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ABSTRACT

As the demand for more capable and more feature-rich software increases, the com-
plexity in design, implementation and maintenance also increases exponentially.
This becomes a problem when the complexity prevents developers from writing, im-
proving, fixing or otherwise maintaining software to meet specified demands whilst
still reaching an acceptable level of robustness.

When complexity becomes too great, the software becomes impossible to effec-
tively be managed by even large teams of people. One way to address the problem
is an Autonomic approach to software development. Autonomic software aims to
tackle complexity by allowing the software to manage itself, thus reducing the need
for human intervention and allowing it to reach a maintainable state.

Many techniques have been investigated for development of autonomic systems
including policy-based designs, utility-functions and advanced architectures. A
unique approach to the problem is the teleo-reactive programming paradigm. This
paradigm offers a robust and simple structure on which to develop systems. It allows
the developer the freedom to express their intentions in a logical manner whilst the
increased robustness reduces the maintenance cost.

Teleo-Reactive programming is an established solution to low-level agent based
problems such as robot navigation and obstacle avoidance, but this technique shows
behaviour which is consistent with higher-level autonomic solutions. This project
therefore investigates the extent of the applicability of teleo-reactive programming
as an autonomic solution. Can the technique be adapted to allow a more ideal
‘fitness for purpose’ for autonomics whilst causing minimal changes to the tried
and tested original structure and meaning? Does the technique introduce any addi-
tional problems and can these be addressed with improvements to the teleo-reactive
framework?

Teleo-Reactive programming is an interesting approach to autonomic computing
because in a Teleo-Reactive program, its state is not predetermined at any moment
in time and is based on a priority system where rules execute based on the current
environmental context (i.e. not in any strict procedural way) whilst still aiming at
the intended goal. This method has been shown to be very robust and exhibits some
of the qualities of autonomic software.
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CHAPTER 1

INTRODUCTION

Autonomic software aims to reduce the need for human intervention in the devel-

opment and maintenance process, shifting many tasks to the software itself where

the human developer is either not needed or their input can be reduced. Autonomic

software should be able to dynamically adapt to the inevitable changes in conditions;

autonomic software should be able to configure, heal, optimise and protect itself.

The purpose of this automating of tasks is to reduce the complexity of software

which has increased to an unmanageable level as software size has increased. In

autonomics, many of the mundane tasks which are often handled by the developer

are pushed into background activities leaving the developer free to focus on their

goal. Any unplanned configuration task or run-time code errors for example should

also be handled in the background by the autonomic services. This approach is

similar to the way the autonomic nervous system of a biological system works. For

example, breathing and fighting disease etc. are processed without conscious thought

so other activities such as gathering food can gain more focus.

There have been many different approaches to the development of autonomic

software such as policy-driven approaches, utility-function and artificial intelligence

technique based ideas as well as various architecture designs incorporating dynamic

adaptation techniques. The approach in this project however advocates a paradigm

shift from traditional programming techniques to a teleo-reactive based approach.

1



CHAPTER 1. INTRODUCTION

This technique is used in robotics to reliably and robustly guide a robot towards the

completion of a goal; but we find that many of the benefits afforded in robotics are

also evident at a higher and autonomic level. The concept of using an alternative

paradigm, is a unique solution to the autonomic challenge which can be considered

to have many natural benefits.

The main aim is to explore the extent of teleo-reactive benefits in high level pro-

gramming and autonomic fields. We argue that teleo-reactive programming can be

considered as a valid autonomic technique. Whilst the teleo-reactive (T-R) technique

has many benefits in both high and low-level programming, it also presents some

unique challenges. This project also aims to highlight and address those challenges

and much of this work is targeted at reducing these problems.

The approach taken in this project is to build T-R into a Java framework which

can be used to compose applications built on a T-R methodology, examples of this

are evidenced in chapter 4. The framework can then be used by any developer

wishing to use T-R. The framework has two main benefits, firstly T-R programs

require an interpreter which the framework provides (the framework can then be

reused in many applications). Secondly, this will allow changes and adaptations to

be made to the framework without any negative effects on the main development

task. For example if an application uses the framework and a performance increase

is made to the framework, this will have a positive impact on the application without

the need for redesign on the side of the application which uses the newly improved

framework. Low coupling between the framework and the application is therefore

a requirement to ensure this. This is a principle that is adhered to throughout the

project, any changes made to one part of software should not require additions to

be made to another part in order to utilise the benefits. Nor should a change to the

framework have a positive effect on one application but a related negative effect on

another.

We have built several demonstrators which highlight these benefits and challenges

of T-R programming. The main demonstrator shows how a T-R manager can be

2



CHAPTER 1. INTRODUCTION

used to control the processes in a datacentre. There are three differently configured

managers which can be alternated between, controlling the same datacentre with

the same simulated data in each case. The Temporal Analysis Panel (described in

section 3.2.4) together with the logged data, alert the developers early to structural

and composition problems. The logged data can then be graphed and compared.

This could allow the developer to compare one T-R manager against another or for

early detection of defects in the running T-R manager.

1.1 Definitions

In chapter 2 we detail and critically evaluate the current state of the art. The rest

of this section however, gives the reader a brief introduction to the fields and topics

we will discuss.

1.1.1 Complexity

As the demand for more capable and more feature-rich software increases, the com-

plexity in design, implementation and maintenance also increases exponentially.

Complexity is not simple to define however, as there are many facets to software

complexity. It is not simply the number of lines of code because if, for example,

two pieces of code are fifty lines each and the second piece of code contains many

more iteration and selection statements then it would likely be more complex than

the first. If a piece of code contains large amounts of coupling between objects so

that changes in one part of code requires changes in many other places, that too

adds to complexity. Also, if sections of code are poorly named and written so that

it is difficult to understand and reuse those sections, or identical sections of code

are repeated in several places so that the same maintenance needs to be performed

is several places, does that not add to complexity?

There will always be errors in software and therefore depending on the criticality

of the error and software, it will need maintaining. Less complex software is easier

3



CHAPTER 1. INTRODUCTION

to maintain because there should be less errors to begin with, and the errors which

do exist are easier to locate and fix. Even pre-deployment there may be so many

errors and the software may be so complex that fixing them all takes so much time

that the software never gets released. Software today is at a crisis level, in the sense

that many software projects are too complex to be reliably maintained. Complexity

is not a new problem for software developers as described by Brooks.Jr. [4] in 1987

but the measures used to combat the problem in the past are no longer sufficient to

manage the increasingly complex software of today. These measures include object-

oriented programming and artificial intelligence which are in regular use today, and

do improve the situation but only up to a point.

Measuring software complexity is advantageous because if we know how complex

an individual piece of software is then we know how reliable and maintainable it is.

If we then attempt to reduce the complexity then, through new measurements, we

know how successful our attempts were. There are several thoughts on the elements

which constitute complexity and of ways to measure for it. For instance [5, 6]

show the software metrics which are involved in quantifying complexity. This is

not a simple task. McCabe [7] introduces an often used and adapted approach

to measurement. It it known as cyclomatic complexity, where a graph theoretic

approach shows the number of execution paths in a system. In an object-oriented

programming world we should also consider complexity in terms of coupling and

cohesion as is discussed in [8] by Darcy et al.

Measuring complexity in autonomic and dynamic software is more of a challenge

because the system is not fixed and we may never know at design-time what the

changes will be or even when and how often changes will occur. Complexity is

however the reason autonomics exists. Autonomic systems combat complexity by

reducing the need for human maintenance of a system.

4



CHAPTER 1. INTRODUCTION

1.1.2 Autonomics

Autonomic computing was first described in [1] by Kephart and Chess and detailed in

the IBM manifesto [9] as a way to tackle the growing complexity of modern comput-

ing systems. The realisation that human beings cannot hope to effectively manage

such large and complex systems themselves has lead to the idea that systems should

be able to manage themselves, similar to the way the autonomic nervous system

of biological systems is employed to delegate some tasks as background activities.

That is tasks which are performed without any conscious thought or apparent effort,

such as breathing or fighting disease.

An autonomic system is comprised of four main self-properties. That is, self-

configuration, self-healing, self-optimising and self-protecting. They describe the

event types which the software is capable of self-managing. For instance, discovery,

installation and management of software drivers for a physical device could be con-

sidered as self-configuration although varying levels of self-configuration could exist

between autonomic systems.

[1] also describes how an autonomic system should be comprised, where each

managed element is controlled by an autonomic manager and the relevant environ-

mental context would be continually monitored and analysed. Planning for changes

could then be made by consulting a knowledge base of past events and their effects.

Managed elements could communicate with each other through their managers. The

controller is known as the MAPE controller- Monitor, Analyse, Plan and Execute

and is shown in figure 1.1.

1.1.3 Teleo-Reactive programs

T-R programs were designed by Nils Nilsson [2, 10], at Stanford university as a

method of autonomous agent control which is well suited for its purpose of guiding

an agent to its goal. Traditional languages are less than ideal because of their

procedural nature and unwillingness to adapt and change, so much of the agents
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44 Computer

interactions among autonomic elements as it will
from the internal self-management of the individual
autonomic elements—just as the social intelligence
of an ant colony arises largely from the interactions
among individual ants. A distributed, service-ori-
ented infrastructure will support autonomic ele-
ments and their interactions. 

As Figure 2 shows, an autonomic element will
typically consist of one or more managed elements
coupled with a single autonomic manager that con-
trols and represents them. The managed element
will essentially be equivalent to what is found in
ordinary nonautonomic systems, although it can
be adapted to enable the autonomic manager to
monitor and control it. The managed element could
be a hardware resource, such as storage, a CPU, or
a printer, or a software resource, such as a data-
base, a directory service, or a large legacy system.

At the highest level, the managed element could
be an e-utility, an application service, or even an
individual business. The autonomic manager dis-
tinguishes the autonomic element from its nonau-
tonomic counterpart. By monitoring the managed
element and its external environment, and con-
structing and executing plans based on an analysis

of this information, the autonomic manager will
relieve humans of the responsibility of directly man-
aging the managed element. 

Fully autonomic computing is likely to evolve as
designers gradually add increasingly sophisticated
autonomic managers to existing managed elements.
Ultimately, the distinction between the autonomic
manager and the managed element may become
merely conceptual rather than architectural, or it
may melt away—leaving fully integrated, auto-
nomic elements with well-defined behaviors and
interfaces, but also with few constraints on their
internal structure. 

Each autonomic element will be responsible for
managing its own internal state and behavior and
for managing its interactions with an environment
that consists largely of signals and messages from
other elements and the external world. An element’s
internal behavior and its relationships with other
elements will be driven by goals that its designer
has embedded in it, by other elements that have
authority over it, or by subcontracts to peer ele-
ments with its tacit or explicit consent. The element
may require assistance from other elements to
achieve its goals. If so, it will be responsible for
obtaining necessary resources from other elements
and for dealing with exception cases, such as the
failure of a required resource.

Autonomic elements will function at many levels,
from individual computing components such as
disk drives to small-scale computing systems such
as workstations or servers to entire automated
enterprises in the largest autonomic system of all—
the global economy.

At the lower levels, an autonomic element’s range
of internal behaviors and relationships with other
elements, and the set of elements with which it can
interact, may be relatively limited and hard-coded.
Particularly at the level of individual components,
well-established techniques—many of which fall
under the rubric of fault tolerance—have led to the
development of elements that rarely fail, which is
one important aspect of being autonomic. Decades
of developing fault-tolerance techniques have pro-
duced such engineering feats as the IBM zSeries
servers, which have a mean time to failure of sev-
eral decades.

At the higher levels, fixed behaviors, connections,
and relationships will give way to increased
dynamism and flexibility. All these aspects of auto-
nomic elements will be expressed in more high-
level, goal-oriented terms, leaving the elements
themselves with the responsibility for resolving the
details on the fly. 

Autonomic manager

Knowledge

Managed element

Analyze Plan

Monitor Execute

Figure 2. Structure of an autonomic element. Elements interact with other
elements and with human programmers via their autonomic managers.

Figure 1.1: Monitor, Analyse, Plan, Execute (MAPE): A managed element governed
by an autonomic manager (Originally described in [1])

environment is unknown pre-deployment; an environment which is under constant

dynamic change. What was needed was a new paradigm where the environment

could be constantly monitored and the agents behaviour would naturally flow with

this current environmental context. Therefore a T-R agent chooses the best possible

state to be in at that point in time. The program does not follow any predefined

pattern and is constantly adapting to the current situation whilst at the same time

striving to achieve the set goal.

CHAPTER 3. APPLICATION OF TELEO-REACTIVE PROGRAMMING IN
AUTONOMICS

Action

+ Action(Conditional) : void
+ action(Object) : void

Conditional

+ testCondition(TRProgram) : boolean
+ getParameters() : Object

TRProgram

+ TRProgram() : void
+ TRProgram(int) : void
+ addActionToTop(Action) : void
+ addActionToBottom(Action) : void
+ addCondition(Conditional) : void
+ singlePass() : void
+ start() : void

«interface»
Runnable

+ run() : void

Nil

AndCondition OrCondition NotCondition

0..*

0..*
1

Figure 3.1: Teleo-Reactive framework (JTRAF) class diagram

Is5000 −→ Nil

Is1000 −→ Add500

Is100 −→ Add100

T −→ Add10

The rule construction section of the tests is shown here:

Condition isTrue = new IsTrue();

Action add10 = new AddAction(isTrue, 10);

Condition is100 = new NumCondition(100);

Action add100 = new AddAction(is100, 100);

Condition is1000 = new NumCondition(1000);

Action add500 = new AddAction(is1000, 500);

Condition is5000 = new NumCondition(5000);

28

Figure 1.2: Simple JTRAF composition test (Counts to 5000)

Figure 1.2 illustrates how this concept works and is explained in more detail in

chapter 3. T-R programs are a prioritised production-rule list where conditions can

only be true or false and actions contain the code to be executed when the condition

is true. Each condition-action pair is referred to as a rule, so for instance ‘Is1000’

is a condition and ‘Add500’ is an action, together they make up a rule. An action

executes when it has the highest precedence of any other rule in the program and

its condition is true, where higher rules in the program have precedence over lower
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Figure 1.3: Bar Grabbing Robot (from [2])

ones. So for example in the simple counter of figure 1.2 if ‘Is5000’ were true then its

action ‘Nil’ would execute. If ‘Is1000’ were also true then ‘Nil’ would still execute

as ‘Is5000’ has higher priority over ‘Is1000’. Each rule works towards its subsequent

rule until the highest condition becomes true (the goal condition) at which point

the program usually does nothing other than monitor the state of the environment.

In this way, a program can move freely between rules and can be either helped or

hindered in its progress by external influences. The first condition is often always

true, ensuring that if no other condition is true it can always return to this point

and proceed again towards its goal.

To better illustrate this, figure 1.3 shows a robot tasked with grabbing the bar

at A. This example is taken from Nilssons original paper on T-R [2] and serves as

an excellent illustration of the concept.

If no conditions are true then the program must begin at the always true T

condition. The action associated is rotate, which the robot does until a higher

priority condition becomes true, in this case ‘facing-midline-zone’ will become true

and take priority over lower conditions. The robot then stops rotating and begins to

move until ‘on-bar-midline’ becomes true, at which point it will begin to rotate again

until the next condition is true. This continues until the top condition becomes true.

The advantage of this is that if the process is in some way interrupted by external

influences, the robot continues at a state in the program which is the closest to the

goal and where the condition is true. We do not know how or what interrupted the
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robot, all we can possibly know from the point of view of the program is that a

condition which was once true is now false. Or perhaps a higher priority condition

is now true, either way the robot just continues wherever possible at the time.

In this particular program the state is changed if external influences change

it. For example, if the robot position or heading is altered suddenly by physically

moving the robot to a random position in the test area, then the robot may change to

the initial rule state and begin searching for the mid-line zone again. Similarly, if the

robot is physically placed on-bar-midline the currently active rule would change to

reflect this, it does not matter if this change is a forward or backward step. Although

figure 1.3 is an excellent illustration of the T-R concept, this basic program cannot

cope with every conceivable situation. For example, what happens when an obstacle

is placed between the robot and midline zone? The robot would no longer be able

to reach the zone and would just run into the obstacle.

T-R programs can be extended quite easily with the use of sub-T-R programs,

and in the same paper from Nilsson [2] this basic program is extended to allow for

obstacle avoiding abilities. Using sub-T-R programs for this purpose means that a

hierarchy of T-R programs can be added and adapted without the need to change

an already working original program. This keeps the programs small and cohesive

and even allows for recursive techniques.

1.2 Objectives and Contributions

If an autonomic system is capable of managing itself to some degree then we need

verification that the T-R method is a valid way of achieving autonomicity. We

need to show whether a system which has been designed in a T-R way displays

self-management behaviour. Secondly, if the T-R system is shown to be a valid

autonomic solution, then we should ask whether T-R can be improved in some way,

to improve reliability, trustworthiness or ease of use; thus improving the potential

application and benefits of T-R in autonomics.
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Testing this at a quantifiable level is difficult since there is currently no respected

measure for how autonomic a system is. If there were, then we could apply the

measure to T-R and compare this against other autonomic systems. Producing

such a quantitative measure is an area to investigate further in autonomics.

This project asks can T-R be used as an autonomic technique and if so, what

can be improved in order to make it easier to use and a better fit into the target

domain of autonomics?

In autonomic computing we aim to reduce the maintenance complexity to a

manageable level by allowing the software to manage itself to some degree, i.e. an

autonomic system, once deployed, should require very little input from a human to

maintain its stability and usability because these tasks should be handled by the

software itself to some degree. The T-R system seems appropriate for autonomic

computing because of its focus on conditions and goals. If any condition changes

from true to false then this could be normal behaviour or could be caused by many

possible types of error, even errors which are unexpected. The T-R program should

take appropriate action for this condition change. In a standard procedural type

language an unexpected error may cause the system to fail and therefore a human

would be expected to write some extra code to prevent this error (now known and

possible) from occurring or reduce its impact so that it no longer causes the same

system failure.

Once an error has been dealt with by human external intervention (maintenance)

there could still be further problems and so maintenance is required almost indef-

initely. A condition in a T-R program on the other hand could encompass many

errors, known and unknown, and even though the T-R program may not ‘fix’ the

error directly, it should prevent unrecoverable problems and reduce the need for

human maintenance in this way.

The T-R paradigm could be considered an autonomic technique because it is a

more natural and simpler way of approaching a problem area and reducing com-

plexity through reducing the workload of human developers. As such it could be a
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more viable option than some other autonomic techniques. The paradigm is a very

different approach to other methods, it doesn’t try to attempt the impossible of

fixing every conceivable problem. Instead the T-R paradigm works towards a goal

without ever knowing any specific errors which can occur, whilst still safeguarding

against the errors.

Applying a T-R approach to autonomics is one which is quite different to previous

ideas, relying on a programming paradigm and not on an autonomic architecture

or other approach to achieve results. Some of these currently existing techniques

are relatively heavyweight and complex themselves, therefore this work implicitly

asks the question of the minimum cost to achieve autonomicity as there is a danger

of producing a complex framework whilst at the same time attempting to reduce

complexity. This was termed ‘complexity tail chasing’ by Richard Anthony in [11].

The initial research identified some incorrect direction from others. Whilst there

has been some good research, it has not always been directed towards the intended

goals of autonomics. This shows a lack of definition of terms and ambiguity in tar-

gets. Although this project will not focus on defining terms or removing ambiguity,

it will attempt to highlight the correct approach.

Large projects are inevitably affected by software complexity issues. Often, soft-

ware developers cannot afford to continually maintain their products so a system

which can reliably manage itself after deployment will have obvious benefits.

Given the initial study, the specific research questions addressed by this work

are:

• To what extent can Teleo-Reactive programming techniques (T-R) be used to

construct autonomic management systems and what are the benefits of doing

so?

• What are the difficulties in T-R programming and how can they be reduced?

10



CHAPTER 1. INTRODUCTION

• What improvements can be made to extend the benefits or increase the ease

of adopting T-R programs?

These questions are explained, detailed and related to the method in chapter 3.
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CHAPTER 2

LITERATURE REVIEW

The project aims to investigate and apply T-R programming techniques within the

autonomics domain. This review of the literature therefore, extensively investigates

the current state and thinking in autonomics and T-R work, including the different

approaches and architectures that have been applied and the results from this work.

The previous work on T-R programming has largely focused on the control of

autonomous agents, since the technique was developed for use in robotics. However,

much of this work could be applicable to higher level and autonomic applications,

and it is this idea we investigate. It has also been observed that goal-oriented soft-

ware design has an inherently close relationship with T-R programming techniques

since it could easily be argued that the highest condition of a T-R program is the

main program goal and lower conditions are sub-goals. The current uses and state

of this domain is also investigated here.

T-R programming offers a natural fit with many artificial intelligence techniques

and there has been much work published towards adapting these ideas for learning

and dynamic changes. The literature review will therefore cover some dynamic

adaptation techniques. Techniques used in conjunction with T-R systems are shown

as well as techniques applied in higher level and autonomic systems.
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2.1 Dynamic architectures, techniques and mid-

dleware

‘Autonomics’ and ‘self-management’ are generally interchangeable terms and if a

self-managing system is capable of altering itself at runtime to adapt to changes to

the environment or to unexpected events, then it is reasonable to assume that any

autonomic computing system must be capable of some form of dynamic adaptation.

This could be a human controlled change such as replacing one policy script with

another at runtime as this work on AGILE policies shows [12, 13, 14, 15, 16] in order

to fix a design problem or make an improvement. Or it could be an architecture

which supports on-line change where the system automatically makes adaptations

to itself at runtime, [17, 18, 19].

2.1.1 Dynamic architectures

The work on AGILE Lite and the architecture to support AGILE policies is described

here [12, 13, 14, 15, 16]. In this architecture, the system is operated as normal and

AGILE policies can be inserted at various points, known as decision points, where a

change is required. The system allows policies to be written off-line and integrated

when discovered. Several components are used, including a context manager which

reads information from a dynamically changing environment and feeds this to the

corresponding policy. Another component is the repository service which manages

the policies used for each decision point. It should allow an error producing policy

to be ‘rolled back’ to a previously known working policy.

Reflection gives code the ability to alter itself at run-time to any extent as stated

in [20] and shown by Dowling et al. in [21]. It gives the ability to change an

object’s interface or even modify, add or remove internal workings of an object.

Reflection is used in these systems [17, 22, 23] which has a large potential for dynamic

environments where the state of system at any point is often unknown at design time
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and unpredictable changes need to be made to a system which cannot be halted.

Reflection is very powerful in the sense that almost any software related task is

achievable through reflection where it may have been impossible without. There

are however some problems associated with reflection, such as slow invocation time,

since methods are often discovered and invoked from a disc rather than through

compiled code. It is often a more convoluted approach to method invocation and it

does offer a way to circumvent good coding practices such as encapsulation, so could

easily add to complexity. For example, variables which were designed to stay hidden

and marked as ‘private’ could still be open to inspection and use by reflective code.

Aspect Oriented Programming (AOP) is described by McKinley et al. in [24] as

a valid way to implement adaptable behaviour. AOP is a large paradigm shift from

other more established programming techniques. With AOP, concerns are separated

into cross-cutting concerns such as security or logging. The aspects implementing

the concerns are developed separately from the main system and are woven into the

code at a later date. For example a security aspect can be applied to a piece of code

containing sensitive data to be sent over a network. The aspect is introduced at a

specific point in the code and at any other point where it is needed. The aspects,

when woven with the main code, form the complete application. The aspects can

then be changed independently of the main code. AOP could also be used to create

autonomic code from legacy code by adding new aspects into the existing code.

This is a goal of the model-driven autonomic architecture in [25] in which a policy

managed architecture is used to generate autonomic systems from non-autonomic

components.

Another component based reconfigurable architecture is described by Kramer

and Magee [26]. It uses a similar 3 level goal management, change management and

component control approach found in some robotic systems. Components in the

component layer which require reconfiguring must do so in a manner which adheres

to application consistency and does not introduce undesirable transient behaviour.

The change management layer ensures this by decentralising the view of the system
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state whilst tolerating inconsistencies and still converging to a stable state. To

ensure changes are consistent, the goal management layer is relied on. The authors

clearly advocate an architectural approach to autonomic solutions but it is unclear

whether the technique described has yet been implemented. As such it is difficult

to ascertain its viability.

A layered architecture of context-aware software infrastructure, as well as lay-

ered structure of context information management, is proposed by Henricksen and

Indulska [27]. This work also presents commonly used context modelling and con-

text abstraction techniques that support the decision making process involved in

mapping of context information to appropriate application behaviours. The adap-

tation layer uses three repositories: situation repository, preference repository and

trigger repository and dynamically provides the application layer with appropriate

services from the lower layers.

Henricksen and Indulska also developed a graphical Context Modelling Language

(CML) tool for designers to specify required context for context-aware applications.

It provides modelling constructs for describing types of information, their classifi-

cations (sensed, static, profiled or derived), relevant quality meta-data, and depen-

dencies amongst different types of information.

Dashofy et al. [28] use a large number of connected components to support

adaptation. The required changes are simulated to verify the proposed changes.

If successful, the changes are merged using an architectural ‘diff’ tool. A similar

technique of simulating proposed changes is presented in Butler et al. [29].

Garlan and Schmerl [30] also use a complex model of interconnected components

to monitor, analyse, perform adaptation etc. The model is ‘externalized’ from the

running system, providing a way to monitor and understand the system in a high

level way. This is quite similar to many meta-modelling approaches where the level

of abstraction allows changes to be made without the need to know the precise

details of the program code.

In contrast to these systems, Hassan et al. [31] use case and rule based reasoning
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to make a correct decision about how to proceed in the case of problem events. The

solution is stored or retrieved from the case-based-reasoning (CBR) system if it has

previously been encountered, or contacting the domain expert if not.

2.1.2 Middleware

Huebscher and McCann [32] describe a middleware architecture consisting of sensors

which provide their information to context providers and are managed by context

services. The multiple context services (equivalent to the context managers of [12,

13, 14]) choose the best context provider based on the notion of “context provider

quality”.

This level of abstraction provides robustness and scalability but requires addi-

tional services for the application to configure the most appropriate context provider.

In this design the context providers are required to periodically inform a directory

service that it is still alive.

Another notion considered by Huebscher and McCann in [32] is “trustworthi-

ness”. Here, applications are required to submit a complaint or praise for their

associated context providers. This increases or decreases levels of trust for the CP’s

and can be considered in the utility function by the context service.

AOP has been used in adaptive middleware as Gilani et al. describes [33]. They

work on dynamic weavers in order to implement run-time changeable code on em-

bedded systems. Like reflection, AOP can be very powerful and can also be used to

circumvent measures designed to prevent problems occurring. Measures such as en-

capsulation designed to prevent interference from external sources could be rendered

ineffective.

The RUNES (Reconfigurable Ubiquitous Networked Embedded Systems) project

is an architecture for networked embedded systems. It includes dedicated radio

layers, networks, middleware and simulation and verification tools. A middleware

platform, which makes extensive use of the RUNES architecture, is described by
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Costa et al. [34]. The component based platform uses well-defined interfaces to de-

couple the components. This allows platform developers to deploy different variants

of the same component whilst still allowing dynamic reconfiguration of component

instances and their interconnections. This provides support for dynamic adaptation

to changing conditions. A fundamental requirement in context-aware scenarios is

that it can dynamically adapt its behaviour which is a requirement met by this sys-

tem. More sophisticated behaviours and functionalities are achieved by collecting

components within ‘capsules’. Access to these functionalities is possible through the

capsule API.

A Service-Oriented Context-Aware Middleware (SOCAM) as well as a formal

context model used to address issues including context reasoning, context classifi-

cation, and dependency are presented by Gu et al. [35]. The architecture aims to

provide an efficient infrastructure to support building context-aware services that

are assumed to make use of different levels of context and adapt the way they be-

have according to the current context. In this approach context providers abstract

context information from low level sensors to higher level context manipulators. The

context interpreter is a component that is responsible for context processing using

logic reasoning. Context services at the highest end of the model perform operations

on the various levels of context.

2.1.3 Conclusion

It is clear from these designs that an architecture to enable an autonomic system

will be quite complex itself, using many complex components and connections to

support the ideas. A complex architecture is both positive and negative. On one

hand, the complexity of the architecture can be hidden from the utilising autonomic

system itself. If the developer is involved in just the main system design then the

autonomic architecture need not be their concern as self-* properties should be

present here. However, the chances of failure of the architecture increases as its
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complexity increases.

This leads to the question as to whether or not a complex architecture is the best

approach for the development of autonomic systems and whether there is a simpler

method to achieve the desired result.

2.2 Autonomics Objectives and Current Progress

Writing software to meet the demands of users and clients is becoming more and

more difficult due largely to the accompanying maintenance cost. This cost arises

due to the structural and behavioural complexity of software and the scalability of

systems. The functionality embedded into a modern system has increased with the

demand for it but the capacity for maintaining the system is unable to keep pace

with this demand. This is not a new problem, and has been observed and predicted

previously. At the time when [4] was written there were promises of technologies

which may hold an answer to this problem. These ‘solutions’ included AI tech-

niques and Object-Oriented programming, many of which are the main backbone of

software engineering today. The problem is that we have now reached the software

complexity limit even using these technologies and we now have the same problem

as before.

Autonomic computing [1, 9] is a branch of computing which acknowledges the

fact that the larger a system is, the more unmaintainable by humans it becomes.

An autonomic system should be able to manage itself to a degree, thus reducing the

need for human maintenance and administration. The idea is inspired by biology,

specifically the autonomic nervous system, where tasks such as breathing and repair-

ing of damaged tissue, bone and cells are performed autonomously, that is without

the need to consciously think about it. A software system should be able to do the

same. i.e. perform some tasks which require little human attention, autonomously,

thus reducing the problem of managing and maintaining a large, complex software

system.
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In autonomic systems much of the complexity is dealt with by the system it-

self and not the human developers, thereby reducing an impossible maintenance

task to a more manageable one. Self-managing systems consist of one to many

self-properties, the most widely used and referenced are the four first described

in [1], namely self-configuring, self-healing, self-optimising and self-protecting, or

‘self-CHOP’. Effectively, systems exhibiting these behaviours react to and deal with

changes. For example, a self-configuring system might detect that a new printer

has been attached to the computer, find the correct driver, install it and add it to

the list of available printers. Whereas a self-healing system might detect an error

in a piece of code, diagnose it, apply a fix if one is known or roll back the software

to a stage before the error occurred. All this whilst limiting the need for human

involvement.

An autonomic system can be viewed as a collection of inter-operating elements

within autonomic managers, see figure 1.1. This manager both controls the com-

ponent behaviour and its interaction with other elements. Figure 1.1 shows the

monitor-analyse-plan-execute cycle which is present in autonomic systems, directly

or indirectly.

Sterritt et al. [36] provide a concise introduction to autonomics and Huebscdher

and McCann [37] provide a more recent survey on the field. Thaddeus O. Eze et al.

provide a very comprehensive review of the state of autonomics in [38] and Jeffrey

Kephart’s keynote at ICAC 2011 [39] provides a similar description of the current

state of autonomic research, a decade from its first seminal paper [1].

2.2.1 Current Techniques

An autonomic solution need not use a specific technique but should be required

to complete its goals whilst reducing human intervention. For many deployed au-

tonomic systems the solution is aimed specifically at an individual problem rather

than a generic autonomic technique able to be adopted in many situations. These
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autonomic systems, however narrow their view have been hugely beneficial in testing

the validity of autonomic computing and to discover an appropriate approach. The

following section discusses some of those techniques.

Policy-based techniques

Policy-based computing techniques abstract operations and behaviours into a higher

level, more constrained and convenient representation (policies). A key aspect of this

is separation of the control logic from the underlying implementation mechanisms,

which in turn has the advantage of giving the policy designer the right to only make

changes to the system where the system designer wants changes made. A policy

script should describe what is required and not specifically how to do it. A policy

script should be easy to create with shorter, more natural language constructs used

(more human readable) in comparison with the more technical language the system

is based in.

Policy technologies usually provide general guiding strategies to a system. They

inform the system how to perform the tasks without replacing the underlying code.

Ponder [40] permits run-time changeable security policies and has a very feature

rich and extensible grammar. It is a good choice for using in self-adapting policy-

based security software but may not be as well suited for applications without high

security concerns. Ponder has been used in [41] for the management of differentiated

services networks.

AGILE [42] is the policy language used in DySCAS [43]; a European project

concerned with the development of dynamic processes of non-critical tasks within

and around a vehicle. An AGILE policy script can be loaded into an application at

run-time with the purpose of changing the behaviour of the application at the point

where the script is inserted. The scripts are loaded and processed by an AGILE

library instance. The DySCAS middleware supports run-time adaptability through

the use of AGILE-Lite; a lightweight, embedded version of AGILE [12, 44, 45].

Although powerful, AGILE policies at the same time can define functionality at
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a high level so that developers can focus on the intended business logic and need not

be experts in concepts such as autonomics and policy-based configuration. A policy

can be a statement of intent, without having to describe exactly how the behaviour is

achieved (since the lower-level mechanisms are pre-built). An AGILE policy editing

tool further simplifies the task of preparing policy scripts; making script editing

less problematic and less error-prone. For more information on AGILE policies see

[46, 11].

Using AGILE policies in DySCAS means it is possible to defer addressing issues

to a time when it is needs addressing. The system may start with a simple policy

for control of a particular service then a new policy can be created which takes into

consideration the additional context and is inserted into the service at run-time [42].

Rei [47] policy language consists of action and condition pairs whereby actions

are performed depending on the evaluation of its condition, i.e if and only if the

condition is true, does the action evaluate. Within Rei, prohibitations, obligations

and dispensations can be assigned to agents. Actions are constructed using a name,

target objects, pre-conditions and the effect of the action. All of which leads to a

policy language which is very powerful and can be used across domains but comes

with a steep learning curve.

Imperius [48] is very similar in that it uses condition-action pairs within a policy

language. Policies execute next to a system and can inspect the context of the

classes. This context is often used as part of the condition for deciding if the action

should be executed.

Utility functions

Utility functions are a way of dynamically selecting the most appropriate of several

options based on the contextual ‘value’ of these options. Utility functions are avail-

able in AGILE policies [11] allowing system designers to implement some complex

behaviour with the use of multiple terms and weights beyond simple true or false

rules.

21



CHAPTER 2. LITERATURE REVIEW

Kephart and Das [49] argue the case for the use of utility functions in autonomic

systems saying the “they provide a principled basis for automated agents to make

rational decisions”. They compare three types of policy as part of the case, action,

goal and utility function policies. They say that utility function policies are more

appropriate for autonomic computing than action policies because they focus on the

desired state.

It could be argued that a system goal is in effect a desired state. But the

main advantage of utility function over goal policies is the ability for the system

to compute its own, most desired state based on scalar values rather having the

policy author specify the most desired state. Therefore, where multiple goals would

conflict, utility functions would take a rational decision automatically.

Das et al. [50] use utility functions to attempt to cool a datacentre environment

in an energy efficient manner. They have produced some positive results in regards

to the experiments they performed. A device which they refer to as a ‘snorkel’ is

used to “channel cold air to the inlet of equipment mounted high off the floor” as

well as two computer room air conditioners are used to aid cooling.

The authors say that utility functions can be used to quantify and manage trade-

offs between competing goals such as performance and energy consumption. They

conclude by saying the datacentre energy consumption is reduced by 12% using their

utility function method (nearly 14% when using snorkels).

Other cases where utility functions are used in a datacentre environment to a

positive effect are shown in Tesauro et al. [51] and Walsh et al. [52].

Machine Learning

Machine learning is a technique in which the weight of successful strategies is auto-

matically reinforced to increase the chance of using the most appropriate strategy

in future similar occurrences. Using reinforcement learning to implement a control

mechanism that provisions servers and places applications in a ‘cloud’ computing

environment, whilst meeting performance requirements and minimizing costs, is the
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theme of Li and Venugopal [53]. This is split into two sub-challenges. Firstly, to

determine the smallest number of servers to satisfy the resource requirements. Sec-

ondly, to distribute the application amongst servers in order to meet response times

and availability requirements.

The results from experiments of Li and Venugopal [53] show that the system

coped well with some unpredictable request data after an initial transient period

where the system was ‘still learning’. This does however put forward the question

of just how beneficial reinforcement learning could possibly be if request data was

truly unpredictable. There could be a limited pattern to spot a trend and other,

less complex techniques might perform equally as well.

A self-managing system and in particular, a self-healing system should be able

to make improvements to itself to better handle the same and similar errors in the

future. The ‘self’ part indicates that these improvements must be made independent

of human guidance and artificial neural networks (ANN) as described by Haykin [54]

provide one method of unsupervised learning. Here, the ANN attempts to mimic the

brain functions where input and output nodes represent neurons and the connections

represent synapses. The actual output nodes are compared with the ideal and the

error between the two is calculated. The values of the nodes are then worked back

through and adjusted to improve the output. The process is then repeated, possibly

millions of times, with small improvements made each time.

Al-Zawi et al. [55] say that supervised learning of autonomic systems is not

feasible. In this paper a pipelined recurrent neural network (PRNN) algorithm is

used to implement self-healing in a real-time environment, i.e. the running system

cannot be interrupted and monitoring, planning and configuring must be made

outside the running system.

It could also be argued that all autonomic systems are closed control loops as

all self-* properties need to examine the current state of the system and pass the

information to the system as feedback in order to ‘self-adapt’. The same argument

could be applied to the MAPE controller, i.e. though most developers do not strictly
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adhere to it, but all autonomic systems contain the elements of MAPE, and MAPE

is in fact a closed control loop. Gaudin et al. [56] take control-theory further

and base a self-healing system on it. Here Supervisory Control Theory on Discrete

Event Systems is used to automatically synthesize a new supervisor that disables

the system functionalities that led to an exception so that the same sequence of

events do not re-occur.

A utility computing environment is one in which computer resources such as

memory and processing speed is treated as a utility in the same way as water and

electricity. These resources are given a cost to use and therefore the problem in this

environment is when and whether a particular investment is worthwhile.

In CARVE (Cognitive Agent for Resource Value Estimation) [57] the system

value of having more or less resources is predicted. This involves the training of

CARVE’s models, evaluation of on-line machine state and performing any necessary

reallocation. The experiments show the effectiveness of the system in comparison

to other static systems.

Andrzejak et al. [58] target a very similar problem, i.e. predicting resource usage

for the operation of a datacentre. They too target utility computing as a problem

area. The authors say that in such dynamic environments it can be very difficult to

predict resource usage with limited training data, and propose a genetic algorithm

/ fuzzy logic approach to predicting where there is scarce historical data available.

The experimental results show that their method does indeed provide much

smaller error predicting resource usage over other linear models especially when

limited training data is available.

These and other methods for implementing autonomic systems are surveyed and

discussed by Khalid et al. [59].

Kalman Filters

A Kalman filter is an algorithm which allows system models to predict the state of

some value where the sensors used are unreliable and/or produce a certain degree
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of noise. Since real world sensors almost always produce noise, especially when

the values being measured are of analogue nature, this can be an extremely useful

technique in computing. The basic formula governing a Kalman filter is thus:

xt+1 = xt + Vt

where the state of the future system xt+1 depends on the current system xt plus

some noise Vt. The error between the predicted state and the real state can be

reduced over time and used to improve the output of the filter.

For autonomic computing in particular this could have potential benefits as a

system that can make accurate predictions of its state can make more accurate

and trusted changes to itself. Hence the system should have a high degree of self-

managability which reduces further the need for human involvement at the mainte-

nance stage.

Capra and Musolesi [60] apply Kalman filters in a pervasive computing environ-

ment. They use the filter to assess the trustworthiness of various competing services.

Attributes pertaining to the quality of the service are measured and compared to

promised values and these values are used to train the Kalman filter and assess the

trustworthiness of the services.

Kalyvianaki et al. [61] focus on a virtualised datacentre environment, an area

which has become an important and popular research area recently. In these infras-

tructures one physical server can contain several virtual servers thus the physical

resources are shared between them. Kalman filters are used here to better allocate

CPU resources to the service which requires it by monitoring usage and using the

output of the filter to guide new allocations.

As mentioned, virtualised environments are an important area of research, not

least because of their widespread use in almost all datacentres. The problem of

where to dynamically allocate resources however may or may not be a big problem

if there are enough resources to share statically or the criticality of the server and
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service is low and the need for efficient resource allocation is also low.

Zheng et al. [62] use Kalman filters to track a time-varying parameter in a

layered queueing model within a service centre. The graphs and experiments show

the effectiveness of the approach. The mechanism used for monitoring and changing

the application, as well as construction of an effective model, could be complex

however and therefore not a practical approach for many systems.

Kalman filters are similar to state space observers where the variables of a sys-

tem are unknown but the state can be reconstructed by observing the output of

a system and performing algorithms on the output. Pelc et al. [63] apply policy

supervisors (which can themselves be dynamically changed at run-time) to select

the most appropriate state observer from a set based on the current context infor-

mation. A variety of comprehensive simulations are performed to show the quality

of the observer with regards to the error ε between the real system state x(t) and

the estimated system state x̄(t):

ε = x(t)− x̄(t)

The simulations show:

• the performance of the control system,

• the quality of state estimate,

• the stability of the closed-loop control system

2.2.2 Challenges

The majority of systems in use or in production today target a fixed goal and are set

on achieving that goal. Despite past experience, designers either do not expect that

errors might occur along that path, or do expect them and fix and maintain when

they occur. The problem is that this list of errors is infinite, may never be completely
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solved and may cause the system to never complete its aims and objectives. This

leads to an ongoing maintenance cost, a cost which is impossible to ever satisfy.

An autonomic system must therefore adapt to unexpected events and errors

and plan to deal with the new state itself, therefore reaching its goal despite the

problems. This is one of the fundamental aims of any autonomic system, some of

the current methods for achieving this have already been discussed.

Further to the fundamental challenge of designing an autonomic system, Jeffrey

Kephart in [64] discusses some of the foreseeable challenges involved. Here, interop-

erability is regarded as one of the major challenges. If multiple autonomic managers

exist, then how can they successfully communicate with one another without one

manager having a detrimental effect on another? One high level approach men-

tioned would be for elements to include “models that map potential actions into

probable outcomes so that they can make decisions about the right action or action

sequence”.

Kephart concludes with a vision of a open autonomic platform to which con-

tributions can be made from the autonomic community similar to the PlanetLab

effort (www.planet-lab.org). This is an idea which could be worth pursuing as it

would probably push the autonomic effort forward, plus it would be likely to enable

a much higher degree of standardisation between autonomic elements which in turn

would increase interoperability levels.

Measuring and effectiveness

An important consideration in autonomics is a way to measure a system for levels of

autonomicity. Is it possible to obtain quantifiable results for the system as a whole

or individual self-properties?

As we have seen, there are a vast array of proposed autonomic systems using

a variety of methods employed in different problem domains. But suppose a client

needs an autonomic system to solve a particular problem and there are already

a selection of systems which are desirable to them. The client does not want to
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propose a new solution but make use of an existing one. How can the client know

which system is best for their needs? If each system could be quantifiably measured

then the client would be in a better position to make a choice as to which to employ.

Perhaps the client’s system needs a high level of self-configurability, but is not too

concerned with other self-properties, then one system might be better suited than

others because it scores well on that particular self-property but not so well on

others. In short, measuring allows for comparison with other systems.

Another benefit of measuring autonomic systems is to aid developers in improv-

ing existing systems. Measurements could be run after a particular improvement

which has been designed to increase self-optimisation for example. The new measur-

ments would be able to communicate the effectiveness of the impovement. This also

gives developers an effective way to back up their claims that a system is particularly

effective at self-healing for example.

Huebscher and McCann argue the case for the need to measure autonomic sys-

tems in [65]. They describe possible metrics that could be used for measuring,

including quality of service, failure avoidance and adaptivity metrics. They argue

that the metrics should be part of a benchmarking tool.

Brown and Redlin [66] obviously see the need for a benchmarking tool as well

since they have built and use one to measure the effectiveness of self-healing in

an autonomic system. They use the IBM Autonomic Computing Maturity Model

[67] as a basis for quantifying the results of the test. The tool injects faults into

the system under stress and a measure of how effectively the system heals itself in

response to the injected faults is taken. It also measures how autonomic the healing

response is in accordance with the maturity model.

Trust, Validation and Verification

Autonomic and dynamic systems in general adapt to changes at run-time and per-

form operations which might not exist at the time of design. Therefore it is often

impossible to know the behaviour of the system at any point in time. Clients often
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need to trust that a system will always behave within certain boundaries, especially

in the case of safety-critical systems, so some form of system behaviour guarantee is

often imperative. Furthermore, an autonomic system could change a section of one

element which might not only cause problems for that element but also for other

elements which rely on it.

Validation and Verification have two distinct meanings in software as defined by

Adrion et al. [68]. These definitions are:

“Validation. Determination of the correctness of the final program or software

produced from a development project with respect to the user needs and requirements.

Validation is usually accomplished by verifying each stage of the software develop-

ment life cycle.”

“Verification. In general, the demonstration of consistency, completeness, and

correctness of the software at each stage and between each stage of the development

life cycle.”

By using these definitions and using our own interpretations, Validation is the

correctness of software according to the clients’ intentions. Verification is the cor-

rectness of the program in general. Does it contain faults or fail at any point causing

incompleteness?

It is difficult to totally verify that software is completely correct because we

cannot know every possible configuration and thus we cannot verify the unknown

variations. Through using various verification techniques we can however improve

robustness and even prove the behaviour of software in certain situations.

The problem of validating a system often comes from the possible ambiguity of

the intentions for the system as a whole. If there is any ambiguity then several

developers could interpret those intentions a multitude of different ways, each way

is correct in the way that it fully conforms with the original design brief, yet it does

not match the original picture of the system. Even without ambiguity it may be

realised that the original intentions were flawed as the development process becomes

more complete and that they need to be revised.
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If no compiler or interpreter can be used in a system then code which is added

or changed during run-time needs to be semantically validated to ensure the safe

running of the system. Semantic validation is necessary for the run-time changeable

“unknown” code and also for the entire system. Kamel and Leue [69] describe a

visual editor (VIP) which is used as an interface for a compiler of Promela code

(the input language for the model checker Spin). The visual model acts as a formal

description which can check the semantics at the point of system design. This

means mistakes in the intentional meaning of the designer are exposed and reduced.

A visual editor can be beneficial in validating and specifying high-level intentions.

Model checkers are often used to verify system requirements and have been shown

to verify policies, as demonstrated by Kikuchi et al. [70]. Spin is again used as part

of a framework built using the system model and policy. The result of the model

checking procedure must satisfy constraints and final states provided by the policy.

Petri net models Desel et al. [71] and Huang and Kirchner [72] are an effective

method of Validation and Verification. The models constructed offer a graphical

representation and a mathematical description of the system.

The problem of verifying adaptations of a system has been attempted by Zhang

and Cheng [73]. Petri net models are constructed of the system before and after

adaptation. These can then be checked for unacceptable state changes. They use

global invariants to verify the system, i.e. states which must not change after adap-

tation. This assumes that the system will continue to function as expected as long

as the global invariants remain satisfied.

Several other types of verification are also available as mentioned by Wolf and

Holvoet [74], some of which are described here:

Unit and Integration Testing - This method involves testing individual units of

code with test code to verify that the individual parts are correct. This gives the

developer confidence that the tested parts will work as they were intended to work.

Integration testing verifies the group of units to ensure that the group works when

all the individual parts are collected. The initial overhead of writing test code proves
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worthwhile as it produces very few errors to return to and fix.

Formal Proof - This is concerned with a mathematically provided description of

the system in question. Once this model is obtained it can be used as a basis for

proof of system behaviour and to ensure errors and faults are significantly reduced.

Formal proof is generally not perceived as necessary in all but the most safety

critical of systems. This is partly due to the overhead involved and partly due, to

the perhaps wrong assumption, that the currently in-place methods of verification

are ‘enough’ to ensure safe and correct running of the system.

Statistical Experimental Verification - This method involves running experiments

and processing the results using statistical techniques. The system behaviour can

be represented by a collection of the experiments which can then be used to verify

the conformance with the system requirements.

2.2.3 Conclusion

The argument that a system can never be truly optimal and error free is backed up

by Lightstone [75], who claims that the 3 popular middleware products under test

had more possible configurations than there are atoms in the universe, taking into

account the number and range of parameters which are possible in those products.

Clearly, the task of maintaining these systems is far beyond the capability of human

beings and clearly there is a definite problem which urgently needs addressing.

Throughout this research we have struggled to define the term ‘Autonomics’. In

particular, the difference between an autonomic system and an autonomous one.

The Oxford dictionary defines the word autonomous as ‘having the freedom to act

independently’ i.e. a software system, once deployed, which has the ability to act

independently of human input in order to complete its task is autonomous. For

instance, a robot exploring the surface of a distant planet must be able to perform

many, if not all tasks independently of human instruction because the delay between

signals being sent and received would be too great to allow for remote human control
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assuming the human would be on earth. The position and circumstance for the robot

may be several minutes old by the time it is known about on earth and therefore

the human operator would be trying to correct an issue that the robot has long

since progressed from and is now encountering another obstacle which the human

operator will not know about for several minutes.

An autonomic system is difficult to differentiate from an autonomous one because

it seems to be attempting to achieve similar objectives, namely, to automate tasks

and therefore reduce human input. Most dictionary definitions of autonomic refer to

the autonomic nervous system of humans and other physical bodies whilst there is

no specific definition for autonomic computing. For example, the Oxford dictionary

defines autonomic as ‘involuntary or unconscious; relating to the autonomic nervous

system’. The terms autonomics and self-managing can be used interchangeably how-

ever and this term has a more obvious definition. Self-managing software is software

which has the ability to at least in part manage itself. This seems synonymous with

the term used for autonomous systems, i.e. software which can manage itself and

software which can act independently means the same, does it not?

If we look at the original autonomic proposal in [1] the authors envisioned auto-

nomic software elements controlled by MAPE controllers (see figure 1.1). The con-

troller consists of elements which govern the monitoring and analysis of the software

system, as well as planning and execution control of changes. Autonomic managers

also add and remove information in a knowledge base, which can then be used for

future decision making. The original autonomic software systems stuck closely to

this design of the autonomic manager but newer systems use different techniques as

proposals or implementations of autonomic systems although it could be reasonably

argued that any autonomic system could be mapped onto each control element of

an autonomic manager.

Does this mean that all autonomic systems must use a MAPE controller? If we

claimed this we could equally argue that all autonomous systems could be mapped

onto a MAPE controller in much the same way as all autonomic systems. It is
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intuitive that a self-managing or autonomous system must contain many or all the

elements described in the autonomic manager. Also, if there was a system capable

of self-management, but could not be easily mapped to an autonomic manager,

could we then dismiss its autonomic capabilities? If a system displays autonomic

capabilities then it would have to be classed as autonomic no matter which methods

are used. In other words, if two competing autonomic systems complete the same

goal and both systems reduce the human element to the same degree, but only the

first system based its architecture on MAPE, then does this mean only the first

system is autonomic?

So what is the difference between an autonomic and autonomous system, and

why is the answer important? To answer the second question first, if we cannot find

a difference between the two then they must have the same meaning and there is no

reason to have two distinct research fields. It also means that we can classify these

types of systems more precisely with a distinct boundary between the two.

To define these systems then, we need to look, not at the methods used in the

system but at the reasons for automating tasks. An autonomous system is one which

automates its tasks because human involvement is impossible or highly undesirable

such as the ‘planet exploring robot’ example used earlier or the flight stabilising

system used in several fighter jet aircraft, Cortellessa et al. [76] and Miller et al.

[77]. An autonomic system automates its tasks in order to reduce complexity and is

often a replacement for systems which usually refer errors, configuration tasks etc. to

a human, e.g. an autonomic datacentre manager or autonomic power/performance

management system. Autonomous systems are usually based in robotic systems

whereas autonomic systems are usually much higher level even though there is no

discernible difference in the methods of the two?
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2.3 Requirements and Goal-Oriented Engineering

In our framework and in T-R programs in general, the focus is on goals as the most

influential part of a program. Maintaining focus on these high-level aims is essential

in delivering a valid product.

The i* framework, Yu [78] is used extensively in the requirements engineering

domain, either on its own or as the basis for an extension such as Tropos, described

by Bresciani et al. [79] and Castro et al. [80] or the Goal-Risk framework, Asnar et

al. [81]. i* is a modelling and analysis technique used in early requirements stages

where stakeholders are modelled as actors in the system and their interdependencies

are described. Where earlier frameworks are often used to model what and how

questions, i* also models the why question as this is also seen as a fundamental

query in requirements analysis.

Each goal in i* is refined into subgoals, where positive and negative contributions

between these goals are shown. The resulting model shows alternative ways of

satisfying top-level goals.

Goal-oriented requirements analysis and reasoning is the main subject of the

work by Giorgini et al. [82] who use the Tropos methodology [79, 80] to make goal

analysis more complete, developing a formal model for this aim. The authors have

developed a goal reasoning tool, which allows algorithms for forward and backward

reasoning to be run on goal models. The backward reasoning in Tropos is used to

analyse the goal models to find the minimum cost goal that could guarantee the

achievement of top level goals. The forward reasoning is employed to evaluate the

impact of adopting the approaches with respect to softgoals. Softgoals in Tropos

and indeed, in many other goal-oriented systems, mean non-functional goals such as

Are customers happy?.

Van Lamsweerde [83] argues the case for widespread use of Goal Oriented Re-

quirements Engineering (GORE). He argues that it makes sense that the creation of

software should be directed towards what the user wants to get from it, i.e. the goal,
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and that these goals should drive the requirements. The author shows evidence of

several successful projects which use GORE and also argues that tool support should

be integrated into GORE development.

Amyot et al. [84] also champion GORE as a way forward in software devel-

opment. They give a detailed account of the relationship between goals in GORE

models and use several examples to illustrate their point. For example, the rela-

tionship between one goal and another goal or softgoal can have several satisfactory

levels and contribution types, including satisfied, none, conflict, denied, some posi-

tive, some negative, to name just a few.

Van Lamsweerde [85, 83] places a high degree of importance on high level goals,

with the focus on functional and non-functional goals, such as performance and

quality of service. The authors of [85] also focus on how to generate these goals

in the first place, saying that many goals can be obtained simply by asking HOW

and WHY questions to obtain parent and sub-goals. Simple Use Case diagrams

described in Fowler [86] are a good way to obtain and focus on initial goals.

Asnar et al. [81] propose a framework where risk analysis is integrated into

the early requirements engineering process. They argue in many software project

cases, that risk mitigation has the undesirable effect of requiring a revision of the

software design and of the software requirements. By shifting risk analysis to the

early requirements stage this is a reduced possibility.

Sutcliffe et al. [87] discuss the use of some HCI approaches to requirements

engineering and applies these methods to the development of the ADVISES tool.

The aim was to develop “user-centered RE techniques and processes, to specify

functionality for multiple-user communities” and investigate the integration of HCI

techniques as part of a project solution and RE process.
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2.4 Teleo-Reactive Programming

T-R programs developed by Nilsson [2] are designed for autonomous control of mo-

bile agents. T-R programs continually accept feedback from the environment, per-

forming actions based on this current state. A T-R program is structured with a

hierarchical list of condition and action pairs with each action fulfilling or partly ful-

filling the condition of immediately higher precedence. An action will end execution

if it ceases to be the highest true condition, either because the action has fulfilled

the next condition or some other circumstance has caused this case.

Nilsson develops a triple-tower architecture in [3] which consists of perception,

model and action towers. The model of the environment is updated through sensory

systems, creating primitive perceptions in the model tower. These perceptions are

both added to and deleted by evaluation from the perception rules. The action tower

consists of T-R rule lists which essentially perform the actions based on current

perceptions in the model tower. The actions can of course affect the environment

and contribute to the perception tower, creating a feedback loop. The architecture

is shown in figure 2.1.

This allows conditions to be continuously evaluated, new perceptions conceived

and actions to be re-ordered according to current state. A Java applet providing a

demonstration of this block stacking example is available at [10].

Hayes [88] has produced a reasoning framework, supporting verification of T-R

programs. This is especially important in the case of safety and mission-critical

software and increases confidence in the developed system. It is likely that the T-R

program itself contains logical errors causing the program to never progress past a

particular state. Being able to reason over a T-R program would have benefits then.

Basing their approach on T-R programs, Gordon and Logan [89] have designed

GRUE (a Grue is a monster from an early adventure computer game, Zork), an

architecture for controlling game characters (agents). With GRUE the agents are

able to react to competing goals with conflicting requirements. GRUE is able to
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Figure 2.1: Triple-Tower Architecture (from [3])

generate new goals in response to the changing current situation and allows multiple

actions to be run in parallel in pursuit of several simultaneous goals, thus producing

more convincing and believable game agents. The work supports the idea that

the T-R approach not only allows programs to be written more naturally, but also

produces more natural behaviour from agents.

Katz [90] describes an extension to the T-R paradigm, whereby the boolean

logic representing the conditions are replaced by Zadehan (Fuzzy) Logic. The author

claims that the mechanism of blocking all previous actions when a higher precedence

condition becomes true may not be consistent with the intent of the paradigm. The

author demonstrates these claims with Nilsson’s own examples and in particular the

“bar-grabbing” one from Nilsson’s original T-R paper [2]. Here, several assumptions

are made. In particular, that the robots movements and rotations will always be

exact. This is not always true as, for example, the robot may over or under-shoot

its intended position.

Using the proposed changes, the author is able to achieve smoother results which
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are less reliant on the quality and exactness of the actions involved. These ideas do

make sense since the paradigm is intended to provide a continuous goal progression

which are provided by the semantics of the paradigm but the use of boolean con-

ditions forces the programs to revert to a digital execution of analogue logic. The

results from the author’s modifications are encouraging but the simplicity of the

approach may be lost in the proposed changes.

Based on Nilsson’s triple-tower model [3], the architecture in Coffey and Clark

[91] is a hybrid of Beliefs, Desires and Intentions (BDI) and T-R programs. Using

BDI affords the authors the possibility to abstract out the rules. For example, we

do not have a yes or no condition but a belief which can easily be falsified or an

intention to perform an action rather than than an action itself. The authors merged

BDI with T-R programs because, after gaining a new desire and intention, the

previous intention can be resumed without the need to re-initialize. T-R programs

can begin execution at any point, relying instead on the current conditions from the

environment rather than retrieving a stored state.

Coupled with this main model, the authors implement communication ability

between agents. Communication gives the agents the possibility to share percep-

tions, desires, and intentions to better coordinate activities. Multiple agents can

improve efficiency this way or coordinate with each other to achieve a common goal.

Evidence of the robustness and effectiveness of T-R programming is demon-

strated in Mcgann et al. [92] where a T-R based software architecture is used for

automated control of an underwater vehicle. The advantage of employing the T-R

style here, is that the vehicle is expected to operate in a harsh and unpredictable

environment. T-R helps the vehicle avoid and recover from unpredictable events.

Using sensors and on board timings, the vehicle is expected to retrieve samples at

depths and in environments that humans cannot operate and return to the surface

at a specified time.

Gubisch et al. [93] isolate a potential problem where the time taken for one

T-R action to complete could be too great, causing one action to possibly cancel
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the effect of another. An example given is one of a soccer robot where the robot

must get in position to kick the ball, then execute the action to draw back the leg

and swing towards the ball. The time taken for this action to complete could mean

the ball has moved in this time. Here the authors attempt to resolve the issue by

extending T-R programming to allow for concurrent execution or multiple actions.

This way the leg swinging action can begin before the ball is lined up. When the

kick is made the ball should be aligned correctly. Another possible fix would be

to change the leg swinging mechanism so that less time is taken for the action to

complete or provisions for minor adjustments are made to the mechanism according

to current perception of the ball.

There is a lot of potential in T-R programs for adding learning and AI abilities.

In this section we highlight some of the different approaches various authors have

taken in this task. In autonomics the ability for programs to learn and evolve new

abilities has obvious benefits for reducing human maintenance costs and increase

self-managability.

Vargas and Morales [94] demonstrate a robot learning new T-R programs by

taught actions from humans. Basic actions are first taught to the robot who forms

a set of grammars representing the skills. Once grammars are learnt they can be

repeated and used to replace repeated sequences of primitive actions. More complex

sequences and grammars can then be formed. For example, primitive grammars

might be simply rotating to avoid an obstacle or moving forward when the path

is clear. More complex grammars might involve moving to a goal location, which

could utilize the smaller grammars in part.

These new programs are aimed mainly at navigation oriented tasks. To this end

the low-level sensor readings are first transformed into higher level output so that

they can be interpreted with physical objects represented as landmarks. Another

learning algorithm is presented by Kochenderfer [95] where genetic programming

techniques are used to evolve T-R programs and produce programs for solving some

problems.
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Ramı́rez [96] uses neural networks to capture new environmental experiences

which can be integrated into a learning architecture. Whereas Choi and Langley

[97] use a representation formalism is developed called ‘teleoreactive logic problems’

which support learning. In this method, two knowledge bases exist containing a

list of ‘percepts’ about the environment and a knowledge base containing known

actions. They also describe an interpreter that utilizes the logic problems to achieve

goals.

2.4.1 Production Systems

A production system imitates some basic logical processes and therefore can provide

some form of artificial intelligence. They consist of a list of rules with a sensory

condition to check and an action to execute when its associated condition is true.

C Language Integrated Production System (CLIPS) [98] is a production system

which is used for building expert systems. It deals with ‘facts’ and ‘rules’ where

‘facts’ are knowledge about the system and form the left hand side (condition) of a

rule. When the facts are known then the rule is triggered. In an expert system the

rules could be various diagnosed conclusions which are communicated to the user

when certain facts are known. A classic example of an expert system would be that

of troubleshooting car faults. For example, in CLIPS a rule could be set-up where

the user is informed to check the battery or cables if the following facts are true:

“The engine will not start” and “The headlights will not come on”. Multiple rules

like this could form an equivalent of the human expert. JESS [99] is a Java based

version of CLIPS.

Originally designed for natural language processing, Prolog [100] can and has

been used in other areas such as expert systems and advanced control systems. The

program logic is also represented as facts and rules and is initiated with a query. For

example, a list of facts about a family history and relationships between each could

be inserted. The rules might describe the relationship between two family members,

40



CHAPTER 2. LITERATURE REVIEW

directly or indirectly and a query about whether Frank is a sibling of John could

be run. The program might answer yes or no depending on the program rules and

known facts.

2.4.2 Suitability of T-R in Autonomics

The T-R paradigm is capable of operating in a non-deterministic fashion. Although

ideally each program run should end with the goal, we cannot predict the path it

takes to get there and therefore each run could take a different route each time.

This is similar in method to a high-level, analogue thought process in a brain. For

example a simple task for a human such as loading a dishwasher or opening a door

contains several smaller high-level processes such as positioning your body, viewing

the object that you want to interact with and extending and coordinating limbs. The

human might be interrupted during the process where an unexpected event occurs

(maybe a dish is dropped and broken and must be cleared up before continuing)

and so the process might be re-arranged to deal with the event before continuing

with the original task. The important point is that the original task did not fail

just because an unexpected event occurred and no external influence is needed in

order to continue. The lack of maintenance required makes the brain ‘autonomic’

at this high level and is very similar to T-R programming in this way. This ability

for T-R programs to manage unexpected events gives T-R programs the impression

of self-healing [101].

When we talk about these high-level goals and actions we are ignoring the low-

level actions required. For example, coordinating limbs is a very high-level action

when the low-level process for this is extremely complex. These low-level actions are

handled autonomously however. i.e without the need for conscious thought. A T-R

program too contains an ordered list of rules when the low-level actions are ‘hidden’

when viewing the program at a high level.
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2.4.3 Conclusions

T-R programs are very robust and exhibit a self-managing behaviour. This is evi-

denced when a T-R program meets an unexpected event such as an unknown obstacle

in the case of a robot or a sudden disconnection from a network in the case of a

higher level application. A well designed T-R program will deal with the event ap-

propriately without ever needing to process code to deal with this specific event; all

the time proceeding towards the top level goal.

The production rule list in T-R programs allows focus on the conditions and

goals and not the actions, for example, do we have a connection to the network?

has a boolean true or false answer. If the connection is lost for any reason then the

program should fall back to an earlier state and continue to work on re-establishing

the connection. This rule list is very comprehensible both to view and to write and

this is one of its major strengths over other production systems, however there is

a challenge in the actual composition of a T-R program as detailed in Hawthorne

and Anthony [102, 103] and therefore the challenge is primarily one of validation

(are we building the right product) and to a lesser degree, one of verification (are

we building the product right).
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CHAPTER 3

TELEO-REACTIVE

PROGRAMMING IN

AUTONOMIC COMPUTING

This chapter describes the problem that this research addresses and also the method-

ology to be used. We also describe the integral part of this, the JTRAF framework,

as well as the differences and improvements made, what they do, why they are

needed and how to use them.

3.1 Rationale and Method

T-R programming seems like an excellent way of approaching the autonomic problem

because it firstly provides a natural way to manage the unexpected events which are

present on every software system and therefore reduces the maintenance cost con-

siderably. Secondly, the robust basis provides a solid foundation on which to build

further self-properties. For example self-configuration in T-R could be achieved in

a reliable and natural way without the complexity of a large system. The system

designer could add some rules to firstly monitor for changes, then plan a configu-

ration for the change, then execute the plan, the system would then ‘fall’ back to
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monitoring again when the new system is complete and stable. This new system

could be as simple or complex as the designer desires.

The difference between applying T-R to autonomic systems as opposed to au-

tonomous ones lies mainly in the type of problem to be addressed and the reasons

for automation. If an autonomous system typically controls the analogue movement

and behaviour of low-level agents with the aim of controlling a system indepen-

dently of a human, an autonomic system typically controls the configuration and

re-configuration and behaviour of high-level management components with the aim

of reducing maintenance complexity from the developer point of view.

An autonomous system might control the movement of a robot for example

and for this type of application T-R is well suited as a movement action can be

interrupted at any point without disastrous consequences. Whereas a high-level

autonomic application performs some tasks which cannot be halted (atomic). For

example an autonomic system could be updating a record in a database (where

database updates would be a high-level activity as opposed to a low-level one), this

operation cannot be interrupted as it would cause corruption of data. Therefore,

changes in the T-R system may need implementing for this type of situation and for

T-R as an autonomic technique in general.

One analogy to describe how T-R programs work would be a satellite navigation

system such as ones found in cars or for pedestrians. When a route to a destination

is entered into the device, any available satellites are used to discover the current

position, then a route to the destination can be planned. If the user deviates from

the planned route for any reason a new route is planned from the current position.

This means that the current position is constantly checked and that the route is

expected to change often. This is analogous to T-R systems where unplanned events

are expected and deviations from the original goal are made based on the current

environmental context. This non linear progression towards the goal is natural to

T-R programs and is quite different to the linear steps taken by most programming

languages.
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Figure 3.1 shows the contrast between a set procedural language and a T-R

system. Often in a procedural language errors and events that are expected to occur

are caught with the use of a try-catch style exception handling mechanism. The

event is either dealt with at the point it occurred or simply ignored. In all but the

most trivial programs, there are many more unexpected events than expected ones.

In a procedural approach, these unexpected events will likely cause the program to

halt execution entirely as the next action in the sequence can no longer be reached.

In contrast the same unexpected event in a T-R system will often cause the program

merely to change state, i.e roll back or forward as indicated by the arrows to the left

of the T-R program in figure 3.1. All events are handled in the same way (expected

and unexpected) so the developer need not write exception handlers for expected

events unless specific action is desired.
Contrast

Traditional procedural approach TR approach

Figure 3.1: Contrast between goal progression of a typical programming language
and a T-R program

The mechanism of T-R systems behave similarly to how an analogue human brain

processes a goal. A simple analogy is thus used to illustrate this point. A person
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wishes to load a dishwasher with dishes and utensils etc. so that they will be washed

and dried, ready for next use. They begin by placing them in the correct drawers

and compartments. Effectively, the person has created an ultimate goal for this task

of loading all the dishes and starting the machine. At some point in this process a

cup is dropped on the floor and it breaks. The procedure is broken and the human

cannot continue until the hazard is removed. A new goal is created to remove the

problem before returning to the original goal of loading the dishwasher. Of course

this is a very high level view of the process, and the mechanisms (coordinating limbs

and muscles whilst observing the environment etc.) are largely hidden but from a

high level perspective this process is a lot like a T-R program. In T-R there is

a possible set path from an initial state to the main goal but this ‘ideal’ path is

never likely to occur. Instead the currently executing action depends entirely on the

current context, creating sub-goals within the main procedure and then returning

to other goals where needed. An interruption does not cause a problem like it would

if a set path were followed.

In this project and in order to answer our research questions we have developed

two use cases using our T-R framework. The two use cases are a simple file sending

program which is injected with several faults in order to observe and document the

T-R mechanism for processing these faults. We also show how T-R can be used

to manage complex datacentres and how the extensions built into the framework

can aid in both the development process and improving and extending the existing

manager. Shown is the development and run-time process for each.

Initially the intention is to show how T-R can be used as an autonomics technique

which these use cases show. We then proceed to demonstrate the extensions to the

T-R methodology which were developed and integrated into JTRAF, and how these

extensions expose problems and lessen the effort of developing and maintaining a

T-R program.
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3.2 The Java Teleo-Reactive Autonomic Frame-

work (JTRAF)

The Java Teleo-Reactive Autonomic Framework (JTRAF) is a Java framework which

is designed to make it simple for developers to use the Teleo-Reactive paradigm in

high level and autonomic applications. The framework allows rules to be easily

written and interpreted, thus minimising design effort.

JTRAF can be used to develop a complete application as a T-R realisation or

the T-R method can be used in a sub-program where T-R is suited to a sub-goal

and not the main application. It could be used in a legacy project where a suitable

solution had not previously be found.

From the point of view of this project, JTRAF is an easy and convenient way of

developing the T-R simulations which are used to answer the research questions, i.e.

the JTRAF library is developed separately to the main application and is referenced

and used in the main project and any other project unchanged. This is convenient

because a T-R program cannot directly be written in a high-level language such as

C or Java but instead requires an interpreter which JTRAF provides. If a change

to JTRAF is needed then it should be made without having a negative effect on

any application that uses it. To help ensure this, the interfaces of JTRAF remain

unchanged throughout development.

Java is used in development of JTRAF because it is a high-level language, so

this is applicable to the high-level applications which we aim to demonstrate the

use of T-R in and could be incorporated into real-world projects and applications

in development. Java is an object-oriented language which is convenient for modern

applications which use JTRAF. It is also convenient for development as the different

aspects of the framework can be represented as objects and classes which can then

be extended to allow for application specific methods whilst confining the framework

specific code to a higher level parent class.

A T-R program is essentially a prioritised list of production rules, and a rule
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Action

+ Action(Conditional) : void
+ action(Object) : void

Conditional

+ testCondition(TRProgram) : boolean
+ getParameters() : Object

TRProgram

+ TRProgram() : void
+ TRProgram(int) : void
+ addActionToTop(Action) : void
+ addActionToBottom(Action) : void
+ addCondition(Conditional) : void
+ singlePass() : void
+ start() : void

«interface»
Runnable

+ run() : void

Nil

AndCondition OrCondition NotCondition

0..*

0..*
1

Figure 3.2: Teleo-Reactive framework (JTRAF) class diagram

consists of a true or false condition followed by an associated action. JTRAF there-

fore provides an easy way to extend conditions and actions and associate the two

(forming a rule) and order the rules so that they are given priority. Once the T-R

program is complete it can be run as a background thread or as the main program.

3.2.1 Creating a Rule

A rule is created by first constructing a condition and then constructing an action

with the newly created condition object as an argument. Both Action’s and Condi-

tion’s are abstract types and must be extended to create application specific objects.

This ensures that the elements which are required by JTRAF are constrained to the

Action and Condition super classes. The developer is freed from the operational
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concern of the framework and can concentrate on specific rule construction.

As can be seen from figure 3.2 an Action only ever accepts a single Condition

as an argument, however there are three built-in extensions to the Condition class.

These are, AND / OR / NOT conditions, which logically combine, logically OR two

conditions and negate a condition respectively. These three conditions can be used

to create some complex nested logic if need be i.e. the result is a single condition

which may or may not have several levels of complexity.

Throughout the development of JTRAF a Test Driven Development (TDD)

methodology was employed. One of these tests simply adds to a central counter

until the counter reaches 5000. Adding a value to a counter here was a useful test

for Validation and Verification of a T-R JTRAF program where the test is designed

to show how a T-R program can be composed in JTRAF. The intended, simple T-R

program is shown in figure 3.3, and the simple steps used to construct this program

are shown here:

Condition isTrue = new IsTrue();

Action add10 = new AddAction(isTrue, 10);

Condition is100 = new NumCondition(100);

Action add100 = new AddAction(is100, 100);

Condition is1000 = new NumCondition(1000);

Action add500 = new AddAction(is1000, 500);

Condition is5000 = new NumCondition(5000);

Action finished = new Nil(is5000);

There are just two custom types here, AddAction, which accepts two parameters,

one condition which is passed to the parent class (Action) and an amount to add

to the central counter. NumCondition returns true if the counter is greater than

the value specified and false otherwise. Nil is a built-in Action and does nothing.

It is often used at the end of a T-R program, i.e. when the goal condition is true.

IsTrue is a built-in condition which returns true always and is often used to initiate
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a program, i.e. start the first Action when no other Action is possible.

AddAction and NumCondition classes begin like this:

public class AddAction extends Action

{

private int _incAmmount;

public AddAction(Conditional conditional, int incAmount)

{

super(conditional);

_incAmmount = incAmount;

}

...

and...

public class NumCondition extends Conditional

{

private int _ammount;

private TRProgram _trProgram;

public NumCondition(int ammount)

{

_ammount = ammount;

}

...

respectively.

There is no Rule type because each Action is associated with a Condition and

so this construct effectively forms the rule.
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3.2.2 Creating a T-R Program

CHAPTER 3. APPLICATION OF TELEO-REACTIVE PROGRAMMING IN
AUTONOMICS

Action

+ Action(Conditional) : void
+ action(Object) : void

Conditional

+ testCondition(TRProgram) : boolean
+ getParameters() : Object

TRProgram

+ TRProgram() : void
+ TRProgram(int) : void
+ addActionToTop(Action) : void
+ addActionToBottom(Action) : void
+ addCondition(Conditional) : void
+ singlePass() : void
+ start() : void

«interface»
Runnable

+ run() : void

Nil

AndCondition OrCondition NotCondition

0..*

0..*
1

Figure 3.1: Teleo-Reactive framework (JTRAF) class diagram

Is5000 −→ Nil

Is1000 −→ Add500

Is100 −→ Add100

T −→ Add10

The rule construction section of the tests is shown here:

Condition isTrue = new IsTrue();

Action add10 = new AddAction(isTrue, 10);

Condition is100 = new NumCondition(100);

Action add100 = new AddAction(is100, 100);

Condition is1000 = new NumCondition(1000);

Action add500 = new AddAction(is1000, 500);

Condition is5000 = new NumCondition(5000);

28

Figure 3.3: Simple JTRAF composition test (Counts to 5000)

The rules have been created but the program in figure 3.3 still needs to be ordered

and composed. First we create a TRProgram instance and add the rules to it, like

so:

TRProgram testProg = new TestProg(5);

testProg.addActionToBottom(finished);

testProg.addActionToBottom(add500);

testProg.addActionToBottom(add100);

testProg.addActionToBottom(add10);

where testProg is an instance of TRProgram.

Figure 3.2 shows two methods to add a rule ‘addActionToTop(Action)’ and ‘ad-

dActionToBottom(Action)’. These methods exist to avoid confusion as to where the

rule would be placed within the T-R structure, i.e. a method ‘add(Action)’ would

not be informative to the developer.

The condition that the action contains is automatically added to the condition

list within the TRProgram instance and can be tested individually from a unit

test for example as can individual actions. This is a useful feature for test driven

developers since the components can be tested in isolation rather than waiting for

the entire T-R program to be composed and executed before finding any errors. See

[104, 105] for more about Test Driven Development (TDD).
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Figure 3.2 also shows that TRProgram implements the Runnable interface mean-

ing it can be run as a background thread. This is useful if only a small part of the

application would benefit from the advantages of T-R. A delay time (milliseconds)

can be set through one of the constructors to TRProgram and the thread is executed

by calling start().

The singlePass() method performs a single evaluation run through the T-R pro-

gram which can be useful for executing as part of an external / custom thread or

part of a debugging or testing strategy for example.

3.2.3 Extensibility through sub-T-R programs

TRProgram extends the Action class itself. This means that the actions which are

triggered need not be simple actions but could be entire T-R programs themselves.

This is similar to the Composite design pattern of Gamma et al. [106] and promotes

extensibility whilst keeping individual T-R programs short and manageable.

3.2.4 Temporal analysis extension

The temporal analysis panel (TAP) allows the developer to view the state of any

condition in a T-R program over time. Each condition is represented as a progress

bar showing what percentage the condition has been true over the course of the

program run. The bars also show the logically joined conditions, so that the per-

centage true time for any condition is shown and also the percentage true time in

conjunction with the other condition logically joined with it. The layout of the T-R

program and current state of the conditions is also shown in real-time. Shown in

figure 3.4 true conditions are in green and false are red, the currently executing

action is underlined.

When developing the TAP tool, we observed that the visual information from the

condition indicators showed decreasing levels of accuracy as time increased. This

is because the proportion of time a condition has been true varies depending on
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the time scale used. For example a condition true for two minutes of a four minute

period is a 50% proportion whereas two minutes of two hours is ≈ 1.6%. This meant

that if a T-R program had been operating for a long period of time and a condition

state changed, it may be impossible to observe from the progress bars that any

change occurred.

To aid in this problem, exponential smoothing was used to apply exponentially

decreasing weights on values over time. This provides greater visually sensitive

feedback to the developer and it also means that an exhaustive history of previous

events is not needed to achieve this since all the previously smoothed data is held

in the most recent smoothed sample.

TAP is part of JTRAF and is automatically generated as per the T-R program

which it is called from. So the TAP screen of figure 3.4 was not developed for the

datacentre use-case specifically but generated by JTRAF automatically where any

T-R program can ‘generate a TAP’ with a simple call to setVisible():

mainTRProgram.getTAP().setVisible(true);

or whatever the TRProgram instance happens to be called.

The same data that is shown graphically in TAP is also automatically logged to

an excel file. The developer can then view the logged events with a global view of

the program run or to generate a different view of the data from a graph or table.

The next section explains that exception handlers are used to catch run-time

errors and help the T-R program continue to operate as it should. However it

is possible and quite likely in fact that the same run-time error in a particular

action will re-occur indefinitely until it is physically corrected. This would mean

the program never proceeds past the rule which contains the error and thus never

reaches it goal. Another example of these logical errors is where a rule is skipped

entirely because the previous action enabled a condition which in turn enabled a rule

which has higher precedence than the skipped rule. This may not be the program

designers intentions and the skipping of a rule might prevent the goal from being
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Figure 3.4: Temperal analysis screen (generated from the datacentre use-case)

reached again.

What is important to recognise here is that although run-time errors are reduced

with T-R, logical and validatory errors can actually increase and it can be much more

difficult to find the source of these problems. These problems and possible methods

of prevention are described in Hawthorne and Anthony [103, 102].

TAP was designed to help alleviate this problem by providing greater feedback

to the developer. If for example a condition is always false over a one hour program

execution and the developer knows the condition should be true for part of the time,

then the problem can be immediately highlighted, assessed and fixed. The problem

is likely to be contained in the preceding action which would be difficult to locate

without TAP.

3.2.5 Differences between low-level T-R and JTRAF

One advantage of creating a high-level interpreter for T-R is the availability of

exception handling constructs. In JTRAF all actions and conditions run within

exception handling constructs and any expected or unexpected error is caught at
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run-time. When a run-time error has occurred and is caught, the action simply

ceases to execute. The evaluation of the conditions then begins again. In this

way, an error introduced by the application developer will not cause the entire T-R

program to end.

If, after the error occurs and the conditions are re-evaluated, the same error

occurs indefinitely then the program would enter into an infinite loop and never

reach its goal. The T-R developer would then consult the TAP and be able to

observe that all conditions after the error have never been true. The developer

would then know the T-R program is faulty and using TAP they would know where

the fault is likely to reside, i.e. the action or condition preceding the indefinitely false

conditions. The developer need not write their own exception handler as JTRAF

will catch exceptions automatically.

It could be argued that a similar exception handling effect could be achieved by

containing an entire program, written in another language in an exception handler

but the program would then need to restart in its entirety no matter how big or

small the occurring error is. By using T-R which adds handlers around individual

actions and conditions, the program only needs to revert to a an earlier state and

rule in the event of an error and does not necessarily need to restart in its entirety.

If the opportunity arises the state can alter to a rule with higher precedence as well.

Low-level T-R programs are designed to execute an action continually until it

ceased to hold the highest priority, true condition. If this condition becomes false

then the action would immediately stop and a lower action (which holds the highest

true condition) would take its place. This means that the conditions are continually

evaluated separate from the currently executing action i.e. the T-R program and

its conditions are evaluated in a separate thread of execution to the running of

an action and any action can be interrupted at any moment during its execution.

The alternative, and the method used in JTRAF, is to evaluate conditions from

the top down and execute the action with the highest priority as with traditional

T-R programs. However, actions cannot be interrupted and must reach the end of
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execution before the evaluation begins from the top down again. i.e. the evaluation

and running of actions all happen in a single thread of execution.

If an action requires more than one iteration to fulfil its goal, the developer need

only write the code for a single iteration for the action. The same action would be

executed as many times as necessary by the T-R program, i.e. for as long as the

action is associated with the highest true condition. Effectively, the T-R program

creates an inherent loop construct. This does have a major drawback however in

that an action that contains some error and executes indefinitely would effectively

lock the program as no evaluation could take place until the faulty action ends. A

traditional T-R program does not suffer from this problem as conditions are always

evaluated regardless; but also has a major drawback in that the continual evaluation

will impact negatively on processing time, which could be a problem in high-level

and processor intensive applications.

A low-level T-R robot for example might be required to apply constant current

to motors to keep them turning and keep the robot moving forward, therefore any

pause for evaluation of conditions would likely cause slow or jerky movement or

otherwise prevent the motors operating correctly. It is therefore vital that there is

no evaluation period in the T-R program execution. In all the T-R programs we

have developed through JTRAF however, the type of processes run in these high-

level programs have never warranted the ability to interrupt an action. This has

never been an issue and in fact it can be dangerous to interrupt an action before

completion. If the action was updating a database for example then an interruption

could lead to an incomplete file transfer or a corruption of the database.

In every previous high-level T-R program written during this project there has

never been a need for the more traditional continual evaluation of conditions. How-

ever, JTRAF allows for a future project where it may be necessary and the frame-

work provides the option to switch to a more traditional method where the condition

evaluation and action execution are run as two separate threads, thus allowing ac-

tions to be interrupted at any point.
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The research questions are now revisited in more detail and related to the re-

search methodology.

3.3 To what extent can Teleo-Reactive program-

ming techniques (T-R) be used to construct

autonomic management systems and what are

the benefits of doing so?

This research question requires that the effectiveness of T-R as autonomic control

logic is evaluated in a number of differently characterised application scenarios. It is

necessary to identify which types of application, and which specific types of control

scenario can benefit from the T-R approach, and also to identify the boundaries and

limitations of this approach.

We believe that the T-R system has a lot of potential for use in autonomics

because we argue the T-R idea parallels the autonomic nervous system very closely.

A human solves a problem by addressing high level goals such as ‘open door’, or ‘put

on shoes’ without concern for background tasks and low-level mechanisms such as

breathing and coordinating muscle movement etc. Our only concern is solving the

immediate problem and not the exact mechanism for doing so. These mechanisms

are largely handled automatically so that our conscious thought can be aimed at

high-level goals.

The T-R system works in a remarkably similar way where goals and conditions

are the focus and not the low-level mechanics. Conditions and goals are the driving

force of T-R as they inform the system as to which action to execute and which state

to be in. Actions attempt to satisfy higher priority conditions but the system does

not need to know how or even whether the action is successful or not. It only needs

to know which conditions are true and which are false in order to progress towards
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its goal. Essentially, the low-level actions in T-R are parallel to autonomic actions

in a nervous system because, whilst sometimes essential, they are only indirectly

involved in goal completion. The conditions are the true indicators of the state of

progression towards a goal. And so, as in the human system, we consciously focus

on the goals and conditions and not the actions.

3.3.1 Approach

The file sending application in section 5.1 is a high-level system which uses the T-

R approach. We can therefore use this demonstration to show the extent of T-R

capabilities in high-level applications and to validate and justify its use.

We can use this demonstration to answer the question in a broken down form,

i.e. we can split autonomics into its four main self-properties and question whether

T-R produces self-healing behaviour, produces self-configuring behaviour etc. We

will test the self-healing behaviour of T-R by injecting faults into the running system

and observing the behaviour.

If designed well it should be able to recover from expected events and may even

recover from some unexpected ones, but this is difficult to demonstrate since we

cannot prove that the fault injected was not planned for. However we should be

able to provide a good indication of the healing process both in this particular

demonstration and in other T-R / JTRAF examples.

We will also demonstrate the self-optimisation behaviour by increasing and de-

creasing the noise levels in communication and observing the effects. The system

has been designed to adjust the packet size according to the successful receipt of

previous packets. We also comment on the applicability of T-R in autonomics as a

whole, describing its benefits and ease of use.
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3.4 What are the difficulties in T-R programming

and how can they be reduced?

The benefits of T-R as an approach to building software is clear, but it is also clear

that this approach is not beneficial in every situation. It is also clear that whilst some

problems can be reduced and the system is generally more robust, some problems

are more prevalent as shown in Hawthorne and Anthony [102]. This project shows

how these concerns and problems can be addressed.

3.4.1 Approach

A concern with this technique is that a T-R program might not be very extendible

and is only really applicable to small problems. This concern however is not true

and although keeping programs small and concise is a good idea for readability and

maintainability we can expand programs to any level with sub-T-R programs. Sec-

tion 4.2.4 demonstrates how a T-R program can be extended with sub-T-R programs

without affecting the structure of the main T-R program. We also show how TAP

can be an integral part of the development process, both to inform the developer

visually of the current structure and state, and as a visual aid to the compositional

structure of the T-R program over a time period.

3.5 What improvements can be made to extend

the benefits or increase the ease of adopting

T-R programs?

This question is essentially saying that there are several benefits and several prob-

lems associated with T-R programs. Do the benefits outweigh the problems and so

encourage the use of this method for developers? If the benefits are not sufficient,

what can and has been done to reduce these problems?
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3.5.1 Approach

In section 4.2.4 we outline the problems in composing programs and show how a

program is typically written using the TAP mechanism. TAP improves the ease of

composing T-R programs significantly.

In section 5.2 there are three T-R managers which each perform the same task

of running the datacentre simulation. The first manager is the basic program, it is

very simple in that it contains only a few rules and only one main T-R program. It

does however do all that is necessary to the complete the goal.

The second program extends the basic manager with a sub-T-R program which

performs extra decisions over which pool should receive a server upon multiple pools

being overloaded. It will also remove a server from a pool and apply it to another

pool if its requirement is higher and if there are no idle servers available.

The third program alters the second, searching for trends in the number and size

of requests and applies and removes servers to pools based on this trend.

Each of the managers will be used to run the datacentre using an identical script

so as to provide the same input data each time. TAP will automatically log the state

of each condition in the manager and the data can then be compared in order to

assess the changes. For example one of the managers might show that the ‘efficient’

condition is true for a longer period of time overall over the program run than the

other managers whereas another manger is an improvement in certain situations but

not others. These results will be documented and compared thus showing how TAP

can aid improvement to existing T-R managers.

In addition to the benefits which TAP provides, we also have plans to build

advanced composition techniques into JTRAF as described in Hawthorne et al.

[107]. Here T-R programs compose themselves based on knowledge of available

actions and past event knowledge. This will lead to less error prone programs and

also increase autonomicity since the programs will manage themselves to a large

degree. This is a huge advantage of JTRAF since this and any other changes can be
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made directly to the framework which can then be taken advantage of by all JTRAF

developers.
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JTRAF USE-CASES

4.1 Teleo-Reactive File Sharing Application

The example presented here is a simple simulation of a file sending application

presented from the point of view of the server side. The example extends JTRAF to

simulate a simple protocol which we assume has little or no error handling abilities.

The program contains several rules pairs leading to its main goal. For the sake of

simplicity the file is always the same and is of a fixed length, with the aim being

to send the file to the currently connected client. The example demonstrates how

unexpected events such as random client disconnection and noisy communications

are recovered from. This example is not designed as an accurate representation of

networking components, it only serves to highlight some of the features and benefits

of the T-R paradigm.

4.1.1 Design

The file sending application was developed before the TAP tool was created and

therefore the T-R program for the application was developed with a trial-and-error

method. The program is still correct with respect to completeness but this devel-

opment would have been easier and quicker with the TAP tool. For example, some

of the problems written about in Hawthorne and Anthony [102] such as ‘T-R dead-
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locks’ and ‘prioritised skipping’ were evidenced in the development of this example.

Figure 4.1 shows the completed file sending T-R program.

Developing self-healing Applications 9

The final goal condition should be the state which all other actions are work-
ing towards. Here is an example where a delivery company uses GPS to track
its delivery van and display the status of the van on a web site for customers to
view (the software is running on a computer in the van depot):

Has van returned to depot −→ Nil

Has DB link ∧Has van status −→Write van status to DB

Has van status −→ Get DB link

Has van link ∧ Timer expired −→ Get van status

T −→ Establish van link

IsF ileComplete −→ Nil

IsF ivePacketsSent −→ ChangePacketSize

IsConnected −→ SendNextPacket

IsAccepting ∧ IsWaiting −→ Connect

T −→ Accept

Now imagine we are at the stage where we about to write the van status to
the database but the ‘Has van status’ condition is no longer true for whatever
reason. The program may ‘drop back’ to establishing the link to the van and
getting its state again. From this point it can work back to the point of writing
to the database, thus the program self-heals.

The developed framework allows each T-R program to be run as a thread so
in this case the T-R program would have as many instances as there are vans to
track which would all be running in the background leaving the main program
free for more important tasks. We can be confident that each instance will work
unsupervised because we know errors will be handled. This is why confidence
in this part of design is so important. This is the main goal in autonomics as
well; to have programs handle themselves so there is little maintenance for the
programmer after deployment, and only low levels of external supervisory input
are needed.

4.2 Program Structure Design

The framework has been designed to allow the concepts discussed in this paper
to be realized and even integrated into current systems as easy as possible.
Programmers are required only to extend the types Action and Conditional as
shown in figure 2. It is important to recognize that the onus currently resides
with the programmer to produce actions and conditions which can complete at
least some of the time given the expected state and context. The framework
robustly handles events and errors, however, an action or condition which never

Figure 4.1: T-R program for file sending application

T-R Elements

The goal of the example is the same as the top level condition, to finish sending the

file to the connected client. With the file sent the program does nothing until the

top level condition turns false again. Figure 4.1 shows an alternative view of the

‘Teleo-Reactive Program State’ section from the example.

The conditions in the example are:

• T - As this is always true its action will always execute if no higher precedence

condition is true.

• IsAccepting - The example simulates a socket which accepts incoming con-

nection attempts. This condition returns the accepting state of the socket.

• IsWaiting - This condition reports whether there is a client in the waiting

state.

• IsConnected - The client is connected after it is moved from waiting to the

connected state.

• IsFivePacketsSent - Returns true when a multiple of 5 packets has been sent

to the connected client.

• IsFileComplete - True once the whole file has been transferred to the con-

nected client.
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The actions in the example are:

• Accept - Simply turns the accepting state of the socket to on.

• Connect - Any waiting client is connected and the Accepting state is switched

off.

• Send Next Packet - A packet is sent to the connected client at the current

packet size.

• Change Packet Size - The packet size is adjusted using a simple algorithm

based on statistics from the previous packet sending attempt.

• Nil - Performs no action.

GUI

Figure 4.2: GUI for file sending application

The simulation GUI controls enable the user to set a run speed by changing the

run speed slider and clicking the ‘Continuous Program Run’ button. This sets the

simulation to perform a full pass through its action list every X seconds. The ‘Single
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Step Program’ button performs a single pass at each press and turns off automatic

running.

The program state area gives visual feedback on the current progress in the T-R

program. In the GUI a ‘true’ condition is coloured green, whilst a ‘false’ condition

is coloured red. The action associated with the highest precedence ‘true’ condition

is executed and will continue to execute at each pass while it remains so.

There are four possible clients that can be connected to the file sending service.

Clicking on one of these four names followed by ‘Connect’ performs the connection

attempt.

The ‘Introduce Problems’ controls are used to inject ‘unexpected’ conditions.

This includes a random disconnection of a connected client and the introduction of

degraded communication. The level of degradation is set with the slider and ‘Set

Error Rate’ button.

4.1.2 Working Through the Example

In this test, we make a connection and begin sending the file to this client in blocks.

We demonstrate how the program copes with the unexpected events of disconnection

and changing quality of service. This simple example is intended to illustrate the

benefits and robustness of the approach.

When the example application is started the only ‘true’ condition is the first

‘T’ condition. On the first pass, the accept action will be executed, making the

‘IsAccepting’ condition ‘true’. This will be the only executed action on subsequent

passes until a higher precedence condition evaluates to ‘true’. If we now connect one

of the clients, the ‘IsWaiting’ condition becomes ‘true’. The conditions for the action

‘Connect’ are now completely satisfied and takes precedence over any lower actions.

Its execution on the next pass will connect the waiting client, stop the socket from

accepting connections, and cause ‘IsConnected’ to return ‘true’. The service will

continue to send packets to the client unless a higher precedence condition becomes
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‘true’.

There are a variety of ways in which the connection to the client can be lost.

Clicking ‘Disconnect Connected Client’ causes the only ‘true’ condition to be ‘T’

again. The program will then work back to the point where the problem occurred

and continue sending packets until the entire file is sent. The file send is resumed

at the point where the last successful packet was sent. If another client connects

before the first client, they must wait until this client disconnects.

If, after five packets have been sent, very few packets reached their destination,

it might be beneficial to reduce the size of the packet so that more packets are sent

successfully. This is because the complete file may never get sent if there is too much

noise causing too many errors in the network connection sending each packet. A

smaller packet size has a higher chance of being error free, and at least a few of these

may succeed in sending. Every multiple of five packet sending attempts the service

has the opportunity to adjust the packet size to suit the current communication

quality and keep the service running at optimal levels.

By changing the error rate in the simulation we can show how this works. The

packet size will increase or decrease as appropriate. Once the ‘IsFileComplete’ con-

dition is satisfied no other action will be performed and the goal is complete.

It was simple to add self-optimising behaviour to the program, which is demon-

strated by the changing packet size program function. We had not intended to

implement self-optimization within the first version of the example, but it turned

out to be very simple to add this function. Using our framework, constructing

the application was remarkably easy, and with future iterations of the framework

(adding further robustness and inherent validation checking), this will be an easier

task.

A more elaborate example scenario could be chosen with the opportunity to

introduce a greater variety of problems and some of further features of the frame-

work such as ease of reuse and recursion. However, the example is simple enough

to demonstrate the main advantages which a more complex scenario might have
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blurred.

4.2 Teleo-Reactive Autonomic Datacentre

The datacentre is commonly used to house many of a companies IT related opera-

tions. There is a high requirement for access to services to be reliable, secure and

smooth. The number, capacity, and effectiveness of servers associated with a par-

ticular application indicates the capability of the datacentre to deal with incoming

requests. A noticeable drop in performance would be evident if the number of re-

quests for a service far exceeds its capacity to deal with it. It may also be desirable

to increase or decrease the capacity for one application at the expense of another,

or to provide enough capacity for an application before it becomes “over/under-

subscribed” either by analysing historical data and/or recent trends in request data.

These requirements lead to a desire for the management of a datacentre to be

computerised and automated as much as possible in order to reduce human mainte-

nance costs and to operate optimally or as close to optimal as possible with the cur-

rent resources. An effective autonomic system should be able to effectively manage

these requirements and adapt to unexpected events and changes in the environment

and in the system itself.

Many proposed autonomic datacentres utilise complex architectures [50, 108,

109], making these techniques and architectures difficult or impossible to replicate

for any scenario for which they were originally designed. This section proposes the

T-R paradigm as an effective autonomic datacentre manager which is much less

limiting. In other words, although we are using a datacentre to demonstrate the

capabilities of T-R, it is not limited to this scenario.

The T-R datacentre as a simulation has been designed as three distinct parts.

The model, containing the current state of the datacentre and its elements. The

T-R manager, which contains the behaviour and decision making automated pro-

cessing of events. The script driven automated request generator is used to provide

67



CHAPTER 4. JTRAF USE-CASES

a simulation of requests for services within the datacentre.

4.2.1 Model

The datacentre model does not contain any behaviour itself, it is a logical repre-

sentation of the datacentre state. The model represents a very simple datacentre

scenario where the simulation focuses on the running efficiency rather than security,

power requirements or other aspects; the model includes elements with this goal

in mind only. Although simple, the datacentre is intended to inspire extensions in

order to fit more complex scenarios. Figure 4.3 is a UML class diagram representing

many important aspects of the model.

DatacentreModel

- idleServers:  Server[]
- pools:  Pool[]
- applications:  Application[]
- events:  Event[]

+ stopTimer() : void
+ startTimer() : void
+ processEvents() : void

Application

- name:  String
- requests:  RequestEvents[]
- ID:  int

Pool

- ID:  int
- servedApplication:  Application
- servers:  Server[]

Request

- size:  int

Server

- ID:  int
- mips:  int

RequestEvent

- Requests:  Request[]

+ action() : void

Event

- eventTime:  long

+ action() : void

0..*
0..*

0..*

0..*

0..*

0..*

1
0..*

Figure 4.3: Datacentre model

• DatacenteModel - Contains the applications which are present in the model,

these are the services which the datacentre is capable of serving but may or

may not be associated with a pool yet. It also contains a list of created pools,

events and servers. Unlike applications, servers which exist in the datacentre

model are here only if not associated with a pool, they cannot be in two
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places at the same time. Therefore, servers which exist in the model can be

considered idle, i.e. not being utilised.

The datacentre model is also responsible for processing any of the listed events

it contains which have expired. The event list is checked periodically for events

where the eventTime has been proceeded by the current time. If it has the

action associated with the event is executed.

• Events - These form the logical connection and interface between an external

script and the datacentre, however it is possible to create event objects in-

ternally as part of a unit test for example. All events include an event time,

which indicates but does guarantee the time, offset from the start of the pro-

gram run when the event should occur. Each event also includes an action()

method which is executed by the datacentre model when the event time ex-

pires. Action() should not include any large operations because this is the task

for the datacentre manager not the model. For example, request event actions

simply add requests to an application, how this is interpreted is down to the

manager.

• Requests - An application can contain many requests, representing the current

demand. Request size is measured in MIPS (million instructions per second)

and are essentially the driving force for the manager. i.e. as the requests

increase, more servers may need to be provisioned. So too, as the number of

requests decrease, the number of servers available for an application may need

to decrease to be made available for another application.

• Application - Represents the requested elements. The data-centre model can

contain many applications, these are a list of all the available applications. A

pool however can and must contain one application.

• Pool - A logical construct which relates an application with a list of servers.

A server can only be added from the list of idle servers so if there are none
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free, the pool must wait for one to become available or the manager may try

to take a server from a less overloaded pool and add it to the idle server list

first. This is dependant on the complexity of manager loaded.

• Server - A server is an element which is capable of dealing with incoming

requests. A pool links the servers to an application such that, as requests

for the application arrive, there must be enough capacity associated with the

application in order for seamless communication to occur, i.e. enough servers

for the requested application, where server capacity is measured in MIPS. Each

server can be in one of three states as shown in figure 4.4, idle, provisioning

and In pool. This shows that a server cannot immediately be assigned to a

pool, but must first join the provisioning queue for a pre-determined length of

time.

Idle

Provisioning

In Pool

Server states

Unprovision

Update severs

Provision [set provision time]

Figure 4.4: Server states

4.2.2 The T-R datacentre manager

There is a necessity for large datacentre managers to operate automatically because

the amount and frequency of decision making would be too much for large teams of

humans to manage. The manager also needs to be robust enough to manage various
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states of the system without much or any possibility of failure as this may result in a

lengthy downtime of the system. The T-R datacentre manager provides all the logic,

decision making and processing in an autonomous way and because the manager is

a T-R type paradigm it is very stable and able to recover from unexpected events

which may cause problems for other systems performing similar tasks.

The manager needs to be able to delegate servers to pools that need them and

remove servers from pools which contain too many. This should be formulated into

a true or false condition and set as the main goal. As the rest of the program is

developed each rule should work directly or indirectly towards this goal. The goal

may never be met if the frequency of request rate change is always higher than the

speed the manager delegates servers for example but the goal should be the main

target nonetheless. The T-R system looks at how the goal is effected by a recent

event, and not on event itself, this way we can manage a much wider range of events

as we do not need to know the cause of the condition change, only that some event

has caused it. This gives the T-R manager increased robustness and is arguably

the best approach since unexpected events can never be planned for anyway. The

complete T-R program is shown in figure 4.5 and the process involved in composing

the datacentre though the TAP mechanism is shown in section 4.2.4.
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Idle

Provisioning

In Pool

Server states

Unprovision

Update severs

Provision [set provision time]

Figure 4.2: Server states

states of the system without much or any possibility of failure as this may result in a

lengthy downtime of the system. The T-R datacentre manager provides all the logic,

decision making and processing in an autonomous way and because the manager is

a T-R type paradigm it is very stable and able to recover from unexpected events

which may cause problems for other systems performing similar tasks.

The manager needs to be able to delegate servers to pools that need them and

remove servers from pools which contain too many. This should be formulated into

a true or false condition and set as the main goal. As the rest of the program is

developed each rule should work directly or indirectly towards this goal. The goal

may never be met if the frequency of request rate change is always higher than the

speed the manager delegates servers for example but the goal should be the main

target nonetheless. The T-R system looks at how the goal is effected by a recent

event, and not on event itself, this way we can manage a much wider range of events

as we do not need to know the cause of the condition change, only that some event

has caused it. This gives the T-R manager increased robustness and is arguably the

best approach since unexpected events can never be planned for anyway. Composing

the datacentre though the TAP mechanism is shown in section 4.2.4.

Efficient −→ Nil

ServersUpdated ∧ Underloaded −→ Unprovision

ServersUpdated ∧Overloaded −→ Provision

ServersUpdated ∧ ¬AllAppsHavePools −→ CreatePoolForApp

T −→ UpdateServers

26
Figure 4.5: Full datacentre T-R program

4.2.3 Script-driven Automated request generator

Figure 4.6 shows the main GUI for the datacentre. The lower most slider allows

simulated request amounts for applications to be manually set and changed. The

manager could then respond to the change and the T-R state changes could be
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observed. This presented a problem, in that the regular changes to the simulated

requests is a monotonous and time consuming task. Of course the request amount

could be chosen at the start for each application and could remain fixed at this value

for the duration of the simulation but this would not be very realistic input for any

simulated datacentre scenario. Furthermore, test input would be difficult to repeat

over a range of different managers.

A scripting system was implemented to allow the developer to construct an

external xml script simulating the requests. Figure 4.6 shows the mechanism to

loading these scripts, i.e. the name of the script is chosen and loaded. The script

is processed in a separate thread which is started and stopped with the appropriate

buttons.

Figure 4.6: Full datacentre GUI

In a script, there are events which refer to a simulated occurrence of anything the

script can simulate at a specified point in time. A single event could be the addition

or removal of an application into the datacentre or it could a set of simulated requests
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for a specified application. Individual events must be described in a script via an

event type. This tells the parser how to read, generate and process the content

within the event type element. Four different event types can be used in a script to

automatically generate requests or to add / remove an application for the simulation.

This is the format description for the event script elements:

• Add/RemoveAppEvent

AppName - The name of the application to add or remove from the datacentre

model

Offset - The desired time for the event to occur, offset from the start of the

simulation run

• RandomEvents - Produces total request sizes, randomly, between a minimum and

maximum size, for a specified time period

AppName - The name of the application this script is targeting

StartOffset - The desired time for the events to start, offset from the start of

the simulation run

EndOffset - The desired time for the events to end, offset from the start of the

simulation run

RequestSize - The request size of a single request

Frequency - How often, between the start and end offset, an event should occur

MinTotal - The minimum random total request size (this is a multiple of Re-

questSize as near to MinTotal as possible)

MaxTotal - The maximum random total request size (this is a multiple of Re-

questSize as near to MaxTotal as possible)

• LinearEvents - Produces request sizes that linearly increase or decrease between

an initial and final size for the specified time period. LinearEvents has the same

elements as for RandomEvents but without Min/MaxTotal. In addition:

InitialSize - The total request size to produce at the StartOffset
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FinalSize - The total request size to produce at the EndOffset (request sizes

between these two value should steadily increase or decrease over the time period)

• BandedEvents - The same as for LinearEvents but the request total is random within

a set percentage from the linear

PlusMinusBand - A percentage that the total request size is permitted to deviate

randomly to (from the normal linear value)

Following is a typical but simple xml event script showing these elements, it simply

adds four applications and removes one of them. It then applies the three request

event type elements to two of the applications:

<EventScript>

<AddAppEvent>

<AppName>app1</AppName>

<Offset>0</Offset>

</AddAppEvent>

<AddAppEvent>

<AppName>app2</AppName>

<Offset>0</Offset>

</AddAppEvent>

<AddAppEvent>

<AppName>app3</AppName>

<Offset>0</Offset>

</AddAppEvent>

<RemoveAppEvent>

<AppName>app2</AppName>

<Offset>1</Offset>

</RemoveAppEvent>

<RandomEvents>

<AppName>app1</AppName>

<StartOffset>1000</StartOffset>

<EndOffset>30000</EndOffset>

<RequestSize>15000</RequestSize>

<Frequency>2000</Frequency>

<MinTotal>4000</MinTotal>

<MaxTotal>100000</MaxTotal>

</RandomEvents>

<LinearEvents>

<AppName>app1</AppName>

<StartOffset>30000</StartOffset>

<EndOffset>60000</EndOffset>

<RequestSize>15000</RequestSize>

<Frequency>2000</Frequency>

<InitialSize>15000</InitialSize>

<FinalSize>600000</FinalSize>

</LinearEvents>

<BandedEvents>

<AppName>app3</AppName>

<StartOffset>1000</StartOffset>

<EndOffset>60000</EndOffset>
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<RequestSize>15000</RequestSize>

<Frequency>2000</Frequency>

<InitialSize>150000</InitialSize>

<FinalSize>400000</FinalSize>

<PlusMinusBand>20</PlusMinusBand>

</BandedEvents>

</EventScript>

To illustrate the event types (RandomEvents, LinearEvents and BandedEvents)

better, 3 tests were performed and the request size vs. time is graphed. In each

test there is only one application using one of the three event types where the

min/maximum size or initial/final size is set to 15000 and 600000 respectively. Start

and End offset is 1 and 60 seconds respectively. Frequency is set to every second

and for the banded test the PlusMinusBand is set to 20 %. Figure 4.7 shows the

graphed outcome of the tests.
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Figure 4.7: Graphical representation of request generator script event types

This graph is the expected output of the test runs and as such confirms and

illustrates the script functions.

4.2.4 Composing the datacentre T-R Manager through TAP

Given the difficulties in composing a T-R program, raw and without any harness

this section develops a basic T-R manager for the datacentre problem domain using

our TAP mechanism. It shows how errors and other issues are easily highlighted
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using TAP. We can approach the composition of the T-R manager with a ‘divide

and conquer’ type approach. i.e. begin with a very small manager, use the TAP

mechanism to find problems, fix the problems by adding or editing the rules then

repeat the process. In this way we make small incremental changes to our design

whilst verifying each stage with TAP.

The initial manager should be complete, i.e contains no errors and is capable of

reaching the goal from any given state but will not attempt any extended capabilities

at this stage.

The objective of the datacentre would be to quickly satisfy the needs of all the

requests without much unnecessary wastage. In other words, each application served

by the datacentre should be allocated enough servers in relation to the amount

of present requests for it, otherwise the users of the application would notice a

distinct degradation in performance. Furthermore, each application pool should not

contain more servers than is necessary as this would prevent other pools utilising

the underloaded server. This objective is captured as a single conditional statement

which can then be set as the managers’ goal. So if all pools are not overloaded and

not underloaded we can call this condition ‘Efficient’.

When servers are provisioned they are moved first to a provisioning queue as

each server will take a set amount of time to prepare. We will need a ‘Provision’

action to move idle servers to the queue as well as an action to move servers in

the provisioning queue to their desired pool where the provision time for the server

has expired, this action we will call ‘UpdateServers’. This can then become our

initial action since no prerequisite states are necessary for it to run. We also need

‘UpdateServers’ to occasionally execute or no server will ever reach its destination

pool, however, rules to deal with conditions where a pool is overloaded for example

should take priority.

The manager cannot reach the ‘Efficient’ goal directly from ‘UpdateServers’ be-

cause there will not be any servers in the provision queue to update without a

‘Provision’ action. The ‘Provision’ requires that we only provision a server to a pool
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if that pool needs extra servers to run efficiently so we should add the condition

‘Overloaded’ to query whether there are any pools which have more requests than

the current servers can cope with.

We also realize that when a pool becomes overloaded it will begin to provision

servers, but those servers will never reach their destination pool because the ‘Pro-

vision’ rule takes priority over ‘UpdateServers’ and while the pool is overloaded

‘UpdateServers’ can never execute.

To fix this problem we can create a condition to check if there are any servers

which need to be moved to a pool from the provisioning queue. We then logically join

the condition to ‘Overloaded’, ensuring that servers are correctly updated if needed

before any new provision takes place. This condition compliments ‘UpdateServers’

and is called ‘ServersUpdated’.

Figure 4.8: Basic manager: First iteration.

When this program is executed, TAP reveals that ‘Overloaded’ remains on 0%

for the duration meaning it never became true. After inspection, it was revealed

that because ‘Overloaded’ inspects pools for overloads and no pool is ever created

in our current T-R program then it is impossible for ‘Overloaded’ to become true.
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A rule will be needed to add a pool for each application in the datacentre. This is

shown in figure 4.9.

Figure 4.9: Basic manager: Second iteration

The program can now achieve its goal of becoming efficient, however, for a finite

number of available servers and assuming pools will require a greater capacity for

requests than is currently available at some moment in time then the overloaded

pool will remain overloaded if all the servers have been allocated elsewhere, even if

there are pools which are underutilising their servers. TAP confirms the problems

existence when the Efficient goal true proportion returns to 0% when all idle servers

have been distributed.

We need to return these underutilised servers to an idle state so that they can

be provisioned to overloaded pools. We therefore add another rule for this purpose.

This rule will contain a condition to check for pools with too many servers (‘Under-

loaded’) and an action to return these servers to an idle state (‘Unprovision’). The

result of adding this rule is shown in figure 4.10.

Before a simulation begins, the number of idle servers can be chosen. If the

number of idle servers are reduced and the simulation is run, we can see that ‘Over-

loaded’ quickly becomes true, which is briefly returned to false as idle servers are
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Figure 4.10: Basic manager: Third iteration

distributed. Whenever the number of requests is reduced for a pool for a time,

‘Underloaded’ becomes true, however, if ‘Overloaded’ becomes true concurrently

then servers cannot be removed from underloaded pools because the ‘Provision’ rule

currently take priority over the ‘Unprovision’ rule. There are no more idle servers

which can be provisioned to the overloaded pool either so we now have a stalemate

situation where some pools need servers but cannot get any, and some pools have

servers which are not needed but they cannot be removed. TAP alerted us to this

problem when the ‘Efficient’ true proportion quickly reduced to 0% and remained

on this value.

This problem could be resolved by giving priority to the ‘Unprovision’ rule. In

this way, all servers are returned to idle state ready to be utilised before pools

receive servers when needed. Figure 4.11 shows the ‘Unprovision’ rule given priority

over ‘Provision’. This simple change ensures the correct operation of the datacentre

manager.

Building the datacentre with the use of the temporal analysis tool demonstrates
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Figure 4.11: Basic manager: Final version

that although software built using the T-R paradigm reduces human maintenance

significantly, it is also very easy to introduce logical errors. This basic construction

example shows how TAP can reduce the time needed for the discovery of these errors.

TAP is therefore an excellent tool for the location of logical validation problems and

well as verification. This is significant for the evolution of T-R programs since issues

here are often include the fact that a T-R program does not behave in the way the

developer intended and less about errors in code.

4.2.5 Extensions of the basic manager

The developer of the datacentre or any T-R program will probably need or want

to improve the first iteration of the software. For example, the basic datacentre

manager successfully completes its main task of distributing idle servers to the ap-

plications which need them in order to improve request response time for those

applications, but there are many improvements which could be made (this process

of requiring additional improvements over time would occur in any real-world sys-
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tem). The basic manager is extended to include the new requirements and through

JTRAF we can use the automatic logging of TAP to compare one manager against

another. We can ultimately conclude on whether a new version helps or hinders the

situation.

In this section we build two extensions to the basic datacentre manager and com-

pare all three through TAP logger. In the first extension the servers are more evenly

distributed to the applications that require them rather than taking the basic man-

ager approach of provisioning servers to the first pool in need. This will hopefully

avoid the situation where some pools have no or very few servers. The second ex-

tension, will attempt to analyse the trend of datacentre usage and distribute servers

in advance of them being required.

Sub-T-R extension

In the basic manager, when the datacentre becomes overloaded the provision action

executes. This simply provisions an idle server to the next available overloaded pool.

A more beneficial approach would be to provision a server to the ‘most overloaded’

pool first otherwise pool 1 could receive many servers whereas other pools may be

allocated none. Also, if there are no idle servers available it might be beneficial to

remove a server from a pool and return it to an idle state before provisioning the

server to the ‘most overloaded’ pool. This ensures a fair distribution of servers and

is exactly the method employed by this advanced manager program.

Because the described process is more complex than the provision action used

in the basic manager, we have created a separate T-R program for this purpose as

shown in figure 4.12. This is then called by the main program of figure 4.5 in place

of the single provision action of the basic manager.

A sub-T-R program is simply a T-R program which is called by another, where

all T-R programs are types of Actions (see figure 3.2). Actions and TRPrograms

can then be used interchangeably. The advantage being that more complex prob-

lems which demand several steps to solve can take the form of (and gain all the
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Sub-T-R extension

In the basic manager, when the datacentre becomes overloaded the provision action

executes. This simply provisions an idle server to the next available overloaded pool.

A more beneficial approach would be to provision a server to the ‘most overloaded’

pool first otherwise pool 1 could receive many servers whereas other pools may be

allocated none. Also, if there are no idle servers available it might be beneficial

to remove a server from a pool a return it to an idle state before provisioning the

server to the ‘most overloaded’ pool. This ensures a fair distributio n of servers

and is exactly the method employed by this advanced manager program. Because

the described process is more complex than the provision action used in the basic

manager, we have created a separate T-R program for this purpose:

¬Overloaded −→ Nil

HasIdle ∧GotMostUrgent −→MoveIdle

(¬HasIdle ∧GotMostUrgent∧

GotLeastOverloaded ∧ V alidUnprovision) −→ Unprovision

¬HasIdle ∧GotMostUrgent −→ GetLeastOverloaded

T −→ GetMostUrgent

this is then called by the main program of figure 4.5 in place of the single provision

action of the basic manager.

A sub-T-R program is simply a T-R program which is called by another, where

all T-R programs are types of Actions (see figure 3.2) Actions and TRPrograms

can then be used interchangeably. The advantage being that more complex prob-

lems which demand several steps to solve can take the form of (and gain all the

advantages of) complete T-R programs. This leads to more extensible and reusable

code. As with individual rules, the calling T-R program takes precedence over the
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Figure 4.12: Datacentre sub-T-R program

advantages of) complete T-R programs. This leads to more extensible and reusable

code. As with individual rules, the calling T-R program takes precedence over the

called T-R program. So, if a sub-T-R program is currently running but a higher

precedence rule in the calling program becomes true, then the called T-R program

will immediately cease execution and control passes back to the calling program.

The sub-T-R program behaves exactly like any other action in this way.

This approach is used in the datacentre and tests were performed on two versions

of the data-centre manager. The basic version uses ‘Provision’ as a single action

which simply assigns an idle server to the nearest overloaded pool. The second

version replaces the action ‘Provision’ with a complete T-R program, which uses

context information to both assign a server to the most ‘deserving’ of pools first,

and more fairly distribute the already provisioned servers if no idle ones exist.

To show the difference between these two versions, some tests were performed

showing the difference in the capacity (number of MIPS the pool is capable of

serving vs. the number MIPS being requested) of each pool. The basic manager

(using a single Action to provision) is referred to in the tests as ‘Provisioned’ and

the advanced version (using a sub-T-R program in place of the ‘Provisioned’ action)

is referred to as ‘Sub-TR Provisioned’.

In each test there are four applications. Each application has a starting value

for the number of MIPS requested and a new value of requested MIPS. Recorded,

is the actual number of MIPS provided and the difference between this actual value
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and the requested one for both versions of the manager.

In every test, there are 60 servers of 35000 capacity each. This means there is

a total of 2100000 MIPS to share between four applications. If the request total is

higher, the idle server list will be empty and the data-centre is overloaded. Tables

4.1 - 4.4 show these differences.

Table 4.1: Application 1 test scenarios. Values taken from Data-centre with and
without sub-TR version
Starting request New request Provisioned Difference Sub-TR provisioned Difference

570000 630000 630000 0 595000 -35000

0 630000 630000 0 595000 -35000

630000 810000 630000 -180000 630000 -180000

810000 450000 455000 5000 455000 5000

450000 450000 455000 5000 420000 -30000

450000 210000 210000 0 210000 0

210000 90000 105000 15000 105000 15000

90000 870000 875000 5000 665000 -205000

Table 4.2: Application 2 test scenarios. Values taken from Data-centre with and
without sub-TR version
Starting request New request Provisioned Difference Sub-TR provisioned Difference

420000 465000 420000 -45000 455000 -10000

0 465000 490000 25000 455000 -10000

465000 600000 490000 -110000 420000 -180000

600000 330000 350000 20000 350000 20000

330000 375000 385000 10000 315000 -60000

375000 285000 315000 30000 315000 30000

285000 120000 140000 20000 140000 20000

120000 510000 525000 15000 315000 -195000

Table 4.3: Application 3 test scenarios. Values taken from Data-centre with and
without sub-TR version
Starting request New request Provisioned Difference Sub-TR provisioned Difference

720000 795000 735000 -60000 770000 -25000

0 795000 805000 10000 770000 -25000

795000 1020000 805000 -215000 840000 -180000

1020000 870000 875000 5000 875000 5000

870000 1095000 910000 -185000 1050000 -45000

1095000 945000 945000 0 945000 0

945000 120000 140000 20000 140000 20000

120000 1170000 700000 -470000 945000 -225000

The graphs of 4.13 show the tables in graphical form. They highlight the differ-

ences between the two manager versions. Where a bar is close to zero, the difference
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Table 4.4: Application 4 test scenarios. Values taken from Data-centre with and
without sub-TR version
Starting request New request Provisioned Difference Sub-TR provisioned Difference

285000 315000 315000 0 280000 -35000

0 315000 175000 -140000 280000 -35000

315000 405000 175000 -230000 210000 -195000

405000 345000 350000 5000 350000 5000

345000 345000 350000 5000 315000 -30000

345000 375000 385000 10000 385000 10000

375000 0 0 0 0 0

0 375000 0 -375000 175000 -200000

with respect to requested and provisioned MIPS is low and is therefore very efficient.

When a bar is much greater than or much less than zero, the pool/application is

underloaded or overloaded respectivly and is very inefficient. In figure 4.13(a) it is

shown that the simpler manager version does not fairly distribute the servers when

an overloaded situation occurs. In fact, this version simply provides an idle server

to the next available application or pool. The second version distributes and moves

servers to the ‘most overloaded’ pool/application first. It can clearly be seen in

figure 4.13(b) that the servers are more evenly distributed across each application.

This effect is most prominent at stage eight, where although app1 and app2 of

figure 4.13(a) are efficient, app3 and app4 are are extremely inefficient. Whereas

with the sub-T-R program in place and in figure 4.13(b) we can see that at stage

eight all the applications are inefficient but none of the applications are inefficient

to the same degree as with the basic version. This may or may not be desired

depending on the system requirements of course.

The purpose of this extension is to show the simplicity of extending a T-R

program in this way and thus demonstrates the extensibility of T-R. It is also possible

that the developer may wish to give priority to one or more applications. In which

case additional extensions could be made for this purpose, perhaps using high-level

policy scripts or utility functions.
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Figure 4.13: Server distribution differences

Trend analysis manager

We have built a T-R manager based on the idea of using trend analysis to predict

the increase and decrease in request levels and provision servers to pools before

they become overloaded. As the provisioning of servers is not instant and a server

could be held in the provisioning queue for up to four minutes depending on the

simulation settings, it seems trend-analysis approach could be an ideal method of

provisioning servers before a pool requests the servers, and could improve overall

request to response time. This trend analysis technique is not designed to rival

existing autonomic techniques however but shows how other techniques can easily

be employed within a T-R program. We can use TAP to observe the effectiveness

of this manager compared with the other managers.
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The exponential smoothing function used in TAP can be used to forecast trends

in the data and possibly improve the datacentre efficiency by increasing pool capacity

before the need to provision servers, hence a new manager was constructed for this

purpose. The basic exponential smoothing formulae used in this manager is:

St = αyt−1 + (1− α)St−1

where St is the smoothed term, t is the time period, y is the measured value and

α is a value between 0 and 1. Where a higher value for α gives a higher weight to

more recent values and thus less of a smoothing effect, a smaller value results in the

opposite (less weight to more recent results but a greater smoothing effect).

We had originally thought that an extensive sub-T-R extension using several

rules would be needed to implement this trend analysis manager. However, we

only needed to make changes to two conditions, ‘underloaded’ and ‘overloaded’. We

should return true from these conditions if a pool/application is predicted to become

underloaded or overloaded at some moment in the future rather than returning true

if a pool/application is currently underloaded or overloaded as is currently the case.

We need to investigate some values for an ideal constant to use for α with respect

to how close the predicted value is from the real one (error) and we need to know

the rate that we take samples.

There are many values which could be varied and/or different datasets could pro-

vide different results for our simulation and it would be impossible to investigate all

these possibilities therefore the experiments shown could undoubtedly be improved

to provide an increase in datacentre simulation efficiency. The datacentre is however

only the scenario used for our T-R experiments, we are not investigating datacentres

themselves. For example, the ideal smoothing constant under investigation depends

largely on server provision time (currently thirty seconds), T-R program evaluation

delay time (current one second), the frequency of change request (default script is

every 6 minutes) and the size and rate of change of incoming requests.
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The remainder of this chapter will investigate values to give an effective trend

analysis version of the datacentre T-R manager. We will do this by first running a

suitable simulation and logging the results. Since we want to predict if a pool needs

an increase and decrease in the capacity the data we log is of the difference between

available MIPs and requested MIPs. This will give us a positive or negative value

depending on whether a pool needs to is above or below capacity.

The script used in the test automatically generated four applications and then

proceeded to generate banded event request inputs (see section 4.2.3) for each ap-

plication every minute for a total of thirty six minutes. The number of requests

generated increased and decreased at various gradients every six minutes. This data

was logged to a file and graphs were generated.
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Figure 4.14: Pool capacity - requests vs. time: Thirty minute simulation run using
four applications

Figure 4.14 is the result of logging the described script for roughly thirty minutes.

The graph lines represent the difference between the capacity of each application

pool and the actual number of requests for each application. This means that if

the line is below zero (a negative value) the pool is overloaded and requires more

capacity (extra servers), if the line is above zero (a positive value) the pool has too

much capacity and servers can be safely returned to idle state.

The question we need answering is can we use exponential smoothing on the

logged data to predict future trends and improve the efficiency of the datacentre?
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Figure 4.15: Calibration of smoothing constant: ‘app2’ data from figure 4.14 with
three forecast datasets (three values for α; 0.2, 0.4, 0.8)

In figure 4.15 the solid line represents only ‘app2’ from the figure 4.14 (the real

observed measurements). The other lines show exponentially smoothed results of

‘app2’ using three different values for α, 0.2, 0.4 and 0.8. We are comparing the

smoothed results with the real measurements in order to gain some indication as to

which smoothing constant would be effective at predicting trends and thus improving

efficiency.

We observe that a higher α value produces a line which more closely matches

the real data but is less smooth than smaller α values. In theory, closely matched

smoothed data would be less effective because these values differ very little from the

observed measurements, and because these values are prediction of future events,

changes made to the datacentre would be made after a sudden change and would

possibly have a negative impact on effectiveness. A smaller α value produces less

impact to its results when a sudden change is observed meaning the datacentre

would be underloaded or overloaded by a large margin of error but only for a short

period of time.

In chapter 5 we will perform experiments and compare the use cases presented

here. For the datacentre, the three T-R managers will manage the datacentre and

their efficiency will be compared using the generated log file from TAP. The results

should reveal whether the trend analysis version of the T-R manager reduced or im-
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proved efficiency over the other managers. This could be used to make improvements

to any scenario using JRTAF as each condition of a T-R manager is automatically

logged.

89



CHAPTER 5

EMPIRICAL INVESTIGATION

The two use-cases here explore the use of T-R programs as managers for autonomic

systems. The T-R mechanism is explored as intended (without the use of any addi-

tional components or extensions), showing the benefits of the system to autonomics.

We then explain how the extensions made to JTRAF can be used for diagnosing er-

rors and comparing and quantifying changes made. The summary section describes

the investigations with regards to what has been done and what conclusions we can

arrive at about T-R in autonomics.

The first example is a simple file sending case which partly mimics the TCP

protocol. It demonstrates how a T-R system works, can be applied to other similar

projects, and explains the basic ideas of T-R without the distractions of the exten-

sions built into JTRAF. The second example shows how T-R and JTRAF can be

used to manage a datacentre. There are three managers constructed for managing

the same datacentre model. The graphical comparisons demonstrate the use of the

JTRAF extensions in providing data required for comparisons and improvements to

be made as well as their use as a diagnostic and debugging mechanism.
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5.1 File Sender

The file sending demonstrator sends a single file across a network to a connected

client. The file is sent as separate packets with the assumption that the client

program can reassemble the packets as they are received. The application is a

hybrid of the TCP protocol and a simple file sending application but the simulation

here is not meant to improve or replace any existing systems but is purely aimed at

demonstrating the T-R approach.

The demonstrator in section 4.1 describes the file sender T-R manager and con-

trols in detail so, after being initially presented with the program, and assuming no

client has connected, the only true condition is ‘T’ and so on first evaluation, the

program will execute the initial action ‘Accept’ as shown in figure 5.1. The ‘Accept’

action changes ‘IsAccepting’ from false to true but the subsequent action cannot

execute until a client enters the queue and ‘IsWaiting’ becomes true. ‘Accept’ will

continually execute upon each evaluation (effectively forming a loop) which is quite

simple to initiate if this program was constructed in any language, however, T-R

grants the power to very easily move between rules at any point in time. If at a later

point, there was an error or unexpected event the program would intuitively move

to this initial state and begin waiting for a client again. This ‘rollback’ mechanism

is often not so easy to implement in a standard programming language and would

not be so robust.

5.1.1 Self-Healing Behaviour

To better illustrate this point we can demonstrate the effects of a disconnection.

Moving forward in time to a point where a client ‘Mary’ is connected and several

packets of the file have been sent (see figure 5.2) What will happen if Mary becomes

suddenly disconnected?

If the client becomes disconnected the condition ‘IsConnected’ becomes false.

The conditions ‘IsAccepting’ and ‘IsWaiting’ are also false so this rule cannot fire
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Figure 5.1: Initial state of the file sender application after first evaluation

either. The highest true condition is ‘T’ so the program is forced to return to the

initial rule and the original state as shown in figure 5.3.

The program will continue indefinitely from this initial rule until a higher con-

dition becomes true. If it is possible for Mary to reconnect then she will enter the

waiting queue. The conditions of the ‘Connect’ action are now true so this action

can fire. ‘IsConnected’ is true again so packets resume sending once more. Eventu-

ally the goal ‘IsFileSent’ will become true and the program will be complete. If the

client disconnects again then this process of recovery will start again.

What is important here is that a properly constructed T-R program should

never fail outright, it will simply fall through to a lower priority rule if an error

occurs and continue from that point. We also never needed to specify how the

client disconnected despite the many reasons for the failure, from a server issue to

a physical cable disconnection. All that the T-R program needs to know is whether

‘IsConnected’ is true or false.

This circumvention or recovery from the fault gives a T-R program its inherent

robustness and is present in any properly constructed T-R program. Whilst the code
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Figure 5.2: A client has connected to the File sending service and four packets have
been sent

itself does not dynamically alter, the T-R program is entirely runtime adaptable,

makes changes to suit the current circumstances and could be termed self-healing.

5.1.2 Self-Optimising Behaviour

It was quite simple to add a single rule to the file sending example to alter the

packet size according to recent communication quality history and thus adding self-

optimising behaviour. If the communication quality drops and very few packets are

transferred with any success the the packet size is reduced to compensate. If the

quality improves then the packet size is increased.

The rule is quite simple, the condition ‘IsFivePacketsSent’ is true if a multiple of

five packets has been transferred. The action ‘ChangePacketSize’ inspects the last

five packets sent and adjusts the size accordingly.

To demonstrate this a client is connected as before and the error rate is increased.

We send five packets and observe what happens in the T-R program state. Figure

5.4 shows this.
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Figure 5.3: A client has become disconnected from the file sending service

Once the new error rate has been set and a multiple of five packets has been

sent to the client, ‘IsFivePacketsSent’ becomes true and this rule now takes prior-

ity over ‘IsConnected’ so ‘ChangePacketSize’ executes. None of the previous five

packets successfully sent so the packet size is reduced if possible to accommodate.

‘ChangePacketSize’ actually calls the ‘SendNextPacket’ action once at the end of ex-

ecution so that ‘IsFivePacketsSent’ becomes false. Without this ‘IsFivePacketsSent’

would always be true and any rule with a lower priory could never fire. The same

procedure is true when the error rate is decreased, i.e. the packet size increases with

a better quality connection, as shown in figure 5.5.

5.1.3 Conclusions

The file-sending example provides a demonstration of how T-R might be used in

high-level tasks and the benefits of this approach should be made apparent. Es-

sentially, a T-R program works towards its goal with the opportunity to re-arrange

the process of achieving the goal. Rules are not triggered in procedural way but are
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Figure 5.4: File-sending example (Self-optimising behaviour shown)

continually evaluated so the program can enter the appropriate rule at any point, be

it rolling back to a previous rule or perhaps skipping several rules if circumstances

dictate it.

The self-healing nature of T-R programs should be apparent as faults injected

into the running program did not cause an issue, instead the system took avoiding

action and continued to operate correctly. This robustness is apparent in all T-R

programs and it could be said that self-healing is an integral and natural part of all

T-R programs depending on the interpretation of self-healing.

The self-optimisation where packet sizes are changed in accordance with runtime

communication quality is specific to this file sending example and not inherent to

T-R programs themselves as with self-healing. However it was simple to add this

characteristic (being a single and simple rule) and the T-R paradigm naturally

presented itself to this. It could also be argued that the program is self-configuring

as the T-R program adapts to the currently connected client. In fact any self-*

property could be easily woven into a T-R program and doesn’t have to be added

as part of the initial program designs either.
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Figure 5.5: File-sending example (Packet size is increased with a higher quality
connection)

5.2 Datacentre

This section asks whether the T-R paradigm can be effective as a manager for a

datacentre environment. A simulation of a datacentre is set up which also shows

the use of the temporal analysis feature of JTRAF as a visual feedback tool. We

show how the data shown in TAP is automatically logged to a file during the program

run. The logged data can be used to verify expected results against actual results,

thus aiding debugging and verification. We can also generate graphs from the data

and make improvements to the system based on our analysis.

5.2.1 Condition definitions and manager setup

The sections of the datacentre include the model which is used to describe the

current state of the simulation and does not contain any behaviour itself, the T-R

manager for control of the model according to perceived environmental events, and

an automated event generator. All these elements are described in section 4.2.
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These experiments will be using two xml scripts as sources of requests for our

datacentre simulation ‘requests.xml’ and ‘trendingdata.xml’ as listed in appendix A

where ‘requests.xml’ generates input of a steady but fluctuating nature and will be

active for approximately thirty minutes. ‘trendingdata.xml’ will continue to generate

requests until the system is stressed (the capacity for requests is less than the current

ammount of requests) which will steadily drop to a managable level. This script will

be active for approximately one hour. In each of the graphs, the vertical dotted

line represents the approximate end of the script input. After this point the request

level will remain at the level attained at the end of the script.

In each of the scripts we generate incoming requests for four applications every

six seconds. This provides an adequate level of complexity to be managed but these

may or may not be realistic values. The purpose of the experiments is to show

the use of T-R in situations similar to a datacentre scenario and not to realistically

represent a datacentre.

There are also three T-R managers available which can be used in the simulation

run. These are a standard manager which uses a single T-R manager to distribute

servers to the appropriate pool and increase its capacity. The advanced T-R manager

has the same aim but uses a sub-T-R program to distribute servers more evenly. The

third manager also has the same aim but uses exponential smoothing to predict the

state of the model in the future and provision servers accordingly. All three have

the same main goal of ‘Efficient’ so this is used in conjunction with the TAP logging

system to compare the three managers.

The ‘Efficient’ condition is true when each pool in the datacentre is not ‘Over-

loaded’ and not ‘Underloaded’. ‘Overloaded’ can be defined as at least one pool

does not have enough capacity to cope with the current incoming requests. ‘Un-

derloaded’ can be defined as at least one pool has more capacity than is necessary

for the current request level and at least one server can be returned to an idle state

without causing an ‘Overloaded’ condition.
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5.2.2 Self-Configuring Behaviour

The datacentre is required to configure itself repeatedly and reliably to satisfy the

incoming requests. The T-R managers all configure and re-configure the datacentre

model to varying degrees by moving servers as the current state requires. Lets say for

example that there are four applications present in the datacentre and applications

2 and 3 receive some incoming requests. When any of the managers are running the

first and immediate change is that the ‘overloaded’ condition changes from false to

true as now there are more requests than the datacentre can provide for, as shown

in figure 5.6. What is needed is for servers to be provisioned to satisfy the requests.

The T-R manager provisions servers until the ‘overloaded’ condition becomes false

again.

Figure 5.6: TAP display of a new overloaded condition state

We also need servers to return to an idle state when not needed so that other

applications can take advantage when they become overloaded. Lets say the request

for application 3 has been reduced significantly. As the overloaded condition became

true when new requests arrived, the underloaded condition immediately becomes
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true when the request level decreases for application 3, as shown in figure 5.7. Some

of the servers which were previously provisioned for application 3 are unused and

the T-R manager ‘unprovisions’ them, hence the T-R manager re-configures the

datacentre.

Figure 5.7: TAP display of a new underloaded condition state

In this scenario, the datacentre is configured, i.e. servers are moved to their

appropriate destinations to satisfy the new change in requirements. The datacentre

model never does any configuring itself (the datacentre model is just a location to

store information and hardware) it is the T-R manager which configures the model,

so if the T-R manager is written correctly then we could consider it self-configuring.

We could also regard the T-R manager itself to be self-configuring as it alters its

own configuration (currently running actions change and conditions alter state) as

environmental conditions change.
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5.2.3 Comparing the managers: Efficient condition

Logging the efficient condition is an effective comparison for the T-R managers

because it is the same condition and has the same meaning for each of the managers

and therefore the results are based on the same concept, though the data should

differ. It is also the goal condition, so by using it as a comparison we are effectively

saying ‘for how long has the datacentre been performing at its peak?’. We could

then use the logs to develop more efficient T-R managers for our datacentre.

Figure 5.8: Graphical comparison of the efficient condition between the 3 T-R man-
agers

Figure 5.8 graphically compares the three managers performance using the ‘re-

quests.xml’ script. The ‘y’ axis shows the normalised proportion of time the program

has been ‘Efficient’ where ‘Efficient’ is the program goal and the ‘x’ axis shows the

time from the start of the program run. Therefore, where the line is higher, the

longer the program has spent in the ‘goal’ state. The dotted vertical line shows the

point where the script file ended. After this point the managers continue to operate

on the final request values that was set by the script. As shown, the standard and

advanced managers were most efficient with the trend analysis manager perform-

ing relatively poorly. The fluctuations in the curves are a result of the managers

response to the request changes which arrive from the script.
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The advanced manager is similar to the standard one and only differs in action

type. In the standard manager the ‘Provision’ action is a single action type and sim-

ply provisions an available server to the next available overloaded pool. Whereas in

the advanced manager ‘Provision’ is a sub-T-R manager itself and tries to provision

servers to the most overloaded pool first. Even taking a server from one pool to give

to another if no idle server exists.

Whilst this does not have much impact on efficiency it does ensure that servers

are distributed fairly. Section 4.2.5 and figure 4.13 describe and show this. Since

there is less processing in the standard manager, we would expect it to be quicker at

decision making and therefore should be slightly more ‘Efficient’. Figure 5.8 reflects

this.

The curve for the trend analysis manager shows it is far less efficient than the

other two managers. As the script contains less of a trend in generated requests,

i.e. the data generated by the script does not follow any specific pattern, this lack

of efficiency is to be expected. The trend analysis manager tries to compensate for

a trend which does not exist.

5.2.4 Comparing the managers: Overloaded condition

Although ‘Efficient’ is a good condition to use for comparison, sometimes we want

to evaluate another condition. We know ‘Efficient’ is true when the system is nei-

ther ‘Overloaded’ or ‘Underloaded’ so it could be that problems can be tackled by

narrowing our scope and check just the ‘Overloaded’ condition. We might find that

although the standard manager is more ‘Efficient’, another manager is better at

dealing with an ‘Overloaded’ state.

Figure 5.9 shows the same script being processed but with the ‘Overloaded’

condition being graphed. The ‘y’ axis is the normalised proportion of time that

the datacentre has been in the overloaded state. The ‘x’ axis is the time since the

start of this simulation instance. We see a large increase in the overloaded state
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Figure 5.9: Graphical comparison of the overloaded condition between the 3 T-R
managers

at the start of the program run as the manager responds to the new request data,

with the curve showing a decrease in the overloaded state as time increases. We

would expect the datacentre to be overloaded towards the beginning because each

of the applications contain zero servers initially and therefore there would be a huge

difference between the number of incoming requests and the servers provisioned to

cope with these requests. It might be worth persisting the information about the

average number of servers needed so that the managers can better compensate in

the initial stages. It is worth noting that for any T-R program, all the temporal

data which makes up the conditions within the program are automatically logged.

This is done by JTRAF, so there is no need for the developer to perform any logging

actions themselves.

In the case of figure 5.9, the higher the line, the more longer the system has been

overloaded, so in fact a lower line is better in terms of being overloaded whereas

the opposite is true for the graphs of the ‘Efficient’ condition. This is consistent

with figure 5.8 and shows that the standard T-R manager is better and that being

‘Overloaded’ is likely a major factor in this.
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5.2.5 Varying the server provisioning time

To show how the logging mechanism can be used to compare one T-R program

with another, perhaps to locate potential for improvements or to verify the newly

developed T-R system is performing as it is expected, we compare the ‘Efficient’

condition of the three managers with respect to the server provisioning time. Figures

5.10 to 5.13 show the graphed results of the experiments where server provision

time is increased from 30 seconds in the first experiment to 240 seconds in the last

experiment. Each experiment was run for one hour using the ‘trendingdata.xml’

script.

Figure 5.10: Graphical comparison of the 3 T-R datacentre managers where all
servers have a 30 second provision time

We had expected the trend analysis version of the datacentre manager to perform

better than the other two managers but as we can see from the graphs, this is only

the case when the server provision time is above four minutes and only when the

pools are overloaded. Around the 2100000 millisecond mark the script begins to

reduce the incoming requests for pools and thus the pools become underloaded and

the standard and advanced managers show an improvement over the trend analysis

manager on overall efficiency. The graph of 5.13 shows the lines from the standard

and advanced managers completely obscuring each other. This is because of the
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Figure 5.11: Graphical comparison of the 3 T-R datacentre managers where all
servers have a 60 second provision time

similarities between these two managers, similarities which are exaggerated by the

high provision time.

This is partly to be expected because a short server provision time and a relatively

short trend in requests means the standard and advanced managers have adequate

time to react to changes in incoming request data. Whereas a longer server provision

time and a longer trend means servers need to be provisioned in advance of being

needed in order to have sufficient capacity to deal with incoming requests. The trend

analysis manager is less effective and even detrimental to performance after requests

are reduced because here servers are returned to idle and there is no provision time

associated with this action, therefore there is no need to predict a trend.

5.2.6 Varying the lookahead time for trend analysis

Given that the trend analysis manager was less ‘Efficient’ than the other managers

in all cases apart from where the server provision time is relatively high, our next

experiment varies the lookahead time for the trend analysis manager to investigate

the effect on efficiency.

Figure 5.14 shows the effect of running the trend analysis manager with the
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Figure 5.12: Graphical comparison of the 3 T-R datacentre managers where all
servers have a 120 second provision time

lookahead time set to 5, 10 and 20 steps. The graph also shows the standard

manager for comparison purposes. Each manager run uses a server provision time

of 120 seconds.

From this experiment we see that varying the lookahead time had very little

impact on the efficiency of the system and no variation showed any improvement

over the standard manager. A change in server provision time had a far greater

impact on efficiency.

5.2.7 Conclusion

The datacentre example made extensive use of the TAP extension and the associated

logging mechanism to both design and analyse the T-R manager systems for the

datacentre. We used the logs to compare the managers and to analyse the results

of changes. Specifically we made several changes to the trend analysis manager and

used the TAP logger to analyse the results.

We had expected the trend analysis T-R program to perform better than the

other two programs except this was not the case. Further investigation revealed

that the reason for this is likely due to the coding of actions and conditions them-
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Figure 5.13: Graphical comparison of the 3 T-R datacentre managers where all
servers have a 240 second provision time

selves rather than any settings or configuration of the input. Therefore, further

investigation of any improved T-R manager is needed.

The benefits of TAP were evident however. It allowed easy comparison of the

three managers used and allowed positive and negative effects of changes to be

recorded and visualised. As TAP and its logger is built into JTRAF, the same

visualisation capabilities, logging and graphing could be used on any program that

is built with the JTRAF framework.

5.3 Summary

In this chapter we have presented two examples and based some of our experiments

in them in order to test T-R programs as managers of their intended systems. The

first example is of a simple file sending program which simply sends a single file to

simulated connected clients. This example is not designed to improve on, or indeed

be a particularly accurate representation of a real and similar system but is merely

designed to demonstrate the use of T-R as a manager and to inspire some designs

of the use of T-R in similar systems. We also used it to test robustness levels of the
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Figure 5.14: Variation of the lookahead time for the trend analysis T-R manager
and its impact on efficiency

system and investigate some self-* properties which T-R programs naturally provide

and can be easily adapted for.

The second example of a datacentre simulation attempts to optimise the use

of components through our T-R manager in order to deal with incoming requests.

There are three main parts to this example; the datacentre model, the T-R manager

and the automated request generator which is configured with xml scripts. Again,

none of these elements are accurate representations of real ones but is designed to

inspire the use of T-R managers in more complex real datacentres. In this example

we have made extensive use of the extensions built into JTRAF to initially design

the managers and to compare, the three managers.

In the file sending example, faults were added, and changes were made to the

running system to observe how the T-R management system coped. In the example,

we were able to connect and disconnect clients at any stage in the process, as well as

adjust the noise levels for the connection, up and down. Not every possible unknown

fault could be injected to the system but the faults did demonstrate how the system

coped with unexpected changes. Since all T-R systems are the same, i.e. they are

composed of condition-action pairs (rules), any T-R system will simply move to
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a more appropriate rule when an unexpected event occurs in the same way that

this example did, i.e. by focusing on the conditions which are true and false and

adjusting the state as appropriate, and not focusing on the fault itself. The T-R

system could be regarded as self-healing because when an unknown event occurs the

system ‘rolls back’ to a state which it is capable of achieving and working towards

the point of previous failure. If the system succeeds this time it will progress past

this point, if not, it may need to ‘roll back’ again, but at no point did the system

cease operating completely.

This is perhaps why software systems of the past often fail. Trying to account for

every possible individual error is of course impossible because not every individual

error can be accounted for. A condition such as ‘isConnected’ being true or false

covers many possible errors, even unplanned for ones.

The use of a datacentre for the second example was chosen because of the re-

cent activity from the autonomics community around datacentres, thus it is a well

established and interesting area for investigation. It is also a complex challenging

task which can prove to demonstrate the T-R mechanism qualities. Despite this

complexity, we discovered how simple and concise a T-R system can make the pro-

cess with a view to the management of the task. Automated and simulated requests

for the datacentre were generated via a scripting process and three T-R managers

were constructed to attempt to efficiently deal with the requests. The main purpose

of this example was to investigate the use of the TAP mechanism for comparing,

improving and constructing the three managers.

The TAP logger automatically records the true time for each condition in the pro-

gram run. This recorded data was used to generate graphs. The efficient condition

was first plotted on the graph for all three T-R managers using the ‘requests.xml’

script to generate the same simulated data for each manager. The expected result

was that the trend analysis managers would show an improvement over the other

managers because it is able to pre-empt changes by analysing the trend and provi-

sioning servers in advance. However the graph of figure 5.8 shows that the opposite is
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true. i.e. the trend analysis manager performs worse in terms of efficiency. Initially,

it was suspected that one of the many parameters should be altered to produce a

more satisfactory result. It could also be that the script used produced too random

request data, i.e. there is no trend to follow. The ‘trendingdata.xml’ script was

created to generate requests which more closely follow a specific trend.

To show that the logger can record data for more than just the goal condition,

the ‘Overloaded’ data was also graphed using the same ‘request.xml’ script. Since

‘Efficient’ effectively says this condition is only true if the datacentre is not over-

loaded and not underloaded then we can get a more accurate view of the datacentre

management process by inspecting the logs for the ‘Overloaded’ or ‘Underloaded’

conditions individually. Figure 5.9 shows the graph of the ‘Overloaded’ condition.

From this we can see that the trend analysis manager is overloaded for a longer

period of time than with the other two managers meaning that the time spent un-

derloaded will likely show a negligible difference between the three lines compared

with the overloaded data. This would be as predicted since the provision time for

each server only has an effect while the pool does not have enough servers and there-

fore only ‘Overloaded’ would be affected. The time taken for a server to return to

idle is always 0.

Using the new trendingdata.xml script to generate more predictable request vol-

umes the server provision time is varied and the graphs are shown in figures 5.10-5.13.

This experiment was designed to investigate the impact on efficiency of varying the

server provision time for each of the three managers. We had expected the trend

analysis manager to show an improvement over the other managers as the server

provision time increased coupled with the trendingdata.xml script, which should be

optimised for the trend manager. The results confirm this prediction as the efficiency

levels of all the managers became closer as the server provision time increased. How-

ever, the level of efficiency remained very low for the trend manager in each test.

The reason for this poor performance of the trend manager could be that another

variable might need changing to improve efficiency or perhaps the script and the
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produced trend data simply do not run for an adequate length of time to show a

greater improvement of efficiency in the trend manager.

The next test involved altering the lookahead time for the trend analysis man-

ager. This is the number of stages in the future to attempt to predict a trend

(smaller values should yield more accurate predictions but less able to predict a

trend beyond a few steps). The lookahead time was predicted to be a likely cause

of the poor performance of the trend manager so testing different values seem like

a valuable approach.

As can be seen from figure 5.14 adjusting this value between five and twenty did

not have much of an impact on the outcome. In fact, a lower value showed a slightly

higher efficiency whereas it was expected that a higher value would. The standard

manager was still more efficient than any other manager.

These results, whilst surprising are not problematic to the project aims of demon-

strating the use of T-R in autonomic systems. and demonstrating the importance

of the extensions for design and development.

5.3.1 Contextualising the research questions

The file sending example is designed firstly to test the use of T-R as a simple

manager of autonomic systems and also as a showcase for the benefits of T-R in this

and other similar systems. The file sender example demonstrated the robustness

of a T-R manager by injecting faults to the running system, showing how the T-R

system coped with them. The viewer should be brought to an understanding of

how T-R could cope with external influences in other systems. It also showed the

simplicity of building autonomic self-* properties into T-R.

In the datacentre example, we showed how the use of sub-T-R programs could

help create a very extensible system whilst keeping the simplicity and re-usability of a

T-R program. In this we answer the question of “To what extent can Teleo-Reactive

programming techniques (T-R) be used to construct autonomic management sys-
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tems and what are the benefits of doing so?”

In chapter 4 the construction of a simple T-R program was shown. In this

and in Hawthorne and Anthony [102] the difficulties are highlighted and the reader

should appreciate that the challenges of developing a T-R program are unique when

compared with a program written in another more standard language. That said,

a T-R program, once developed has proven to be very robust in its mechanism for

coping with expected and unexpected events.

The development issues can be addressed with a good method, as explained

in [102] and we have also aimed to reduce the issues with built in mechanisms to

JTRAF. TAP provides both qualitative and quantitative feedback in the form of a

visual state representation and a logging mechanism for this state information. Also,

because TAP is built into JTRAF, any future work to reduce these issues further

can be built into the same framework so that all T-R programs using JTRAF will

get the same benefit. Some of these future work plans are explained in section 6.4.
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CONCLUSIONS AND FUTURE

WORK

6.1 On Autonomics

When the term ‘autonomic computing’ was first introduced by Kephart and Chess

[1], the term was never ‘well defined’. This was good because it meant researchers

were left a lot of scope for potential ideas and developments into this domain. Now

it seems that the original ideas are still as abstract as they were when they were

first introduced and without a solid and indisputable definition it is difficult to

progress the field in a positive direction. This is evidenced in the fact that the

majority of autonomic systems are designed in complete isolation to other systems

and concentrate on a solution to one specific problem rather than developing a

generic autonomic tool. Quite often these solutions are developed from scratch as

shown in [110, 50, 111]. These incorporate autonomic principles but do not build

on pre-existing autonomic system designs which leads to an ever expanding variety

of ideas without forward progression.

During this project, the lack of a definition has made our own work difficult to

quantify because there is no accepted method of measure or scale for autonomic

systems. Therefore, claims that a system is self-optimising for example can only be
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based on a dated and ambiguous definition of self-optimisation. There is the auto-

nomic maturity index [67] written by IBM but this description remains unchanged

and unchallenged since its introduction in 2003. Furthermore it was assumed that

most software resided at the lower levels on this scale but many software products

actually occupy higher levels of autonomicity.

A method of measuring autonomic solutions would be hugely beneficial because

new autonomic ideas and architectures etc. could be substantiated as a quantity

rather than an abstract quality and then possibly improved. Autonomic software

measurement is a problem that has been discussed in Huebscher and McCann [65]

where metrics are proposed as a possible measurement solution. These are good

suggestions but gaining widespread acceptance is difficult because there are a general

lack of rigid definitions and no standards in the first place.

When attempting to answer the question ‘Can T-R be used in an autonomic

system?’ it is difficult to provide a definitive answer but this has not been a barrier

to the project because autonomic software does address the very real problem of

software complexity and as we have shown, T-R programs can reduce this problem

significantly whilst fitting the description of some self-* properties.

The central idea behind autonomics seems an ideal solution to software complex-

ity, i.e. to handle some tasks in the background by the system itself and thereby

reducing the cost of ownership to a manageable level. This is a sound approach be-

cause we are acknowledging the fact that complexity in software systems will always

exist and instead of attempting to discover a method to remove complexity entirely,

autonomic systems are essentially attempting to automatically deal with some of

the complexity so that the remainder is manageable.

From a psychological perspective, if an autonomic system removes human in-

fluence from a system, is it safe to do so (see Trust, Validation and Verification in

section 2.2.2) and by claiming a system is autonomous in some way, does this not

relax the system operator to the extent where they neither have the skills nor the

readiness to deal with situations when they do occur because of the over-reliance

113



CHAPTER 6. CONCLUSIONS AND FUTURE WORK

on the ‘automated’ system? Furthermore, would a human operator have the skills

to alter the system to avoid the problem re-occurring? A problem which before

the system was ‘automated’ would be easily avoided by manual checks and inspec-

tion. The human operator would also be alert to this and other unexpected events,

putting them in a much better position to fix or even avoid the problem altogether.

Automation has led to far fewer accidents where human lives are concerned

as Robert N. Charette explains in this IEEE Spectrum online article [112]. The

problem is that an over-reliance on a previously flawless system means that the rare

incidents are not prepared for by the operator. Charette gives several examples of

these incidents, including the case in June 1995 where the cruise ship Royal Majesty

ran aground. Here, the cable for the GPS antennae had become detached from the

antennae and had put the system into a degraded mode where sea changes and wind

speed were not taken into account consequently the autopilot system which the ship

was operating on had put the ship off course. Before ‘automation’ the crew would

likely be manually monitoring the horizon, plotting course and making adjustments

to speed and direction.

The error was almost impossible to locate, and even if it had been found, the

operator would probably not be able to directly fix it. As the system becomes more

reliable, the operators become more complacent in trusting its abilities.

The incidents concur with the findings of psychologist Lisanne Bainbridge, who

identified several ironies and paradoxes of automation [113]. The irony, she said, is

that “the more advanced the automated system, the more crucial the contribution of

the human operator becomes to the successful operation of the system.” Bainbridge

also discusses the paradoxes of automation, the main one being that the more reli-

able the automation, the less the human operator may be able to contribute to that

success. So in fact, if the system designer heavily automates the system, they are in

fact locking the human operator out of the process, i.e. making it harder for the hu-

man operator to intervene. The danger here is that the designers themselves assume

the system is faultless and will never need fixing or maintenance, which of course is
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never the case. Perhaps the human element should be more tightly integrated into

the ‘automated’ system rather than attempting to eliminate it altogether.

6.2 On the use of T-R in Autonomics

Autonomic systems in use today are often tailored towards the specific problem

which they are trying to solve, meaning the autonomic system may not be usable in

other projects. This means that autonomic research does not build in a progressive

way as each new system is developed (expanding outwards rather than progressing

forwards). The autonomic problem is often viewed as an architectural challenge, or

one for a policy based system, or one for utility functions. In fact there have been

several approaches to the autonomic problem but this project has been investigating

the use of a T-R approach.

T-R programs are a unique approach to the problem in that it is a logical pro-

gramming paradigm and a general approach to the autonomic challenge. With T-R

management systems we can treat problems in much the same way as a human brain

considers and tackles a task. That is in a logical and procedural way but is always

capable of responding to external and unexpected events. The procedure can then

be rearranged once or many times to compensate. This detection of events and state

and rearrangement of tasks is an inherent part of the T-R system, therefore reduc-

ing the need for external maintenance and puts T-R in a position to be a genuine

alternative to existing autonomic approaches.

Much of the work in this project is based on the T-R paradigm which was never

originally heralded as an autonomic system but an autonomous system for control-

ling low-level agents and robots. This leads to the question of how to differentiate

between autonomic and autonomous systems. The initial thought might be that

autonomic systems are composed of self-* properties where autonomous systems

are not. However, these too are poorly defined and it could be claimed that many

autonomous systems could in part be re-introduced as autonomic systems without
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any changes. This is true of T-R as well. We claim that T-R programs can be

self-healing because they can recover from failures and continue to operate without

any external intervention. Whilst self-healing behaviour is an inherent part of T-R,

it may be possible to introduce other self-properties as shown in the file sending

example where self-optimisation was included with the addition of a single rule.

Using a T-R approach reduces the maintenance cost because the system uses

true of false conditions to define the current state. These conditions can be changed

by run-time errors, some of which were not expected at design time, and the T-

R program takes appropriate steps to define a more appropriate state. Therefore,

the conditions encompass many errors and it may not be necessary to handle them

specifically. Compared to a non-T-R system the errors would likely be required to

be fixed by a human immediately to prevent any further system fatal errors. This

does not prevent other unexpected and as yet undiscovered errors. So constant

maintenance is highly likely.

Using T-R as an approach to building autonomic systems has many benefits,

including its simplicity in writing a program and its simplicity in structure compared

to other approaches which often use many complex components to form a solution.

This approach is further simplified by the developed framework (JTRAF) which

provides a T-R interpreter and extensions to aid development and maintenance as

well as consolidating much of the system complexity within. T-R programs are

very robust and are able to recover from many unexpected errors. This, it could be

argued, is a form of self-healing, where other self-* properties are easily incorporated

into a program as shown in the file sending example.

One of the challenges in designing JTRAF was that the type of actions normally

performed for low-level agents are not the same type of actions in a high-level appli-

cation. T-R was designed for low-level agents and as such it is very effective in this

area. In a high-level program, many of the actions could be atomic so interrupting

the process here (as a traditional T-R program does) could lead to disastrous con-

sequences. In order to adapt T-R for these high-level processes, we have developed
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JTRAF to allow an action to run to the end of its cycle should the corresponding

condition not hold true. Therefore the action is allowed to gracefully exit rather

than being forced to interrupt a perhaps atomic operation.

6.3 Contributions

This project has raised some interesting questions about autonomic computing in

general and has challenged the ideas and concepts surrounding this domain. It has

even raised some questions about the methods used in some computer programming

projects. The idea that we can catch all problems that will occur during a software

life-cycle and fix the rest when they first arise is a naive thought and should be

rejected in all but the most trivial programs, for the simple reason that software can

never be error free, there will always be several errors which the developer has not

provisioned for. Instead we should move to a goal-oriented approach where known

and unknown events are detected through the state of the program that those events

cause. The program should focus on the final goal and sub-goals, which will drive it

in a positive direction at the same time as casting a wider net on known and unknown

events. The goals and sub-goals are far fewer than the number of potential errors

and therefore a software product which focuses on the former rather than the later

produces more robust and manageable software.

The project has identified some issues with the original concepts of autonomic

computing. Concepts which, although vague, have never been adequately chal-

lenged. For example, the original autonomic computing paper described the self-*

properties, and their meaning. However, as we have revealed through our T-R exam-

ples, system designers could easily argue the case that they contain these properties

despite not having been designed to and without valid argument to the contrary. In

fact systems which were originally designed as autonomous could be re-introduced

as autonomic without many or any changes. The project has therefore been thought

provoking and encourages an alternative view on this domain.
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This project has provided a genuine alternative to other methods employed as

autonomic frameworks. The T-R system is unique because it offers a simple to

use and understand method which is not present in many other systems. Although

the method is simple it offers developers the chance to extend their programs to

include properties which are highly desirable in today’s software. T-R programs are

also very robust meaning maintenance is reduced for the developers. Autonomic

software was originally heralded as a way to reduce complexity and the large cost

to maintenance that this brings. In this way, T-R programs are an ideal structure

on which to base an autonomic system.

The datacentre environment is a heavily explored and current use-case among to-

day’s autonomic researchers. By implementing a datacentre example in this project

we show how T-R can compete with other management systems of this type. It

also shows how T-R programs can excel in this challenging environment. We have

shown how a T-R system can be extended and structured through the use of sub-T-R

programs in order to divide and make the problem manageable.

The ease of designing and developing a T-R program is enhanced by JTRAF,

a framework which was built for this purpose. JTRAF allows T-R developers to

develop their system without the need to develop or be concerned with the T-

R interpreter for every project. JTRAF has been designed to allow changes and

improvements to the framework without the need to change the interfaces. This

essentially means that developers can integrate a new, improved version of JTRAF

without this change causing any negative effects on the current software project with

which it is integrated. Whilst JTRAF handles the mechanism of T-R, it also aids

development and maintenance of the system through the use of TAP which provides

visual feedback of the temporal state as well as logging the same information for

post execution analysis.

Aside from autonomics, the work here is of benefit to T-R developers in general.

Previous work on T-R focuses largely on mechanisms for evolving and learning as

the program senses the environment and gains new abilities, extending the T-R
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basics for this purpose. These mechanisms include genetic algorithms [95, 114, 115],

neural networks [116, 96] and reinforcement learning [117, 97, 118]. However, this

project has shown issues with design and implementation of T-R programs which

has largely been ignored by researchers. This project has attempted to address those

issues as this gives a stronger foundation for further development. For example the

TAP mechanism has benefits for a wider community than autonomics with regards

to the entire development process.

Considering the importance of a reliable framework on which to base autonomic

programs, JTRAF has been developed using a test first approach. This, in the

authors experience has been a reliable technique for producing highly robust code.

In TDD we first create tests that represent the correct outcome of a particular input,

then write the code to ‘pass’ the tests. All the tests can then be run in a instant and

as often as desired. Not only does this produce reliable code at design time but when

improvements are made to the code, the same tests can be executed, informing the

developer if any tests have failed since the changes were made. Once all tests pass,

the developer can be confident in the reliability of the code. TDD is described in

chapter 2. In the software created for this project 51 tests were created for JTRAF

alone, 26 for the file sender and 73 for the datacentre applications. In appendix B

we show a small selection of these tests which are useful for documenting the code.

6.4 Future Work

Presenting a T-R program to an interested party is a difficult task in itself. Individ-

ual conditions and actions should be described concisely enough to fit neatly on a

display surface after being logically joined with other conditions but long enough to

describe the element behaviour. This often leads to developers either using a well

described program or a conveniently displayed program but not both. Therefore a

naming convention is required or a novel way to describe and document T-R pro-

grams needs to be developed. Consider the main T-R program for the datacentre
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use case:

Efficient −→ Nil

ServersUpdated ∧ Underloaded −→ Unprovision

ServersUpdated ∧Overloaded −→ Provision

ServersUpdated ∧ ¬AllAppsHavePools −→ CreatePoolForApp

T −→ UpdateServers

The ‘Efficient’ goal condition actually means:

ServersUpdated ∧ ¬Underloaded ∧ ¬Overloaded ∧ AllAppsHavePools

yet displaying this information in one place is convoluted and inefficient, therefore

‘Efficient’ is used in its place. It would be more informative to display all this infor-

mation however as it more accurately describes the goal. In order for the program

to correctly achieve its goal whilst not preventing other rules from executing, all the

replaced conditions must be true. For example, if ‘Efficient’ no longer included the

‘ServersUpdated’ condition then the program could never run the ‘UpdateServers’

action after provisioning servers until ‘Efficient’ became false. The ‘Efficient’ goal

takes priority over all other rules and ‘UpdateServers’ would be prevented from

executing.

Logically joining four or more conditions in this way leads to inconveniently

lengthy rules and so these conditions were embedded into a single condition called

‘Efficient’. This is however, not an ideal solution because ‘Efficient’ is far less descrip-

tive and requires an explanation as to its purpose and contents. What is therefore

needed is a method of describing a T-R program which does not require any com-

promise on descriptiveness and is convenient for design purposes. Perhaps a newer
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design model could support forward and reverse engineering.

Whilst a T-R program aids in automating the run-time processes, the compo-

sition of a T-R program often lends itself to many types of logical errors, so the

composition process could be automated itself. Whilst TAP has helped this pro-

cess, it could be automated further, similar to the ideas described in Hawthorne

et al. [107]. In this paper we describe how actions and conditions are linked by

the contributions of actions to conditions and of conditions needed for actions to

execute. This effectively forms a chain of events leading to the goal. Currently,

these links are implicitly stated when the program is composed, but if the links were

explicitly made then new programs could be automatically constructed from new

goals. For example, if we know the chain of events leading to goal A and we insert

a new goal B which we state is contributed to by action 1, and this action exists

in the goal A program, then it would be possible to create the new goal B program

based on this information. The more programs that exist, the higher the possibility

that a new program can be constructed automatically.

This automatic composition would require the developer to describe the links,

at least initially. In later versions of JTRAF, links could be automatically made

by learning which actions change the state of which conditions, perhaps using an

artificial intelligence technique such as neural networks [96] or genetic algorithms

[95].

An aid the automatic composition of T-R program could be found in Tropos

[79] or i* [78] where high level models are constructed and the influences between

elements of the system are shown, positive and negative. These ideas could be

adapted for the T-R system as a model of the system. For example, action A

might have a strong positive influence on condition A but a negative influence on

condition B. Action B has a weak positive influence on condition A but no negative

on condition B. Therefore modelling this might infer that action A would prevent

the goal from being achieved and action B is the only possibility for use in this

situation whilst the goal is still achievable.
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Fortunately, in the datacentre simulation experiment all three of the T-R man-

ager versions used the same ‘Efficient’ goal. This meant we were able to compare

and contrast this condition in the three versions of the manager through TAP and

the logging mechanisms. If some of the versions did not contain ‘Efficient’ then there

would be no way to log and compare this condition.

What is needed is a way to add a condition to a program despite not being

part of the main T-R rules of the program. This condition could then be evaluated

and logged along with the other main conditions. This log could then be used to

compare with other programs with the same condition. In JTRAF a rule is added

with the methods:

myTRProg.addActionToBottom(action3);

or...

myTRProg.addActionToTop(action3);

where myTRProg is an instance of a T-R program and action3 is an instance of an

action. The conditions contained within the action are automatically added to the

myTRProg program. All these conditions are then evaluated at run-time and logged

through TAP. It is also possible to add conditions explicitly to the T-R program

instance using the method

myTRProg.addCondition(condition8);

however, if condition8 were not part of any rule then it would never be evaluated.

With minor changes to the framework, condition8 could be evaluated and logged

despite not being a part of one of the rules of the program. This would be useful

if the developer wishes to know for example the proportion of time connected to

a network for diagnostic purposes or for some unrelated task, but the program

being developed is a room cooling manager for a large corporate server room, and

is therefore unlikely to contain such a condition.
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There should be an autonomic framework which is open source and contributed

to by many autonomic researchers in much the same way as several current open-

source projects [119, 120, 121]. This way autonomic software would have a much

quicker development time, errors could be fixed much sooner and autonomic research

could progress in a more positive direction. Currently techniques and architectures

are developed for each individual project leading to a broad range of ideas but

not much progress. T-R programming could be an ideal basis for this open source

framework because it provides robust behaviour without necessarily enforcing any

specific technique for self-* behaviours.
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APPENDIX A

DATACENTRE SCRIPTS

A.1 requests.xml

<?xml version ="1.0" encoding ="utf -8"?>

<EventScript >

<AddAppEvent >

<AppName >app1 </AppName >

<Offset >0</Offset >

</AddAppEvent >

<AddAppEvent >

<AppName >app2 </AppName >

<Offset >0</Offset >

</AddAppEvent >

<AddAppEvent >

<AppName >service1 </AppName >

<Offset >0</Offset >

</AddAppEvent >

<AddAppEvent >

<AppName >service2 </AppName >

<Offset >0</Offset >

</AddAppEvent >

<BandedEvents >
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<AppName >app1 </AppName >

<StartOffset >1000 </ StartOffset >

<EndOffset >360000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >15000 </ InitialSize >

<FinalSize >275000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >app2 </AppName >

<StartOffset >1000 </ StartOffset >

<EndOffset >360000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >15000 </ InitialSize >

<FinalSize >100000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >service1 </AppName >

<StartOffset >1000 </ StartOffset >

<EndOffset >360000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >15000 </ InitialSize >

<FinalSize >400000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >service2 </AppName >

<StartOffset >1000 </ StartOffset >

<EndOffset >360000 </ EndOffset >

<PacketSize >15000 </ PacketSize >
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<Frequency >60000 </ Frequency >

<InitialSize >15000 </ InitialSize >

<FinalSize >800000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >app1 </AppName >

<StartOffset >360000 </ StartOffset >

<EndOffset >720000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >275000 </ InitialSize >

<FinalSize >400000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >app2 </AppName >

<StartOffset >360000 </ StartOffset >

<EndOffset >720000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >100000 </ InitialSize >

<FinalSize >300000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >service1 </AppName >

<StartOffset >360000 </ StartOffset >

<EndOffset >720000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >400000 </ InitialSize >

<FinalSize >420000 </ FinalSize >
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<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >service2 </AppName >

<StartOffset >360000 </ StartOffset >

<EndOffset >720000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >800000 </ InitialSize >

<FinalSize >600000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >app1 </AppName >

<StartOffset >720000 </ StartOffset >

<EndOffset >1080000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >400000 </ InitialSize >

<FinalSize >500000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >app2 </AppName >

<StartOffset >720000 </ StartOffset >

<EndOffset >1080000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >300000 </ InitialSize >

<FinalSize >400000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >
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<AppName >service1 </AppName >

<StartOffset >720000 </ StartOffset >

<EndOffset >1080000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >420000 </ InitialSize >

<FinalSize >420000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >service2 </AppName >

<StartOffset >720000 </ StartOffset >

<EndOffset >1080000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >600000 </ InitialSize >

<FinalSize >700000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >app1 </AppName >

<StartOffset >1080000 </ StartOffset >

<EndOffset >1440000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >500000 </ InitialSize >

<FinalSize >150000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >app2 </AppName >

<StartOffset >1080000 </ StartOffset >

<EndOffset >1440000 </ EndOffset >
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<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >400000 </ InitialSize >

<FinalSize >50000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >service1 </AppName >

<StartOffset >1080000 </ StartOffset >

<EndOffset >1440000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >420000 </ InitialSize >

<FinalSize >200000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >service2 </AppName >

<StartOffset >1080000 </ StartOffset >

<EndOffset >1440000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >700000 </ InitialSize >

<FinalSize >250000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >app1 </AppName >

<StartOffset >1440000 </ StartOffset >

<EndOffset >1800000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >150000 </ InitialSize >
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<FinalSize >100000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >app2 </AppName >

<StartOffset >1440000 </ StartOffset >

<EndOffset >1800000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >50000 </ InitialSize >

<FinalSize >15000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >service1 </AppName >

<StartOffset >1440000 </ StartOffset >

<EndOffset >1800000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >200000 </ InitialSize >

<FinalSize >500000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >service2 </AppName >

<StartOffset >1440000 </ StartOffset >

<EndOffset >1800000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >250000 </ InitialSize >

<FinalSize >20000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >
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<BandedEvents >

<AppName >app1 </AppName >

<StartOffset >1800000 </ StartOffset >

<EndOffset >2160000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >100000 </ InitialSize >

<FinalSize >400000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >app2 </AppName >

<StartOffset >1800000 </ StartOffset >

<EndOffset >2160000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >15000 </ InitialSize >

<FinalSize >300000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >service1 </AppName >

<StartOffset >1800000 </ StartOffset >

<EndOffset >2160000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >500000 </ InitialSize >

<FinalSize >600000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >service2 </AppName >

<StartOffset >1800000 </ StartOffset >

<EndOffset >2160000 </ EndOffset >
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<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >20000 </ InitialSize >

<FinalSize >100000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

</EventScript >

A.2 trendingdata.xml

<?xml version ="1.0" encoding ="utf -8"?>

<EventScript >

<AddAppEvent >

<AppName >app1 </AppName >

<Offset >0</Offset >

</AddAppEvent >

<AddAppEvent >

<AppName >app2 </AppName >

<Offset >0</Offset >

</AddAppEvent >

<AddAppEvent >

<AppName >service1 </AppName >

<Offset >0</Offset >

</AddAppEvent >

<AddAppEvent >

<AppName >service2 </AppName >

<Offset >0</Offset >

</AddAppEvent >

<BandedEvents >

<AppName >app1 </AppName >

<StartOffset >1000 </ StartOffset >

<EndOffset >300000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >
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<InitialSize >15000 </ InitialSize >

<FinalSize >25000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >app2 </AppName >

<StartOffset >1000 </ StartOffset >

<EndOffset >300000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >15000 </ InitialSize >

<FinalSize >100000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >service1 </AppName >

<StartOffset >1000 </ StartOffset >

<EndOffset >300000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >15000 </ InitialSize >

<FinalSize >40000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >service2 </AppName >

<StartOffset >1000 </ StartOffset >

<EndOffset >300000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >15000 </ InitialSize >

<FinalSize >25000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >
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<BandedEvents >

<AppName >app1 </AppName >

<StartOffset >300000 </ StartOffset >

<EndOffset >430000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >25000 </ InitialSize >

<FinalSize >125000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >app2 </AppName >

<StartOffset >300000 </ StartOffset >

<EndOffset >430000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >100000 </ InitialSize >

<FinalSize >200000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >service1 </AppName >

<StartOffset >300000 </ StartOffset >

<EndOffset >430000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >40000 </ InitialSize >

<FinalSize >42000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >service2 </AppName >

<StartOffset >300000 </ StartOffset >
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<EndOffset >430000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >25000 </ InitialSize >

<FinalSize >125000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >app1 </AppName >

<StartOffset >430000 </ StartOffset >

<EndOffset >600000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >125000 </ InitialSize >

<FinalSize >137500 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >app2 </AppName >

<StartOffset >430000 </ StartOffset >

<EndOffset >600000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >200000 </ InitialSize >

<FinalSize >250000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >service1 </AppName >

<StartOffset >430000 </ StartOffset >

<EndOffset >600000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >
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<InitialSize >42000 </ InitialSize >

<FinalSize >60000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >service2 </AppName >

<StartOffset >430000 </ StartOffset >

<EndOffset >600000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >125000 </ InitialSize >

<FinalSize >137000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >app1 </AppName >

<StartOffset >600000 </ StartOffset >

<EndOffset >800000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >137500 </ InitialSize >

<FinalSize >350000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >app2 </AppName >

<StartOffset >600000 </ StartOffset >

<EndOffset >800000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >250000 </ InitialSize >

<FinalSize >450000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >
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</BandedEvents >

<BandedEvents >

<AppName >service1 </AppName >

<StartOffset >600000 </ StartOffset >

<EndOffset >800000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >60000 </ InitialSize >

<FinalSize >120000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >service2 </AppName >

<StartOffset >600000 </ StartOffset >

<EndOffset >800000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >137000 </ InitialSize >

<FinalSize >350000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >app1 </AppName >

<StartOffset >800000 </ StartOffset >

<EndOffset >1300000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >350000 </ InitialSize >

<FinalSize >362500 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >app2 </AppName >
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<StartOffset >800000 </ StartOffset >

<EndOffset >1300000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >450000 </ InitialSize >

<FinalSize >600000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >service1 </AppName >

<StartOffset >800000 </ StartOffset >

<EndOffset >1300000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >120000 </ InitialSize >

<FinalSize >250000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >service2 </AppName >

<StartOffset >800000 </ StartOffset >

<EndOffset >1300000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >350000 </ InitialSize >

<FinalSize >362500 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >app1 </AppName >

<StartOffset >1300000 </ StartOffset >

<EndOffset >1600000 </ EndOffset >

<PacketSize >15000 </ PacketSize >
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<Frequency >60000 </ Frequency >

<InitialSize >362500 </ InitialSize >

<FinalSize >600000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >app2 </AppName >

<StartOffset >1300000 </ StartOffset >

<EndOffset >1600000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >600000 </ InitialSize >

<FinalSize >800000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >service1 </AppName >

<StartOffset >1300000 </ StartOffset >

<EndOffset >1600000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >250000 </ InitialSize >

<FinalSize >400000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >service2 </AppName >

<StartOffset >1300000 </ StartOffset >

<EndOffset >1600000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >362500 </ InitialSize >

<FinalSize >600000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >
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</BandedEvents >

<BandedEvents >

<AppName >app1 </AppName >

<StartOffset >1600000 </ StartOffset >

<EndOffset >2000000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >600000 </ InitialSize >

<FinalSize >500000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >app2 </AppName >

<StartOffset >1600000 </ StartOffset >

<EndOffset >2000000 </ EndOffset >0

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >800000 </ InitialSize >

<FinalSize >650000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >service1 </AppName >

<StartOffset >1600000 </ StartOffset >

<EndOffset >2000000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >400000 </ InitialSize >

<FinalSize >300000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >service2 </AppName >
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<StartOffset >1600000 </ StartOffset >

<EndOffset >2000000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >600000 </ InitialSize >

<FinalSize >500000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >app1 </AppName >

<StartOffset >2000000 </ StartOffset >

<EndOffset >2200000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >500000 </ InitialSize >

<FinalSize >400000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >app2 </AppName >

<StartOffset >2000000 </ StartOffset >

<EndOffset >2200000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >650000 </ InitialSize >

<FinalSize >600000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >service1 </AppName >

<StartOffset >2000000 </ StartOffset >

<EndOffset >2200000 </ EndOffset >

<PacketSize >15000 </ PacketSize >
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<Frequency >60000 </ Frequency >

<InitialSize >300000 </ InitialSize >

<FinalSize >250000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >service2 </AppName >

<StartOffset >2000000 </ StartOffset >

<EndOffset >2200000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >500000 </ InitialSize >

<FinalSize >400000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >app1 </AppName >

<StartOffset >2200000 </ StartOffset >

<EndOffset >2500000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >400000 </ InitialSize >

<FinalSize >350000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >app2 </AppName >

<StartOffset >2200000 </ StartOffset >

<EndOffset >2500000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >600000 </ InitialSize >

<FinalSize >500000 </ FinalSize >
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<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >service1 </AppName >

<StartOffset >2200000 </ StartOffset >

<EndOffset >2500000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >1

<InitialSize >250000 </ InitialSize >

<FinalSize >200000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >service2 </AppName >

<StartOffset >2200000 </ StartOffset >

<EndOffset >2500000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >400000 </ InitialSize >

<FinalSize >350000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >app1 </AppName >

<StartOffset >2500000 </ StartOffset >

<EndOffset >2900000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >350000 </ InitialSize >

<FinalSize >200000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >
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<AppName >app2 </AppName >

<StartOffset >2500000 </ StartOffset >

<EndOffset >2900000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >500000 </ InitialSize >

<FinalSize >400000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >service1 </AppName >

<StartOffset >2500000 </ StartOffset >

<EndOffset >2900000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >200000 </ InitialSize >

<FinalSize >100000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >service2 </AppName >

<StartOffset >2500000 </ StartOffset >

<EndOffset >2900000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >350000 </ InitialSize >

<FinalSize >200000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >app1 </AppName >

<StartOffset >2900000 </ StartOffset >

<EndOffset >3200000 </ EndOffset >
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<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >200000 </ InitialSize >

<FinalSize >100000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >app2 </AppName >

<StartOffset >2900000 </ StartOffset >

<EndOffset >3200000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >400000 </ InitialSize >

<FinalSize >300000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >service1 </AppName >

<StartOffset >2900000 </ StartOffset >

<EndOffset >3200000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >100000 </ InitialSize >

<FinalSize >80000 </ FinalSize >

<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

<BandedEvents >

<AppName >service2 </AppName >

<StartOffset >2900000 </ StartOffset >

<EndOffset >3200000 </ EndOffset >

<PacketSize >15000 </ PacketSize >

<Frequency >60000 </ Frequency >

<InitialSize >200000 </ InitialSize >

<FinalSize >100000 </ FinalSize >
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<PlusMinusBand >20</ PlusMinusBand >

</BandedEvents >

</EventScript >
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UNIT TESTS

This section contains a small selection of unit tests which were used in development

of JTRAF and the use-case examples. They provide documentation for the work

and usage examples.

B.1 JTRAF Tests

B.1.1 EmptyTRProg.java

package tests.mockClasses;

import trProgram.Conditional;

import trProgram.TRProgram;

public class EmptyTRProg extends TRProgram

{

public EmptyTRProg(Conditional condition)

{

super(condition );

}

public EmptyTRProg (){}
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}

B.1.2 TRProgTest.java

package tests;

import static org.junit.Assert .*;

import org.junit.Before;

import org.junit.Test;

import tests.mockClasses.EmptyTRProg;

import trProgram .*;

public class TRProgTest

{

private EmptyTRProg _trProg;

@Before

public void setUp()

{

_trProg = new EmptyTRProg ();

}

@Test

public void cannotInsert2SameConditions ()

{

//same condition can only be added once

Conditional first = new IsFalse ();

assertTrue(_trProg.addCondition(first ));

Conditional second = first;

assertFalse(_trProg.addCondition(second ));

}
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@Test

public void trueCondition ()

{

Conditional trueCondition = new IsTrue ();

_trProg.addCondition(trueCondition );

assertTrue(_trProg.getConditionChecker ()

.testCondition(trueCondition ));

assertEquals ("T", trueCondition.toString ());

}

@Test

public void notCondition ()

{

Conditional notCondition = new NotCondition(new IsTrue ());

_trProg.addCondition(notCondition );

assertFalse(_trProg.getConditionChecker ()

.testCondition(notCondition ));

assertEquals ("!T", notCondition.toString ());

assertEquals (2, _trProg.conditionCount ());

}

@Test

public void simpleAndFalse ()

{

Conditional andCondition =

new AndCondition(new IsTrue(), new IsFalse ());

_trProg.addCondition(andCondition );

assertFalse(_trProg.getConditionChecker ()

.testCondition(andCondition ));

assertEquals ("T && F", andCondition.toString ());

assertEquals (3, _trProg.conditionCount ());
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}

@Test

public void simpleAndTrue ()

{

Conditional andCondition =

new AndCondition(new IsTrue(), new NotCondition(

new IsFalse ()));

_trProg.addCondition(andCondition );

assertTrue(_trProg.getConditionChecker ()

.testCondition(andCondition ));

assertEquals ("T && !F", andCondition.toString ());

assertEquals (4, _trProg.conditionCount ());

}

@Test

public void complexCondition ()

{

// True && (False || !False)

Conditional trueCondition = new IsTrue ();

Conditional falseCondition = new IsFalse ();

Conditional notCondition = new NotCondition(falseCondition );

Conditional orCondition = new OrCondition(

falseCondition , notCondition );

Conditional andCondition = new AndCondition(

trueCondition , orCondition );

_trProg.addCondition(andCondition );

assertTrue(_trProg.getConditionChecker ()

.testCondition(andCondition ));

assertEquals ("T && F || !F", andCondition.toString ());
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// There should only be 5 conditions since false used twice

assertEquals (5, _trProg.conditionCount ());

}

@Test

public void getConcreteConditions ()

{

Conditional concreteCondition = new IsTrue ();

_trProg.addCondition(concreteCondition );

assertEquals (1, _trProg.getConcreteConditions (). size ());

assertTrue(_trProg.getConcreteConditions ()

.contains(concreteCondition ));

}

@Test

public void getConcreteNoted ()

{

Conditional concreteCondition = new IsTrue ();

_trProg.addCondition(new NotCondition(concreteCondition ));

assertEquals (1, _trProg.getConcreteConditions (). size ());

assertTrue(_trProg.getConcreteConditions ()

.contains(concreteCondition ));

}

@Test

public void getConreteComplex ()

{

Conditional trueCondition = new IsTrue ();

Conditional falseCondition = new IsFalse ();

Conditional notCondition = new NotCondition(falseCondition );

Conditional orCondition = new OrCondition(

falseCondition , notCondition );
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Conditional andCondition = new AndCondition(

trueCondition , orCondition );

_trProg.addCondition(andCondition );

assertEquals (2, _trProg.getConcreteConditions (). size ());

assertTrue(_trProg.getConcreteConditions ()

.contains(trueCondition ));

assertTrue(_trProg.getConcreteConditions ()

.contains(falseCondition ));

}

}

B.1.3 MockAction.java

package tests.mockClasses;

import trProgram.Action;

import trProgram.Conditional;

import trProgram.TRProgram;

public class MockAction extends Action

{

private String _output;

private String _name;

public MockAction(Conditional condition)

{

this(condition , "not set ");

}

public MockAction(Conditional condition , String name)

{

super(condition );
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_output = "Do Nothing !";

_name = name;

}

//main method to override

public void action(Object parameters)

{

_output = "Do Something !";

}

public String getOutput ()

{

return _output;

}

public void setName(String name)

{

_name = name;

}

@Override

public String toString ()

{

return _name;

}

}

B.1.4 MockActionTest.java

package tests;

import static org.junit.Assert .*;

import org.junit.Before;

import org.junit.Ignore;
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import org.junit.Test;

import tests.mockClasses.EmptyTRProg;

import tests.mockClasses.MockAction;

import trProgram .*;

public class MockActionTest

{

private EmptyTRProg _emptyProg;

private Conditional _trueCondition;

private MockAction _returnTextAction;

@Before

public void setUp()

{

_emptyProg = new EmptyTRProg ();

_trueCondition = new IsTrue ();

_returnTextAction = new MockAction(_trueCondition );

}

@Test(expected = IllegalArgumentException.class)

public void actionNotAdded ()

{

_emptyProg.runAction(_returnTextAction );

}

@Ignore ("No longer needed because condition

is automatically added when adding the action ")

@Test(expected = IllegalArgumentException.class)

public void actionAddedButConditionNot ()

{

_emptyProg.addActionToBottom(_returnTextAction );

_emptyProg.runAction(_returnTextAction );

}

171



APPENDIX B. UNIT TESTS

@Test

public void actionAndConditionAdded ()

{

_emptyProg.addCondition(_trueCondition );

_emptyProg.addActionToBottom(_returnTextAction );

_emptyProg.runAction(_returnTextAction );

assertEquals ("Do Something!", _returnTextAction.getOutput ());

}

@Test

public void actionAndConditionAddedDoesSomething ()

{

_emptyProg.addActionToBottom(_returnTextAction );

_emptyProg.runAction(_returnTextAction );

assertEquals ("Do Something!", _returnTextAction.getOutput ());

}

}

B.2 File Sender Tests

B.2.1 ConnectActionTests.java

package tests;

import static org.junit.Assert .*;

import org.junit.Before;

import org.junit.Test;

import trProgram.Action;

import trProgram.AndCondition;
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import trProgram.Conditional;

import concreteNetExample.Client;

import concreteNetExample.TRProgNet;

import concreteNetExample.Actions.NetActionFactory;

import concreteNetExample.Conditions.AndConditionPassRHS;

import concreteNetExample.Conditions.NetConditionFactory;

public class ConnectActionTest

{

private TRProgNet _trProg;

private Conditional _isAccepting;

private Conditional _isWaiting;

private Conditional _isConnected;

private Action _connectAction;

@Before

public void setup()

{

_trProg = new TRProgNet ();

_isAccepting = NetConditionFactory

.createCondition(_trProg , "IsAccepting ");

_isWaiting = NetConditionFactory

.createCondition(_trProg , "IsWaiting ");

_isConnected = NetConditionFactory

.createCondition(_trProg , "IsConnected ");

_connectAction = NetActionFactory.createAction(

new AndConditionPassRHS(_isAccepting , _isWaiting),

"ConnectAction ");

_trProg.addCondition(_isConnected );

_trProg.addActionToBottom(_connectAction );

}

@Test
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public void connectActionNotAccepting ()

{

_trProg.getSocket (). setAccept(false);

_trProg.getSocket (). connect(new Client (6000));

_trProg.singleRun ();

assertFalse(_trProg.getConditionChecker ()

.testCondition(_isConnected ));

}

@Test

public void connectActionAccepting ()

{

_trProg.getSocket (). setAccept(true);

_trProg.getSocket (). connect(new Client (6000));

_trProg.singleRun ();

assertTrue(_trProg.getConditionChecker ()

.testCondition(_isConnected ));

}

@Test

public void connectActionAcceptingNotWaiting ()

{

_trProg.getSocket (). setAccept(true);

_trProg.runAction(_connectAction );

assertFalse(_trProg.getConditionChecker ()

.testCondition(_isConnected ));

}

@Test

public void connectAcceptWaitingFalse ()

{
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_trProg.getSocket (). setAccept(true);

_trProg.getSocket (). connect(new Client (6000));

_trProg.runAction(_connectAction );

assertTrue(_trProg.getConditionChecker ()

.testCondition(_isConnected ));

assertFalse ("After connecting , should stop accepting",

_trProg.getConditionChecker ()

.testCondition(_isAccepting ));

assertFalse ("After connecting ,

there should be no-one waiting",

_trProg.getConditionChecker ()

.testCondition(_isWaiting ));

}

}

B.2.2 FullClientTest.java

package tests;

import static org.junit.Assert .*;

import org.junit.Before;

import org.junit.Test;

import trProgram.Action;

import trProgram.AndCondition;

import trProgram.Conditional;

import trProgram.IsTrue;

import trProgram.Nil;

import concreteNetExample.Client;

import concreteNetExample.TRProgNet;

import concreteNetExample.Actions.NetActionFactory;

import concreteNetExample.Conditions.AndConditionPassRHS;
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import concreteNetExample.Conditions.IsTrueNet;

import concreteNetExample.Conditions.NetConditionFactory;

public class FullClientSendTest

{

private TRProgNet _trProg;

private Conditional _istrue , _isAccepting , _isWaiting ,

_isConnected , _is5PacketsSent , _isFileComplete;

private Action _acceptAction , _connectAction , _sendPacket ,

_changePacketSize , _nil;

@Before

public void setup()

{

_trProg = new TRProgNet (5);

_istrue = new IsTrueNet(_trProg );

_isAccepting = NetConditionFactory

.createCondition(_trProg , "IsAccepting ");

_isWaiting = NetConditionFactory

.createCondition(_trProg , "IsWaiting ");

_isConnected = NetConditionFactory

.createCondition(_trProg , "IsConnected ");

_is5PacketsSent = NetConditionFactory

.createCondition(_trProg , "IsFivePacketsSent ");

_isFileComplete = NetConditionFactory

.createCondition(_trProg , "IsFileComplete ");

_acceptAction = NetActionFactory

.createAction(_istrue , "AcceptAction ");

_connectAction = NetActionFactory.createAction(

new AndConditionPassRHS(

_isAccepting , _isWaiting), "ConnectAction ");

_sendPacket = NetActionFactory.createAction(
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_isConnected , "SendNextPacketAction ");

_changePacketSize = NetActionFactory.createAction(

_is5PacketsSent , _sendPacket , "ChangePacketSizeAction ");

_nil = new Nil(_isFileComplete );

_trProg.addActionToBottom(_nil);

_trProg.addActionToBottom(_changePacketSize );

_trProg.addActionToBottom(_sendPacket );

_trProg.addActionToBottom(_connectAction );

_trProg.addActionToBottom(_acceptAction );

}

@Test

public void fullTestNoThreads ()

{

for (int i = 0; i < 2; i++)

{

_trProg.singleRun ();

}

_trProg.getSocket (). connect(new Client (5000));

for (int i = 0; i < 65; i++)

{

_trProg.singleRun ();

}

assertTrue(_trProg.getConditionChecker ()

.testCondition(_isFileComplete ));

}

@Test

public void runKillNotComplete ()

{
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Thread trProgThread = new Thread(_trProg );

trProgThread.start ();

try

{

Thread.sleep (300);

} catch (InterruptedException e)

{

}

_trProg.kill ();

assertFalse(_trProg.getConditionChecker ()

.testCondition(_isFileComplete ));

}

@Test

public void runConnectClientComplete ()

{

Thread trProgThread = new Thread(_trProg );

trProgThread.start ();

try

{

Thread.sleep (100);

} catch (InterruptedException e)

{

}

_trProg.getSocket (). connect(new Client (5000));

try
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{

Thread.sleep (500);

} catch (InterruptedException e)

{

}

_trProg.kill ();

assertTrue(_trProg.getConditionChecker ()

.testCondition(_isFileComplete ));

}

}

B.3 Datacentre Tests

B.3.1 DatacentreTests.java

package tests;

import datacentre.SimplePubSubTimer;

import datacentre.model.Application;

import datacentre.model.DatacentreModel;

import datacentre.model.Event;

import datacentre.model.RequestEvent;

import datacentre.model.EventHandler;

import datacentre.model.Pool;

import datacentre.model.Server;

import java.util.ArrayList;

import java.util.logging.Level;

import java.util.logging.Logger;

import org.junit.Before;

import org.junit.Ignore;

import org.junit.Test;

import static org.junit.Assert .*;
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public class DatacentreTest

{

private DatacentreModel _datacentre;

@Before

public void setup()

{

_datacentre = new DatacentreModel ();

}

@Test

public void noApps ()

{

assertEquals (0, _datacentre.appsServed ());

}

@Test

public void oneApp ()

{

_datacentre.addApp(new Application (" database 1"));

assertEquals (1, _datacentre.appsServed ());

}

@Test

public void twoAppsSame ()

{

_datacentre.addApp(new Application (" database 1"));

_datacentre.addApp(new Application (" database 1"));

assertEquals (1, _datacentre.appsServed ());

}
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@Test

public void removeApp ()

{

Application app = new Application (" database 1");

_datacentre.addApp(app);

_datacentre.removeApp(new Application (" nonexistant app "));

assertEquals (1, _datacentre.appsServed ());

_datacentre.removeApp(app);

assertEquals (0, _datacentre.appsServed ());

}

@Test

public void noPools ()

{

assertEquals (0, _datacentre.getPools (). size ());

}

@Test

public void noAppNoEvent ()

{

EventHandler eventHandler = new EventHandler ();

ArrayList <Event > events = new ArrayList <Event >();

ArrayList <Event > oldEvents = new ArrayList <Event >();

ArrayList <Event > executionEvents = eventHandler

.getExecutionList (60, events , oldEvents );

assertTrue(executionEvents.isEmpty ());

}
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@Test

public void provisionServer ()

{

Pool pool = Pool.createPool(new Application ("null "));

Server server = new Server (350);

_datacentre.addIdleServer(server );

_datacentre.addIdleServer(new Server (350));

_datacentre.addIdleServer(new Server (350));

_datacentre.addPool(pool);

_datacentre.provision(server , pool);

assertEquals (2, _datacentre.getIdleServers (). size ());

assertEquals (1, _datacentre.getprovisioningServers (). size ());

assertTrue(server.getProvisionStamp () > 0);

assertEquals(pool , server.getProvisionPool ());

}

@Test

public void removePoolreturnServers ()

{

Pool pool = Pool.createPool(new Application ("null "));

Server server = new Server (350);

_datacentre.addIdleServer(server );

_datacentre.addIdleServer(new Server (350));

_datacentre.addIdleServer(new Server (350));

_datacentre.addPool(pool);

_datacentre.provision(server , pool);

_datacentre.removePool(pool);

assertEquals (3, _datacentre.getIdleServers (). size ());

assertEquals (0, _datacentre.getprovisioningServers (). size ());

assertEquals (0, server.getProvisionStamp ());

}
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@Test

public void serversForPool ()

{

Pool pool = Pool.createPool(new Application ("null "));

Pool pool2 = Pool.createPool(new Application ("app "));

_datacentre.addPool(pool);

_datacentre.addPool(pool2 );

Server server1 = new Server (350);

Server server2 = new Server (350);

Server server3 = new Server (350);

Server server5 = new Server (350);

Server server4 = new Server (350);

_datacentre.addIdleServer(server1 );

_datacentre.addIdleServer(server2 );

_datacentre.addIdleServer(server3 );

_datacentre.addIdleServer(server4 );

_datacentre.addIdleServer(server5 );

_datacentre.provision(server1 , pool);

_datacentre.provision(server2 , pool);

_datacentre.provision(server3 , pool);

_datacentre.provision(server4 , pool2 );

assertEquals (3, _datacentre

.getServersProvisionedForPool(pool).size ());

}

}

B.3.2 OverloadedTest.java

package tests;

import datacentre.manager.Overloaded;

import datacentre.manager.Provisioner;

import datacentre.model.Application;
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import datacentre.model.DatacentreModel;

import datacentre.model.Pool;

import datacentre.model.Request;

import datacentre.model.Server;

import org.junit.Before;

import org.junit.Test;

import trProgram.Conditional;

import trProgram.TRProgram;

import static org.junit.Assert .*;

public class OverloadedTest

{

private DatacentreModel _model;

private TRProgram _provisioner;

private Application _app;

private Conditional _overloaded;

private Pool _pool;

@Before

public void Setup()

{

_model = new DatacentreModel ();

_provisioner = new Provisioner(_model );

_app = new Application ("App1 ");

_model.addApp(_app);

_model.addPool(_pool = Pool.createPool(_app ));

_overloaded = new Overloaded ();

}

@Test

public void notOverloaded ()

{

assertFalse(_overloaded.testConditionEvent(_provisioner ));
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}

@Test

public void isOverloaded ()

{

_app.addRequests(new Request []

{

new Request (1)

});

assertTrue(_overloaded.testConditionEvent(_provisioner ));

}

@Test

public void serverAddedNotOverloaded ()

{

_pool.addServer(new Server (20));

_app.addRequests(new Request []

{

new Request (18)

});

assertFalse(_overloaded.testConditionEvent(_provisioner ));

}

@Test

public void serverChangeOverloaded ()

{

Server server = new Server (20);

_pool.addServer(new Server (20));

_pool.addServer(server );

_app.addRequests(new Request []

{

new Request (28)
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});

assertFalse(_overloaded.testConditionEvent(_provisioner ));

_pool.removeServer(server );

assertTrue(_overloaded.testConditionEvent(_provisioner ));

}

@Test

public void increaseRequests ()

{

_app.addRequests(new Request []

{

new Request (20), new Request (20)

});

assertTrue(_overloaded.testConditionEvent(_provisioner ));

_pool.addServer(new Server (50));

assertFalse(_overloaded.testConditionEvent(_provisioner ));

_app.addRequests(new Request []

{

new Request (20), new Request (20), new Request (20)

});

assertTrue(_overloaded.testConditionEvent(_provisioner ));

}

@Test

public void stillOverloaded ()

{

_app.addRequests(new Request []
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{

new Request (20), new Request (20)

});

assertTrue(_overloaded.testConditionEvent(_provisioner ));

_pool.addServer(new Server (30));

assertTrue(_overloaded.testConditionEvent(_provisioner ));

}

}

B.3.3 PoolingTest.java

package tests;

import datacentre.manager.AndConditionPassRHS;

import datacentre.manager.CreatePoolForApp;

import datacentre.manager.ExcessPools;

import datacentre.manager.HavePools;

import datacentre.manager.ProficientPooling;

import datacentre.manager.Provisioner;

import datacentre.manager.RemoveExcessPool;

import datacentre.model.Application;

import datacentre.model.DatacentreModel;

import datacentre.model.Pool;

import org.junit.Before;

import org.junit.Test;

import trProgram.AndCondition;

import trProgram.Conditional;

import trProgram.IsTrue;

import trProgram.Nil;

import trProgram.NotCondition;

import trProgram.TRProgram;
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import static org.junit.Assert .*;

public class PoolingTest

{

private DatacentreModel _model;

private TRProgram _provisioner;

private ProficientPooling _proficientPooling;

@Before

public void Setup()

{

_model = new DatacentreModel ();

_provisioner = new Provisioner(_model );

_proficientPooling = new ProficientPooling ();

_provisioner.addActionToBottom(new Nil(_proficientPooling ));

_provisioner.addActionToBottom(new CreatePoolForApp(

new AndConditionPassRHS(

new NotCondition(new ExcessPools ()),

new NotCondition(new HavePools ()))));

_provisioner.addActionToBottom(

new RemoveExcessPool(new ExcessPools ()));

}

@Test

public void proficientPoolingEmpty ()

{

_provisioner.singleRun ();

assertTrue(_provisioner.getTrueConditions ()

.contains(_proficientPooling ));

}

@Test
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public void proficientPoolingOneApp ()

{

_model.addApp(new Application ("App1 "));

_provisioner.singleRun ();

assertFalse(_provisioner.getTrueConditions ()

.contains(_proficientPooling ));

}

@Test

public void proficientPoolingOneApp2ndRun ()

{

_model.addApp(new Application ("App1 "));

_provisioner.singleRun ();

_provisioner.singleRun ();

assertTrue(_provisioner.getTrueConditions ()

.contains(_proficientPooling ));

}

@Test

public void badAppsBadPools ()

{

Application _app1;

Application _app2;

Application _app3;

Application _app4;

_model.addApp(_app1 = new Application ("app1 "));

_model.addApp(_app2 = new Application ("app2 "));

_model.addApp(_app3 = new Application ("app3 "));

_model.addApp(_app4 = new Application ("app4 "));

_model.addPool(Pool.createPool(_app2 ));
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_model.addPool(Pool.createPool(new Application ("app5 ")));

_model.addPool(Pool.createPool(_app4 ));

_model.addPool(Pool.createPool(new Application ("app6 ")));

_model.addPool(Pool.createPool(new Application ("app7 ")));

for (int i = 0; i < 2; i++)

{

_provisioner.singleRun ();

}

assertFalse(_provisioner.getTrueConditions ()

.contains(_proficientPooling ));

for (int i = 0; i < 20; i++)

{

_provisioner.singleRun ();

}

assertTrue(_provisioner.getTrueConditions ()

.contains(_proficientPooling ));

}

}
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