragonal Orthorhomic

500
T
.
» 400
»
e
r

ar

M
a0
u

200

100 \

Superconductor
0
1 0
8

Figure 1.2: Phase diagram for YBa

Su07_p as a Tunetion of oxygen concentration

erally interested in the variation of the erystal propertios due Lo oxygen content al, this

point, but later in this work we will make use of this information. In all cases we will

be referring to the fully or near fully oxygenated componnd (compounds where 4 % 0
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unless otherwise stated,

In most known conventional superconductors a small percentage of magnetic im-

 will cither destroy the supercondueti

n ity or suppress Tt the superconducting
wransition temperature. The compound YBayCiyOr has a superconducting transition

temperature of about 90 K.[5) When the yitrinm is replaced by certain magnetic rare

carth jons from the lanthanide seric ) ing transition temperature does

not change significantly from 90 K. The exeeptions are Ce, Pr, Pm, and Th, which de-

stroy the superconducting state at sufficient concentrations.[5] In cortain I

where we have full substitution of the yttrium, there is also a transition, at low Leniper-
ature, 10 a phase where the rare carth fons are ordered. Thus for some rare carth ions
ane has a magnetically ordered phase coexisting with the superconducting state. This is
similar to the hehaviour found in the rare carth terary compounds such as (RE) Rhy By,
(IR E)MogSew, and (RE)MagSy.[6] We will be interested in inderstanding the maguetic
ardering in the compounds where yitrinm has been replaced with the Kramers jons,
N, St G, Dy, Bt

Phe first neatron seattering experiments cartied ont, on REBazCuO7_s compounds

were done on ErBagCugOz-s. There has been controversy and contradiction in the anal-

of the resnlts ever since. The initial work of Shelton f al. 7], and Ly ¢t al. [8]
established that there is a transition from a magnetically disordered to a magnetically

ordered

ate aronnd 0.5 Kelvin, At this transition, both Shelton cf al. and Lymn et
al. fonnd that the magnetic moments of the rare carth ions become ordered within each

of the planes determined by the a and b lattice veetors, (the a-b plane). Within the

a-h plane the spins are arranged as in ligure 1.3a (ferromagnetically ordered in the b
direetion, and anti-forromagnetically ordered in the a direction) with the spins orien-
tated s as 1o fie along the b asis. We will refer to this as AF ordering. Both Shelton

el al.and Lynu ef al. found no ordering in the ¢ direction. While their results showing
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two-dimensional hehaviour were not completely mexpected die to the layered nature of
these compounds, the long range nature of the dipole interaction, thonght to be impor-
tant in this temperatare range, meant the result was not obvious, Becanse ¢ 2 S and
axh, the dipolar interaction hetween layers will be mmeh smaller than within a layer.

Both Lynn et al. and Shelton ¢ al. deseribed the ErBay

1307y s rare carth sl

as two-dimensional.

5> o
e
> 5>
e«
CoED>ED
s Rl X
D>
S e >
CIEDED

(b)

Figure 13: The spin arrangement for (a) AF and () AA phases

Later work was done by McK. Paul ¢l al. [9] on a composite erystal composed of
five smaller crystals. Each crystal had dimensions of about 3 x 3 x 0.2mmw®, MeK.
Paul o al. found the same transition temperature and a-h plane ordering as Ly ol

al. and Shelton e al. McK. Panl ef al. reported that they did not find two-dimensional

S e D€
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ardering, bt found that the ordering was three dimensional in nature. starting from the
transition temperature and for all lower temperatures, MeK. Panl of al. suggested that
poriaps the powder samples used by Lynn of al. and Shelton of al. had caused their data

1o show two-dimensional character. In another study Chattopadhyay ef al. [10] used a

composite erystal, formed of two single erystals, Chattopadhyay ol ol. stated that they
had elearly established the transition as three dimensional from 500 mK down. They
then state that the temperature variation of the sublattice magnetisation shows “typical

two-dimensional hehaviour.,” Both MeK. Paul and Chattopadhyay ¢ al. had difficulty
establishing the exact nature of the ordering in the ¢ direction, and reasoned that the

ordering was dependent upon the: oxygen content of a erystal. Thus with their composite

erystal, it was possible that they had two different types of order due to two eryshals with

different oxygen contents. Further work by Lynn ef al. [11] found that at a temperature
of 140 WK one conld deteet complicated three dimensional ordering, implying a crossover
from two- to three-dimensional order somewhere helow 500 mi.

1n 1989 Lynn of al. [12] published further experiments on a single, high quality erystal
of BrBayCiigOz_y weighting 31mg. Lynn ef al. reported that, again, they found that at

Ty = 618m I there was ordering, which they de:

ribed as having two-dimensional char-

acteristies above T, with a change to three dimensional character at lower temperatures,
They were unable to determine whether the ordering in the ¢ direction was ferromaguetic
or anti-ferromagnetic. By two-dimensional Lynn e al. are referring to a lack of depen-

denee on K. in the neatron seattering intensity just above 7. The order parameter

Wit

(it well by to the solution of the two-dimensional, S=1/2 Ising model. This result

s supported by wumerons reports on the specific heat of ErBayCiigOz_s at low temper

tures, [13][14][15] [16] but one must be careful becanse there is still disagreement between

speriments.

In altof the above papers concerning the specific heat of ErBayCiigOz—g, it is confirmed
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that thereis a tra

ition at approy

ately 600 mi which is fitted very well by the two-

dimensional Ising Model. Further. the molar entropy at 6K is RIn(2). characteris

cof a

doublet ground state, instead of a 16-fold degeners

vas given by Hund's ele17] Most
)16]

Thus the specific heat measurements agree with Lyun's nentron scattering results, that

likely the reduction in degencracy

s the result of crystalline eleetrie fields (¢,

irBa, CugOr—s appears to order in a manner characteristic of a two-dimensional, §=1/2
system, similar to the Ising Model, with a

f16]

Neutron scattering experiments on DyBagCuiaQz_y by Goldman of al. [18] found a

Lransition temperature of 618w, [13]]H][15)]

transition from the disordered to ordered state at 1.0 K £ 0.05 K. Goldman ef al. reported

three dimensional ordering which was anti-lerromagnetic in all three Jattice direetions,

Further, Goldman ol al. were able to determine that the moment o the Dy jons

oriented to point along the ¢ crystal axis. This spin arrangement. is shown i fignre

13h and is referred Lo as (AA) ordering. Goldman of al. did not. speculate on whether

the temperature dependence of the magnetic order parameter was: chatacteristic of oi-

ther two- or three-dimensional hehaviour. The results of Goldman o/ al. were confirmed

by Fischer of al. [19], with a correction to the Néel temperature. Fischer found that

DyBa; CigOz—s ordered at 900 mIK rather than 1000 mK. Again, while the nentron seat-

tering data clearly showed three dimensional ordering, Fischor o al. did not speculate

on whether temy lependence of the arder | or wa

haracleristic of two- or

three-dimensional ordering. Specific heat, data showed the transitions from disordered to

ordered at 900 mK, but. the data fit the two-dimensional §

/2 Ising result, very we
The molar entropy at 6 K is RIn(2) implying that. the 16-fold degensracy of the Dy ion

has been reduced to a donblet. This reduction in the degenc

'y of the groud stale

is most likely due to C.

B][15] Again, work done using a single erystal by Clinton

and Lynn [20] showed that there is scattering which appears 1o e two-dimensional in
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nature in DyligCigOz_y as was fornd for ErBayCusOz_s. They found that, the ordering

in the a-b plane was (AA ), consistent with a dipolar interaction il the spins are foreed,

1o align perpendienlar o the plane,

by virtne of CE.
Consicleable experimental work, both nentron scattering and specific hoat measure-
mients are available for GedBagCigOps. The G compounds are different,, hecanse ac-

. This means that to lowest order

cording to hind’s rle L = 0, and therelore

nd degeneracy of Gl are not affected by CEF. and the gromnd

Lhe ene

will retain the full 27+ 1 = 8 fold degeneracy]17] This is confirmed by the R1n(8) value

for the molar entropy at 6 K. [16][21][22] GdBayCugOr_p has a transition temperature of

2,28 K, more than twice that of BrBayCi Oz and DyBayCiiyOz—y. Nentron seattering
showed the ordering Lo be three dimensional with no initial seattering of two-dimensional
character. This ordering was antiferromagnetic in all three lattice directions, with the

23] This is not the ground state of a pure dipolar

moments aligned along the ¢ axis
system [24] 23] and the Lack of significant, erystal fields does not allow one to atiribute

axis along the e axis to the effect of CEF.. We will discuss this

the existence of an e
later,

Measurements of the eritical exponent g, for GdBay(ngOz_s give #= 0.16£0.01[26)

and g = 0.15[23] for 6 = 0 and 4 = 0.11[26] for & > 0.5. The critical exponent. 4 is

delined interms of the temperature dependence of the sublattice magnetisation, M, as

from helow:

T approaches T,
!

i the limit (7= 72) - 0~ (1.1)
For the two-dimensional Ising model 4= 0,125, while in three dimensions 3 2 4 for both
the ling and Heisenberg models, although itis well known that is not a rational namber

and has a different value in the two models, Thus the temperature dependence of the

sublattice magnet i i of a two-dimensional Ising system rather than
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a three dimensional system. As well. although the G ion vetains its 8 fold degeners

i

ground state, anaive

omparison of theexperimental sperilic heat 1o the two-dimensional,

|

Studies on the other Kramers ions are not comprehensive or in

1/2 lsing, model also shows very good agreement .

ome not av:

able, Specifie heat studies yiella transition temperature of 0, for NdB:

Culz

and 061K for SmBayCiyO7_y. [29] T both comporiuds the speeilic heat may be fit 1o

a two-dimensional Ising model if a strongly anisof ropic exchange is . Newtron

scattering resulls ave nol yet available,

16 we limit ourselves (o a disenssion of only the Erand Dy componnds, we e gain

more insight concerning the infe

actions involved by looking af the related componnds,
ErBaCngOx and DyBayCrig O These compomnds have the same basic bnilding hlocks

as the REBay(

3Oy componnds bt with an estra copper-osygen Tayer and eachy sie

ive layer displaced a half lattice longth aloig the baxis. This in tese canponnds

the rare carthiions are separated by a larger ¢ bitice veetor than in the |

3 compong;

There will be other dilferences between these componnds but we naively disregard these

differences for now. Both componnels show nentron seatfering results which, near the or

dering transition. have two-dimensional characteristies, The Néel temperatinres are 0,49

K and 0.9 K for Br and Dy respeetively,[30] In ErBayCnyOx one finds that

s

s e

throngh the transition three dimensionl ordering hegins to develop. I DylinCiigOx

the neutron seattering showed no three dimensional hehavionr at any temperature, OF

fiurther signifieance is that, the Néel temperature for Kr is lower in the 248 conponnd han

inthe 128 compound, implying the reduetion of some interplanar interaction due o

the inereased ¢ lattice veetor, The Néol temperatures for the Dy componnds are identi

cal. This has heen acconnted for in terms of a geometrie caneellation of the interplanar

interactions due Lo the symmeiry introduced by the displacement. of secessive layers

[30] In f

along the b axi . DyBay GOy s referreed 1o by one gronps of expeerimentalists
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as the bestesampleof a twodimensional magnetic system fomd in watures. (30]

s
Al sammples which have heen referred to in the studies above are, of - conrse. three

dimensional, having a length, width, and height. Regardless of how weak the inferplaner

interaction is. as long there is some interplaner interaction, the system will order

in all three dimensions.  To refer 1o a sysiem as having two-dimensional characteris-
Lies implies that, just above the eritieal tomperature, there is eritical scattoring which

reaches its maxitnmm value along reciprocal lattice rads, instead of at reci procal lattice

points. Tnareal two-dimensional system the thermally averaged pair correlation funetion

< Sy0pS2(1) > 1 being, time, andd ¢ being the displacement from some arbitrary origin,

vawishes if the z component of © differs from zero, hoth above and below the transition

temperatare, In nentron scattering the differential cross section is velated to the Fourier

transformm of the the pi

e
J X {(/‘uu -

il

cortelation function by

KoKy

;_W/""_,/r enl=ionE < SOSED > exp(K- r)}
(

i # denote components of K, which is the diference in the incoming neutrons

o)

where

d i

wave veetor k and the veetor k' (K = k =K).  Ina two-dimensional

z

system the seattering eross seetion will be independant of the z component of ¥ and

in aseattering experiment one will gt maximum seattering along rods instead of at
points as one would for three dimensional ordering, If one were to sean the scattering

intensity along the (1,0,0) fine i

1 the reciprocal latlice just above 7, one would find

nonzero infensity al all £, Below 7, one may find the three dimensional Bragg peal

imposed on the two-dimensional critical scattering, It is the

at (10.0). (10.1) ele, s

twodimensional eritical seattering which is used to define a two-dimensional system. For

a more detailed diseussion one is referred to an- exceellent. diseussion of eritical neutron

seattering, by Jens Als-Nielsen in the fifth volume of the series Phase Trausilions and
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o

Creitiral Phenomenon edited by Donand Green [31] and a short. disonssion speci

these supercanducting compounds by Zhang, f al. [:30]

Wehave heen attributing the S=1/2natureof all the Kramers ions, with the exeeption

of Gd, 1o the C. A detailed caleulation of the erystalline electric fields in 4 hese

componnds is necessary to establish the existence and the magnetic chavacter of the
doublel ground state,
1.2 Exchange interactions

An important goal of this thesis is to estimate the relative strengths of the varions inter

wre. While

actions which might be responsible for the observed ordering at low temy

nificant. inter

& tajor conjeeture of this paper is that the dipole-dipole interaction is o sig

action, we also study the inelusion of an exchange interaction. There are tany ditferent

types of exchange interaction, all of which are the result of electronic charg

overlap. The distinetion between the dilferent types of exchange interaction is (he man-

ner in whieh this overlap ocenrs or how the interaction is mediated, Tn diveet exehan,

Lwo magnetic fons interact, hocanse their ehange distributions overlap, In supereselange

the charge distributions of two magnetic jons both overlap with some intermediate non

magnelic ion. This a supereschange interaction is mediated by o non-magnetic jon. |

indirect exchange thereis 1o direct overlap of the eharge dis

thereis an exchange interaction mediated by the conduction electrons.

1.3 Synopsis

-y of

follows. The degeners

The important experimental resnlts may he simmarised

the gronn state in etbium and dysprosinm compounds has been redieed to o doublet,

most likely due to CEF. A §=1/2 model should be appropriate, sinee it provides the
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proper degeneracy of the ground state, For gadolininm a S=7/2 model wonld he more

vin fluctuations which

appropriate. In the eritieal region the nentron seattering has s

stems may be

ic heat in all

characterise the systems as two-dimensional. The specil

sition tempe

2. two-dimensional Ising model. The tra

fit reasonably by the
for REBazCigOz_s with RE = G, Er,and Dy are of the order of 1 K. In this tem-

cant. The observed ordered states

peratire range the dipolar interaction will e signif

ion. with

are consistent with the orientation of the rare jon's spin and a dipolar inter.

e eseeption of CGel. The dipolar conpling between Tagers has heen shown Lo be very

compared Lo the intraplaner interaction in this class of compounds.[24] The super-

ubstitution of the magnetic rare carths for the

comdueting state is not alfeeted by the

o ot the superconducting ort]

non-maghetic yirinm. As well, exper

v, and

» with RE = Gd,

and the semi-conduneting, tetragonal phases of REBa,CigO;
Dy show no change in the Néel temperature, which implies that the conduetion electrons
are nof involved in the interaction. [15][26] (28] [32] [33] [$1] This suggests that any indi-
rect exchange inferaction will be weak, The localised nature of the 4f shell in the rare

Therefore if there is an interaction besides

carth jon makes a direet exchange unlikely

hange interaction.

the dipolar it will be most likely be

supere

rrimental information, we have been able to determine that,

By nsing, the available ex

tion

a spin 172 Ising madel with a dipole-dipole and a possible superexchange into

—s- where the RE is one of

wonld he agood choice as an initial model for REBayCuy(

siich as wo are proposing,

the Kramers jons, While we do not expect that a simple model
will he suflicient to explain all the magnetie phenomena exhibited by these compounds, it
is important to have a starting point from which to develop a basic understanding of the
phenomena. hudeed, if there are features of the experiments which are not well explained

i terms

of this proposed model. then the comparison provides guidance in determining

s the implementation of our model;

a more realistic model, T chapter 3 we will dis
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readers who are familiar with Monte Carlo i to sKip chapter 2 and

proceed directly to this diseussion.



Chapter 2

Monte Carlo Simulations

2.1 Introduction

e mnch

[the data presented in the thesis is derived from Monte Carlo simulations,

it is important to offer the reader a basic understanding of the theory hehined such sim-

it to diseuss the actual implementation of such a simulation,

ulations. 1 is alsor fnpor

e able to show the power. versatility, and fundamental simplicity of the

T duing w0 we

technigue,

Theory of Monte Carlo Simulations

The Monte Catlo method involves the nse of a computer simulation to generate a colloe-

for o model

tion of stafe

tem. In equilibrium studies these states may be generated

with a probability: proportional 1o their thermadynamic probability, and from this col-

leetion thermody namic quantities may be calenlated. As well, because cach state is

i

ording to some model Hamiltonian, it is also possible to to use

od sequent i

Bene

the Monte Carlo methiod 1o stuly relaation or transport. phenomena. [35] The uses of

the Monte Carlo method are too numerous to mention all of them here, but the intes

ed reader may vefer to book Monte Carlo method in stalistical physics by K. Binder

.

[35] for more information. We will use the Monte Carlo method to evaluate equilibrium

properties for a madel magnetic system,
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In general, the partition function of a systentin the canonical ensemble is

2= fitstosn [FLl]

and the thermodynamic average of a ma

o
[} A{r)) exp [M!l
[drfesp [ZL0

L of variables describing a configuration of a system or its position in

opic observable A({r}) is

(A({r)) =+ . (2.2)

The set {} is a

phase space and H is the Hamiltonian of the system. An example of a

mple {0} might

be the positions and momenta of a number of electrons interacting via Conlomb forec

These integrals are typically over a volume in a very lage dimensional phase space. 11, is

possible that, {w} may consist of discrete variables, in which case the integrals of equations

2.1 and 2.2 are converted Lo summations over the diserete phase s

As an example let us look at the ideal gas of N particles withont nsing any simpl

tions diie to symmetry. Tn this modol d({r}) is a 6N-comy veeors three componcnts

for cach momentum and three components for each pe

on of e N particles, ‘Therefore
we have an integration over a 6N dimensional phase space. Sinee statistical nechanics

is applicable to systems with a large number of particles, we wonld have an intey

i a phase space of large dimonsionality, Tn the

e of the perfect
do these integrations analytically. Tn most. realistic: cases, where there is some interac-

tion between particles, it is not possible 1o do these integrations analytically, We must

somehow approimate the integrations, even numerically, if necossary.

To integrate numerically over sueh a large dimensional space would be very time

consuming if we were Lo attempt such an evalu

on in the normal manner. By wornal

manner, | am referring to a process where we would divide the phase space into small

multi-dimensional cuby

(hypereubes) of volume (Ax)¥, N heing the mmmber of degrees

of freedom, and then to approximate tie integration by the sim over Uie valie of the
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integrand in the center of these small enbes multiplied by the volume of a hyperenbe.
The large dimensionality of the phase space makes this an impractical method, since
the nmber of small multi-dimensional cubes would he extremely large. A widely used
method o improve the efficiency of the nmmerical integration is to randomly choose a set

of puints, [{},], where » labels cach chosen set of variablos. We still divide phase space

into small Tiypereubes, bt we do ot inelude all hypereubes i the sum apy

the integral. Instead, we include only some small percentage of the hypercubes or points

in phase space in our evaluation of the integral. The points in phase space that we include

fact a form of the Monte Carlo

are chosen randomly, This random choice of poin
method, bt not & very efficient one. The main problem with choosing random points in

phiase space, in onr attempt to numerically evaluate integrals of the form 2.1 and 2.2, is

that. the integrand of these integrals will have variations of many orders of magnitude in

the regions of greatest interest, at temperatures near (H) & NkgT', so we would spend a
great deal of onr time adding insignificant contributions to the integration. Therefore we

want. to choose the points from our multi-dimensional phase space in some appropriate

fon, such that the “important” regions are represented more often in our choice of
points to inelide in the numerical integration. By important we mean those regions of

ph ce that will contribute significantly to the integration. To give a trivial example,

il we wish to calenlate

100
/ 0(x — 10)0(e + 10)dee (23)
Jom

whicly is the integral of a square pulse as shown in figure 2.1 1f we were to select x (here
the phase space is one dimensional) randomly from —100 to -+100 then the majority of

the time we would be adding zero Lo onr value of A. I instead we somehow knew that the

imporiant points are those whe

s between —10 and +10 and chose random points

only hetween =10 and +10, onr evaluation of the integral would be much more efficient.
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a
T S P S e

Pigure 2.1: Square pulse

What we have deseribed above is a simple case of the coneept. of *importance sam-

pling”. which was developed by Metropolis [36]. 1f we choose {r},. according to a prol

ability P({a},), then we may rewrite equation 2.2 as

A AGe)) P () )e
T P (i) )e

(2.4)

M being the number of points we have sampled in phase space. By P({},) we mean
the probability of chosing {ir}, as a configration to include in our evaluation of the
partition function. If we are able to chose P({},) in an enlightencd manner, we should
sample the “important” regions more frequently and hence shonld have a el nore

efficient evaluation of (A). A natural and straightforward ehoice of P({a},) would be

the Boltzman probabilities for a classical system in equilibrinm, that is, et

() = Pa(fehs) o e H (25)
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Wes then have for the average value of a thermodynamic observable AL

>

2l MA( (26
5 2.6
ME. ({r}o) )

T most, cases we do not know P,({},) exactly, since we lack the constant of pro-

cquivalent Lo evaluating the

portionality in equation 2.5, Calenlating this constant i
partition fumetion, and henee is not practical. We can, however, construct a random

walle throngh onr phase space, such that
P} i} po1) = Pylfir) ) as L = co. (27)

The probability £({}i, {}7,4) in equation 2.7 is the probability of finding the system

i state )y after £ stops in the random walk, starting in initial state {#}i. I ¢ is large

enongh that equation 2.7 is valid then we may use the final states of a large number of

random walks as our ensemble to evaluate equation 2.6, In this case we would associate
the A in equation 2.6 with the number of walks in our ensemble. We note at this point
that instead of the final state of a large number of random walks, one may equivalently

nse an ensemble composed of a suitably chosen subset of the final states of a single

random walk, il the collection of states in the random walk:

s crgodic. Therefore we

will require that. onr method of generating the randons walks yield an ergodic collection

of walks. What is meant by “suitably chosen™ will be discussed helow.

‘The random walks are defined in terms of a Markov process, which in turn is defined

it terms of i tion prohability from one state to another or from one point in phase

s

space (o another. We name this transition probability as W({z}, — {«}.r), which
is the probability of moving, in phase space, from the point {z}, to the point {x}.

In other words, it is the probability of changing from a configuration specified by the

ables {}, Lo a configuration specified by the variables {&},s. To insure equation 2.7

is satisfiod, it is suflicient to demand that W satisfy the condition of detailed balance,
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which in mathematical terms is expressed in equation

P4t )W({e)e = {oh) = Po({abo )W ({0} = {2 )). (2.8)
The condition of detailed balance states that the probability of the system heing in state
{x}, and then moving to state {w}, is the same as heing in state {r}e and making

a transition to state {e},. To show that detailed balance, cquation 2.8, is sullicient to

ensre that cquation 2.7 i satistied, we will replicate a simple and physically intuitive

argument. of Binder.[35] We first imagine that we have a large collection of Markov

processes, so we are looking at, many systems cach at sonie point, in pha

pace. Suppose
that we have N systems at point {r}, and N, systems ab point. {), at some particnlar
time, and we know that H({r},) < H({a}y) The probabitity of moving fron state

{a}y 1o state i}, if we are moving in a complotely

y random fashion is simply 1 over Uhe

volume of phase space. Denoting this probability by 1, we know that sinee everything is

random Wy, = Wy, OF conrse these probabilitios do no fy cquation 28, But having
defined Wy, and Wiy, we can casily find aset of W({w}, = {},) and W({e}, = {o},)

which does satisfy cquation 2.8, In particular we have
i
W({x}, = {a)s) = Weyexpfnt,

U= 1 )
= Wyoexp m 3 (2.9)

and

W({a

2o fir}e) = Wap = Wi (2.10)

This set of transition probabilities doc:

sy cquation 2.8 and it is this s

L we wonld
use in a simulation.

We can now find N;—y, the total number of tra

fons from state {}, to state {e},,

as well as N,—,. The former is given by

Ny = NW({ich = fi})
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) ETERETIEN
= NeWoeexp™ gt

and the latter by
Noeer = NW({r}s > {£},)
= NW. (2.12)
The et numbor of transitions, 8Ny, is

Ny = Neey = Noeor,

S L it B (2.13)
I e GEA .
_ Pal{e)) _ PUr)) \

= /"""'-‘[/’.qu-r},) l'u.r),)]' )

s than expFit tien 6N,y > 0 and N,/N,

We see from equation 2.13 that il N,/N, is

inerenses, on the other hand, if N,/N, is larger than exp™? then 6N,—, < 0 and Ny/N,

decreases. As we move further along our Markov processes a steady state is reached

where NN, = expFit, which is precisely equation 2.7, Finally instead of looking at

many Markov chaing, we may equally consider the parts of a single long chain, and onr
argnment and result, will be the same. 1t is important to note that detailed balance does
wot. restriel our choice of W({e}, = {r}u) to a single function, but rather it limits

acceptable finetions., Two very widely nsed choices for W({#},s — {2},) are

i
oxXFAT
Wb = {rh) = =, (2.15)
|+ expint
and
W(lrhe = {#}) = oxp™  i16H>0
=1 iffH<0. (2.16)

In all simulations in this thesis we have made use of equation 2.16, as it equilibrates a

system very eflicient]y.[35] [36)
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2.3 A Simulation

Let us begin to develop our understanding of a Monte Carlo simulation by looking at how

a simulation might proceed for a general example, Let us assume, for this discussion,

that we have a spin model, where we have N spins which may assume either of two states,
S§=1lorS ==L The Hamiltonian for the system will he a funetion of the state of each

of the spins, H({S}). The dogrees of freedom are (he s

tes of cach of the spins. We

now describe how we wonld form onr Markov chains of conlignrations. rseriplion

is angmented by the flow chart in ligure 2.2,

To begin a simulation specify a temp L any | i the Hamiltonian, and

an initial state {S}o. We then begin a Markov process Lo

nove through phase space
do this we choose a random spin, which we label k. We nest calenlate the change in enerey

&H, il we change Si to —

From this change in energy we calenlate 1W(S, — —5),
using equation 2.16. We then generate a random number 7%, 0 < Z < 1. 'This nse of
random nmbers is the reason for the name, Monte Carlo simmlation. We then compare 7

to W(Sk = =S), and il Z < W(Se — —Si) we change S to =S, 117 > W(Sg — —S;)

we do not change Si. Tn both cases we have a new configaration (it may he the

ame as

the previous configuration, but we must consider it a new co

ignration). This process
constitutes one Monte Carlo step and we define time in terms of Monte Carlo steps per
degree of freedom. For example, in a spin system with N spins, one Monte Carlo tine

unit is equivalent o N Monte Carlo steps. For most purposes there is 1o relation hetween

Monte Carlo time and real time. The introduction of a Monte Carlo tine is generally for
conceptital purposes and it defines position along a Markov ehain.

Note that we have only changed one degre of freedom -the variable 8- and therefore
this configuration and Lhe initial configuration are highly correlated. The system may

not be in equilibrinm if this initial configuration is far from equilibrinm. Before we begin
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Input T, 1. S,

Randomly choose 2
spinS. Calculate

OH if this spin flips
Calculate W( S»-S)|

)

Generate arandom
number Z, 0<Z<1

Time to
take data?

Yes

il

Include the
quantities
calculated this
time in our
averages
Output any data.

Calculate any
thermodynamic
quantities of
interest.

For example
E,Cv, M, etc.
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collecting data we must make sure that we have allowed the system ta reach thermody-
namic equilibrinm and that our choice of an initial configuration is not influencing one

Monte Carlo averages: this is

ssured i equation 2.7 is valid. To do this we st ignore,

in onr data analysis. some initial number of conligurations corresponding, 1o, my x V'
Monte Carlo steps or g time steps. The exaet number of conlignrations we must ignore

is generally not known before a simulation. and only |

analysis of data after a simulation
can we determine if have eliminated a sufficient number of configurations. T determine
il we have chosen g sufliciently large we may compare ng o the largest relaxation time

characteristic of the approach to equilibrium. If we assume that the largest relaxation

time is the order parameter relaxation time, 787, then the condition for 1y hecon

"

ny > -r,',AT. The temperatnre difference, A = 1", is the dilference hetween the
the temperature of the simulation, T, and the temperatire defined by the initial config-
uration 77, By the temperature of the initial conlignration we mean that temperatire

for which the configuration is an equilibrinm confignration. For example, il the initial

systen s the gromd state then its temperature would he 0. A non-cquilibrinm

xation time for a thermody ic variable A is defined in terms of the integral of the

non-equilibrium relaxation function 637(1). We define

< A(l) >p1 = < Aloo) >p

AT, =
=2 A(0) g7 = < Aloo) 1

and the relaxation time
Py /‘:ﬁﬁ"'(l.):ll. (2.1%)
o
The L in cquations 217 and 2.18 is measured in terms of Monte Carlo time units. We

have introduced the time dependent ensemble average < A(L) >, given by

<A >r= X Plakife)nDAG)), (2.19)
{rhii=z)y
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where the sum over {ir}; is over those states which are equilibrium configurations at.

temperature ‘T, and the sum over {i} 7 is over all states

For a visual explanation the reader is roferred Lo fignre 23, In this graph we show the

Lime var

jon of & fictitions observable < AB(1) >. Each point represents a change in

anly one degree of freedom from the previous point

The region we wish to exelude from

onr Monte Carlo ave

s is the region between & = 0 and the point labeled 47, since

for 1 < 78 the system s still very mueh dependent on onr initial choice of configur:

tion

il has not

wehed equilibrinm. To insure we

o excluded this region we skip all

configy

s from (=0 up until 1 =

1.

Onee we have reached cquilibrinm we may caleulate the properties of this equilibrinm
contignration. Having done this we must generate other equilibrinm configurations. We

conld diseard are previons Markov process, and from some new in

tial configuration hegin

again Lo cquilibrate this new

tem. Thi:

'y ineflicient! A more efficient method

takes ardvantage of the ergodic property of the

andom walk, Instead of choosing a new

initial confignration randomly. we will nse the final configuration of our first random
walk as the initial confignration of onr next random walk. Then we do not. have to worry

abont the s

tem heing near equilibrinm, . We must however still be careful be

aise

we will have suce

ive configurations which are highly correlated. We must allow the

correlations to the initial system to effectiv

¢ go Lo zero. To accomplish this, we will
include every (n x N)h s

ystem in onr summations, where nis an integer which is large

enongh that, the correlation between the {8}, ¢ and {$)ppnxn © ation

is small enongh that. the luctuation of any thermodynamic observable of interest, from

its average, ix purely statistical.

“The choice of an appropriate n is generally not a priori

knowledge, but again after

a simnlation is completed it is po

ble Lo tell if we have chosen o sufficiently large. The

condition for a sufliciently large n is related to the linear relaxation time, 744, where A
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Figure 2.3: The Lime variation of a fictitions observable, ‘The second graph is an expanded
view of the upper graph.
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Chapter

is a thermodynamic observable whose valne we wish to calenlate. The linear relaxation

Lime is defined in terms of the Tinear relaxation function dasaa(f) which is defined a

< AMA(L) > — < A(D) >< A(l) >

danaall) = 2.20
danaall) <AZ> —< A>? ( )
el then we may define 744 a8

man= [ danaalt) (221)

One will note that the that averages in cquations 2.20 and 2.21 do not have a subseript,

as in equations 2,17 and 218, This is because the ensemble averages in equations 2.20

and 221 are given hy

<AN>= T Plhrkdrln DA, (2:22)
{rhdrly
and
CAMAN >= Y Pl{rh () DA ), (2:29)
{rhdrly

where the sums over {r} and {ar}y are over all states. Now to ins

re that we are getling
an unbiased estimate for < A > and its lnctuations it must be the case that n >> 744
otherwise we will have a sitnation where < A4 > may be dominated by a few large

lnetnations, which are the result of the correlation between siceessive configurations,

aphically what is meant by the above discussion the reader is again referred to

lignre 2.3, I this graph we show the time variation of a fictitions observable < AB(t) >.

I point represent

2 change in only one degree of freedom from the previous point.

The region of the graph marked by 1 and 2 and pointed to by an arrow shows that

there is a very large fluctuation from the actual average shown by the horizontal line.

This Huctuation is not purely s

atistical, but is duc to the high correlation between

the sue

configurations. Il we include all configurations in our evaluation of <
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AB > then this large (luctuation, will skew our measurement., sinee we will include many

measurements in this region. An appropriate choice of n is

shown in ligure &

[ both situations deseribed above, it seems that we must know a lot abont the

om

we are simulating before we can actnally start a simulation. 1t all appears very ad hoe,

and in reality (his is the case. Generally we have a reasonable understanding, of the

magnitude of o and ng and then we try fo err on the side of of safety and overestimate

hoth values. It is normally quite e e A0 we have failed o chose cither value

properly, since we may compare data using different values of cither v or ng. When hoth

are large enongh we will see no change in thermodynamic averages.

2.4 Finite Size Effects

but we ar

In our Monte Carlo simulations, we are dealing with finite s

ested in properties of infinite systems, since we wish Lo compare our results Lo the bulk

propertios of experimental systems. Therofore, we nush he able o obtain reasonable

namie limit for

estimates of the values of thermodynamic observables in the thermod

our simmlations to be useful. This type of analysis is known as finite size analysis. 1 we

have a system with a defined system size characterised by some variable L the variation

of properties with L can be studicd and we can extrapolate to the limit of L, = oo, In

order Lo do such an analysis we must known the basic dependence of the observable on

L, and we must also know the vange of values for L where this basie dependence on 1,

85] For example in the § = 1/2, two-dimensional Ising model with periodic
boundary conditions, the critical temperature in a finite system is related to the lattiee

size L2, and the critical temperature of the infinite system by the equation,

0(L) = O(o0) = AL (2:21)
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where v = 1 in this model. and L is large. If we evaluate 0.(L) for various L, then a

graph of 0.(L) vs L1 will have an y-intereept of 0.(oc). In this manner, from simulations

on finite systems we can obtain 0, in the thermodynamic limit. Similar relations may be

founiel for other thermodynamic observables, and similar analysis may be done.[27]




Chapter 3

The Model

3.1 Description of Model

Our goal is to study a two-dimensional Ising model with dipolar and superexehange in-

teractions using Monte Carlo simulation. With cach point on an infinite two-dimensional

square lattice we will associate an ion with magnetic moment i and spin 8. These jons
will interact via a dipole-dipole as well as a superexchange interaction. Pl in simple

terms the Hlamiltonian can be written as
H=Hs+H.r, (1)

with My containing terms involving the dipolar interaction and H,, having all terms

concerning the superexchange.

We will restrict the exchange interaction Lo involve nearest neighbonrs only and thns

1 a s 4 =
Hoo =2 Y S(#)-S(h), (3.2)
2 <nnd>
where < nn > significs a summation over all nearest. neighbonrs, and S(#7,) is the spin
at R,. For our model S(#,) will he uniaxial and

(H)

u

AT T by (:8.)

where a = 1,2,3 specifies the casy axis, @, = %1 delines the orientation of the spin at

Ry and Syr is the magnitude of the spins. We rewrite equation 3.2 as,

L > T (3.)

2 <un>

30
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with Jf given by

(3.5)

(3.6)
9

Here gy is the Landé g factor. (5] [17] [37] [38] The parameter J is known as the coupling
constant o exchange parameter and may assume any positive or negative value, A
positive value for J wonld favour spins which are orientated anti-ferromagnetically, while
a negative J wonld favour spins orientated ferromagnetically. One may note that we have
ot followed the usial convention in equation 3.4, which would have —J where we have

ve . Our reason for not. following convention is because we are more interested in

e

the anti-ferromagnetic regime and it was more natural to have this along the positive J
axis of aur phase diagram,
The isobropic exchange amiltonian in equation 3.2 heen studied extensively ( See

for example [27], [39], and [40] and references therein) and the application of periodic

houndary conditions is standard, By applying periodic boundary conditious it is possible
Lo mimie an infinite system with a finite number of lattice points. This will allow us to
use standard finite-size scaling technieues.

The dipolar interaction is a long-range interaction, which makes the application of
periadic boundary conditions less straightforward than with the short-range exchange
interaction. 1t might at first scem as if a long range interaction might be inappropriate
for a Monte Carlo simulation, which by necossity is restricted to a finite-sized system.
This problem was examined by Kretschmer and Binder [41] in work concerning three-
foms. As well, in a general discussion of long range interactions in

dimensional dipols

Monte Carlo simulations of hard particles interacting via conlombic forces, J. P. Valleau

examined similar problems and reached similar conclusions to Kretschmer and Binder.
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[12) Kretschmer and Binder examined the apparent incompatibility caused by linite sy

tem size and long range interaction. The casiest manner of dealing with the long range

nature of the dipole interaction on a finite system would be to trancate the interaction

at at some finite distance r. But this is equivalent to ereating a surface envrent at vading

r, which acts counter to the magnetisation of the bulk system. In an elfort to conteract

the offects of the truncation, many attempts to inclide some compensating field lave
been made. Some examples cited by Kretschmer and Binder include a demagnetising
field given by Il = (L — D)M, or 11" = (LM = DM,), where L, is the demagneusing
factor of the total cell, ) is the demagnetising factor of the truncation volume, M i the
magnetisation of the total cell, and A, is the magnetisation of the finite cell, Both these

examples overestimated the ordering in three dimensional simulations. Kretschmer and

Binder also discussed the use of an Onsager reaction field

sy,

= (ENEE

x being the ferromagnetic suscptibility. They dotermined that even this more sophis-
ticated method does not. yield results comparable to the Fwald summation method
(ES.M.). Based upon the findings of Kretschmer and Binder we docided o use the

.5.M., which we will disenss below. As a comparison to the 15.5.M. we also do some

simulations using the minimum image technique (M.LT.). The MLLT, was compared to

the E.8.M. by Kretschmer and Binder for three dimensional dipolar systems and a similar

comparison for two dimensional systems will be disenssed in this work. The ML, is

jon at the houndaries of the system under study,

a truncation of the long range int

with 1o compensating fields. In this technique the “scighbourhood” of spins with which
a given spin interacts is a volume in three dimensions or an area in two dimensions equal

to the volume or arca of the system understudy and contered on the given spin.

In order to implement the I5.5.M. on a theoretically infinite two dimensional system we
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[ restrict the allowed confignrations to those which satisly a strict periodic boundary

condition. That is, we will require that any moment i, satisfy

1= pizy when Fu=f4+G, (3.8)

where 7, refers to the position of the n% lattice site and G 15 any lattice veclor. The

lattice veetor, (7, is defined as

= al, x (myéy + ) where nyyny = {0,£1,£2,...} . (3.9)

We have defined the lattice spacing to be a, and the size of the system to be (a x L)%,
so we have asystem of L* spins. The periodicity of the allowed configurations will be
determined by L. We have associated the plane of the system with the unit, vectors ¢y
and ¢y Allspins which are not in our finite system are referred to as images of the spin
to which they are related by equation 3.8. The restriction on the allowed configurations
will allow s to specify the state of an infinite system in terms of the finite L? spins of

onr hasic unit cell. As well it will allow the use of Ewald sums to rewrite the dipolar

Hamiltonian in terms of this finite number of spins and thus will allow us to obtain

results for an i » system using standard finite size scaling techniques. An example
of an allowed confignration is given in figure 3.1.
“The Hamiltonian of a system of jons interacting via the magnetic dipolar interaction
may he written
a
> l'..l‘ml"“_'—'
St 7o 009 | Ry —

where a and f label the components of the magnetic moment, i and Ry, is the displace-

(3.10)

ment of moment n relative to moment m.
I we assume a uniaxial magnetic moment we may may write the magnetic moment
at I, as

Jin = prentnlas (3.11)
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where o = 1,2,3 defines the casy axis, o, = £1 specifies the orientation of the spin at

Ty anidl progg is the itnde of the moment. The veetor B, may be written in terms

of the reduced vector 7y, where

R = Pm 4G, (3.12)

aned we chose G such that, 7, lies within our finite system. For a visual example one

iy refer to figure 3.1, Equations 3,12 and 3.8 allow s Lo rewrite the Hamiltonian as a

sum over the spins in onr finite system and over all lattice vectors G, so the Hamiltonian

hecomes
V]""" « +;Eu_«_lml-—)-— L (3.13)
where (s the sell energy of the spins and is given by
2
1
C=dy lim ( ) —_— 3.14
"Zm—-a dxa) |5+ G =7 @10

Making use of Ewald summation techniques we are able to rewrite the Hamiltonian

Ny

Nt
22t

Ca®+ T LR Tom )n,,,],

where W

) is the elfective interaction given by

= 0 9 [ aritemnd
wolomy g ot @0 |5 T
a Y B e [5G
err(y, =2 4 |G|y
- 3.16
= ®19)
We can therefore define an offective field at a lattice point u as
i (3.17)

and we can write the energy of a configuration in terms of these effective fields as

E{S) = 1, [('u +Za,",li;;] 5 (3.18)
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A more detailed deriv

fon is presented in appendix A, where we have derived a nore
general form of the Hamiltonian than we nse in this study. When the spins are orientated

along the b axis 7 has only a y component. We call this the in-plane model, and in

cquation 3.17 we have a =

When the spins are orientated along, the ¢ axis ji has

only a  component. This is called the ont-of-plane model, and we have o = § =

The only difficnlty loft is to calentate Wo(Z) and the value of €. Phese quantitios
arc dependent on both system size and the orientation (in-plane or ont-of-plane) of the
spins. This task is left to the the mathematical manipulation program MATHEMATICA,
with which we have calenlated the required values for

ystems ranging, in size from 1, =

4 up to L = 64, The time required to calenlate a W (B for a L=1 systenm is loss
that ten minutes, while L=64 takes the better part of three days of computer time on
a DEC Station 2100, 1t is important. to point out that it is nol necessary Lo calenlate

all L' terms in Woo (Zm ), since ther

is considerable symmetry in the systenn, 1t is only

necessary to calenlate W (2

), since there will he a mapping for all other terms,
3.2 Computer Considerations

T this section we veer away from physics for a short, discussion of some programining

jons. Computer simulations involving long range interactions are very difficult

to perform heca

se of the computer time involved. It is therefore neee

y Lo program

efficiently, if we wish to simulate systems of sufficient, »

. To ensire i fast progranm we
wish Lo avoid using anything other than one dimensional arrays sinee the computer deals

with one dimensional arrays much more efficiently that higher dimension arrays, We also

would like to keep conditional statements, in Fortran T statements, to a minimm unless
they can save large amounts of computer time, As well, as mueh as possible we wonld

like Lo do any computations we can using bit, manipulations sinee the computer does s
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very equickly. By it manipulations | am referring to the and, or, and bit shift intrinsic

operations. Someone who is familiar with computer programming might feel these self

imposed restrictions are mnecessiry given the speed of modern day computers, but the
time vequired for a sinlation of dipoles increases like L in two dimensions (L9 in 3-D),
s every small improvement, is important, To aid in our discussion we indlde a copy of
the program in appendix B,

The tost. time consuming part of the simulation is the updlating of the elfective field

12 atench lattice point Tollowing a flip of a spin. The updating procedure involves

calentating the change in 1 as S, — =S, This change is given by

AT = =25, Win,m), (3.19)

The spin, Sy, refers Lo the state of the spin hefore we change its state, and we have
simplified the argnments of W in the obvious manner. One problem with the form of

W(kw).

cquation 3,19 is that we do not, store all of the W(n,m) but only store W(0,m)
We have to map the Wn,m) on to W(kn). This mapping is not trivial and kw is a
function of both the lattice point we are considering and the position of the spin flipped.
The wpdating of 2 is done in the subroutine Updatefield! and it includes the mapping
from (nym) to kw. By restricting the system size Lo those where [ = 2", wheren is a
integer, we are able to express the mapping in terms of five bit operations, and obtain
an inerease in computational speed.

When we include the superexchange interaction we must deal with the boundary

of aur systen earefully, since the nearest neighbours of spins along the boundary are

mapped in a different. manner from those of spins not on the boundary. If a spin is not.
on the bonndary, its four nearest neighbours are stored in our one dimensional array in
locations i — Li4 1 i4 Landi— L, where i is the array location for the spin itself.

For aspin on the top houndaty, for example, its upper nearest neighbour is actually
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Figure 3.2: llow we store the state of sites to deal with periodic boundary conditions.
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storeel in the Lottom row, anel viee versa for spinsin the bottom row. Spins on the left

ary have Il nearest neighbours on the right boundary. Therefore we must kiow

ot
it spin ison the bonndary of the system so that we may find its four ncarest neighbours
properly. We do ot wint 1o have Lo check i the spin’ we are updating is on the top or

since Lhis would involve a multiple number of very

botbom raw, or along one of the edges
slow conditional statements excented every time we try to update a spin. Instead what

we do is embed onr L ox Lsystem in a L+ 2 x L+ 2 system and store the boundary

sites twice, The hottom honnlary of our Lx L system is stored twice, oncein its normal
position and oncein the top row of our L+42x L+2system. Similarly the top boundary
of our [ x L system is stored in its normal position as well as along the hottom of our
L2 % 1L+ 2 sysiem. We do the equivalent with the left houndary and right. boundary

of onr L x L system: store them both in their normal position and in the right column

and Teft colimn inonr L+2x L+2 system. The benefit of storing the boundary in two

separate locations is that now all spins inonr L x L system will find their fonr nearest

weighbours in- the same manner; it doosn't matter if they are along a boundary or not..

Other benelits to this method are an casier transfer to a parallel algorithm, as well as

rs. (43)

e for wise on veetor proces

being, veetori
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Results and Discussion

4.1 Some basics and error checking

In this section we will present the results of onr Monte Carlo sinulations, We will look
at some checks which were done to ensire that ot computer code was working properly.

This is important, as all computer code, with the exception of the random number

generator, was written for this project by the anthor, and no similar (two-dimensional)
studies could be found for comparison. As a first, check, we compare the onergy of the

ground states for both the in-planc (AF) and the ont-of-plane (AA) models, with encrgies

caleulated by De’Bell and Whitehead.[24] The agreement. is excellent with differences of

Tess then 2% even for the smallest of lattice sizes for hoth n the in-plane and oit-of-plane

models.

During a simulation with cach spin flip the eflective field, 1y, changes at all Tagtice
points, due lo the long range nature of the dipolar interaction. Rather than recaleulate
the effective field via equation 3.17 after cach spin flip, we may, since only one Lerm in
cach sum bas changed, more efficiently record the change in the offective field, & 71, al

each point. So as a function of time the cffective field at a point can he calenlated as

Nyty)
(1) = 1,(0)+ 3= AllL(i). (1.1)
i=1

We have defined Ny(1) as the Lotal number of flips up to timet. There is ample opporti-
nity for errors to’ accnmmlate as Ny(l) may hecome very large. Fo check that significant

errors arc nol accumnlating using equation 4.1, we have calenlated I, at some time |

a0
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where Ny(1) > 100000, both when we have been calenlating /,, via equation 4.1, and
nsing equation 3,17, Despite the sammation of greater than 100000 terms we find thal
no significant. error has heen introduced. Generally the use of equation 4.1, instead of
equation 317 gives errors in the 1200 or 13th decimal place,

I is possible to enumerate the states of a 4 x 4 system, to get exact values for

Hiermodynamie variables, such as average energy, specific heat, order parameter, and

magnetic susceptibility. We have nieasured these quantities by Monte Carlo simulation
for varions size systems including 134 systems. The small system size will climinate these
systems from onr finite size analysis, but they do offer a further check to the accnracy
of onir Monte Carlo simulations. In general we find that, at moderate temperatures, the
Montte Carla resulls are very aceurate, while at low temperatures the small system size
alongs with the problem of domain wall formations prevents an accurate Monte Carlo
estimate of the order parameter and the magnetic susceptibility. Tn the simulations of

the in-plane systens, a small shoulder in the specific heat, which at first was thought to

b result of poor Monte Carlo data at low temperatire, was in fact a feature of the

et solution. “The formation of domain walls, particularly in the in-plane simulations,
led o problems in the smaller systems, but fortunately the effects diminished at larger

lattice sizes.

The solution to the problem of small system size is obviously to use larger systems.

When dealing with only shorl range interactions one is generally able Lo choose systems

where small size effects are not significant. This is becanse the time required for such

o simtlation grows linearly with system size, V. For long range interactions the time

for a simulation grows with the

stem size raised to the dimension of the system. For

atwo-dimension.

tem of size N = L x L, the time will increase as L1, effectively

limiting the size of the system we may

simmilate, The constraint of reasonable computing

time, limited this study to systems where d < L < 64, where the L = 64 simulations
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required a parallel version of the program. run on a 6 processor Silicon Graphies Iris.[11]

4.2 Typical simulation

A typical simulation will consist. of approximately 10000 nitialisation Monte Carlo steps

(MCTS) per spin, so we have set iy = 10000, where ng is delined in chapter 2. We then

have typically 10% to 10® MCS per

spin, where we inelude every tenth step in onr data

taking, meaning we have set n = 10, where n is defined in chapter 2, Tn a sinulation we
choose the initial configuration in one of three ways. As a fiest oplion we might. choose

our initial configuration randomly. Most often a final confignration from a previons

mulation done at a lower temperature was used. This, of course, insured that onr initial

configuration was near equilibrinm, We did not, us

confignrations from previons runs

at higher temperature because we found that domain wall formations which were long
lived at high temperatures conld “reeze in” as we lowered the temperature preventing

us from seeing the true equilibrium behaviour of the system. This conld be seen in the

hysteresis of the order parameter as a function of temperature as we simnlated a system

first, Towering the temperatare then raising it and finally lowering the temperatur

Similar problems were encountered in simulations of three dimensional systems.[45] As
a final option, particularly when simulating systems at low temperature, it was more

effi

it Lo initialise the system Lo the gromd state and allow more initial steps to allow

the system to reach equilibrium, This choice also avoided the problem of domain wall

formation.

OQur results are divided between those where we have a pure dipolar Hamilt

(= 0), and results when we have both a dipolar and superexehange contribution to

the Hamiltonian, (/ # 0). A large percentage of our time was spent in Lrying Lo under-

standing the pure dipolar system as no previons simulations on two-diniensional dipolar
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systems conld be found,

43 J=0

i this seetion we will deal with systems where the Hamiltonian is given by equation
A.15. Simulations were done for systems ranging from L =4, to L =64, for both systems
with spins oriented along the b axis (in-plane) and for systems with spins along the ¢

axis (ont-of-plane).

4.3.1 Energy and Specific heat

In fignres 4.1 and 4.2 we plot. the variation of the average energy, < I >, with temperature

for lattices of v The energy has heen adjuisted so that the ground state encrgy

a0, The

for cach lattice rage energy is caleulated according to equation 3.18.

The magnetic specific heat may be found from the differentiation of the average encrgy

s ot the most accurate method

with respect. Lo temperatire at constant field, but this

available in Monte Carlo simulations. It is a well known thermodynamic relation that
the specifie heat, per spin is

1
70?

[«m?>-<E > (1.2)

where <> denotes an ensemble average, 0 is reduced temperature, and L? is the number

of spins. It is this onship that we used to caleulate the magnetic specific heat. We
plot in figures 4.3 and 4.4 the magnetic specific heat as caleulated from equation 4.2 for

the ont-of-plane and in-plane madols respectively, for various lalbice sizes,

The peak of the magnetic specific heat may be used as an estimate of the Néel

temperature for our dipolar systems. As discussed in 2.4, the Néel temperature should

e according to [27)

(L) =0 (00) ~ (4.3)
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Figure 4.1: Average energy for out-ol-plane system, with the ground state energy defined
as zero.

L should he linear with a y-intercept of 6, (00). There are three

Agraph of 0,(L) versns

unknowns in equation 4.3, v, 0,(c0), and the implicit. constant. of proportionality. While

it is possible to do a regression analysis Lo fit all three nnknown parameters in equation

we will

4.3, the quality of our data is not sufficient for such a fit, to he meaningful, Ins
assume that v = 1 in this model, the same as v for the standard two-dimensional Ising

model, and will check the consisteney of this assumption when determining other ¢
exponents. I figures 4.5 and 4.6 we graph 0,(L) versus 1/L. The estimate of 0,(1) for
L= 4, which is the point farthest right, is not included in our analysis. 1t is obvions from

below that, L = 4 is not in the scaling region where

this analysis and further analysis

equation 4.3 is valid. A least squares fit estimate for 0,(00), gives 0, (o) = 2.7 £ 0.05

95 & 0.1 for in-plane ordering. ‘To check for

for out-of-plane ordering and 0,,(c0)

consistency we take our estimates for 0,(00) for hoth spin orientations as exact and fit,
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08

0.6

Figure 4.4: Specific heat, for in-plane model.

the value of ». For hoth cases a least squares lit gives v = 1.0 £ 0.1, Before any definite

determination of the universality cl

may he done, it will be necessary Lo oblain higher

quality data to verify that our assumption of v is valid, Until such tine we mst, temper

all claims with the fact that we have assumed a value for ».

4.3.2 Order parameter and Susceptibility

In figures 4.7 and 4.8 we have graphed the order parameter for the ont-of-plane and the

in-plane systems respectively for various lattic

sizes. The fact that the order parameter

does not go to zero sharply in our Monte Carlo simulation is a result of the finite size of

our systems. One can see that with increasing lattice size the tail in the order parameter
becomes smaller. From these graphs it wonld appear that the £, = 4,8 systems for in

planc ordering and the £ = 4 system for ont-of-plane ordering suffer duc o small system

size at low temperature, The of smoothness in the in plane data will be diseussed
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below in section 4.5 When caleulating the eritical exponent  defined as

<M> ~ ()¢ —07) (1.1

~ L3Fu=u),

where ¢ = 58 we have not made nse of these s

ler systems. We lind, using

equation 4.5, that, £ = 0.12 £ 001 for the onteof plane systems and £

= (.12 0.03 for
the in-plane systems by doing a Teast squares fit, to equation L5, which we have shown

in figure 4.9. The exact value of £ for the $=1/2 two-dimensional Ising model s 0,125,

100

1 fnnetion of the

Fignre 4.9: Least squares (it of the log of the order parameter at 0,
log of L.

We may calenlate the magnetic susceptibility from

< Mt > - <M > (1.6)

In fignres 4,10 and 4.1 we graph the magnetic susceptibility as a finetion of temperature

for both spin orientations.
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We may characterise the eritical behaviour of the suscoptibility by measuring the

critical exponent 4 which is defined as

Ao~ (=07, (1.7)
~ L1 =0). (1.8)

A least squares fit to hoth the in-plane and ont-of-plane data using equation 1.8, shown

in figure 4.12, yield 2 = 1.7 2 0.4 and 2 = 1.9 2 0.4 for the out of and in-plane systems

respectively. T the tvo-dime

sional, spin 172 Ising model 2 = 1.

Whi

here i

ome error in our estimates of the eritical exponents due to the small

size of our systems, onr results are consistent, with these systems helonging to the same

universality class as the standard two-dimensional Ising model, despite the long range
nature of the dipolar interaction. While it has previously heen proposed that. the pure

dipolar system belongs to the same univer

Ly clas

s Uie bwo-dimensional, spin 1/21/2

Ising model, this is, to onr | lige, the first comparison of eritical exponents caleulated

for dipolar systems, using Monte Carlo simmlations, to those of the two-dimensional,

/2 Ising model,
4.4 Data Collapse

During prepartion of this mamseript, we learned of a similar study [16] which was still

in its initial stages. The purpose of this new study was to evaluate the eritical exponents

of a two-dimensional

1/2 dipolar model using a finite

7o sealing form for < W2 2,

where W is the order parameter. If the finite aling form s valid then it shonld allow

one to graph data from simulations on lattices of varion: in sueh a manner that all

data falls on a single univers . The finite size

cnrve regardless of the size of the lat

scaling form states that,[27][35][17) (48]

< W >= N7[(INY), (1.9)
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Fignre 4,12 Least squares fit 10 log(v)at 0, vs log(L) for the out-of-planc and in-plane

stems. The out-of-plane has been scaled by a factor of 10 to make viewing casier.
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where &, y are eritical exponents, N is the number of spins, £ is the reduced temperature

28 and [(ENY) is some unknown funetion. To fit three parameters (r.y.0,) is diflicult
when one does not know the form of the function f(1A"). We have, instead, tried to it
cach of the parameters independently, We obtain a valie for 0, from our specific heat

measurements. The exponent » may be fitted using equation 1.9 at = 0, assuming that

J(0) is finite. Equation 4.9 then reduces to
<WE>= NUf(0) (1.10)

A log-log graph of < W2 > at IN" =0

us N shonld have slope o "To estimate g, we
look at. f(LNY) near LNY = 0. A Taylor expansion in the full variable [NV, assuming that

JUUNY)Y near ENY = 0'is well bel

ed, gives

afUN

JUNY) & [(0) + LN N

levozo + o [{R15}

Substituting this result into equation 4.9, simplifying and taking the logarithm of both
sides yields

h

2
|[< W (0 4 ) In(N) + In((0)). (1.12)

< >n]

A lea

sqares fit of I [SE22<82a] verus (V) will have slop

). Mere < W# =,

refers Lo < W2 > evaluated al L. Onr fitting gives & = 1940

nd gy = 2402, for

the out-of-plane data and & = 2.0£0.2 and x4y = 2.6 0.4, lor the in-plane data, hoth

of which include within the error bars the two-dimensional Ising vales of o = 1875 and

w4y = 2.5, The eritical exponents . and y are related to the commonly used eritical

exponents a, A, and 7.[17)48] The relationships arc,

2y— - ;
— (1.13)
2~
B = =5 (4.14)
go= VDB (4.15)
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Wes liave graphed the results of this data collapse in fignres 4.13 and 4.14 in the standard
wanner for the ont-of-plane and in-plane models respectively. We graph the logarithm
of < % 5 N=* versus [LNY]. 1 the sealing form is correet and the exponents x and y are
correet, then the data shonld fall on a universal curve regardless of system size. The two
branehes in the graphs ave for £ > 0 (the lower branch) and £ < 0 ( the upper branch).
The deviations from the universal enrve by the smaller lattice systems are expected. since
the smaller lattice systems have a smaller temperature range over which the scaling form
is valid.

This supports our claim that our model is reproducing the statie critical hehaviour
of the two-dimensional Ising model, placing our model in the same universality class as

the Ising model.

4.4.1 Connections to Experiment

for the eritical temperatures from onr specific heat data and

convert these to estimates for the eritical temperature for particnlar RE compounds, Our

vedueed Lemperature seale (©) is proportional to T in Kelvin, The exact relation is
20°ksT
0 (4.16)
Heir

where i is the elfective magnetic moment, and a is the lattice spacing. We again ignore

the small difference hetween the a and b lattice veetors and assume a square system. To

compare our rosults Lo experiment we graph in figures 4.15 and 4.16 the experimental

Néel femperatures in wnits of 2¢%kp/nd for those rare carth compounds for which jir,
7, and spin orientation are known, The transition temperatures in Kelvins, effective

moments, and spin orientation are also shown in table 4.1. We also graph the Monte

Carlo erit shown as

sl temperature as a function of p2gfor the two spin orientations

a broken line in both figures, We find that the Monte Carlo estimate is consistently
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T(exp)
0.551£0.05K [ 0.016TK
0.612:0.05K | 0.0148K
005K

Compornd
NdBa, (s O

SmBayCua O if in-plane

SmBa,Cuy O if out-of-plance 08452, 0.61240

T, IN
0.6, 091K
18, 0.618K
0.3, 0951
38601571, 049K 0.300K

os of various rare carth compounds

Table d.1: Proper

lone ix

lower than the experimental values. This implies that the dipolar interaction

notsnfficient to account. for the observed transition temperatures, 1will be necessary

fo include an additional interaction to acconnt for the experimental results of ehapter 1.

change interaction in onr

tions will deal with the inelusion of a supere

The following s

Monte Carlo simulations.
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4.5 J#0

Siner we were unable to acconnt for the experimental Néel temperatures with a pure

dipolar Hamiltonian. we will introduce a superexchange interaction as in equation 3.1

While there has heen some speenlation ec

or

i & possible exchange interaction, [5][49]

be

ige hias established. We expect that, given the layered

1

strneture and the anisotropy of these ¢

| any intraplaner exclange interaction

will I

ignificantly different from any interplaner interaction,

We have limited onrselves to the case of L = 16, since this size of lattice has heen

shown to he in the s we have heen

aling region of all the thermodynamic quantiti

calenl; sonable times.

ing, anel yet is small enough to allow study in

4.5.1 Ground State Configurations

ALT = 0 we ble to calenlate using Ewald s

i the energy for particnlar config:

a function of the exchange parameter J. Assuming that one of onr chosen

conligurations is te ground state, we are able to determine the change from one ground

state t

another. The con s we have cons

grati

idered are based on the carlier findings

of three dimensional studies [11] [50] as well as |

direet observation of the low temper-

ature collaborator

wlations by the anthor and b 1t is very possible that we have

e, from onr study, a configuration that for some value of J i the ground state.

The long range nature of the le-dipole interaction. bined with the short
L i B¢

exchange interaction makes it very diflienlt to prediet the ground state for a system with

hoth infe ons. The conligurations we have considered include the antiferromagnetic

e (AA), the Forromignetic case (FF), the two cases where we have antiferromaguietic

ardering inone diection and ferromagnetic ordering in the second., (AF

1d (FA).as well

as s Tayeread phases. These laered phases consist of a number of rows or columns of




[
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spins pointing in one direction followed by a similar mumber of rows or columns of spins

in the opposite direction, with this alteration of spin direction throughout the entire

(AI#) or (FAZ), where # refers to the

ample (AF2) vofers to a state which is

lattice. We will label these layered phases
) I

period of the antiferramagnetic ordering, For

ction hut alternates in the a direction with two columus in the

ferromagnetic in the b dir

ive and so on hown in ligure

tive direction followed by two columns in the neg;

VI Ty
VIt
VI
YT

Fignre 4.17: The AF2 phase,

We can see in fignre 4,18 that for ont-of-plane ordering at large positive J, we will

have an antiferromagnetic ground state, This is reasonable as both the exchange and

dipole interactions in this region favour an anti-ferromagnetie state so there is no confliet

gion of e phiase

hetween the two intera

tions. As J is lowered we pass into the

diagram where J is negative, and lenee the exelange interaction wonld separately Tavour

the ferromagnetic state. There is now a conflict hetween the two interaetions. There is

o at J = —0.8

a tran: where the lowest energy state is the (AF) or (FA) state

sinee this state minimises the frustration of the two interactions. Note that sinee the i
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and b lattive directions are cquivalent for ont of plane systems, when disenssing the AF

and AFAL wo will he implying hoth the A and FA or the AF# and FA# states. This is

anly true for the ont-of-plane case, as e in-plane system does not have this symmetrs.

The AF state continnes to be the ground state until J = =232 when we move in to

i region where the layered states hecome the ground state, The presence of a layered

gronnd state i onr phase diagram is one of the subtleties of long range interactions, that

does not ave to he considered when only short-range inter

ctions are present. We have

anly calenlated the energy of the layered states whieli have a period commensurate with

ce we are disen

the e s a 16X 16 lattice we only deal with a layered states

with period 24, and & There is a transition from the AF to the AF2 at J = -2.52,
from the AF2 to the ARLat J = =4.77, and from the AFd 1o the AF8 at J = =7.05.

When J = ~7.896 the ferromagnetic exchange interaction dominates over the dipolar

interaction and the ground state hecomes the tate.

T onr 16 X 16 system hetween the AF and the FF phase we show only four dilferent

e I the infinite system we might expect to seo all layered phases, ie. the AF3,

i the fnitessystenm we may find vegions where the lowest energy state consists of
alternating layers with a period which is not commensrate with the Jattice. with an extra

domain wall to allow for the periodic houndary condition, This makes it very difficult at

Honzery ey o ish pha ies. To empliasise a point. one must

vemember (hat in ordor to determine tie ground state. we mist guess at possible ground

st

« then ealenlate the energy of states to determine the trne gronnd state, It is very

ion some states that for cortain values of

possible (hat we have escluded from consid

Jare the Jowest energy
The zero temperature portion of the phase diagram for in-plane spins, shown in figure

119, appears

implier than the its ont-of-plane counterpart. The dipolar interaction is

ot symmetrie for in-plane spins. henee it is no longer valid to consider the AF and
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o

s Logether. AL sufficiently large positive J the exelange interaction dominates,
and the grownd state is the pure antiferromagnetic state. When Jf is lowered, there is o

transition at .J

32, at which point the gronnd state is the dipolar grod state, AF,

When J = —0.30 it appears thal. the ferromagnetic exchange interaction doinates and

the gronud state

s the (FF) state, At the houndary hetween the ferromagnetic phise
and the AF phase, we have a very interesting set of cirenmstanees, The Tayered phases,
the ferromagnetic phase, and the AF phase all have the sae energy. 16 we reeall the

discussion ahove concerning the diffieulties we had with the pure dipolar system, we can

mnderstand the sonree of these diffienltie

There will be i large mmber of states with

enrgy very near the grom state, These states will allow for the formation of donain

walls with only a small inerease in energy, These domain walls will Le very stable and as

they move throngh the

tem they can canse large fluctoations in the order parameter,
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alenlation of the order parameter and the suscoptibility very diffienlt.

making an accnrate

Ed)

Figure 4.19; for the in plane confignration,

where zero s defined as the en

ions pha
ice of all int

ate energy of vz
gy in abs

ctions.

452 Phase Diagram

I fignre 420 we present the phase diagram for the ont of plane model, showing the

various: phases in the temperatnre-exchange parameter plane, The upper portion of the

. which is

diagram shows the disordered phi separated from the ordered phases by a

line of second order phase transitions. The values of 0, for various values of J were

J was held fixed and

mulations wlhe

determined from the peak of the specilie heat for

the temperature was varied. One might note that we have transitions from the disordered

state to a ferromagnetically ordered state, so, strictly speaking, we should refer to the

transition femperatures as Curie temporatures instead of Néel temperatures, We will



Chapter 1. Results and Discussion Gt

not make a notational distinetion and will refer to both types of eritical temperatures

as Oy, The error in this line is approgimately £0.2, Ou the far loft and far vight of
Wi Tite one has a linear relation hetween 0, and . T these rogions the short-range

is constant and equal

exchange interaction dominates the dipolar interaction and |25

Lo the appropriate two-dimensional, spin 1/2 lsing value, Going from right to left we

Disordered phi

I [N
',.\\;*‘“‘
ak
2k FF s K S ]
i ey
! ‘o
H g a0y
AR AF4 P AR X
0 1 fa FEILE- Py
-12 -0 ® 6 4 4
i

Figure 4.20: Phase diagram for ont-of-plane model

see the varions phases in the low temperature region. When J is sufficiently large and
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tiferromagnetic phase. whids as J s lowered and becomes

positive we have a pure

negative chianges to a AI phase. As J s lowered further the ground state becomes one

less than smooth

of the Tayered st T'he order-disorder transition phase Doundary

s we deal with to

in this region whiel is understandable sinee we have limited the pi
those which are commensnrate with the systems dimensions. Other phases with periods

not commensurate with the system will affeet onr results.

The vertical Tines which extend from T=0 to the order-disorder transition line

il lations were done at fixed tempera-

transition points. Simu

awn npward from the T
ture with variable J, to see if one could determine the transition from one ordered phase
to another. For this model it is diflicalt to determine the transition point. exactly as

the transitions are first order and there is significant. hysteresis in the simulations. The

results of these sinmlations are ineluded in the phase diagram, and we quote no error

estimates beeanse we have no real estimate of their

an thes cnracy.

od

The in-plane phase diagram is simpler than the ont-of-plane diageam sinee the layer

phases are ot present. I figure 421 we find a line of second order phase transitions

This line was determined from

separating the disordored phase from the ordered phas
simutations at. fixed J, with the temperature varied 1o determine the peak of the specific
heat, Boginning from the far right. at large positive values of ., the gronnd state is the

pure antiferromagnetic state. At J = 3.2, the ground state switches to the AF phase,

and at J = =03 the ferromagnetic state is the lowest energy state. One may note that

o small forromagnetic exchange interaction (< =0.3) s sulficiont to cause a change from

the dipolar ground state to the ferromagnetic ground state.

We st be careful at the tran:

tion between the AF and FF phases since the energies

of all the layered phases. the ferromagnetic, and the AF phase all have the same encrgy.
We feared that this would make the determination of the phase houndary hetween the

Al and FI* phase diltieult at low temperature, but this appears not to be the case, hn
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the AF and FF

m hetwee

sinmlations done with T fixed and J varying. the tr:

phases is very evident in the energy as a function of . A sharp change in the shope

—0.3 in the s eat T =10,

mulations o INHAIN

of the average energy is seen at ./

and 4.0, This appears as a discontinnity in the spec al as a fanetion of J as well,

The phase boundary hetween the AF. and FF pliases is vertical, as shown in figure 121,

houndary bet the AA and AF pha; Land is found
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16 T T T T T T
s -
[F3 3 Disordered phase -
nE -1
@ X B
o
4k v
é :
2 b F AF 8 AA
a
0 1 1 1 1 1 ?
-3 2 < 2 3 4

Fignre £.21: Phase diagram for the in-plane model.
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4.5.3 Connections to Experiment

With the inclusion of a superesehange interaction to onr Hamiltonian we have added

a new parameter 1o onr model, that being the exchange parameter . There s some

restriction to the vahies of 0, which we may obtai

<y adjusting the vadue of J. The

lowestpossible transition temperature is hetween 0.2 and 0.6 for the out-of:plane model

o i units of

and 360 and 4.00 in the in-plane model: all temperatures

e There

i second restriction on ./ when comparing 1o experinen

s As s varied the gronnd

state also changes, so for an estimate of the exehange parameter to be relevant it is

at the value of J obtained correspond 1o a system with the experimentally

determined ground state. 1f we treat J as a free parameter, and adjust J 1o obtain the

proper experimental Néol tomperature for the Krame

s fons, Fr, Dy, Gdeand Nl the
correct gronnd state is realised in cach case.

Rather than simply using J as a fitting parameter it wonld he more constructi

we conld make an independent

imate of J and then compare the resulting Lrans

temperatures for the various componnds Lo those Found experimentally, By assiming

that J in cquation 3.6 is a constant for all the rare carths.[3][5] we may estimate the

exchange parameter J for any compornd given J Tor one compond. 15 we it/ so as Lo
get the proper 7, for DyBagCiy Oz, we may estimate ./ for ErBagCiyOg: Dy and e heing,

the rare carths for which our model is most valid. We choose to it to the experimental

value of 7, for Dy BayCig Oz hecause this componnd, based on erystal field calenlations

(3], is the experimental system most sinilar to onr model systen, As well in the region
of interest on the out-of-plane phase diagram, which is appropriate for Dy, we find Uit
the eritical temperature has a simple linear dependence on .

Applying the above procedure, J(Dy) = 051, and J(Er) = L1(1Dg) = 023, in units

Using this value of J to estimate the eritical temperature for FrBa,CiyO,
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gives T3, (Er) = 057K £ 017K, which agrees, within experimental error, with the exper-

finental valie 0.618K, anel differs from the experimental value by 10%, The largest crror

inonr estimate is actually the & 10% error in determining jigr experimentally. Other

uneertainties are in determining the magnitude of the lattice vector a, and the error in

our estimate of @, from the simulations, however they do not contribute significantly to
the error, Onr estimate for J in ErBa,CugQ yields, in our Monte Carlo simulations, a
ground state which is the same as that found experimentally.

While we do not expeet onr model to be valid for GdBazCigOz, mainly due to the

Sefold, degenerate ground state, i

is nevertheless interesting to extend the previous
argiments, With the same assumptions as above we find that J(Gid) = 4.J(Dy) = 2.04.
17 this is a reasonable estimate of the exchange interaction, then we are able to account

for CdBaCiy O having a AN ground state instead of the pure dipolar ground state, AF.

For J = 200 the gromnd state energy of the AF phas 098, whilo the ground state

5 . . " 2,
energy of the AA phase is -6.544, where hoth energies are in units of e, and where we

ave defined the zera of onr energy seale as the energy of the system in the absence of any
interactions. 1 we naively continue onr analysis, we estimate the critical temperature

for GdBayCnyO7 1o be 75, = LTSK £0.38, which differs by 22% when compared to the

experimental value of 2.

K £ 0.01. Even though our ¢

imate of T, does ot agree,

within: experimental error, with the experimentally determined transition temperature,

that we have even areasonable value when we apply our model to GdBay Cu O:

rvemarkable,

4.6 E.S.M. versus M.LT.

Asa comparison to the Ewald summation method we have simulated some out-of-plane,

L=16

s using the minimum image technique. The ground state energy differs
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by approximately 19% when compared to the value of De’Bell and White

ad [21] We

graph the energy, specific heat. order parameler, and susceptibility for systems with a

pure dipolar interaction nsing both methods in figures -1.22, 4.23, 4 and 125, We find

the that the M.LT. estimates a 7 which is smaller U

L the ESANL by 31%. The M.L'T.

value being 7, = 1.680.1 and the E.S.M. transition temperature heing T,

for a 16 by 16 system. In the limitof L — oo both methods should give the sa

for the eritical temperatire and the eritical exponents. The large diserep

L = 16, between the rosults of the IS.M. and the M.LT. fmplies that the finite size
olfeets are still very large. We expeet that the finite size offects in the ES.M. are smaller
than in the M.LT. Since system size is Timited by computing time consteaints, the estra

complexity of the 1.5.M. is a necessary complication.
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Conclusion

The results. presented in this thesis, concerning the two dinensional Ising model with a

of considerable interest be

dipolar and o of what hias heen

fearned coneerning diy

rosystems, and their e properties at low temperature,

As well the comparison of these results o the experimental systoms. REBayCliyOs..y.
partially answers some of he many questions concerning the magnetic ordering a low

temperature, on the rare earth sublattice in these componnds,

+ been able to show. using Monte Carlo methods that a two dimensional,

spin: madel on a square lattice, wh

the spins are coupled by a pure dipolar

rs 1o helong to the same universality class as the two-dimensional

8=1/2 Ixing model with a nearest neighbour exchange interaction. The eritical exponents

both spir £ = 0.1240.01 for the in-plane model and £ = 0.120.03

and ont-of-plane mode 2 = 17£0.4 B the out-of-plar

Land 2= 1.9£0.4 for the

in-plane model. The eritical reduced temperature for the transition from the disordered

1o ordered stat

0, = 237 +0.05 when the spins are restricted Lo orient perpendicular

to the plane of the system, and 6, = 3.95£0.1 when the spins are confined to one of the

s Onr claims are, of course, based nupon the assumption that v = 1, which

is consistent with all onr data, but s still an assumption.

We have also dete i

wined the phas

am for two possible spin orientations, when

there is an exchange interaction as well as the dipolar interaction. We have studied

systems with the moments confined to point along the b axis and along the ¢ axis. The
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complesity of the phase dia

ram depends on the spin orientation, it we are able to show

the regions of phase space where one finds the anti-ferromagnetic, the ferromagnetic, the

dipolar gronnd s as well as a number of Tavered states which are not found in vither

the pure exchange or pure dipolar mod:|;

L Che disordered state, Our phase diagrams

are calenlated for a 163 16 system, bt we expeet that it qualitatively mimies the phase

diagram of the infinite system.

By applying onr results to the vare carth componnds. REBaaCiyOz o we have heen

able to better our inderstanding of the magnetic ordering in these componnds, We have

made several assumptions in developing onr model for REBayCia Oz We have assnmed

that the magnetiec moments are uniaxial and the sy

stems are quasi-two dimensional,

which

s most appropriate for DyBayCuigOroy and ErBiasCuaOs_y. We

shown that

a pure dipolar interaction is not sufficient to acconnt for the magnetic ordering on the

componnds. Onr

stimate for 7, hased on i pure dip

interaction falls consistently lower than the experimental value, With the inelusion of

a superexchange interaction, which has heen proposed provionsly by other

5], wo are

able to it the experimental values of 75, and still maintain the proper

xperimentally
determined, in-plane, ground state, With a farther assumption concerning the strength of
the exchange interaction, applied to the two compounds for which the onr model is most
valid allows us to prediet the transition temperature for BrBayCugO7 within 10% based
solely on onr simulations and experimental results for DyBayCigOg. 17 we extend this
analysis to include GdBayCiy Oz, for which the validity of onr model in very uneertain,

we are able estimate the

itical temperature to within 22% of the experimental value,

In this work we have, ont of ne Ly, made some assumptions concerning the effeetive

dimensionality of the system, and the effective dimensionality of the magnetic moment.
The second phase of this work will examine the consequences of these assumptions.

In particular experimental work supports the proposition that in ErlayCiy Oy there
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an to an uniaxial spin system above the Néel

is @ tramsition from a planar spin sys
temperature, A dipolar XY modelis el more complicated a problem than the nniaial

The

dipolar model and has not been treated using Monte Carlo in any conelusive stud,

As

nest step in Chis study will involve s comprehensive study of the dipolar XY model.
well the two dimensional restriction in onr model will have to he removed. While the
dipolar interaction in the ¢ direction has been shown to he four orders of magnitnde

s, o sch Timitation can be puton an

smabler hetween the planes than i the pl

wetion. As a further extension, the inelusion of an interplanar

interplanar exchange inte

excliange interaction will he explored,
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Derivation of Dipolar Hamiltonian

We hegin with a general Hamiltonian deseribing the interaction hetween a colleetion of

4l

dipoles with moment i = e, where

i |
Zn"n,,,lln h_‘ ”m—iﬁ (A1)

The displacement of the m™ spin relative to the n'™ spin is given by ...
We limit oar collection of moments to those where the coslignration satisfies the
periodic condition.

fiu = i when 7 = v 4 (L (A.2)

€7 hoing any lattice vector, Therefore any

unit

st of spins mayhe reduced o a by

cell and replicas of this unit cell, as in fignre 3.4, We will 4

e Lhat onr system consists

of a basic unit cell with N =

pins, on a square lattice, This square lattice is described
by a perpendicnlar basis (aéy, aéy), We can convert the sum over all lattice points, Lo a
sum over all points in a L x L basic unit cell, and a sum over all lattice veetors, ‘The

Hamiltonian may then be rewritten as

IN

: ,,,:,,ZD ol

o

H=

| N

(A.3)

where the prime on the sums restricts n and m to those sites in onr basic unit cell. The

second term will be a constant for any {ji}, as it is independant of the confignration.

&0
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This term contains information on the interaction hetween a spin and cach of its image
spiny. We refer to this quantity as a sell-interaction and define the constant © such that:

i

'l""" C+ZZn o i 4] (AA)

" mh,‘ O | + (F —

We now detine an effeetive interaction W,

B
Yy L

(=) = lin (A5)
and pewrite the Hamiltonian as
(A.6)
where
1 ST .
——— dpe Pt G=00? (AT)
[P + =
Summing over lattice vectors €7 yields,
9 ALi2
- e A, ~(Fum+(3=7) AR
7h e (88)

. -

I AR S e L v 9
v A ,,.;« (A9)
e

= = [upy =~ [+
vk e

PR 4260 T =)0 (A.10)

mll,".—(r'mu»1’]’n'Z(,—[”’-ﬂﬁ'(f‘um—ﬂ]ﬂ"A (A1)

@

h

Norw squate Tattice with lattice constant a and L, sites on an cdge, we

sinee we have a

may write,
G = La(més + naés). (A.12)
Therefore substituting equation A.12 in to equation A.11 and rescaling 7 = #a:
- . o o=
Ipe=r o Enm =P =Ly a0 g 2) 13
[Tane s (A13)

i




Appendix A, Derivation of Dipolar Hamiltonian &

Now we rescale p — pla. Therefore dp — Ladp giving.
"

1
mtG=7]

¥ "I’ B (=t
, 1)

KT

(A

@
This integral will converge quickly for large values of p. but ot for small p. Therefore

the integral into fwo parts:

Iy convergent and

We rewrite the above

- A+ B AS
,Z«ln,.,,.u.-n fl..‘ +h) (A15)
with
A= / P e 1D R I —
" W
il

(A7)

B= [ i [ [

W

The value of i is chosen such that A will he quickly convergent and therefore we work
on writing B in a more managable manner.

1 we take tie Jacohi Theta funetior
07 X) = Yoot (AI%)
and the Imaginary Transform
(A19)

and let
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B = A",/,,,‘ﬁ‘"v-w-"‘Ho (-———"""' L (A.20)
/" e T =11 i
I3 7
_ prdp

3 [: 1'[0 (

"

i

“To simplify we Jet p = L and rewrite equation A.22 as

N
B = / —,/ﬂzl"[(-);,(‘ (A

= 7(/:’ ,/,.Ho ( (A1)
- [‘ 'I/'HZ,—IXAMQ#H,‘—:HLI':. (A.25)
T 8 ong

I this form B will converge quickly. There is a small problem with the ns = 0 term,

but: we ma

show that @,y of this term is 2

vo. Therefore if we let the ng = 0 torm

he removed from the sum and referred to as D, we may rewrite B as below, where the

prime on the sum indicates that we have removed the ng = 0 term.

B = ﬁD+n/' ,1,.1'[2(“" et (A.26)

2pltan=0d

vid o
= TD+_/l B (A.27)
W (]
where we have wsed the general definition of a lattice vector, given in equation A.12.
Now if we make use the definition of the complementary error function, as in equation

A28, we may simplify onr expression for B in equation A.27 even more.

Erfe(X) = % A et (A.28)
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N
and defining,
o= slalp (A.29)
5 7|
N o= M. (A0)
n
Now B may be written as:
(A1)
Returning to equation A5, we see that A may be writien,
A = /\./,,.-114‘ "’H)_:""‘l""'J”“—L bl (A42)
" ooy
ety 0 4 ) (A1)
= A
+1d]
Now il we substitute eqns A.33 and AL31 into equ AL15 we have
| m.-u,[w + 4(;;|)
P+ G = 71 + 1]
- ()
——-—mn (” l)] (A1)
"
2 |<,.r.(,,|f"'~_""1 +eil) o
- :
161 7 + |
Further substituting cqn. A5 into cqn. A5 we arrive at
b 5
o (P _ @D )
w ( « ) = Taran. o (Pt !
Z___E""(”Iu 2 ey (A36)
5 . it
F |Lrv_11 + ‘(,'||

We must he careful to remember that we have rescaled 7 so that,
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As well we mnst remember that the partial derivative of D will he zero so we may write

[ 1 ittt - (T‘WI)

" jull L4
G

fw;.l-: +161) }

Firfe(y
J'm;.:f s |(’v||

(A7)

i
This is a form that we can deal with relativily casily, using the mathematical program
MATHEMATICA. Using W as given in cqn A37 we may write the Hamiltonian quite

sinnply as,

;
[cu"+Zn3w"”(.,v,.m)a,’,’, i (A38)
We may calenlate Uie onergy per site for an L by L lattice, E(L) as
H 2o (L)
¥ e (A30)
1
Ky = é[c«“+):a::W""(»-,.,..1”:3.], (A10)
and define an effective field at dipole n in direetion a as 1, where
P
0y =3 W (rn) e (Ad1)

Writing the encegy in terms of the effective fields gives ns

Bl = %[cu”ﬂ»ia,"_//,".]. (Aa2)
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The Program

Program ewald

IMPLICIT none

Integer n, 1, 1d, 1mi, ldml, 12s

Integer nummc, numint, numruns, time
Character*80 wf, gf,outfile,spinin,spinout

Real*8 tfrom, tto, tstep, temp

parameter(n =6 ) ! What size lattice 2°n

parameter( tfrom = 2.38 ) ! starting temperature

parameter( tto = 2.42 ) ! final temperature

parameter( tstep = 0.01 )

parameter( nummc = 5 ) ! number of MC steps between data taking

parameter( numint = 2500 ) ! number of inital Monte Carlo steps
parameter( numruns = 4000 ) ! number of runs of "nummc" MC steps
Real*8 ising , Jex

parameter( Jex = 0.0)

paraneter (wf="W64.dat’)

paraneter(gf=’energy’)

parameter( outfile = '64x64.dat.3’ )
parameter( spinin = ’64x64.spins’ )
parameter( spinout = '64x64.spins.3’ )

K6
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parameter( 1 = 2%#n )

parameter( 1d = 1#1 )

parameter( 12s = {1+2)%*2 )

parameter( Imi = 1-1 )

parameter( ldml = 1d - 1)

Real*s h(1d),w4(1d), w2(1d),w(1d), Ham
Integer spin(12s), inner(ld), place

Real RANDOM

Integer Iseed, i, j

Integer init , site,run

Integer flip

Real*8 energy, order, toto, tote,tote2,toto2 , deltae , deltao
Real*8 gsener, zero

REAL*8 Change0Q

Integer group

parameter( group = 16 )

Character*1 line(0:1)

CALL GetInner( innmer, 1, 1d )

CALL GetSeed( Iseed )

CALL RCARGO( Iseed )

Write(6,*)’The Random Seed Was ', Iseed
CRA AR AR AR R RO K ok koK
ckx* INITIALIZE THE SYSTEM #x
P T T T —————

CALL Initialize( inner , spinin, spin, 1d,12s, n, group )
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CALL SetBorder( spin, 12s, 1)
CALL Draw( spin, 12s, 1, line )
CHR AR AR AR AR AR R AR
ct** READ IN THE W FILE ¥
B
Open( 17, file = Wf, status = "OLD" )
D0i=1,1d
Read(17,*)w(i)
w2(i) = 2.0%u(i)
wa(ld +1-1) = 4.0%w(i)
ENDDO

cx¥x READ IN THE GROUNDSTATE ENERGY FILE *kk

Open( 17, file = gf, status = "OLD" )
DO i =1, n-1
Read(17,*)zero, gsener

ENDDO

c¥kkx  START OF THE BIG TEMPERATURE LOOP kkikskkkiorsohksisiidk

DO temp = tfrom,tto,tstep

Call CalculateH( inmer, h, spin, w2, 1d,12s,1mi, n )

cxkx EQUILIBRATE THE SYSTEM *okx
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DO init = 1, numint
D0 j =1,1d
site = INT( RANDOM() * 1d ) + 1
place = inner( site )
ising=2.00*spin(place)*Jex*(spin(place+1+2)+spin(place-1-2)+
& spin(place+i) +spin(place-1))
Ham = 2.00%spin(place)*h(site) - ising
IF(( Ham.le. 0.0 ).or.(RANDOM().1t.dexp( -Ham/temp)))THEN
spin( place ) = -1*spin(place)
CALL UpDateField(h,w4,site,spin(place),n,1,1d,1mt)
ENDIF
ENDDO
CALL SetBorder( spinm, 12s, 1)

ENDDO ! End of the initialization

c#xk START REAL MONTE CARLO *#*

toto = 0.0
tote = 0.0
toto2 = 0.0
tote2 = 0.0
deltae = 0.0
deltao = 0.0
£lip = 0

CALL Collect_Data(inmner,spin,h,Jex,1,1d,12s,energy,order,zero,n)

DO run = 1, numruns
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DO time = 1, nummc
D0 j=1,1d

site = INT( RANDOM() * 1d ) + 1

place = inner( site )

ising=2.*spin(place)*Jex*(spin(place+1+2)+spin(place-1-2)+

& spin(place+1) +spin(place-1))

Ham = 2.00*spin(place)+h(site) - ising

IF(( Ham.le.0.0) .or. (RANDOM() .le.dexp(-Ham/temp) ) ) THEN
flip = flip + 1
spin( place ) = -i*spin(place)
deltae = deltae + Ham
deltao = deltao + Change0( site, spin(place ), n )
CALL UpDateField(h,w4,site,spin(place),n,1,1d,1m1)
CALL SetBorder( spin, 12s, 1)

ENDIF
ENDDD
ENDDO ! End of the time loop
order = order + deltao

energy = energy + deltae

tote = tote  + enmergy

toto = toto  + ABS( order )
tote2 = tote2 + (energy)#*2
toto2 = toto2 + (order)**2
deltae = 0.0

deltao = 0.0

ENDDO ! End of the number of runs
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CALL DutputData(outfile,1,1d,temp,Jex, tote,toto,tote2,
13 toto2,flip,numruns)
CALL Write_Spins(inner,spin,group,1d,12s,spinout ,temp)

ENDDO ! End of the number of temperatures
STOP "Hey man I'm finished"

END
Subroutine CalculateH(order,h,spin,w2,1d,12s,1n1,n)
Integer 1d, Int, n, spin(12s )
Integer order(ld)
Real#8 h(1d), w2(1d )

Integer i, j, si, sj, kv

c*** CALCULATE THE H MATRIX #**

C$DOACROSS LOCAL( j, i, si , sj, kv ) , SHAREC h, spin, w2 )
DO j = 1,1d
si = iand(j-1,1m1 )-1
sj = rshift(j-1,n)

h(j) = 0.0

DO i=1,1d
kw=iand(si+i,lm1)+1shift(iand(sj+rshift(i-1,n),1m1),n)+1
kv = order(kw)
h(j)=h(j)+spin(kw)*w2(i)

ENDDO

ENDDD

RETURN
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END

Function ChangeO( site, spin,n )
Integer site , spin , n

Real*8 Change0

ChangeO = 2.00 + ((-1.0)+*(site))*spin
Return

End

Function ChangeE( spin, h)

Real#8 h, ChangeE

Integer spin

ChangeE = 2.00 % spin*( h )

return

End

Subroutine Collect_Data(inner,spin,h,Jex,1,1d,12s,energy,

& order,zero,n)

c This routine takes a spin configuration and the resepctive fields and
c calculates the energy and the order parameter. It then corrects the
< energy so that the groundstate energy is zero

c ( therefore the varible zero has as its value

c the groundstate energy for a lattice of that size

c with no self interaction included)

Integer 1, 1d, n,12s
Integer spin(12s)

Integer inner(1d), kw
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Real*8 h(1d)

Real*8 energy, order, zero, ising, Jex

energy = 0.0

order = 0.0

DOi=1,1d
kw = inner(i)
ising=Jex* (spin(kw+1+2)+spin(kw-1-2) +spin(kw+1) +spin(kw-1))
energy = energy - spin(kw)*( h(i)/2.0 - ising/2.0 )
order = order + ((-1.0)*¥(i))*spin(kw)

ENDDO

energy = energy - zero*float(ld)

Return

END

Subroutine GetInner( order, 1, 1d )

< Get the location of all interior sites

IMPLICIT NONE

Integer 1,1d

Integer order( 1d)

Integer j, count , ij , i

count = 0
D0i=1,1
D0 j =2, 141

ij = 1% (142) + )
count = count + 1
order( count ) = ij

ENDDO

ol
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ENDDO
RETURN

END

SUBROUTINE GetSeed( ix )
integer ix

Real x

x = SECNDS( 0.00 )

ix = INT (%)

1x = and( ix, 8191 )

DO WHILE( ix .1t. 10000000 )

ENDDO

1x = ix * 7

ix = or( ix, 1)
Return
End
Subroutine Initialize(inner,spinin,spin,ld,12s,n,group)
Integer 1d, n, 125
Integer spin( 12s ), inner(ld)
Character*50 spinin
Integer kw, group
Integer i, number, j
IF (spinin .eq. "groundstate" ) THEN
D0 i =1, 1d
kw = inner( i )
spin(kw) = (=1)**(i)
ENDDO
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ELSEIF (spinin .eq. "random" ) THEN
DO i =1, 1d
kv = inner(i)
spin(kw) = (-1)**(2% INT( RANDOM()+.5 ))
ENDDO
ELSE
Open( 14, file = spinin, status ="OLD" )
DO i = 0, ld/group
READ( 14,300)nunber
D0 j=1,group
IF( j+i*group .le. 1d ) THEN
kv = dnner( j + ikgroup )
spin( kw) = (2*ibits( number, j, 1 )-1)
ENDIF
ENDDO
ENDDO
300 format( 210.2 )
CLOSE( 14 )
ENDIF
Return
END
Subroutine DutputData(out,1,1d,temp,Jex,tote,toto,
13 tote2,toto2,flip,number)
c In this routine we calculate the specific heat (spht) and

c susceptibility (sucp) and write them out to the output file,

c appropriatly named "out". We also output the average energy (avee
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c and the average of the absolute value of the order parameter (aveo).
¢ This subroutine also writes out the temp of the run,
c the size of the lattice (1), and the number of data points used
¢ to create the averages (number). We also print out the number
c of spin flips that have taken place.
Integer 1, 1d, number,flip
Real*8 temp, tote, toto, tote2, toto2, Jex
Real*8 spht, susp, avee, aveo
Character*30 out
Open( 10, file = out, status="Unknown", access="append" )
spht=(1.0/1d)*(tote2/float (number)-(tote/float (nunber))**2)/temp**2
susp=(1.0/1d)*(toto2/float (number) - (toto/float (number) ) *2) /temp**2
avee = tote/float(number*ld)
aveo = toto/float(number+ld)
Write( 10,100)temp, Jex
Write( 10,101) 1,number
Write( 10,102) avee, aveo
Write( 10,103) spht, susp
Write( 10,104)flip
Write(10,%)’ ’

Write(10,%)’ p
100  format(5x,’Temperature...’,f6.2,7x,’Jex= ',£9.5 )
101 format(5x,’L= ’,i3,7x ,’Number of data...’,i10)
102 format(9x,’Average Energy.’,£20.9,5x,’ Average Order P.’,£20.9)
103 format(9x,’Specific Heat. ’',£20.7,5x,’Susceptibility..’,£20.7)

104 format(9x,’Number of spin flips ’, i8 )
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CLOSE(10)
Return
END
Subroutine SetBorder( lati, 1d, 1)
¢ This is a cool subroutine that caused a lot of problems. It takes the

bottom row of the lattice we want and moves it in to the top row of the

a

lattice we have. It does similar things to the top, left, and right, row

o

or column.

o

Integer 1d,1
Integer lati( 1d )
Integer i, count, ij, j , site, onme
data one/ 1/
DO i=0,1
count = (1-i)*( 142)#1 + 1 + i%(142)
Do j=1,1
site = count + j
ij = ie(1+1)*(142) + j + 1
lat1( ij ) = lati( site )
ENDDO
ENDDO
DO i = 0,14t
count = i%(142) + 2
DO j =0,1
site = count + j*(1-1)
ij = ix(142) + 14(3-3)*(1+1)
lat1( ij ) = lati( site )
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a

ENDDO
ENDDO
RETURN
END

Subroutine UpDateField(h,w4,site,spin,n,1,1d,1lm1)

This is probably the routine that takes up the most time
during a run. It updates the fields at each lattice point,
h(i), given that the spin at lattice point "site" has flipped
such that it is now in the state "spin". The varible "w4
contains "4.0 * w" in an inverted order. MWe calculate the
varible "ku" in order to

update the fields in the proper order relative to "site" and w4(i).

Integer n,1, 1d, Iml, site
Real*8 h(1d), w4(1d)
Integer spin

Integer si, sj, kv ,i

si = iand(site-1,lnt )

sj = ibits(site-1,n,n)+1

C$DOACROSS LOCAL( 1, kv ), SHARE( si, sj, ss, h, w4 )

D0 i= 1, 1d
kw = iand(si+i,1m1)+1*(iand(sj+ibits(i=1,n,n), 1m1))+1
h(kw)=h(kw)+spin*wd (i)

ENDDO

RETURN

END

Subroutine Write_Spins(order,spin,group,1d,1p2,spinout,temp)



Appendix B. The Program

o

o

a

o

a

o

In this routine we take "group" spins and create a binary
number from them. If say spin(1) is -1 we make bit 1

in our binary number 0, if spin(10) is 1 then we

make bit 10 in our binary number 1. We then write out this

binary number in hexadecimal form in order to save space in

the file. This way we may write 16 states as 5 alpha-numerics

Integer 1d, group, 12s
Integer spin(1p2), order(ld)
Character*50 spinout
Integer i, j

Real*8 temp

Open( 19, file = spinout, status='Unknown’, access='append’ )

Write(19,%)'Temp ’, temp
DO i = 0, INT( 1d/group )
number = 0
DO j=1,group
IF( j+i*group .le. 1d ) THEN
kw = order( j+i*group)
number = number + ((spin( kw )+1)/2)*2%+(j)
ENDIF
ENDDO

Write(19,300)number

300 format( 210.2 )

ENDDO
CLOSE(19)
RETURN

a9
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END

100
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