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ABSTRACT

Breast cancer is the leading form of cancer among women in North
America. The development of resistance to endocrine therapy as well as
chemotherapy is presently the major obstacle to successful treatment of
advanced breast cancer. Therefore, more potent and selective
chemotherapeutic agents should be designed. An attractive solution to this
problem is to combine both endocrine therapy and chemotherapy in a single
agent. It may result in a more powerful approach to advanced breast cancer
treatment.

In order to achieve this goal. a series of new triphenylethylene platinum (1)
complexes 39a-d, 40a-c and 41 have been designed and synthesized. The
commercially available benzyl, 4-hydroxyphenyl ketone was efficiently

transformed in eight steps into the platinum (Il) complexes 39a-d with an overall

yield of around 30%. In a similar of i the 40a-c
and 41 were also synthesized, the overall yield exceeded 40%. All new

were tully ized by their infrared and 1H, 13C nuclear

magnetic resonance and mass spectra. The final compounds 39a-d, 40~-c and
41 also passed element analysis.

The biological activity of the complexes 39a-d, 40a-c and 41 were
evaluated jn vitro on both ER* and ER- breast cancer cell lines: MCF-7 and
MDA-MD-231. The complexes 40b-c showed promising antitumor activity.
Their IC50 is up to 28 fold lower than tamoxifen on MDA-MD-231, and 3 fold
lower on MCF-7. However, there was no evidence of selective antitumor activity

on ER breast cancer cell n vitro.
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Chapter 1 .

INTRODUCTION

Breast cancer is the most common form of cancer among women in North
America. In 1994, it is estimated that 17,000 women will be diagnosed with
breast cancer in Canada, representing approximately 30% of new cancer cases
for all sites. Of the 27,600 cancer deaths, approximately 5,600 (20%) will be
caused by breast cancer.! Therefore, finding an effective method to treat breast
cancer is an important and urgent matter.

Currently, surgery with adjuvant radiotherapy is quite effective to treat

breast cancer when the tumour has not ized by the time of

However, even in the best circumstance, ten year survival rates of 50% have
been unusual and some "clinical cures" may recur with fatal outcome as late as
twenty years with such local treatment.2 Therefore, a systemic approach such
as chemotherapy plays an important role for a more effective cancer
management.

At present, different types of drugs are used in chemotherapy, such as

ylating agents, DNA-i ing agents, antibiotics, antimitotic agents,

antimetabolites and so on. An ideal anticancer drug would eradicate cancer

cells without harming normal tissues. L ly, no currently
agents meet this criterion and clinical use of these drugs involves a weighing of
benefits against toxicity in a search for a favorable therapeutic index.3

Another major problem in cancer chemotherapy is drug resistance, which

means that tumors no longer respond to p y

agents. It is estimated that over 90% of all cancer death are, in some measure,



influenced by the problem of drug resistance.# Some mechanisms of drug
resistance have already been identified in human tumor cell lines. They include:
decreased transport,S altered drug activation,® altered DNA repair,” gene
amplification,® defective drug metabolism,? altered target proteins and altered
intracellular nucleotide pools.!0 Faced with the complexity of the drug

resistance mechanisms already identified, one might conclude that

ing drug resi: is not a likely

An attractive solution which is being considered to solve these two
problems is the use of drug targeting. The aim of drug targeting is to deliver
drugs only to those sites needing treatment. When this objective is met, not only
toxic side effects will be minimized, but the efficacy of the treatment will be

improved. Therefore, the tumor might be eradicated rapidly before any sign of
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Fig.1 Inmunotargeting with MAb for the treatment of cancer.



The concept of drug targeting was. first suggested by Paul Ehrich in the
early 1900's.11 He proposed that chemotherapeutic agenis might be covalently
joined to ligand substrates which had affinity for and selectivity to a target tissue
such as malignant tumors. Since then, some biological and chemical molecules
have been tried as ligand substrates for anticancer drug targeting, such as
monoclonal antibodies (MAb). By covalently linking antitumor agents to MAb
reactive with tumor-associated antigens, these drugs can be targeted to the
tumors (Fig.1).12 Numerous scientists are still working on this area.

The presence of ial amounts of pi (ER) in many

human breast tumors is well known and is being used to select the most
appropriate therapy such as endocrine therapy and/or chemotherapy for breast
cancer patients.!3 These receptors provide a potential targeting mechanism by
which agents with estrogen receptor binding affinity (ERBA) could be

concentrated selectively in the tumor tissue. For example, several groups have

developed y-emitting as di ic imaging agents for human breast
cancer.4 It might also prove possible to prepare conjugates of molecules with
ERBA and cytotoxic agents, which would bind to ER and would thus
concentrate their cytotoxic activity within ER-containing cells, sparing cells in
nontarget tissues. It is this prospect of achieving a selective ER mediated killing
of ER positive (ER*) breast cancer cells that has concerned scientists in the
area of breast caincer. This thesis is also devoted to preparing this type of
antitumor agent.

The development of antitumor agents with EF(BA for breast cancer has

some ing i p As early as the 1950s, several

scientists have been trying to link nitrogen mustard (1), an alkylating agent, to a

variety of steroid nuclei such as cholesterol (4), estrone (5), testosterone (6),
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and hydrocortisone (7) to treat hormone dependent breast cancer.

Unfortunately, the compounds obtained, i.e., 8,'5 9,16 1017 and 1118

isplayed only antitumor activities. It is believed that these steroid

nuclei are not the most appropriate ligand for the ER.

12 Esteadiol (E)

Since the discovery of estradiol (12), the endogenous ligand for the ER,
numerous attempts were made to conjugate it to alkylating agents. In the early

attempts, alkylating agents such as nitrogen mustard (1), nitrosoureas (2), and

cisplatin (3) were linked to the 3- and 17-position of the iol skelet
However, the compounds obtained 13,19 14,19 1520 16,21 1722 and 1823
showed only low biological activities against ER* breast cancer.

Structure activity relationship studies of various estrogenic compounds
have shown that in order to obtain the highest ERBA, the estrogenic steroid
hormone with an estra-1,3,5(10)-triene-skeleton must have the 3- and 178-

hydroxy groups available, presumably to form hydrogen bonds with the receptor

protein at the binding sites.24 Therefore, it has been st d that the

y weak anti ivities of those agents against breast cancer were

partly due to their inability to bind to the ER and thereby to accumulate in ER+

tissues.25 Simply, the molety was inappropriately linked to the binding
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19 20  Lomustine

sites of estradiol, namely carbon 3 and/or 17.

In order to retain the 3- and 17B-hydroxy groups on the estradiol (Ep)
nucleus, a nitrosourea (2) moiety was introduced at the 17a-position.20 As
expected, the resulting compound 19 had higher ERBA value than the 17p-
derivative 15 (19=1.8%, 15=0.41%, E2=100%).26 The order of ERBA also
correlates with the order of cytotoxicity against ER* breast cancer. Moreover,
compound 19 was more active than the mixture of estradiol and lomustine (20),

the latter being a clinically useful anti i 26 | the

estrogenic activity induced by this product made it less attractive since it could
cause cardiovascular and other toxic side effects.27

With the various studies of hormonal influence on breast cancer cell
growth, one question has been put forward: “Is an estrogenic molecule such as
estradiol a good carrier of antitumor agents 7"

There is considerable evidence to suggest that estrogen has direct and
indirect effects on proliferation of ER* breast cancer cells (Fig.2).28.29 Estrogen
can bind to the estrogen receptor to unmask the DNA binding domain. This
domain can bind to the estrogen response elements (EREs) on the DNA to

initiate the i of g itive genes and protein synthesis.

Estrogen can also increase the production of tumor growth factors alpha (TGFa)

7



that possibly interacts with epidermal growth factor receptors (EGFR) in an
autocrine loop. Similarly, estrogen causes a decrease in some members of the

TGFP family which is a tumor suppressor.

cai egeason

(pavased rooomen
SatnS prasel

Fig.2 Estrogen effects on breast cancer cell.

Alternatively, antiestrogen has ERBA, but no estrogentic activity. Therefore,
antiestrogen can act as a competitive inhibitor of estrogen binding to the ER to
h in cellular biochemistry.29 Until now,

prevent g
three mechanisms of antiestrogen action were proposed: antiestrogen, A.
reduces DNA binding by interfering with receptor dimerization (Fig.3, A);% B.
induces conformational changes of the receptor that allow binding to DNA but
do not promote events needed for gene transcription (Fig.3, B);31 C.causes a
rapid disappearance of the ER from the target tissue, resulting in an insufficient
amount of ER to bind the native ligand and elicit agonistic responses (Fig.3,

C).32 Consequently, the blockage of estrogen action with antiestrogen remains

8



a generally accepted method of treatment of ER* breast cancer.

Fig.3 The ism of gen action for the of ER+

breast cancer cell.

From these points of view, Katzenellenbogen thought that33 the

ynthi of new ji ing both i ic and cytotoxic
moiety could be of prime interest. Simply, an antiestrogenic moiety would not
only be used as the carrier of cytotoxic agents, but also could produce potential
antitumor activity by itself. It may result in a powerful drug for the treatment of

ER* breast cancer.

Therefore, K: and his kers selected ifen (21),
an antiestrogenic agent which is widely used for the treatment of ER* breast
cancer, as a carrier of toxic moieties to produce new anticancer drugs.33,36
Alkylating agents such as nitrogen mustard, nitrosourea, nitrosocarbamate were
linked on the alkoxy side chain of tamoxifen because the ethyi side chain was

found necessary for antiestrogenic activity.34 Two apalogues, the nitrogen

mustard ifen 22 and the nitr bamat ifen 24 showed dose

related cytotoxicity in both ER* and ER- breast cancer cell lines: MCF-7 and



MDA-MB-231, which was not by estradiol. However, ifen-

nitrosourea 23 marked icity in MCF-7 cells that was

blocked by estradiol, whereas its activity in MDA-MB-231 cells was unaffected

by estradiol. It seemed that the selective toxic activity of 23 against ER* cell line

was mediated via the ER. H recent evi d that the

cytotoxicity of 23 resulted from the antiestrogenic effect of its hydrolysed

product, bisdesmethyl tamoxifen 25.35
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The reason for these analogues of tamoxifen to be devoid of selectivity for
ER* breast cancer cells was rationalized by their low ERBA. As mentioned by
Katzenellenbogen,38 for a cell to be killed using a receptor uptake process, an
adequate dose of drug must be delivered by the receptor system. However, the
capacity of the ER uptake system is quite limited. From clinical assays on
human breast tumors, it is known that the range of receptor content is 1000-
10000 per cell. The calculation based on the number of ER and the possible
drug concentration per cell demonstrates that the ERBA value of drugs should
be at least 1% of estradiol (Ep=100%).37 But the ERBA assay of the compounds
22, 23 and 24 on MCF-7 cell lines showed the ERBA values of only 1.2%,
0.35% and 0.19% respectively.33,38 From this point of view, tamoxifen might not
be a good carrier of antitumor agents for ER* breast cancer since derivatives
based on a relatively low affinity ligand would also have relatively low affinity
(The ERBA value of tamoxifen is only 1.8% of Ep).3¢

More recently, German scientists, Knebel and co-workers, thought that &
non-steroidal structure, 5-hydroxy-2-(4'-hydroxyphenyl)-3-methylindole (26)
might be a suitable derivative to link a cytotoxic agent to because of its structural
similarities with zindoxifene (27, ERBA=9.5% of E2),38 a drug which has been
developed as an antiestrogen.37 Moreover, it also showed high ERBA, i.e., 33%
of Ep.39 They found that the nitrogen atom was the best position for the
introduction of bulky substituents into the indole skeleton without much
interference with the important binding sites of the molecule (C-5-OH and C-4'-
OH).41 The cytotoxic moiety was linked to the indole skeleton by a spacer

group in order to avoid strong steric interaction of the ligand with the ER binding

sites. In their model, a cis-(diamil i i (1) was

used as the cytotoxic moiety. The parent compound cisplatin (3) is a potent

1



antineoplastic agent against solid tumors, especially testicular cancer,42 but
has low activity against breast cancer.43 Moreover, cisplatin induces very
serious side effects such as nephrotoxicity44 and ototoxicity45. They believed
that the affinity of the new platinum complexes for the ER might increase the
activity of such an agent on mammary tumors and reduce its toxic side effects.
The compounds synthesized (28a-c) showed some specific binding affinity for
the ER.%6 The relative ERBA values of the compounds 28a, 28b, 28c were
1.0%, 1.3%, 6.5% respectively. The order of their ERBA values correlated with
the order of their cytotoxicity.47 In vitro, only the growth of ER* MCF-7 mammary
tumor cells was inhibited, whereas ER- MDA-MB-231 cells did not respond. In
vivo, a strong inhibitory effect was observed in ER+ MXT mammary tumors of
the mouse. The complex 28¢, with six carbon atom side chain, reduced the
tumor weight by 89% after six weeks of treatment (The dosage was 3x20 mg/Kg
body weight/ week.). The effect on ER- tumors was weaker than on ER+
tumors.47 The complexes 29 and 30 also showed inhibitory effect similar to the
complex 28¢ (the ERBA value of 29 and 30 = 5.2% and 4.4%, Ep=100%).48:49
Moreover, there was no sign of nephrotoxicity observed in these experiments
(usually cisplatin induces a serious nephrotoxic side effect).

These findings were rationalized by the specific binding affinity of those
complexes. However, the antitumor activities of those complexes were still
slightly less active than cisplatin itself . which was used in subtoxic dosage
(3x1.4 mg/Kg body weight/week). Therefore, it has been suggested that further
investigation of steroidal or non-stervidal derivatives to link anticancer agents
should be focused on the development of drugs with further improved
antineoplastic activity based on enhanced ERBA. This could be achieved by

coupling antineoplastic drugs to hormonal derivatives with relatively strong

12
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In 1987, R. Gust5! and J. Karl52 successfully synthesized two new
powerful hormanal platinum complexes, namely meso-[1,2-bis(2,6-dichloro-4-

hydroxyphenyl) ethylenediamine] dichloroplatinum (I1) complex (32) and meso-

[1,2-bis(2,6-dichloro-4-hydroxyphenyl) ethylenediamine] di i ()
complex (33) for the treatment of ER* breast cancer. They selected hexestrol
(21), a non-steroidal synthetic estrogen as a ligand substrate to link the
cytotoxic moiety, platinum (Il) complex. In comparative tests on ER* and ER"
mammary tumors in cell culture (MCF-7 and MDA-MB-231 cell lines), the

complexes 32 and 33 were not obviously selective, inhibiting both ER* and ER"

mammary carcinoma. However, In vivo, a strong inhibitory effect of 32 was
observed in ER* MXT mammary tumors of the mouse. After four weeks of
treatment at a dose of 3x6.5 mg/Kg body weight/week, the tumor weight was
reduced by 88%, which was significantly more active than cisplatin at the
highest tolerable dosage (3x1.5 mg/kg body weight/week). A further increase of
efficacy was achieved with the water soluble sulfatoplatinum complex 33.
Moreover, they also displayed inhibitory activity for prostatic ~zncer.53
Preliminary biological studies of the complexes 32 and 33 showed that
their high antitumor activity for ER* breast cancer resulted from their ER
mediated enrichment in the nuclei of ER* tumor cells. A higher level of Pt in the
tumor tissue than in skeletal muscle and blood was found.52.54 Moreover, both
derivatives displayed estrogen-like properties:55 a) it competed with estradiol
for ER binding sites in a competitive manner at 0.1 pM concentration; b) it
reduced the number of estradiol binding sites after a 16 hours incubation, and
c) it increased the level of progesterone receptor. However, their relatively low
ERBA (the ERBA value of 32 and 33 = 0.3%, 0.1% respectively, Ep=100%)52 is
i istent with the theory. It that the 1% ERBA threshold

14



Itis that the

minimum level might not be

y for

complexes 32 and 33 might bind to an estrogen-specific nuclear receptor,

which also could cause an enrichment in the nucleus giving rise to an

increased reaction with DNA.52 Recent studies suggested that the selective

growth inhibitory effects of 32 and 33 also involved immunological factors.55.56
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Interestingly, the isomers of 32, namely d,I-[1,2-bis(2,6-dichloro-4-

y um (1) complex display
neither estrogenic activities nor cytotoxic effects for ER* breast cancer.52 The
exact mechanisms of their actions are still unclear. Numerous scientists are
continuing to working in this area.

Although the new platinum complexes 32 and 33 display powerful
antitumor activity against ER* breast cancer, their estrogenic properties
become a major obstacle in their clinical use.57 As mentioned before,
estrogenic activity can cause cardiovascular side effects. H. Schonenberger
and co-workers are trying to modify the structure of the 1,2-diphenyl-

ethylenediamine ligand in order to reduce its strong estrogenic potency.57

36 ERBA =270 37 ERBA =270
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In this thesis, we are describing our efforts towards the design of new
cisplatinum complexes with good ERBA. According to the enrichment theory,
high ERBA is needed to result in a sufficient accumulation of drugs in the ER+
tumor tissue through the ER mediated transport process.36:37

Pons and co-work i the ionships of structure and ERBA

of a variety of non-steroidal estrogen derivatives.58 They found that
hydroxylated triphenylacrylonitriles (TPA) had high ERBA, particularly the
compounds 36 and 37 (the ERBA value of 36 and 37=270, Ep=100). These
studies suggest that TPA analogues 36 and 37 could be good candidates to link
antitumor agents to because according to Von Angerer's findings, derivatives
basad on relatively high affinity ligand should also possess relatively high
affinity.38
Therefore, we design a series of new cisplatinum complexes 38a-c and
39a-d which are linked to the non-steroidal skeleton, TPA . We hope that these
new cisplatinum complexes will have higher ERBA, therefore, higher antitumor
activity against ER* breast cancer than the platinum complex 28 synthesized by
the German scientists.
The cy ic moiety, ethy iamine i (I1) complex, will be

linked on the middle part of TPA skeleton in order to avoid strong steric

interference with the important binding sites of the carrier ligand, i.e., the
hydroxy groups. Long side chains with six, eight, ten or eleven carbon atoms
will be added between the two portions: TPA skeleton and cisplatinum (I1)
complex. This should allow the two portions to be more flexible to react with the

estrogen receptor and DNA respectively (Fig.4). The length and posmon of the

side chain are also based on the of the pure i g

ICi 164,384 and ICI 182,780 (Fig.5) recently described in the literature.59 Such

18



estradiol with a long alkyl side chain on the 7-x position possesses sufficient
ERBA (the ERBA value of ICI 164,384 and IC! 182,780=19%, 89% respectively,
E2=100%)89 and pure antit ic activity. A pure anti is devoid of

any genic activity, no genic side effects will be induced. This
structural analogy should confer upon our new compounds both antiestrogenic

and cytotoxic activity.

Fig.4 The ion of the on of the idal Pt (1) compl
) with the ER and DNA.

o
=—(CH,),DE':P|J(CH2),CH, ICI 164,384
CHj

o
1]
R= -(CH,);S(CH,);CF,CF;  ICI 182,780

""»R

Fig.5 The of the new gens ICI 164,384
and ICI 182,780,
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TPA-cisplatinum (1) complexes 40a-c and 41 without hydroxy groups will
also be synthesized. They will be our reference derivatives. Such compounds
should have no ERBA and no hormonal activily. Their biological activity will be
solely produced by their platinum portion. Therefore, it may help us to
understand the possible mechanisms of actions of the compounds 38a-c and
39a-d containing hydroxy groups. Moreover, it may also help us to estimate the
ERBA values of 38a-c and 39a-d more precisely since it is known that platinum
complexes might produce non-receptor irreversible binding to proteins in the
ER preparation.81

In our laboratory, we have already obtained the complexes 38a-c.62 In this
project, we are going to report the synthesis of the remaining compounds 39a-d,

40a-c and 41, as well as their jn vitro biological activities on MCF-7 (ER+) and

MDA-MD-231 (ER") human breast cancer cell lines.

20



Chapter 2

RESULTS AND DISCUSSION

21 is of Bishy y and Bi: y Trij

Platinum (ll) Complexes 39a-d and 41.

As shown in Scheme 2, four new platinum (1) complexes 3%a-d were
obtained with a 30% overall yield from commercially available benzyl, 4-

hydroxyphenyl ketone, after eight steps.

Scheme 1

DHP, PPTS AO
Br—(CHy)q—O0H ————» Br—(CH)—0

CH,Cl, 9
P @

Nal
———> [ —(CH)p O—Q

Acetone

E0)
n=6(a), 8(b), 10(c), 11(d)

Initially the appropriate iodotetrahydropyrany! ethers 44a-d were prepared.
As illustrated in Scheme 1, the alcohols 42a-d were protected as a

tetrahydropyrany! ether to give compounds 43a-d 83 which, upon treatment with
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Scheme 2

HO
Benzyl, 4-hydroxyphenyl ketone 45

OCH 4

H,CO




Reagents: (1) NaOH, dimethyl sulfate, eflux, 4
hes; () NaH, I{CH)y-OTHP, 25°C, 18 hrs;
(1) p-MeOCgHMgBr, ether, 25°C, 18 hs; (IV)
95% ethanol, PPTS, reflux, 8 brs; (V) CBrPhsP
ether, 25°C, 24 bs: (V1) ethylencdiaminemethand,
reflux, 48 hs; (VII) BBrs, CHCl, -60°C: 25°C
18hrs; reflux, 2brs; 0°C, methanol; (VIIT) KoPtCly

DMF, K0, 25°C, 48 3
H (CHy)y
o
u/ ~Na
n = 6(a), 8(b), 10(c), 11(d) 39
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sodium iodide in dry acetone, gave the iodotetrahydropyranyl ethers 44a-d
(95% average yield for the two steps).

Benzyl-4-hydroxyphenyl ketone cannot directly be used as the starting
material in alkylating reaction (ll, Scheme 2) since the existence of hydroxy
group is able to quench the enolation of the ketone.54 So we protected the
hydroxy group as a methyl ether 45 by using dimethylsulfate and sodium
hydroxide (I, Scheme 2).65 The yield for this reaction was around 75% (98%
based on the recovered starting material ketone).

Alkylation of 45 with the iodotetrahydropyranyl ethers 44a-d was achieved

using sodium hydride in y to give 46a-d with an

average yield of 75% (98% taking consideration 44a-d recovered (I, Scheme
2). Addition of an excess of p-methoxyphenylmagnesium bromide to the
ketones 46a-d (lll, Scheme 2)86 and subsequent treatment of the crude tertiary
alcohol intermediates 47a-d with pyridinium-p-toluenesulfonate (PPTS) in
ethanol at reflux afforded the triphenylethylene alcohols 48a-d (IV, Scheme 2)

as the result of dehydration of the tertiary alcohols and simultaneous

of the pyranyl ethers (85% average yield for the two

P Y

steps).63
With the desired triphenylethylenes 48a-d in hand, the following sequence

of ions are simple group trar i Initially, alcohols 48a-d

were transformed to the bromides 49a-d with carbon tetrabromide and

trip p ine in dry di (85% average yield. V, Scheme 2).67
The amines 50a-d were obtained with an average yield of 90% by refluxing the

bromides 49a-d in the presence of an excess of ethylenediamine in dry

methanol (VI, Scheme 2).88 Finally, ylation with boron tri ide gave

the intermediate bis-phenols 51a-d (VII, Scheme 2),89 which, upon treatment
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with potassium tetrachloroplatinate (11) in a mixture of dimethylformamide (DMF)
and water (VIll, Scheme 2), led to the desired platinum (ll) complexes 39a-d

(60% average yield for the two steps).70

Scheme 3

OCH,

50d 41

Reagents: K,PtCl;, DMF, H,0, 25°C, 48hrs.

The platinum (1) complex 41 was easily obtained by reacting the amine
50d with potassium tetrachloroplatinate (Il) in a mixture of DMF and water
(Scheme 3, 80% yield)).

All new compounds obtained were characterized by their IR, TH NMR, 13C
NMR and Mass spectrum. The final products 39a-d, and 41 passed element

analysis (C, H, N).
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22 is of Trij latit mc 40a-c.

The tri platinum (i) 40a-c were

from commercially available starting material deoxybenzoin 52 (Scheme 4), in a
similar sequence of reactions as used earlier for compounds 39a-d. The total

yield exceeded 40%.

Scheme 4
(j/‘c‘)l/@
1
® ~
4
. Z  (CHy),
52 ' THP g3
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J ®
O (ICHz)n O (CHy)y

OH Br
56 57

vi

40 58

n=6(a), 8(b), 10(c)

Reagents: (I) NaH, I-(CH,),-OTHP, THF, 25°C, 18 hrs; (1) C¢HsMgBr, diethyl ether
25°C, 6 hrs; (III) 95% ethanol, PPTS, reflux, 3 hrs; (IV) toluene, pTSA, reflux, 2 hrs;
(V) CBry, PhP, diethyl ether, 25 °C, 24 hrs; (VI) ethylencdiamine, methanol, reflux,
48 hrs; (VIT) K,PtCly, DMF, H,0, 25°C, 48 hrs.
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One reaction which we would like to ize here is the dehy

and deprotection of the tertiary alcohols 54a-c (lIl, IV, Scheme 4) because it is

quite interesting.

Scheme 5

HP

54c S6c
PPTS oTSA
reflux\ 95% EtOH Tolueng/ reflux

HO( 2)10

Initially, we followed the same pr as for the y ion and

deprotection of 47a-d (IV, Scheme 2). The tertiary alcohol 564c was allowed to
react in the presence of PPTS in 95% ethanol at reflux for 8 hrs (Scheme 5). We
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ous dehydration of tertiary alcohol and deprotection of THP
ether to form the alkylalcohol 56¢. Unfortunately it was not the case. The IR
spectrum of the product obtained showed a broad absorption at 3608-3300 cm-~
1 suggesting the presence of hydroxy group. If the product was 56¢, a allylic
methylene should appear around § 2.43 inits TH NMR. Five quaternary
carbons should also be observed between § 150.00 and 135.00 in its 13C
NMR. However, there was no signal at § 2.43 in the TH NMR of the product
obtained. An unexpected double doublet appeared at § 3.69 (Fig.6, A). The
13C NMR showed only three quaternary carbon at § 146.31, 145.97, and
140.00. Two unexpected signals were observed at § 80.90 and 54.13 (Fig.7, A).
Clearly, the product obtained was not 56c. It was the alcohol 55¢. The signal at
8 80.90 was due to the carbon bearing the hydroxyl and the two phenyl groups,
and the one at § 54,13 due to the carbon to which was attached the ten carbon
side chain. Further treatment of 55¢ with a stronger acidic catalyst, i.e., p-
toluenesulphonic acid (pTSA) in toluzne at reflux (Scheme 5) produced the
desired p 56c. As d, its TH NMR showed a multiplet

at § 2.43 accounting for the allylic methylene (Fig.6, B). Five signals at § 143.43,
142,93, 142.40, 141.00 and 138.92 were also observed accounting for the five
quaternary carbons inits 13C NMR spectrum (Fig.7, B).

This interesting result can be explained if we compare the structure of the
substances 47a-d and 54a-c. An electron donating group is present on
compounds 47a-d, i.e,, a methoxy group which can assist the dehydration
reaction (Scheme 6). Therefore, the compounds 54a-c without electron
donating group on their aromatic ring need a stronger acidic catalyst pTSA and
higher reaction temperature to achieve the same reaction.

This result emphasizes that a very subtle change in reaction condition and
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the chemical structure of the substrate may drastically change the outcome of a
chemical reaction.
All new compounds were characterized by IR, TH NMR, 13C NMR, MS

spectrum. All spectra were i with the i The final

platinum (Il) complexes 40a-c also passed element analysis (C, H, N).

Scheme 6

N

1+

(CH,),4OTHP
47

n=6(a), 8(b), 10(c), 11(d)

48
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Fig6 TH NMR Spectra of Compounds 55c (A) and 56¢ (B).
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Fig.7 13C NMR Spectra of Compounds 55¢ (A) and 56¢ (B).
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2.3 InVitro Antitumor Activity

Two human breast tumor cell lines were chosen based on their estrogen

receptor content, to evaluate the antitumor activities of our new (D)

71 The cy icity of our comp was tested along with controls
(cisplatin and tamoxifen) on both ER+ (MCF-7) and ER- (MDA-MD-231) human
mammary carcinomas in order to assess the potential selective anti-neoplastic
effect on hormone-dependent breast cancer. The antitumor activity was

evaluated with a colorimetric assay that uses the ability of viable cells to reduce

a colorless ium salt 3-(4,5-di ylthi 2-yl)-2,5-dipheny

bromide (MTT), into a thiazolyl blue MTT formazan (Fig.8).72 A recent report
indicates that the MTT assay can be used to replace the [3H] -uridine assay for
chemosensitivity screening. The colorimetric assay has the advantages of being

safer, less costly and simpler than the radiometric assay.” The MTT assay is

v

N
o

widely used now.74

=N Mitochondrial N=N
[)/Q “N Enzymes s N
o TUO
MTT MTT-FORMAZAN
(colorless) (thiazolyl blue)

Fig.8 The Reaction Equation of MTT Reduction.
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As shown by the MTT assays on two human breast cancer cell lines, our
y icity on both ER* (MCF-7) and ER"
(MDA-MD-231) cells (Table 1). Clearly, the more lipophilic the compound, the

new

better the cytotoxicity. The compounds 40b-c without hydroxy groups showed

similar cytotoxicity to cisplatin and higher icity than [ y
on the MDA-MD-231 (ER") cell line. This result was and can be explained by the
following fashion:52 a more lipophilic compound could theoretically penetrate
the lipophilic cell membranes more easily, therefore concentrate sufficiently in

the cell to produce its biological activity.

Table 1. Inhibitory concentration of drug on both
ER* and ER- breast cancer cell lines.

Drug\ CellLine | MCF-7 (ER¥) | MDA-MD-231 (ER")
IC50 (uM)3 IC50 (uM)2

Gisplatin 3.1£0.3 2.4%0.2
Tamoxi 175 2853
3% 4324 3013
39b 3453 2432
39 40%4 2649

39d 1622 7.0£0.6

40a 7.0:0.8 4.0:0.4
40b 3.4:0.3 15502
20c 4.0£0.4 1,0£0.1
a7 141 2.4%0.2

a. Concentration inhibiting 50% of cell growth was
determined graphically from the cell survival curves
(Fig.9, 10). Data represent mean values + SD for
eight wells.

As we expected, platinum (Il) complexes with a longer side chain has the
tendency to increase the cytotoxic activity. The compound 39d with eleven

carbon atoms side chain was significantly more cytotoxic as compared with
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compounds 39a-c containing less carbon atoms. The reason might be as
described before: (1) a compound with a longer side chain might allow the

platinum (Il) complex portion to alkylate DNA more efficiently due to the fewer

steric i ions between the triphenylethy moiety and DNA; (2) the
increase of carbon atoms in the side chain could increase the lipophilicity of the
compound, therefore might improve its cytotoxic activity.

The complexes 39a-d with two hydroxy groups showed cytotoxic activities
by inhibiting proliferation of the MCF-7 (ER*) cells, which appears not to be
mediated by the ER. This seems to be the case since the proliferation of the
MDA-MD-231 (ER") cells was inhibited at a lower concentration as it was for the
inhibition of MCF-7 (ER*) cells. However, it is important to indicate that the
desired selectivity of the compounds 39a-d might be expressed more clearly

(and possibly only) in vivo as demonstrated previously for the compounds 32

and 33. The is of ER mediate ivity of comp: 39a-d should

be and will be further evaluated in vivo in the future.
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2.4 Conclusion.

Ina ion, eight new i (n P have been
and tested for their biological activities in vitro. The synthesis for these types of
compounds is straightforward and efficient. The lipophilic compounds 40b-c

showed promising antitumor activity for both ER* and ER- human breast cancer

cells jn vitro,




Chapter3
EXPERIMENTAL

3.1 Synthesis

3.1.1 General Procedures.

Anhydrous reactions were performed under an inert atmosphere, the set-
up assembled and cooled under dry nitrogen. Unless otherwise noted, starting
material, reactant and solvents were obtained commercially and were used as
such or purified and dried by standard means.75 Organic solutions were dried
over magnesium sulphate (MgSQy4), evaporated on a rotatory evaporator and
under reduced pressure. All reactions were monitored by UV fluorescencs, or
staining with iodine or spraying with an aqueous solution of phosphomolybdic
acid followed by heating the plate around 135 °C. Commercial TLC plates were
Sigma T 6145 (polyester silica gel 60 A, 0.25mm). Preparative TLC was
performed on 1mm silica gel 60 A, 20x20 plates (Whatman, 4861 840). Flash
column chromatography was performed according to the method of Still and co-
workers on Merck grade 60 silica gel, 230-400 mesh.76 All solvents usad in
chromatography had been distilled. Melting points were recorded on an
Electrothermal 9100 apparatus and are uncorrected. The infrared spectra were
taken on a Nicolet model 205 FT-IR, or Perkin Eimer model 2000 FT-IR
spectrophotometer. Mass spectral assays were obtained using a VG Micromass
7070 HS instrument using an ionisation energy of 70 eV. Nuclear magnetic

resonance spectra were obtained in CDClg solution, unless otherwise noted,
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on a General Electric GE 300-NB (300 MHz) instrument: chemical shifts were
measured relative to intemnal standards: tetramethylsilane (TMS, § 0.0 ppm) for
1H and CDCl3 (5 77.0 ppm) for 13C NMR. Multiplicities are described by the
following abbreviations: s (singlet), d (doublet), q (quartet), p (pentet), m
(multipletj, dd ( double doublet), tq ( triple quartet), and so on. The NMR
assignments were assisted by 13C-1H correlation (HET-CORR) 2-D spectra.

312 C of to pyranyl Ethers.

A. Sy of 1 ydropy (43).

A solution of bromoalcohol 42 (27.6 mmol), dihydropyran (2.57 g, 30.6
mmol), and pyridinium p-toluenesulfonate (PPTS) (10mg, 0.04mmol) in
dichloromethane (CHaClp, 50 mL) was stirred for 5 hrs under nitrogen.
Afterwards, sodium bicarbonate (NaHCOg, 500mg) and MgSO4 (5.0 g) ws;'e
added to the reaction mixture and stirred 15 minutes before being filtered on a
short pad of celite/ silica gel (1 cm/ 4 cm) using CH2Cly as eluent. The filtrate
was evaporated to a viscous oil 43 (98% yield) which was used without further

purification in the next step.

1-Tetrahydropyranyloxy-6 (432)
IR, vmax (thin film): 1170-1000 (C-0) cm~1; TH NMR (8 ppm): 4.57 (1H, t, J=3.2
Hz, -OCHO-), 3.87,3.74, 3,50, and 3.38 (4H, 4xm, -CH2OCHOCHp-), 3.41 (2H,
1, J=6.7 Hz, -CHoBr), 1.3-2.0 (14H, m, -CHg-); MS, m/e: 265 (M* + 1), 163 (M* -

OTHP).
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1- v y-8 (43b)

IR, Ymax (thin film): 1170-1000 (C-O) cm-1; TH NMR (5 ppm): 4.58 (1H, t, J=:3.5
Hz, -OCHO-), 3.87, 3.73, 3.50 and 3.38 (4H, 4xm, -CHyOCHOCHz-), 3.41 (2H,
t, J=6.8 Hz, -CHpBr), 1.2-2.0 (18H, m, -CHp-); MS (mle): 203(M* + 1), 191(M* -
OTHP).

1-Tetrahy 10. (43¢)

IR, Ymax (thin film): 1170-1000 (C-O) cm-1; 1H NMR (8 ppm): 4.58 (1H, 1, -}=3.5
Hz, -OCHO-), 3.87, 3.73, 3.50 and 3.38 (4H, 4xm, -CHOCHOCHo-), 3.41 (2H,
1, J=6.8 Hz, -CH2Br), 1.2-2.0 (22H, m, -CHp-); MS (mle): 321 (M+ + 1), 219(M* -
OTHP).

1-Tetrany 11 (43d)
IR, vmax {thin film): 1170-1000 (C-O) cm-1; TH NMR (5 ppm): 4.58 (1H, 1, J=3.5
Hz, -OCHO-), 3.87, 3.73, 3.50 and 3.38 (4H, 4xm, -CHyOCHOCHo-), 3.41 (2H,
t, J=6.8 Hz, -CHoBr), 1.2-2.0 (24H, m, -CHa-); MS (m/e): 335 (M* + 1), 233(M* -
OTHP).

B. is of 1 ydropyranyloxy-n-i (a4).
Sodium iodide (6.07 g, 40.5 mmol) was added to a solution of the crude

bromide 43 (27mmol) in dried acetone. The reaction mixture was stirred at 23¢C
for 5 hrs. Then, most of the solvent was evaporated and the residue was
transferred to an extraction flask with ether (150 mL) and water (100 mL). The
organic phase was washed with water (6 X 50 mL), dried, filtrated and
concentrated to a viscous liquid. The crude iodide 44 (98% yield) was used as

such at the alkylation step.
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1-Tetrahydropy y-6-i (44a)

IR, Umax (thin film): 1170-1000 (C-O) cm™1; TH NMR (5 ppm): 4.57 (1H, t, J=3.2
Hz, -OCHO-), 3.87, 8.74, 3,50 and 3.38 (4H, 4xm, -CHOCHOCH3-), 3.19 (2H,
t, J=7.0 Hz, -CHgl), 1.3-2.0 (14H, m, -CHg-); MS (m/e): 311 (M* - H), 211 (M* -
OTHP).

1-Tetrahydropyranyloxy--i (44b)
IR, Ymax (thin film): 1170-1000 (C-O) crm1; TH NMR (8 ppm): 4.58 (1H, t, J=38.5

Hz, -OCHO-), 3.87, 3.73, 3.50 and 3.38 (4H, 4xm, -CHoOCHOCH2-), 3.19 (2H,
t, J=7.0 Hz, -CHgl), 1.2-2.0 (18H, m, -CHp-); MS (m/e): 339 (M* -H ), 239 (M* -

OTHP).

1-Tetrahydropyranyloxy-10-iododecane (44c)

IR, Ymax (thin film): 1170-1000 (G-0) cm™1; TH NMR (5 ppm): 4.58 (1H, t, J=3.5
Hz, -OCHO-), 3.87, 3.73, 3.50 and 3.38 (4H, 4xm, -CHoOCHOCH>-), 3.19 (2H,
t, J=7.0 Hz, -CHal), 1.2-2.0 (22H, m, -CHg-); MS (m/e): 367 (M* - H), 267 (M+ -

OTHP).

1-Tetrahydropyranyloxy-11-iodoundecane (44d)

IR, vmax (thin film): 1170-1000 (C-0) cm-1; TH NMR (5 ppm): 4.58 (1H, t, J=3.5
Hz, -OCHO-), 3.87, 3.73, 3.50 and 3.38 (4H, 4xm, -CHpOCHOCH2-), 3.19 (2H,
t, J=7.0 Hz, -CHpl), 1.2-2.0 (24H, m, -CHp-); MS (m/e): 381 (M* - H), 281 (M*-

OTHP).
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3.1.3. C ion of Benzyl-4-Hy Ketone to Bishydroxy

and Bi: h Tri Platinum (1) C:

39a-d and 41.

A. is of benzyl-4 | ketone (45).

Benzyl-4-hydroxypheny! ketone (2.12 g, 10 mmol) and sodium hydroxide
(0.60 g, 15mmol) was dissolved in 250 mL ethanol by heating. The hot solution
was added dropwise with dimethy! sulfate (1.51 g, 12 mmol). The reaction
mixture was refluxed for 4 hrs. After evaporation, the residue was diluted with
ether (200 mL) and washed with water (5x50 mL). The ethereal phase was
dried and evaporated to give a white powder which was purified by flash

column graphy (hexar 9:1). The yield was 80% average

(98% taking in consideration the starting material ketone recovered). mp: 76.2-
77.0 9C; IR, Y max (KBr): 3090-3000 (Ar-H), 1680 (C=0), 1600 (C=C) cm"1; 1H
NMR (5 ppm): 7.98, 6.90 (4H, 2xd apparent, J=8.87 Hz, H in para substituted
anisyl group), 7.80-7.21 (5H, m, Ar-H), 4.20 (2H, s, -CH2-), 3.80 (3H, s, -OCH3);
13C NMR (8 ppm): 196.06, 163.37, 134.83, 130.79(2), 129.44, 129.25(2),
128.48(2), 126.63, 113.65(2), 55.32, 45.11. MS (m/e): 226 (M*), 135 (M*+ -
CHoCgHs).

B. is of 14" yI)-2-phenyt ydro-pyranyloxy
alkanone (46).
To a stirred suspension of sodium hydride (448 mg, 11.2 mmol, 60%
dispension in mineral oil) in 150 mL dry tetrahydrofuran (THF) the ketone 45
(2.30 g, 10.2 mmol) was rapidly added. The reaction mixture was heated (50

oC) with water bath for 1 hr under a nitrogen atmosphere. After cooling, 1-
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tetrahydropyranyloxy K 44 (11.2 mmol) was added dropwise and
the resulting mixture stirred overnight (18 hrs) at room temperature (23 °C).
Most of the solvent was then evaporated and the residue was diluted with ether
(200 mL) and treated with water (50 mL). The ethereal phase was washed
thoroughly with water (6x50 mL), dried and evaporated to give an oil which was
purifed by flash column chromatography (hexane:acetone, 95:5). The yield was

75% average (98% taking into account the alkyl iodide 44 recovered).

(4" )-2-phenyl-8 ydropyranyloxy (46a)

IR, vmax (thin film): 3090-3000 (Ar-H), 2930-2860 (C-H), 1680 (C=0), 1600
(C=C) cm~1; 1H NMR (5 ppm): 7.95, 6.85 (4H, 2xd apparent, J=8.93 Hz, H in
para substituted anisyl group), 7.32-7.14 (5H, m, Ar-H), 4.55 (1H, t, J=3.51 Hz,
-OCHO-), 4.49 (1H, t, J=7.25 Hz, -CH-), 3.84, 3.69, 3.48, 3.34 (4H, 4xm,
-CHpOCHOCH-), 3.79 (3H, s, -OCHg), 2.23-1.18 (16H, m, -CH-); 13C NMR
(3 ppm): 198.44, 163.12, 140.17, 130.82(2), 129.84, 128.69(2), 128.03(2),
126.73, 113.56(2), 98.73, 67.48, 62.24, 55.30, §3.17, 33.97, 30.70, 29.59,
29.40, 27.62, 25.99, 25.42, 19.60; MS (m/e): no M+, 326 (M* - DHP), 239 (M+ -
CsH1gOTHP).

1@ yphenyl)-2-phenyl-10. ydropyranyloxy (46b)
IR, Ymax (thin film): 3090-3000 (Ar-H), 2930-2860 (C-H), 1680 (C=0), 1600
(C=C) om*1; TH NMR (5 ppm): 7.96, 6.86 (4H, 2xd apparent, J=8.87 Hz, H in
para substituted anisyl group), 7.33-7.16 (5H, m, Ar-H), 4.57 (1H, t, J=3.51 Hz,
-OCHO-), 4.49 (1H, t, J=7.24 Hz, -CH-), 3.86, 3.71, 3.50, 3.36 (4H, 4xm,
-CHpOCHOCH-), 3.82 (3H, s, -OCHg), 2.16-1.20 (20H, m, -CHo-); 13C NMR

(5 ppm): 198.60, 163.18, 140.23, 130.91(2), 129.91, 128.74(2), 128.09(2),
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126.75, 113.62(2), 98.80, 67.64, 62.33, 55.39, 53.24, 34.06, 30.75, 29.71,
29.56, 20.36(2), 27.75, 26.17, 25.48, 19.66. MS (m/e): no M+, 354 (M* - DHP),
239 (M+ - C7H14OTHP).

1+(4" yl)-2-phenyl-12 ydropyranyloxy (46c)
IR, Ymax (thin film): 3090-3000 (Ar-H), 2930-2860 (C-H), 1680 (C=0), 1600
(C=C) cm™1; TH NMR (8 ppm): 7.96, 6.84 (4H, 2xd apparent, J=8.89 Hz, H in
para substituted anisyl group), 7.83-7.16 (5H, m, Ar-H), 4.57 (1H, t, J=3.51 Hz,
-OCHO-), 4.50 (1H, t, J=7.24 Hz, -CH-), 3.86, 3.72, 3.48, 3.37 (4H, 4xm,
-CHoOCHOCH-), 3.76 (3H, s, -OCHg), 2.16-1.20 (24H, m, -CHg-); 13C NMR
(5 ppm): 198.36, 163.03, 140.14, 130.74(2), 129.74, 128.59(2), 127.94(2),
126.62, 113.45(2), 98.62, 67.47, 62.12, 55.15, 53.08, 33.95, 30.62, 29.59,
29.47, 29.35(2), 29.27(2), 27.60, 26.08, 25.34, 19.53; MS (m/e): no M+, 382 (M+
- DHP), 239 (M* - CgH1gOTHP).

1-(4" 2-phenyl-13 i (46d)

pheny ydrop

IR, Ymax (thin film): 3090-3000 (Ar-H), 2930-2860 (C-H), 1680 (C=0), 1600

(C=C) em-1; TH NMR (5 ppm): 7.96, 6.87 (4H, 2xd apparent, J=8.94 Hz, H in
para substituted anisyl group), 7.32-7.1 (5H, m, Ar-H), 4.57 (1H, t, J=3.51 Hz,
-OCHO-), 4.49 (1H, t, J=7.25 Hz, -CH-), 3.86, 3.72, 3.48, 3.37 (4H, 4xm,
-CHpOCHOCHj-), 3.81 (3H, s, -OCHg), 2.19-1.17 (26H, m, -CHp-); 13c NMR
(3 ppm): 198.61, 163.18, 140.26, 130.90(2), 129.98, 128.74(2), 128.12(2),
126.78, 113.65(2), 98.82, 67.67, 62.33, 55.39, 53.26, 34.09, 30.79, 29.74,
29.61, 29.55(4), 29.46(2), 27.77, 26.23, 25.51; MS (m/e): no M*, 396 (M+ -
DHP), 225 (M* - Cq 1 Ho2OTHP).
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C. Synthesis of x-phenyl-y,y-bis(4'-methoxyphenyl)-x-alken-1-ol (48).

A Grignard reagent, p-methoxyphenyl magnesium bromide was prepared
from magnesium (432 mg, 18.0 mmol) and 4-methoxyphenylbromide (2.81 g,
15.0 mmol) in the presence of a crystal of iodine in 100 mL of dry ether. The
Grignard reagent was usually ready after stirring at room temperature (23 °C)
overnight (18 hrs), but sometimes required heating at reflux to initiate the
reaction. A solution of the ketone 46 (3.0 mmol) in dry ether was treated with
the excess of the Grignard reagent for 6 hrs under nitrogen at room temperature
(23 °C) and was then hydrolysed with 50 mL of 10% aqueous ammonium
chloride. The ether phase was washed with water (5 x 50 mL), dried and
evaporated to give the crude tertiary alcohol intermediate 47. The oily residue
refluxed with 95% ethanol in the presence of PPTS (100 mg, 0.40 mmol) for 8
hrs. After evaporation of the solvent, the residue was taken with ether. The
ethereal phase was washed with water (5 x 50 mL), dried and evaporated to an
oil. Flash column chromatography (hexane:acetone, 7:1) gave a pure 48 in 85%

average yield as a viscous oil.

7-Phenyl-8,8-bis(4"-1:ethoxyphenyl)-7-octen-1-ol (48a)

IR, vmax (thin film): 3340 (br, OH), 3090-3000 (Ar-H), 2930-2860 (C-H), 1600
(C=C) cm-1; TH NMR (5 ppm): 7.18-7.05 (7H, m, Ar-H), 6.87 (2H, d apparent,
J=8.72 Hz, H in para substituted anisyl group), 6.77, 6.53 (4H, 2xd apparent,
J=8.82 Hz, H in parp substituted anisyl group), 3.82, 3.66 (6H, 2xs, 2x-OCHg),
3.55 (2H, t, J=6.60 Hz, -CHp0H), 2.43 (2H, m, -C=C-CHp-), 1.65 (1H, brs, -OH),
1.50 (2H, p, J=7.30 Hz, -CHaCHo0H), 1.30-1.10 (6H, m, -(CHp)a-); 13C NMR
(5 ppm): 158.16, 157.37, 142.87, 139.73, 138.06, 136.25, 135.73, 131.84(2),
130.56(2), 129.54(2), 127.80(2), 125.85, 113.39(2), 112.66(2), 62.91, 55.18,
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54.95, 35.85, 32.60, 29.42, 28.82, 25.32; MS (mle): 416 (M*), 329 (M* -
CsHyQOH).

9-Phenyl-10,10-bis{4'-methoxyphenyl)-9-decen-1-ol (48b)

IR, Ymax (thin film): 8340 (br, OH), 3090-3000 (Ar-H), 2930-2860 (C-H), 1600
(C=C) cm™1; TH NMR (8 ppm): 7.18-7.05 (7H, m, Ar-H), 6.88 (2H, d apparent,
J=8.73 Hz, H in para substituted anisy! group), 6.77, 6.54 (4H, 2xd apparent,
J=8.83 Hz, H in para substituted anisyl group), 3.82, 3.67 (6H, 2xs, 2x-OCH3),
3.60 (2H, t, J=6.63 Hz, -CHoOH), 2.43 (2H, m, -C=C-CHz-), 1.64 (1H, br s, -OH),
1.51 (2H, p, J=7.30, -CHaCH0H), 1.30-1.10 (10H, m, -(CH)5-); 13C NMR (3
ppm): 158.12, 157.31, 142.91, 139.85, 137.94, 136.28, 135.77, 131.85 (2),
130.58(2), 129.55(2), 127.78(2), 125.81, 113.37(2), 112.63(2), 63.00, 55.19,
54.95, 35.91, 32.69, 29.58, 29.22, 29.15, 28.85, 25.61; MS (m/e): 444 (M*+), 329
(M+ - C7H140H).

11-Phenyl-12,12-bis(4'-methoxyphenyl)-11-dodecen-1-ol (48c)

IR, vmay (thin film): 3340 (br, OH), 3090-3000 (Ar-H), 2930-2860 (C-H), 1600
(C=C) cm"1; TH NMR (8 ppm): 7.18-7.05, (7H, m, Ar-H), 6.87 (2H, d apparent,
J=8.72 Hz, H in para substituted anisyl group), 6.77, 6.53 (4H, 2xd apparent,
J=8.80 Hz, H in para substituted anisyl group), 3.81, 3.66 (6H, 2xs, 2x-OCH3),
3.61 (2H, t, J=6.62 Hz, -CHpOH), 2.42 (2H, m, -C=C-CHp-), 1.66 (1H, br s, -OH),
1.53 (2H, p, J=7.20 Hz, -CHaCH2OH), 1.38-1.10 (14H, m, <(CHp)7-); 13C NMR
(5 ppm): 158.10, 157.29, 142.89, 139.89, 137.88, 136.27, 135.80, 131.84(2),
180.57(2), 129.53(2), 127.75(2), 125.78, 113.34(2), 112.62(2), 62.95, 55.15,
54.92, 35.91, 32.71, 29.65, 29.48, 29.35(2), 29.20, 28.87, 25.68; MS (m/e): 472
(M), 329 (M+ - CgH1gOH).
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12-Phenyl-13,13-bis(4" 12-tridecen-1-ol (48d)
IR, Ymax (thin fim): 3340 (br, OH), 3080-3000 (Ar-H), 2830-2860 (C-H), 1600
(C=C) cm"1; TH NMR (5 ppm): 7.18-7.08, (7H, m, Ar-H), 6.87 (2H, d apparent,
J=8.87 Hz, H in para substituted anisyl group), 6.77, 6.54 (4H, 2xd apparent,
J=8.82 Hz, H in para substituted anisyl group), 3.82, 3.67 (6H, 2xs, 2x-OCHg),
3,63 (2H, 1, J=6.62 Hz, -CHaOH), 2.42 (2H, m, -C=C-CHg-), 1.69 (1H, br s, -OH),
1.53 (2H, m, -CH2CHQ0H), 1.39-1.10 (16H, m, -(CHp)g-); 13C NMR (8 ppm):
158.10, 157.33, 142.92, 139.92, 137.89, 136.30, 135.84, 131.87(2), 130.60(2),
129.55(2), 127.79(2), 125.79, 113.36(2), 112.66(2), 63.06, 55.20, 54.97, 35.94,
32.75, 29.71, 29.49(3), 29.39, 2%.25, 28.90, 25.70; MS (m/e): 486 (M*), 329 (M*+
- C10H200H).

D. Synthesis of 1-bromo-x-phenyl-y,y-bis(4'-methoxyphenyl)-x-alkene (49).
A solution of the alcohol 48 (2.25 mmol), carbon tetrabromide (2.98 g, 9.00

mmol) and triphenylphosphine (2.36 g, 9.00 mmol) in dry ether (100 mL) was

stirred at room temperature (23 °C) for 24 hrs under a nitrogen atmosphere. The

oxide p itate was filtrated and the resulting solution was

washed thoroughly with water (5x25 mL), dried and evaporated to an oil. The
crude material was purified by flash column chromatography (hexane:acetone,

95:5) to give the bromide 49 in 85% yield.

1-Bromo-7-phenyl-8,8-bis(4'-methoxyphenyl)-7-octene (49a)

IR, Ymax (thin film): 3080-3000 (Ar-H), 2930-2860 (C-H), 1600 (C=C) cm-1; 1H
NMR (5 ppm): 7.18-7.05 (7H, m, Ar-H), 6.88 (2H, d apparent, J=8.73 Hz, H in
para substituted anisyl group), 6.77, 6.53 (4H, 2xd apparent, J=8.81 Hz, H in
para substituted anisyl group), 3.82, 3.66 (6H, 2xs, 2x-OCH3g), 3.32 (2H, t,

48



J=6.86 Hz, -CHpBr), 2.43 (2H, m, -C=C-CHp-), 1.74 (2H, p, J=7.30 Hz,
-CHaCH2Br), 1.40-1.18 (6H, m, -(CHa)3-); 13C NMR (5 ppm): 158.23, 157.40,
142,81, 139.59, 138.20, 136.20, 135.69, 131.84(2), 130.54(2), 129.54(2),
127.84(2), 125.89, 113.43(2), 112.67(2), 55.20, 54.96, 35.77, 33.91, 32.62,
28.75,28.65, 27.80; MS (m/e): 478 (M*), 480 (M* + 2), 329 (M* - CgHygBr).

1-Bromo-9-phenyl-10,10-bis(4'-methoxyphenyl)-9-decene (49b)

IR, vmax (thin film): 3090-3000 (Ar-H), 2930-2860 (C-H), 1600 (C=C) om; 11
NMR (8 ppm): 7.18-7.05 (7H, m, Ar-H), 6.88 (2H, d apparent, J=8.59 Hz, H in
para substituted anisyl group), 6.77, 6.54 (4H, 2xd apparent, J=8.69 Hz, H in
para substituted anisyl group), 3.82, 3.67 (6H, 2xs, 2x-OCHg), 3.37 (2H, t,
J=6.86 Hz, -CHoBr), 2.43 (2H, m, -C=C-CHp-), 1.80 (2H, p, J=7.33 Hz,
-CHCHgBY), 1.42-1.10 (10H, m, -(CHa)s-); 13C NMR (5 ppm): 158.14, 157.33,
142.89, 139.78, 137.99, 136.25, 135.77, 131.86(2), 130.57(2), 129.55(2),
127.80(2), 125.83, 113.37(2), 112.65(2), 55.19, 54.94, 35.89, 34.03, 32.74,
29.52, 29.00, 28.80, 28.56, 28.05. MS (m/e): 506 (M), 508 (M+ + 2), 329 (M+ -
C7Hy4Br).

1-Bromo-11-pheny!l-12,12-bis(4'-methoxyphenyl)-11-dodecene (49c)

IR, Uax (thin film): 3080-3000 (Ar-H), 2930-2860 (C-H), 1600 (C=C) cm™1; TH
NMR (8 ppm): 7.18-7.05 (7H, m, Ar-H), 6.87 (2H, d apparent, J=8.77 Hz, H in
para substituted anisyl group), 6.77, 6.53 (4H, 2xd apparent, J=8.84 Hz, H in
para substituted anisyl group), 3.80, 3.64 (6H, 2xs, 2x-OCHg), 3.37 (2H, t,
J=6.87 Hz, -CHoBr), 2.43 (2H, m, -C=C-CHp-), 1.82 (2H, P, J=7.32 Hz,
-CHaCHgBr), 1.40-1.10 (14H, m, -(CHg)7-); 13C NMR (& ppm): 156.10, 157.30,
142.86, 139.80, 137.92, 136.21, 135.73, 131.82(2), 130.54(2), 129.51(2),
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127.74(2), 125.77, 113.31(2), 112.60(2), 55.11, 54.88, 35.89, 33.97, 32.74,
29,61, 20.30(2), 29.15, 28.83, 28.66, 28.09; MS (m/e): 534 (M+), 536 (M* + 2),
329 (M+ - CgH1gBr).

1-Bromo-12-phenyl-13,13-bis(4'-methoxyphenyl)-12-tridecene (49d)

IR, vmax (thin film): 3090-3000 (Ar-H), 2930-2860 (C-H), 1600 (C=C) cm-1; 1H
NMR (8 ppm): 7.18-7.08 (7H, m, Ar-H), 6.87 (2H, d apparent, J=8.71 Hz, H in
para substituted anisyl group), 6.77, 6.54 (4H, 2xd apparent, J=8.77 Hz, H in
para substituted anisyl group), 3.82, 3.67 (6H, 2xs, 2x-OCH3), 3.39 (2H, t,
J=6.86 Hz, -CH2Br), 2.42 (2H, m, -C=C-CHp-), 1.84 (2H, P, J=7.34 Hz,
-CHoCH2BY), 1.40-1.10 (16H, m, ~(CH2)g-); 13C NMR (5 ppm): 158.14, 157.33,
142.94, 139.88, 137.92, 136.26, 135.81, 131.87(2), 130.60(2), 129.56(2),
127.75(2), 125.80, 113.36(2), 112.66(2), 55.17, 54.98, 35.91, 34.02, 32.79,
29.68, 29.44(2), 29.38, 29.21, 28.90, 28.71, 26.13; MS (m/e): 548 (M+), 550 (M*
+2), 329 (M* - C1gHgBr).

E. is of 1-[(2 Yamino]-x-phenyl-y,y-bis(4"
phenyl) -x-alkene (50).

Under a nitrogen atmosphere, ethylenediamine (900 mg, 15.0 mmol) was
added to a solution of the bromide 49 (1.50 mmol) in 80 mL of dry methanol.
Atfter boiling for two days under reflux (sometimes longer reaction period was
required), the solvent was evaporated. The resulting residue was dissolved in
ether (150 mL) and washed with a solution of NaHCO3 (30 mL, 5% aqueous)
and with water (5x30 mL). The ethereal phase was dried and evaporated to a

viscous oil 50. The yield was 90%.
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1-{(2"-Ami 7-phenyl-8,8-bis(4' 7-octene (50a)
IR, Ymax (thin film): 3340 (br, N-H), 3090-3000 (Ar-H), 2930-2860 (C-H), 1660
(N-H, bending), 1600 (C=C) cm"!; TH NMR (8 ppm): 7.18-7.05 (7H, m, Ar-H),
6.87 (2H, d apparent, J=8.65 Hz, H in para substituted anisyl group), 6.7, 6.53
(4H, 2xd apparent, J=8.75 Hz, H in para substituted anisyl group), 3.82, 8.67
(6H, 2xs, 2¢-OCHg), 2.79, 2.64 (4H, 2t J=5.92 Hz, -NHCHaCHaNHp), 2.54
(2H, t, J=7.25 Hz, -CHoNH-), 2.43 (2H, m, -C=C-CHg-) 1.78 (3H, br s, -NH- and
-NHg), 1.43-1.18 (8H, m, -(CHg)4-); 13C NMR (3 ppm): 158.14, 167.33, 142.86,
139.76, 137.99, 136.28, 135.73, 131.84(2), 130.55(2), 129.53(2), 127.78(2),
12581, 113.37(2), 112.63(2), 55.16, 54.93, 52.42, 49.74, 41.58, 35.88, 29.90,
29.60, 28.86, 26.99; MS (m/e): 458 (M*), 428 (M* - CHaNHg), 415 (M+ -
CHaCHaNH), 329 (M+ -CgH1oNHCH2CHaNHg).

e phenyl-10,10-bis(4 9

(50b)
IR, vmax (thin film): 3340 (br, N-H), 3090-3000 (Ar-H), 2930-2860 (C-H), 1660
(N-H, bending), 1600 (C=C) cm-; TH NMR (8 ppm): 7.18-7.05 (7H, m, Ar-H),
6.88 (2H, d apparent, J=8.70 Hz, H in para substituted anisyl group), 6.77, 6.54
(4H, 2xd apparent, J=8.83 Hz, H in para substituted anisyl group), 3.82, 3.67
(6H, 2xs, 2x-OCHg), 2.80, 2.65 (4H, 2xt, J=5.85 Hz, -NHCHaCHoNHp), 2.57
(2H, 1, J=7.24 Hz, -CHoNH-), 242 (2H, m, -C=C-CHg-), 1.50 (3H, br s, -NH- and
-NHp), 1.46-1.10 (12H, m, -(CH2)g-); 18C NMR (5 ppm): 158.10, 157.33,
142.90, 139.85, 137.95, 136.26, 135.80, 131.87(2), 130.57(2), 129.54(2),
127.77(2), 125.79, 113.34(2), 112.62(2), 55.17, 54.94, 52.61, 49.53, 41.76,
35.92, 30.11, 29.64, 20.41, 29,21, 28.88, 27.27; MS (m/e): 486 (M*), 456 (M* -
CHoNHg), 443 (M+ - CHaCHaNH), 329 (M* - C7H14NHCHZCHaNHp).
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1-[(2'-Amincethyl)amino]-11-phenyl-12,12-bis(4'-methoxyphenyl)-11-
dodecene (50c)

IR, Ymax (thin film): 3340 (br, N-H), 5090-3000 (Ar-H), 2930-2860 (C-H), 1660
(N-H, bending), 1600 (C=C) cm~1; 1TH NMR (5 ppm): 7.18-7.05 (7H, m, Ar-H),
6.87 (2H, d apparent, J=8.67 Hz, H in para substituted anisyl group), 6.77, 6.53
(4H, 2xd apparent, J=8.81 Hz, H in para substituted anisy! group), 3.81, 3.66
(6H, 2xs, 2x-OCHg), 2.83, 2.69 (4H, 2xt, J=5.90, -NHCH2CHoNHg), 2.60 (2H, t,
J=7.27 Hz, -CHoNH-), 2.53 (3H, br s, -NH- and -NHp), 2.42 (2H, m, -C=C-CHy-),
1.48-1.10 (16H, m, -(CHp)g-); 18C NMR (5 ppm): 158.06, 157.26, 142.86,
139.82, 137.84, 136.20, 135.73, 131.80(2), 130.52(2), 129.49(2), 127.71(2),
125.74, 113.28(2), 112.57(2), 55.09, 54.87, 51.98, 49.69, 41.27, 35.88, 29.80,
20.64, 29.44(3), 29.21, 28.85, 27.25. MS (m/e): 514 (M*), 484 (M+ - CHaNHp),
471 (M* -CHaCHoNH), 329 (M+ - CgH1gNHCHoCH2NHo).

1-[(2'-Aminoethyl)amino]-12-phenyl-13,13-bis(4'-methoxyphenyl)-12-
tridecene (50d)

IR, max (thin film): 3340 (br, N-H), 3090-3000 (Ar-H), 2830-2860 (C-H), 1660
(N-H, bending), 1600 (C=C) cm-1; TH NMR (5 ppm): 7.16-7.08 (7H, m, Ar-H),
6.87 (2H, d apparent, J=8.62 Hz, H in para substituted anisyl group), 6.77, 6.53
(4H, 2xd apparent, J=8.73 Hz, H in para substituted anisyl group), 3.82, 3.67
(6H, 2xs, 2x-OCHag), 2.81, 2.66 (4H, 2xt, J=5.87, -NHCH2CHoNH2), 2.60 (2H, t,
J=7.23 Hz, -CHaNH-), 2.42 (2H, m, -C=C-CHp-), 1.51 (3H, br s, -NH- and -NH),
1.48-1.10 (18H, m, -(CHg)g-); 13C NMR (5 ppm): 158.06, 157.29, 142.89,
139.85, 137.84, 136.24, 135,77, 131.84(2), 130.57(2), 129.53(2), 127.72(2),
125.75, 113.31(2), 112.59(2), 55.13, 54.91, 52.51, 49.89, 41.68, 35.90, 30.10,
29.66, 29.52(4), 29.23, 28.87, 27.32. MS (m/e): 528 (M*), 498 (M+ - CHoNHg),
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485 (M+ -CHCHoNH), 329 (M - C1gHa0NHCH2CHaNHg).

F. Sy is of 1-[(2"-ami i phenyl-y,y-bis(4"-hydroxy-
phenyl) -x-alkene (51).

A solution of 50 (0.665 mmol), in dry CHClp (30 mL) was treated with a
solution of boron tribromide (1M in CHaClp, 1.60 mL, 1.60 mmol) at -60 °C,
under nitrogen atmosphere. After the addition, the reaction mixture was allowed
to warm at a room temperature (23 °C) and was stirred for 18 hrs. The mixture
was refluxed during 2 hrs, then cooled down with an ice bath before adding 10
mL methanol. The resulting solution was adjusted with saturated NaHCO3
solution to pH=7, then evaporated to 2-3 mL, treated with saturated NaHCO3
solution (30 mL), and extracted with ethyl acetate (5x30 mL). The crude yield is
around 60-80%. The product 51 was used without further purification in the next

step. We obtained the following three compounds:

1-{(2-A ino]-7-phenyl-8,8-bis(4"-hy 7-octene (51a)
(2 9-phenyl-10,10-bis(4'-hy 9-d

(51b)

1-[(2" i 11-phenyi-12,12-bis(4'-hy 11-
dodecene (51c)

1-{(2"-A 12-phenyl-13,13-bis(4™-hy )-12-
tridecene (51d)

G. is of 1-{cis-{(2" inum (Il)}-x-

phenyl-y,y-bis(4'-hydroxyphenyl)-x-alkene (39).
A solution of potassium tetrachloroplatinate (If) (219 mg, 0.528 mmol) in
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7.5 mL of a mixture of DMF and water (2:1) was added to a warm (35 °C)
solution of the diamine 51 (0.528 mmol) in 5 mL of DMF. The resulting mixture
(pH=9-10) was stirred in the dark for 2-3 days until the pH value reached 4-5.
Then, one drop of N,N-dimethylsulfoxide was added and the stirring was
continued for 2 hrs. The solvent was evaporated and the residue was

st in d ium chloride solution (30 mL). A vigourous

stirring was essential in order to pulverized the lumps of platinum (ll) complex
39. The resulting suspension was filtered, washed with water (100-250 mL),
and dried in a desiccator. The product can be further purified either by flash
column chromatography or by preparative TLC (CHaClp:CH3OH, 95:5). The

crude yield was around 80%.

1-{Cis-[(2'-amii yl) amino] i (1)}-7-phenyl-8,8-bis(4'

hydroxyphenyl)-7-octene (39a)

mp > 138 °C (dec.); IR, vmax (KBr): 3400-3100 (O-H, N-H), 2930-2850 (C-H),
1600 (C=C) om1; TH NMR (acetone-dg, § ppm): 8.32, 8.09 (2H, 2xbr s, 2xAr-
OH), 7.20-7.10 (5H, m, Ar-H), 7.07, 6.86 (4H, 2xd apparent, J=8.52 Hz, H in
para substituted phenol), 6.71, 6.48 (4H, 2xd apparent, J=8.62 Hz, H in para
substituted phenol), 5.68, 5.11, 4.98 (3H, 3xbr s, -NH- and -NHy), 3.21, 3.06,
2.77, 2.67 (6H, 4xbr s, -CHaNHCHaCHoNHp), 2.46 (2H, m, -C=C-CHap-), 1.78,
1.56 (2H, 2xbr s, -CHoCHoNH-), 1.40-1.10 (6H, m, -(CHp)3-); 13C NMR
(acetone-dg, 8 ppm): 156.88, 15A.07, 143.94, 139.72(2), 135.93, 135.62,
132.62(2), 131.30(2), 130.41(2), 128.07(2), 126.55, 115.73(2), 114.93(2), 56.12,
53.42, 47.78, 36.383, 27.64, 26.82 (N.B. 2 carbons are hidden by acetone). Anal.
caled. for CpgHa4ClaNpOaPt11/5Hp0: C 45.68, H 5.26, N 3.80; found: C
45.72, H5.28, N 3.70.
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1-(Cis-[(2"-amil yhamino]di inum (I)}-9-pheny!-10,10-bis(4'-
hydroxyphenyl)-9-decene (39b)

mp > 138 °C (dec.); IR, vmax (KBr): 3400-3100 (O-H, N-H), 2930-2850 (C-H),
1600 (C=C) em1; TH NMR (acetone-dg, 5 ppm): 8.35, 8.13 (2H, 2xbr s, 2xAr-
OH), 7.20-7.10 (5H, m, Ar-H), 7.07, 6.86 (4H, 2xd apparent, J=8.54 Hz, H in
para substituted phenol), 6.71, 6.48 (4H, 2xd apperant, J=8.62 Hz, H in para
substituted phenol), 5.71, 5.10, 4.99 (3H, 3xbr s, -NH- and -NHy), 3.24, 3.05,
2.80, 2.72 (6H, 4xbr s, -CHoNHCHpCHpNHp), 2.45 (2H, m, -C=C-CH2-), 1.80,
1.58 (2H, 2xbr s, -CHaCHaNH-) 1.40-1,10 (10H, m, -(CHg)s-); 13C NMR
(acetone-dg, 8 ppm): 156.89, 156.08, 144.04, 139.86, 139.66, 135.95, 135.61,
132.59(2), 131.29(2), 130.39(2), 128.56(2), 126.55, 115.68(2), 114.94(2), 66.15,
53.51, 47.83, 36.46, 27.82, 27.21 (N.B. 4 carbons are hidden by acetone). Anal.
caled. for GagHagClaN202Pt-2HR0: C 47.37, H 5.57, N 3.68; found: G 47.40, H
5.62, N 3.73.

1-{Cis-[(2"-ami i inum (11)}-11-phenyl-12,12-bis(4'-
hydroxyphenyl)-11-dodecene (39¢c)

mp > 138 °C (dec.); IR, vmax (KBr): 3400-3100 (O-H, N-H), 2930-2850 (C-H),
1600 (C=C) cm-1; TH NMR (acetone-dg, & ppm): 8.31, 8.09 (2H, 2xbr s, 2xAr-
OH), 7.20-7.10 (5H, m, Ar-H), 7.07, 6.85 (4H, 2xd apparent, J=8.50 Hz, H in
para substituted phenol), 6.71, 6.48 (4H, 2xd apparent, J=8.62 Hz, H in para
substituted phenol), 5.70, 5.08, 4.98 (3H, 3xbr s, -NH- and -NHp), 3.25, 3.08,
2.78, 2.70 (6H, 4xbr s, -CHoNHCH2CHoNHp), 2.45 (2H, m, -C=C-CHa-), 1.82,
1.60 (2H, 2xbr s -CHoCHaNH-), 1.40-1.10 (14H, m, ~(CH2)7-); 13C NMR
(acetone-dg, & ppm): 156.80, 155.95, 143.94, 139.75, 139.55, 135.85, 135.50,

132.47(2), 131.17(2), 130.27(2), 128.43(2), 126.44, 115.54(2), 114.82(2), 56.04,
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53.38, 47.71, 36.38, 27.72, 27.14 (N.B. 6 carbons are hidden by acetone). Anal.
calcd. for CgoHg2ClaN20oPt-2H0: C 48.73, H 5.88, N 3.55; found: C 48.65, H

5.78, N 3.61.

1-{Cis-[(2" ino]dichloroplatinum (I)}-12-phenyl-13,13-bis(4"-

hydroxyphenyl)-12-tridecene (39d)

mp > 138 °C (dec.); IR, vmay (KBr): 3400-3100 (O-H, N-H), 2930-2850 (C-H),
1600 (C=C) cm"!; TH NMR (acetone-dg, & ppm): 8.31, 8.08 (2H, 2xbr s, 2xAr-
OH), 7.20-7.10 (5H, m, Ar-H), 7.07, 6.85 (4H, 2xd apparent, J=8.47 Hz, H in
para substituted phenol), 6.71, 6.49 (4H, 2xd apparent, J=8.54 Hz, H in para
substituted phenol), 5.70, 5.09, 4.97 (3H, 3xbr s, -NH- and -NHp), 3.28, 3.08,
2.75 (6H, 3xbr s, -CHaNHCH2CHoNHo), 2.45 (2H, m, -C=C-CHy-), 1.84, 1.62
(2H, 2xbr s -CHaCHoNH-), 1.40-1.10 (16H, m, -(CH2)g-); 13C NMR (acetone-
dg, & ppm): 157.46, 156.63, 144.61, 140.43, 140.20, 136,51, 136.17, 133.14(2),
131.84(2), 130.94(2), 129.10(2), 127.13, 116.20(2), 115.49(2), 56.71, 54.04,
48.37, 37.06, 28.39, 27.82 (N.B. 7 carbons are hidden by acetone). Anal. calcd.
for C33H44CloN202Pt:2Ho0: C 49.38, H 6.03, N 3.49; found: C 49.32, H 6.08,
N3.52.

H.

y is of 1-{Cis-{(2"-aminoethy f)amino]di inum (Il)}-12-
phenyl-13,13-bis(4'-methoxyphenyl)-12-trideceae (41).

The Platinum (Il) complex 41 was obtained following the procedure of 39
taking 50d as the starting material. The crude yield was around 80%. The
product can be further purified either by flash column chromatography or by
preparative TLC (CHpClp:CH3OH, 98:2). mp > 173 °C (dec.); IR, ymax (KBr):
3340 (br, N-H), 3090-3000 (Ar-H), 2030-2860 (C-H), 1600 (C=C) cm-1; TH NMR
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(3 ppm): 7.16-7.08 (7H, m, Ar-H), 6.86 (2H, d apparent, J=8.62 Hz, H in para
substituted anisyl group), 6.76, 6.53 (4H, 2xd apparent, J=8.73 Hz, H in para
substituted anisyl group), 5.65, 5.05, 4.92 (3H, 3xbr s, -NH- and -NHp), 3.80,
3.66 (6H, 2xs, 2x-OCH3), 4.05, 3.18, 2.95, 2.75 (6H, 4xbr s,
-CHoNHCH2CHoNHp), 243 (2H, m, -C=C-CHyp-), 1.75, 1.52 (2H, 2xbr s,
-CHpCHoNH-), 1.40-1.06 (16H, m, -(CH2)g-); 13C NMR (5 ppm): 158.15,
157.34, 142.93, 139.90, 137.93, 136.28, 135.81, 131.88(2), 130.61(2),
129.58(2), 127.80(2), 125.83, 113.40(2), 112.67(2), 55.45, 55.22, 54.98, 53.47,
46.93, 35.98, 29.78, 29.55(2), 29.45, 29.34, 29.24, 28.97, 27.41, 26.56. Anal.
caled. for Ca5H4gCIaN20Pt: C 52.89, H 6.09, N 8.52; found: C 52.83, H 6.06,
N 3.51. ‘

314 C ion of D in to Triph Platinum

(I1) Complexes 40a-c.

A. is of 1,2 ydropy (53).
Desoxybenzoin 52 (2.00 g, 10.2 mmol) was rapidly added to a stirred

suspension of sodium hydride (448 mg, 11.2 mmol, 60% dispension in mineral

oil) in 150 mL dry tetrahydrofuran (THF). The reaction mixture was heated (50

oC) with water bath for 1 hr under a nitrogen atmosphere. After cooling, 1-

ydropyranyloxy 44 (11.2 mmol) was added dropwise and
the resulting mixture stirred overnight (18 hrs) at room temperature (23 °C).
Most of the solvent was then evaporated and the residue was diluted with ether
(200 mL) and treated with water (50 mL). The ethereal phase was washed

thoroughly with water (6x50 mL), dried and evaporated to give an oil which was
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purified by flash column chromatography (hexane:acetone, 98:2). The yield was
75% average (98% taking into account the alkyl iodide 44 recovered).

1,2-Bi 8 (53a)

F y ydrop:

IR, Umax (thin film); 3092-3025 (Ar-H), 2933-2858 (C-H), 1683 (C=0), 1585

(C=C) cm-1; TH NMR (5 ppm): 8.01-7.15 (10H, m, Ar-H), 4.55 (1H, t, J=3.55 Hz,
-OCHO-), 4.53 (1H, t, J=7.21 Hz, -CH-), 3.84, 3.70, 3.47, 3.34 (4H, 4xm,
-CHpOCHOCHS>-), 2.19-1.22 (16H, m, -CHp-); 13C NMR (5 ppm): 199.94,
139.68, 136.83, 132.68, 128.75 (2), 128.53 (2), 128.39 (2), 128.09 (2), 126.83,
98.72, 67.45, 62.25, 53,54, 33.91, 30.68, 29.56, 29.36, 27.55, 25.99, 25.40,
19.62; MS (m/e): 380 (M+), 296 (M* - DHP), 105 (CgHs-C=0).

1,2 Bi 10 (53b)

y Y

IR, max (thin film): 3092-3025 (Ar-H), 2933-2858 (C-H), 1683 (C=0), 1585

(C=C) em"1; 1H NMR (8 ppm): 8.01-7.15 (10H, m, Ar-H), 4.56 (1H, t, J=3.53 Hz,
-OCHO-), 4.54 (1H, 1, J=7.29 Hz, -CH-), 3.84, 8.71, 3.47 ,3.35 (4H, 4xm,
-CHpOCHOCHp-), 2.16-1.26 (20H, m, -CHa-); 13C NMR (5 ppm): 199.93,
139.70, 136.84, 132.65, 128.71 (2), 128.50 (2), 128.35 (2), 128.07 (2), 126.79,
98.67, 67.51, 62.18, 53.53, 33.96, 30.68, 29.61, 29.45, 29.26 (2), 27.60, 26.09,
25.40, 19.60; MS (m/e): 408 (M+), 324 (M+ - DHP), 105 (CgH5-C=0).

1,2-Bisphenyl-12 ydropyranyloxy-dod (53¢)
mp: 59-59.5 9C. IR, vmayx (KBr): 3092-3025 (Ar-H), 2933-2858 (C-H), 1683
(C=0), 1585 (C=C) cm-1; 1H NMR (5 ppm): 8.01-7.15 (10H, m, Ar-H), 4.57 (1H,
t, J=3.50 Hz, -OCHO-), 4.53 (1H, t, J=7.22 Hz, -CH-), 3.85, 8.72, 3.49, 3.37 (4H,
4xm, -CHpOCHOCH-), 2.15-1.23 (24H, m, -CHg-); 13C NMR (5 ppm): 200.12,
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139.82, 137.00, 132.74, 128.81(2), 128.61(2), 128.46(2), 128.20(2), 126.88,
98.84, 67.69, 62.34, 53.67, 34.06, 30.80, 29.76, 29.59, 29.51(2), 29.45(2),
27.72, 26.23, 25.51, 19.71; MS (m/e): 436 (M*+), 352 (M* - DHP), 105 (CgHs5-

C=0).

B. of 1,1,2. Ikan-1,n-diol (55).

A Grignard reagent was prepared from magnesium (432mg, 18.0 mmol)
and bromobenzene (2.36 g, 15.0 mmol) in the presence of a crystal of iodine in
100 mL of dry ether. The preparation of Grignard reagent required 4 hrs at room
temperature (23 °C). A solution of ketone 53 (3.0 mmol) in dry ether was treated
with the excess of the Grignard reagent for 6 hrs under nitrogen at room
temperature (23 °C) and was then hydrolysed with 50 mL.of 10% aqueous
ammonium chioride. The ether phase was washed with water (5 x 50 mL), dried
and evaporated to give the crude tertiary alcohol intermediate 54. The oily
residue refluxed with 95% ethanol in the presence of PPTS (100 mg, 0.40
mmol) for 3 hrs. After evaporation of the solvent, the residue was taken with
ether. The ethereal phase was washed with water (5 x 50 mL), dried and
evaporated to an oil. The crude 55 was used as such for next dehydration step.
Flash column chromatography (hexane:acetone, 7:1) could produce a pure 55
(85% yield from 53).

1,1,2-Trisphenyl-octan-1,8-diol (55a)

IR, Ymay (thin film): 3600-3300 (OH), 3090-3015 (Ar-H), 2050-2850 (C-H),
1600 (C=C) cm-1; TH NMR (8 ppm): 7.59-6.96 (15H, m, Ar-H), 3.69 (1H, dd,
J=11.42 Hz, J'=2.86 Hz, -CH-), 3.50 (2H, t, J=6.62 Hz, -CHpOH), 2.57 (1H, br s,
COH), 1.90-1.06 (11H, m, -(CHa)5 and -CHpOH); 13C NMR (8 ppm): 146.27,
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145.98, 139.97, 129.96(2), 128.10(2) 127.60(2), 127.49(2), 126.60, 126.26,
126.20(2), 126.00, 125.61(2), 80.86, 62.76, 54.13, 32.52, 30.00, 29.22, 27.80,
25.41; MS (m/e): no M+, 357 (M* - OH), 356 (M*+ - H20), 183
(CeHSC(OH;CeHs).

1.1.2-Trisphenyl-decan-1,10-diol (55b)
The crude intermediate 55b was used for next dehydration step without

purification.

1.1.2-Trisphenyl-dodecan-1,12-diol (55¢c)

IR, Umax (thin film): 3600-3300 (OH), 3090-3015 (Ar-H), 2950-2850 (C-H),
1600 (C=C) cm-1; TH NMR (5 ppm): 7.59-6.96 (15H, m, Ar-H), 3.69 (1H, dd,
J=11.42 Hz, J'=2.86 Hz, -CH-), 3.60 (2H, t, J=6.62 Hz, -CH20H), 2.50 (1H, br s,
COH), 1.80-1.06 (19H, m, -(CHp)g- and -CH20H); 13C NMR (5 ppm): 146.31,
145.97, 140.00, 129.99(2), 128.14(2), 127.62(2), 127.48(2), 126.60, 126.24(3),
126.02, 125.60(2), 80.90, 62.98, 54.13, 32.72, 30.02, 29.47(2), 20.41, 29.34(2),
27.86, 25.63; MS (m/e): no M+, 413 (M* - OH), 412 (M+ - Hp0), 183
(CgH5C(OH)CgHs).

C. Sy is of x,y,y-trispheny Iken-1-ol (56).

The oily 55 (2.5 mmol) was dehydrated in 100 mL toluene in the presence
of pTSA (100 mg, 0.56 mmol) at reflux for 2 hrs. After evaporation of the solvent,
the residue was extracted with ether and water (5 x 50 mL), dried and
evaporated to an colorless product 56. Flash column chromatograph

(hexane:acetone, 9:1) yield a viscous oil (99% yield from 55).
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7,8,8-Trisphenyl-7-octen-1-ol (56a)

mp: 90.5-91.5 9C; IR, vmax (KBr): 3330 (br, OH), 3100-3000 (Ar-H), 2925-2825
(C-H), 1600 (C=C) cm1; TH NMR (5 ppm): 7.34-6.86 (15H, m, Ar-H), 3.55 (2H, t,
J=6.60 Hz, -CHoOH), 2.43 (2H, m, -C=C-CHg-), 1.50-1.19 (SH, m, -(CHp)4- and
-CH20H); 13c NMR (5 ppm): 143.43, 142.92, 142.40, 140.89, 138.92,
130.65(2), 129.52(2), 129.43(2), 128.08(2), 127.76(2), 127.30(2), 126.53,
126.10, 125.67, 62.91, 35.72, 32.58, 29.33, 28.72, 25.30; MS (m/e): 356(M+),
269(M* - CgH1gOH).

9,10,10-Trispheny-9-decen-1-ol (56b)

IR, vmax(thin film): 3330 (br, OH), 3100-3000 (Ar-H), 2925-2825 (C-H), 1600
(C=C) emT; 1H NMR (5 ppm): 7.34-6.86 (15H, m, Ar-H), 3.51 (2H, t, J=6.73 Hz,
-CHpOH), 2.43 (2H, m, -C=C-CHp-), 1.45-1.14 (13H, m, -(CH2)g- and
-CH20H); 13C NMR (8 ppm): 143.22, 142.74, 142.19, 140.77, 138.84,
130.52(2), 129.26(4), 127.89(2), 127.60(2), 127.14(2), 126.36, 125.91, 125.49,
62.41, 35.62, 32.23, 29.35(2), 28.99, 28.58, 25.43; MS (m/e): 384 (M+), 269 (M+
- C7H140H).

11,12,12-Trisphenyl-11-dodecen-1-ol (56¢c)

IR, vmax(thin film): 3330 (br, OH), 3100-3000 (Ar-H), 2925-2825 (C-H), 1600
(C=C) cm1; 1THNMR (8 ppm): 7.34-6.86 (15H, m, Ar-H), 3.59 (2H, t, J=6.86 Hz,
-CH2OH), 2.43 (2H, m, -C=C-CHp-), 1.52-1.15 (17H, m, -(CHz2)g- and
-CH20H); 13C NMR (8 ppm): 143.43, 142.93, 142.40, 141.00, 138.92,
130.65(2), 129.47(2), 129.41(2), 128.01(2), 127.72(2), 127.26(2), 126.48,
126.01, 125.61, 62.91, 35.76, 32.60, 29.58, 29.45, 29.36(2), 29.17, 28.75,
25.63. MS (m/e): 412 (M*), 269 (M* - CgH1gOH).
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D.Sy of 1-bromo-xy,y-trisphenyl-x-alkene (57).
A solution of the alcohol 56 (2.25 mmol), carbon tetrabromide (2.98 g, 9.00
mmol) and triphenylphosphine (2.36 g, .00 mmol) in dry ether (100 mL) was
stirred at room temperature (23 °C) for 24 hrs under a nitrogen atmosphere. The
oxide ipitate was filtrated and the resulting solution was

washed thoroughly with waler (5x25 mL), dried and evaporated to an oil. The
crude material was purified by flash column chromatography (hexane:acetone,

99:1) to give the bromine 57 in 86% yield.

1-B 7,8,8 T-octene (57a)

IR, vmax (thin film): 3090-3015 (Ar-H), 2930-2850 (C-H), 1600 (C=C) cm-1; 1H
NMR (5 ppm): 7.37-6.86 (15H, m, Ar-H), 3.31 (2H, , J=6.84 Hz, -CHpBr), 2.43
(2H, m, -C=C-CHp-), 1.74 (2H, p, J=7.20 Hz, -CHpCH2Br), 1.34-1.21 (6H, m,
-(CH2)3-); 13C NMR (5 ppm): 143.42, 142.88, 142.32, 140.76, 139.23,
130.64(2), 129.53(2), 129.41(2), 128.14(2), 127.79(2), 127.33(2), 126.59,
126.13, 125.71, 35.64, 33.90, 32.60, 28.70, 28.54, 27.79; MS (m/e): 418 (M*),
420 (M++ 2), 269 (M* -CsHyoBr).

18 9,10,10- 9-dl (57b)
IR, Umax (thin film): 3090-3015 (Ar-H), 2930-2850 (C-H), 1600 (C=C) cm-1; TH
NMR (8 ppm): 7.37-6.86 (15H, m, Ar-H), 3.36 (2H, t, J=6.86 Hz, -CHoBr), 2.42
(2H, m, -C=C-CHg-), 1.79 (2H, p, J=7.36 Hz, -CHpCH2Br), 1.34-1.17 (10H, m,
-(CH2)5-); 13C NMR (8 ppm): 143.43, 142.98, 142.40, 140.94, 138.91,
130.67(20, 129.52(2), 129.45(2), 128.07(2), 127.75(2), 127.30(2), 126.53,
126.08, 125.66, 35.76, 34.05, 32.71, 29.45, 28.98, 28.69, 28.52, 28.02. MS
(m/e): 446 (M*), 448 (M+ + 2), 269 (M* - C7H14Br).
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1-Bromo-11,12,12-trisphenyl-11-dodecene (57c)

IR, umax (thin film): 3090-3015 (Ar-H), 2930-2850 (C-H), 1600 (C=0) cm.q; TH
NMR (8 ppm): 7.87-6.86 (15H, m, Ar-H), 3.38 (2H, 1, J=6.86 Hz, -CH2B), 2.42
(2H, m, -C=C-CHp-), 1.82 (2H, p, J=7.20, -CHoCH2B), 1.34-1.16 (14H, m,
-(CHp2)7-); 13C NMR (5 ppm): 143.48, 142.98, 142.48, 141.05, 139.01,
130.69(2), 129.53(2), 129.46(2), 128.07(2), 127.73(2), 127.30(2), 126.53,
126.07, 125.66, 35.82, 34.04, 32.80, 29.59, 29.33(2), 29.18, 28.77, 28.68,
28.14; MS (m/e): 474 (M+), 476 (M* + 2), 269 (M* - CgH1gB).

E. Sy of 1-{(2"-ami yl)amino]-x,y,y-tri Ikene (58).
Under a nitrogen atmosphere, ethylenediamine (900 mg, 15.00 mmol) was
added to a solution of the bromide 57 (1.50 mmol) in 80 mL of dry methanol.
After boiling for two days under reflux (sometimes longer reaction period was
required), the solvent was evaporated. The resulting residue was dissolved in
ether (150 mL) and washed with a solution of NaHCO3 (30 mL, 5% aqueous)
and with water (5x30 mL). The ethereal phase was dried and evaporated to a

viscous oil 58. The yield was 90%.

1-{(2"-Amii in]-7,8,8 7-octene (58a)
IR, Drmax (thin film): 3290 (br, N-H), 3090-3015 (Ar-H), 2930-2850 (C-H), 1650

(N-H, bending), 1600 (C=C) cm-1; 1H NMR (5 ppm): 7.35-6.86 (15H, m, Ar-H),
2.76, 2.61 (4H, 2xt, J=6.06 Hz, -NHCH2CHoNHp), 2.51 (2H, t, J=7.25 Hz,
-CHoNH-), 2.43 (2H, m, -C=C-CHg-), 1.80 (3H, s, br, -NH- and -NHp), 1.38-1.18
(8H, m, -(CH2)4-); 13C NMR (5 ppm): 143.30, 142.80, 142.25, 140.80, 138.91,
130.54(2), 129.38(2), 129.32(2), 127.96(2), 127.64(2), 127.18(2), 126.41,
125.96, 125.54, 52.32, 49.65, 41,54, 35.65, 20.84, 29.41, 28.65, 26.86; MS
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(m/e): 398 (M+), 368 (M* -CHaNH2), 355 (M* - CHaCHaNH), 269 (M* -
C5H1NHCH2CHoNHp).

14{(2'-Ami yl)amino]-9,10,10-trisphenyl-9-d (58b)
IR, Ymax (thin film): 3290 (br, N-H), 3090-3015 (Ar-H), 2930-2850 (C-H), 1650
(N-H, bending), 1600 (C=C) cm~1; TH NMR (§ ppm): 7.34-6.86 (15H, m, Ar-H),
2,78, 2.65 (4H, 2xt, J=6.03 Hz, -NHCH2CHoNHp), 2.56 (2H, t, J=7.23 Hz,
-CH2NH-), 2.42 (2H, m, -C=C-CHg), 1.58 (3H, s, br, -NH- and -NHp), 1.43-1.17
(12H, m, -(CH2)g-). 13C NMR (5 ppm): 143.38, 142.91, 142.36, 140.98, 138.90,
180.62(2), 129.46(2), 129.40(2), 128.00(2), 127.67(2), 127.23(2), 126.44,
126.00, 125.58, 52.49, 40.85, 41.70, 35.74, 30.06, 29.52, 29.34, 20,12, 28.72,
27.22; MS (m/e): 426 (M*), 396 (M+ - CHoNHp), 383 (M* - CHaCHNH), 269
(M* - C7H{4NHCH2CH2NHo).

1-{(2"-A ) 1-11,12,12-trisphenyl-11 (58c)
IR, vmax (thin film): 3290 (br, N-H), 3090-3015 (Ar-H), 2930-2850 (C-H), 1650
(N-H, bending), 1600 (C=C) cm-1; TH NMR (8 ppm): 7.34-6.86 (15H, m, Ar-H),
2,80, 2.66 (4H, 2xt, J=6.03 Hz, NHCHoCHoNHp), 2.52 (2H, t, J=7.23 Hz,
-CHpNH-), 2.42 (2H, m, -C=C-CHp-), 1.64 (3H, s, br, -NH- and -NHp), 1.48-1.15
(16H, m, -(CH2)g-); 13C NMR (5 ppm): 14343, 142.97, 142.41, 141.05, 138.91,
130.66(2), 129.49(2), 129.43(2), 128.03(2), 127.70(2), 127.26(2), 126.48,
126.02, 125.61, 52.49, 49.90, 41.66, 35.79, 30.09, 29.81, 29.49(2), 29.43,
29.21, 28.76, 27.33; MS (m/e): 454 (M*), 424 (M+ - CHaNH2), 411 (M* -
CHaCHaNH), 269 (M+ - CgH1gNHCHCHaNHp).
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F. Synthesis of 1-{cis-[(2'-ami ino]di inum(11)}-x,y,y-

trisphenyl-x-alkene (40).

A solution of potassium tetrachloroplatinate (1) (219 mg, 0.528 mmol) in
7.5 mL of a mixture of DMF and water (2:1) was added to a warm (35 °C)
solution of diamine 58 (0.528 mmol) in 5 mL of DMF. The resulting mixture
(pH=9-10) was stirred in the dark for 2-3 days until the pH value reached 4-5,
Then, one drop of N,N-dimethylsulfoxide was added and the stirring was
continued for 2 hrs. The solvent was evaporated and the residue was
suspended in saturated potassium chloride solution (30 mL). A vigourous
stirring was essential in order to pulverized the lumps of platinum (Il) complex
40 The resulting suspension was filtered, washed with water (100-250 mL), and
dried in a desiccator. The product can be further purified either by flash column
chromatography or by preparative TLC (CH2CIp:CH3OH, 98:2). The crude yield

was around 80%.

1-{Cis-[(2"-ami i inum (11)}-7,8,8-trisphenyl-7-oct:
(40a)

mp > 210 9C (dec.); IR, ¥may (KBr): 3250-3150 (N-H), 3090-3015 (Ar-H), 2930-
2850 (C-Hj), 1600 (C=C) cm-1; TH NMR (5 ppm): 7.33-6.86 (15H, m, Ar-H), 5.51,
4.89, 4.72 (3H, 3xbr s, -NH- and -NH2), 3.35, 3.09, 2.72 (6H, 3xbr s,
-CHoNHCHaCHoNHp), 2.39 (2H, m, -C=C-CHa-), 1.70, 1.54 (2H, 2xbr s,
-CHoCHaNH-), 1.40-1.10 (6H, m, -(CHp)3-); 13C NMR (5 ppm): 143.35, 142.86,
142.23, 140,60, 139.21, 130.66(2), 129.52(2), 129.41(2), 128.17(2), 127.82(2),
127.33(2), 126.60, 126.14, 125.71, 55.17, 53.23, 47.03, 35.61, 29.11, 28.44,
27.20, 26.02. Anal. calcd. for CogHa4ClaN2Pt: C 50.60, H 5.17, N 4.22; found:
C 50,63, H 5,20, N 4.19.
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1-{Cis-[(2-ami i inum (11)}-9,10,10-trisphenyl-g.
decene (40b)

mp > 210 9C (dec.); IR, vpax (KBr): 3250-3150 (N-H), 3090-3015 (Ar-H), 2930-
2850 (C-H), 1600 (C=C) cm™!; TH NMR (8 ppm): 7.33-6.86 (15H, m, Ar-H), 5.56,
5.30, 5.04 (3H, 3xbr s, -NH- and -NH2), 3.38, 3.19, 3.05, 2.72 (6H, 4xbr s,
-CHaNHCH2CHoNHp), 240 (2H, m, -C=C-CHy-), 1.67, 1.48 (2H, 2xbr s,
-CHpCHoNH-), 1.40-1.10 (10H, m, -(CHp)5-); 13C NMR (5 ppm): 143.43,
142.95, 142.40, 140.92, 139.05, 130.69(2), 129.53(2), 129.46(2), 128.10(2),
127.77(2), 127.31(2), 126.56, 126.09, 125.68, 55.20, 53.43, 47.20, 35.79, 29.71,
29,52, 29.02, 28.76, 27.39, 26.37. Anal. calcd. for C3oH3gCloN2Pt: € 52.01, H
5.54, N 4.05; found: C 52.05, H 5.51, N 4.02.

1-{Cis-[(2"-amil y i (IN}-11,12,12-trisphenyl-11-
dodecene (40c)

mp > 210 °C (dec.); IR, vmax (KBr): 3250-3150 (N-H), 3090-3015 (Ar-H), 2930~
2850 (C-H), 1600 (C=C) em"1; TH NMR (& ppm): 7.33-6.86 (15H, m, Ar-H), 5.62,
5.01, 4.84 (3H, 3xbr s, -NH- and -NHp), 3.50, 3.15, 2.88, 2.76 (6H, 4xbr s,
-CHaNHCHaCHoNHg), 240 (2H, m, -C=C-CHy-), 1.68, 1.50 (2H, 2xbr s,
-CH2CH2NH-), 1.40-1.10 (14H, m, -(CHg)7-). 13C NMR (5 ppm): 143.44,
14297, 142.42, 141.00, 138.91, 130.69(2), 129.51(2), 129.45(2), 128.07(2),
127.75(2), 127.28(2), 126.53, 126.05, 125.65, 55.40, 53.39, 46.86, 35.83, 29.67,
29.43(2), 29.23(2), 28.79, 27.40, 26.54. Anal. calcd. for CaaH42CloNPt: C
53,32, H 5.89, N 3.89; found: C 53.28, H 5.90, N 3.92.
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3.2 In Vitro Antitumor Activity

3.2.1 Materials of Microcytostasis Assay

A. Drugs:

39a-d, 40a-c and 41 synthesized as described previously ;

Cisplatin obtained from Sigma Chemical Company, USA;

Tamoxifen obtained from Aldrich Chemical Company, Inc., USA.

B. Cell lines and culture:

Human breast cancer cell lines: MCF-7 and MDA-MB-231 were obtained from
the American Type Culture Collection, Maryland, USA. Both MCF-7 and MDA-
MB-231 celis were cultured in RPMI-1640 supplemented with 2mM glutamine,
10% fetal bovine serum (Gibcol, Burlington, Ontario, Canada) and 100 U
gentamycin/ml (Sigma Chemical Company, USA).

C. Phosphate Buffered Saline (PBS, pH=7.4) prepared from PBS tablets
(Oxoid, Unipath Ltd., England), dissolved in water as per manufacturer's
instructions.

D. Microtitre Plates, 96 wells obtained from Flow Lab. Inc., McLean, Virginia,
USA.

E. MTT and DMSO obtained from Sigma Chemical Company, USA.

F. Plate Reader: Behring Elisa Processor Il (Behring, Marburg, Germany).

322 Method of Microcytostasis Assay

The MTT assay was carried out essentially as described by J.

Carmichael and co-workers.”2 Under sterile conditions, the 40 mM solution of
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drugs in DMSOQ was diluted with fresh medium (RPMI-1640) to a concentration
of 400 pM, then different drug dilutions were prepared in the culture medium
(range 0.1- 400 uM). A total of 100 pL cell culture medium RPMI-1640
containing 2000 viable cells was plated per well into 96-well microtitre plate,
and preincubated for 24 hours at 37 °C in a 5% COp atmosphere. Then, the
medium was removed from the cells, and 100 pL of fresh medium containing
various concentrations of a drug was added to the cultures. Tests were
performed in 8 wells for each test dilution, with appropriate control wells which
received 100 plL of medium only. The cells were incubated with the drug for 72
hours. Next, the medium was removed and the cells were washed with the
sterile phosphate-buffered saline (PBS, pH=7.4). Cell survival was evaluated
with MTT by the addition of a 50 L solution containing 2.5 mg/mL in PBS:RPMI-
1640 (1:4, v/v). After 4 hours incubation at 37 °C, the solution was aspirated
from each well, and 100 uL. DMSO was added to dissolve the precipitate of
reduced MTT. The plates were shaken on a plate shaker for 15 minutes, then
the absorbance was spectrophotometrically determined at 570 and 630 nm with
a Behring Elisa Processor Il (Behring, Marburg, Germany). Results from the
plate reader were expressed as follows:
Percentage Cell Survival at Each Dilution
Mean Absorbance at Each Dilution

= X 100.
Mean Control Absorbance

A dose resp curve of p ge cell survival ( against drug

concentration (abscissa) was constructed.
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APPENDIX

The selected IR, TH NMR, 13C NMR of the synthetic samples were
arranged according to the order in which they appear in the text. For the

instruments employed, see General Procedures in Charpter 3.
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IR Spectrum of Compound 50a.
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IR Spectrum of Compound 39a (KBr).
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13C NMR Spectrum of Compound 46a.
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13C NMR Spectrum of Compound 48a.
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13C NMR Spectrum of Compound 49a.,
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13C NMR Spectrum of Compound 4 1.
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13C NMR Spectrum of Compound 58¢.
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13C NMR Spectrum of Compound 40c¢.
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