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Abstract
By constructing an adequate real functional and choosing an appropriate admissible
function space, the existence of multiple solutions to a four-point boundary value
problem, which may be taken as an extension of Sturm-Liouville boundary value
problems, is proved via a variational approach for a second-order differential system
with a p-Laplacian.
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1 Introduction
The variational approach, together with the critical point theory, is one of the important
methods in the study of two-point boundary value problems of ordinary differential equa-
tion [–], as well as impulsive differential equations [–]. However, this approach is
much more effective in the study of boundary value problems of differential systems [–
].

Mawhin and Willem [] studied the existence of periodic solutions of convex Hamilto-
nian system in the form

{
Ju′(t) + ∇H(t, u(t)) = ,
u() – u(T) = ,

where H : [, T]×R
n →R and proved that the problem has at least one periodic solution

if

(
l(t), u

) ≤ H(t, u) ≤ α


|u| + γ (t),

∫ T


H(t, u) dt → ∞, as |u| → ∞,

with α ∈ (, π
T ) ([], Theorem .). Also, they proved the system

{
(M(t, u)u′(t))′ – 

 (∇u(M(t, u)u′), u′) + ∇F(t, u) = f (t),
u() – u(T) = u′() – u′(T) = ,
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has at least one periodic solution if |F(t, u)| + |∇F(t, u)| ≤ h(t), (M(t, u)u′, u′) ≥ α|u′|, and
M is Ti-periodic in ui ([], Theorem .).

Tian and Ge [] discussed the differential system with a p-Laplacian{
d
dt ϕp(u′(t)) + ∇F(t, u(t)) = ,
u() – u(T) = u′() – u′(T) = ,

where ϕp(x) = |x|p–x for x ∈ R
n, and they obtained an existence theorem of periodic so-

lutions under the condition

(
l(t), |u| p–

 u
) ≤ F(t, u) ≤ α

p
|u|p + γ (t),

∫ T


F(t, u) dt → ∞, as |u| → ∞.

The result extended that given by Mawhin and Willem ([], Theorem .).
Graef et al. studied in [] the existence of at least three classical solutions to the multi-

point value system{
(φp(u′))′ + λF(t, u) + μG(t, u) = ,  < t < ,
u() =

∑m
j= aju(tj), u() =

∑m
j= bju(tj),

where φp(s) = (φp (s),φp (s), . . . ,φpn (sn)) with φpk (sk) = |sk|pk –sk , pk > , aj, bj ∈ R, F , G :
[, ] ×R

n →R, λ,μ > . By use of the existence theorem of three critical points given by
Ricceri [], they obtained sufficient conditions for the existence of three solutions to the
discussed system, when the parameter λ is defined in a certain interval [, δ].

In this paper, we are to study the existence of multiple solutions to the following four-
point boundary value problem (BVP for short):{

(P(t)x′)′ = ∇F(t, x),  < t < ,
x′() = αx(ξ ), x′() = βx(η),

(.)

where P : [, ] → R
n×n is a continuously symmetric matrix, i.e., PT (t) = P(t) being con-

tinuous in t; F : [, ] × R
n → R is measurable in t for each x ∈ R

n and continuously dif-
ferentiable in x for a.e. t ∈ [, ]; α,β ∈ R,  < ξ ,η < .

Clearly, BVP (.) becomes a classic Sturm-Liouville BVP if ξ →  and η → .
Without loss of generality, we suppose ξ ≤ η. Let {pi(t)} be the eigenvalue of P(t). As-

sume

(H)  < a ≤ min≤t≤ min≤j≤n pj(t) ≤ max≤t≤ max≤j≤n pj(t) ≤ b;
(H) F(t, ) = , F(t, –x) = F(t, x), and there are c, M >  such that

F(t, x) ≥ c|x| – M.

Condition (H) implies that P(t) is an invertible matrix for each t ∈ [, ].
We are to show in this paper the following results via variational methods.

Theorem . Suppose assumptions (H) and (H) hold. BVP (.) has mn pairs of non-
trivial solutions if there are d, r > , m ∈N

+, such that

(∇F(t, x), x
) ≤ –d|x| < –bmπ|x|, (.)

when |x| ≤ r.
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Theorem . Suppose assumptions (H) and (H) hold. Then BVP (.) has infinitely
many pairs of nontrivial solutions if there are d, r >  and σ ∈ (, ), such that

(∇F(t, x), x
) ≤ –d|x|+σ , (.)

for |x| ≤ r.

When condition (.) is replaced by a limitation condition, we have the following.

Theorem . Suppose assumptions (H) and (H) hold. Then BVP (.) has infinitely
many pairs of nontrivial solutions if

lim|x|→
min

≤t≤

(∇F(t, x), x)
|x| = –∞. (.)

This paper is organized as follows. In Section , we discuss the relation of the critical
point of functional  and the solution to BVP (.). In Section , we show that  satisfies
the (PS)-condition. Based on Sections  and  we prove in Section  the theorems given
above. Finally, an example is given in Section  to illustrate our result.

To prove the above results we need the following.

Theorem A [] Suppose X is a Banach space and  : X →R a continuously differentiable
functional with () =  and  even, bounded from below and satisfying (PS)-condition. If
there is a set K ⊂ X such that K is homeomorphic to Sm– by an odd map, and supK  < .
Then  possesses at least m distinct pairs of critical points.

2 Critical point of functional and solution of BVP
Suppose X is a Banach space and  : X → R a differentiable functional with derivative
given by

〈
′(u), v

〉
with u, v ∈ X. Let Y ⊂ X be a closed subspace. If there is u ∈ X such that

〈
′(u), v

〉
= 

holds for all v ∈ Y , then u is called a critical point of  with respect to Y . Furthermore,
u is called simply a critical point of  if Y = X.

Obviously, u is a critical point of  with respect to Y if it is that of .
Let X = H([, ],Rn). Equip X with the norm ‖ · ‖ defined by

‖x‖ =
[∫ 



∣∣x(t)
∣∣ dt +

∫ 



∣∣x′(t)
∣∣ dt

] 


for each x ∈ X. Then X is a reflexive Banach space. Define

(x) =
∫ 



[


(
P(t)x′(t), x′(t)

)
+ F

(
t, x(t)

)]
dt –



δβ(P()x(η), x(η)

)

–


δα(P()x(ξ ), x(ξ )

)
(.)
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for x ∈ X, where δ is a constant.
It is easy to verify that () =  and (–x) = (x).
Furthermore, we have the following.

Lemma . If u is a critical point of (x), defined in (.) with respect to Y = {x ∈ X : x() =
–αδx(ξ ), x() = βδx(η)}, then u = u(t) is a solution to BVP (.).

Proof The properties of F and P ensure  is continuously differentiable and the derivative
of  is in the form

〈
′(x), y

〉
=

∫ 



[(
P(t)x′(t), y′(t)

)
+

(∇F
(
t, x(t)

)
, y(t)

)]
dt

–
(
P()βx(η), δβy(η)

)
–

(
P()αx(ξ ), δαy(ξ )

)
, (.)

x ∈ X, y ∈ Y . Then the assumption that u is a critical point of  respect to Y means that

〈
(u), y

〉
= , y ∈ Y . (.)

Let Z = {x ∈ C∞([, ],Rn) : x() = x(ξ ) = x(η) = x() = }, then Z ⊂ Y . Furthermore, let

Z =
{

x ∈ Z : x(t) =  for ξ ≤ t ≤ 
}

,

Z =
{

x ∈ Z : x(t) =  for  ≤ t ≤ ξ or η ≤ t ≤ 
}

,

Z =
{

x ∈ Z : x(t) =  for  ≤ t ≤ η
}

,

and T = [, ξ ], T = [ξ ,η], T = [η, ]. Clearly equation (.) implies

〈
(u), z

〉
= , z ∈ Zi, (.)

and then

 =
∫

Ti

[(
P(t)u′(t), z′(t)

)
+

(∇F
(
t, u(t)

)
, z(t)

)]
dt

=
∫

Ti

[
–
((

P(t)u′(t)
)′, z(t)

)
+

(∇F
(
t, u(t)

)
, z(t)

)]
dt

= –
∫

Ti

((
P(t)u′(t)

)′ – ∇F
(
t, u(t)

)
, z(t)

)
dt.

So one gets

(
P(t)u′(t)

)′ = ∇F
(
t, u(t)

)
, a.e. t ∈ Ti,

since z ∈ Zi is arbitrary. Take i = , , , then we have

(
P(t)u′(t)

)′ = ∇F
(
t, u(t)

)
, a.e. t ∈ [, ]. (.)
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The equality (.) means (Pu′)(t) is continuous on [, ] and as a critical point of  with
respect to Y , we have

 =
∫ 



[(
P(t)u′(t), y′(t)

)
+

(∇F
(
t, u(t)

)
, y(t)

)]
dt

– δβ(P()u(η), y(η)
)

– δα(P()u(ξ ), y(ξ )
)

=
(
P(t)u′(t), y(t)

)∣∣
 –

∫ 



((
P(t)u′(t)

)′ – ∇F
(
t, u(t)

)
, y(t)

)
dt

– δβ(P()u(η), y(η)
)

– δα(P()u(ξ ), y(ξ )
)

=
(
P()u′(), y()

)
–

(
P()u′(), y()

)
–

(
P()βu(η), δy(η)

)
–

(
P()u(ξ ), δαy(ξ )

)
,

for y ∈ Y .
Especially, when y ∈ Y =

{
y ∈ Y : y() = y(ξ ) = 

}
, one gets

 =
(
P()u′(), y()

)
–

(
P()βu(η), δβy(η)

)
=

(
P()

(
u′() – βu(η)

)
, y()

)
,

and then

(
P()

(
u′() – βu(η)

)
, y()

)
= .

u′() = βu(η),

since y() ∈ R
n is arbitrary and P() is invertible. At the same time the case y ∈ Y =

{
y ∈

Y : y(η) = y() = 
}

implies

u′() = αu(ξ ).

So u = u(t) is a solution to BVP (.).
Therefore our task is to discuss the existence of critical points of  in X. �

Lemma . For each x ∈ X,

∣∣x(t)
∣∣ ≤ ‖x‖. (.)

Proof From

∣∣xi(t) – x̄i
∣∣ ≤

∫ 



∣∣x′
i(t)

∣∣dt,

one has

∣∣x(t) – x̄
∣∣ ≤

∫ 



∣∣x′(t)
∣∣dt,
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where x̄i =
∫ 

 xi(t) dt and x̄ =
∫ 

 x(t) dt. Then

∣∣x(t)
∣∣ ≤ |x̄| +

∫ 



∣∣x′(t)
∣∣dt

≤
∫ 



∣∣x(t)
∣∣dt +

∫ 



∣∣x′(t)
∣∣dt

≤
[∫ 



∣∣x(t)
∣∣ dt

] 


+
[∫ 



∣∣x′(t)
∣∣ dt

] 


≤ 
[∫ 



(∣∣x(t)
∣∣ +

∣∣x′(t)
∣∣)dt

] 


= ‖x‖. �

3 A lemma on the (PS)-condition
We show at first a lemma which will be applied in the proof of our main results.

Lemma . The functional , defined in (.), satisfies the (PS)-condition if assumptions
(H)-(H) hold.

Proof Suppose {uk} ⊂ X is a sequence such that {uk} is bounded and ′(uk) →  as
k → ∞. We are to show that there is in {uk} a subsequence which converges in X.

To this end, let θ = min{ a
 , c} >  and choose

δ ∈
(

,
θ

b(α + β)

)

in the functional (.). Then

(uk) =
∫ 



[


(
P(t)u′

k(t), u′
k(t)

)
+ F

(
t, uk(t)

)]
dt

–


δβ(P()uk(η), uk(η)

)
–



δα(P()uk(ξ ), uk(ξ )

)

≥θ

∫ 



[∣∣u′
k(t)

∣∣ +
∣∣uk(t)

∣∣]dt – M

–


δ
[
β(P()uk(η), uk(η)

)
+ α(P()uk(ξ ), uk(ξ )

)]
.

Notice that

∣∣uk(η)
∣∣ ≤ |ūk| +

∫ 



∣∣u′
k(t)

∣∣dt

≤
∫ 



∣∣uk(t)
∣∣dt +

∫ 



∣∣u′
k(t)

∣∣dt

≤
(∫ 



∣∣uk(t)
∣∣ dt

) 


+
(∫ 



∣∣u′
k(t)

∣∣ dt
) 


,
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and then

∣∣uk(η)
∣∣ ≤ 

∫ 



[∣∣u′
k(t)

∣∣ +
∣∣uk(t)

∣∣]dt = ‖uk‖. (.)

Similarly,

∣∣uk(ξ )
∣∣ ≤ 

∫ 



[∣∣u′
k(t)

∣∣ +
∣∣uk(t)

∣∣]dt = ‖uk‖. (.)

Therefore, we have

(uk) ≥ θ‖uk‖ –



δb
(
α + β)‖uk‖ – M

=


θ‖uk‖ – M,

which implies {uk} is bounded in X. Going, if necessary, to a subsequence, we assume that
uk ⇀ u in X and uk → u in C([, ],Rn). Then

〈
′(uk) – ′(u), uk – u

〉 →  as k → ∞. (.)

Using (.) and assumptions (H)-(H), we have

〈
′(uk) – ′(u), uk – u

〉
=

∫ 



[(
P(t)

(
u′

k(t) – uk(t)
)
, u′

k(t) – uk(t)
)

+
(∇F

(
t, uk(t)

)
– ∇F

(
t, u(t)

)
, uk(t) – u(t)

)]
dt

– δ
[(

P()β
(
uk(η) – u(η)

)
,β

(
uk(η) – u(η)

))
+

(
P()α

(
uk(ξ ) – u(ξ )

)
,α

(
uk(ξ ) – u(ξ )

))]
≤ a

∫ 



∣∣u′
k(t) – u′(t)

∣∣ dt +
∫ 



(∇F
(
t, uk(t)

)
– ∇F

(
t, u(t)

)
, uk(t) – u(t)

)
dt

– δb
[
β∣∣uk(η) – u(η)

∣∣ + α∣∣uk(ξ ) – u(ξ )
∣∣]. (.)

The fact that uk → u in C([, ],Rn) implies

∫ 



(∇F
(
t, uk(t)

)
– ∇F

(
t, u(t)

)
, uk(t) – u(t)

)
dt → ,

∣∣uk(η) – u(η)
∣∣ → ,

∣∣uk(ξ ) – u(ξ )
∣∣ → ,∫ 



∣∣uk(t) – u(t)
∣∣ dt → ∞,

as k → ∞. Then from (.) and (.) we get

∫ 



∣∣u′
k(t) – u′(t)

∣∣ dt →  as k → ∞.
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Therefore, we have

uk → u in X.

Then  satisfies the (PS)-condition. �

4 Proof of theorems

Proof of Theorem . First we show that (x) is bounded from below.
From the definition of  in (.), one has

(x) ≥ θ

∫ 



[∣∣x′(t)
∣∣ +

∣∣x(t)
∣∣]dt – M –



δb

(
β∣∣x(η)

∣∣ + α∣∣x(ξ )
∣∣)

= θ‖x‖ –


δb

(
β∣∣x(η)

∣∣ + α∣∣x(ξ )
∣∣) – M

≥ θ‖x‖ –


δb

(
β + α)‖x‖ – M

≥ 

θ‖x‖ – M,

which implies that (x) is bounded from below.
Second, we prove the existence of a set K ⊂ X such that K is homeomorphic to Smn– by

an odd map, and supK  < .
To this end we choose the linear space Xmn in the following way.
Let {ei} be the orthogonal basis of Rn. As Banach space H is a subspace of L([, ],Rn),

its element can be expressed in the form

x(t) = a +
∞∑

k=

(cos kπ t · ak + sin kπ t · bk),  < t < ,

where a, ak , bk ∈R
n. In this case, let

x() = x
(
+)

, x() = x
(
–)

,

and

x′() = lim
t→+

x(t) – x()
t

= lim
t→+


t
(
x(t) – x

(
+))

,

x′() = lim
t→–

x() – x(t)
 – t

= lim
t→–


 – t

(
x
(
–)

– x(t)
)
.

Let Xmn = {x(t) =
∑m

k= sin kπ t · bk , bk ∈ R
n}. Then dim Xmn = mn. For a function x(t) =∑m

k= sin kπ t · bk , one gets

x′(t) =
m∑

k=

kπ cos kπ t · bk
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and

∫ 



∣∣x(t)
∣∣ dt =




m∑
k=

|bk|,

∫ 



∣∣x′(t)
∣∣ dt =




m∑
k=

(kπ )|bk| ≤ mπ
∫ 



∣∣x(t)
∣∣ dt.

(.)

It follows that

∥∥x
∥∥ =




m∑
k=

(
 + kπ)|bk| ≤ 


(
 + mπ) m∑

k=

|bk|

and


 + mπ

∥∥x
∥∥ ≤

∫ 



∣∣x(t)
∣∣ dt ≤ 

 + π

∥∥x
∥∥. (.)

Now choose K = {x ∈ Xmn,
∑m

k= |bk| = 
m r}. Obviously, K is closed in X with dim K =

mn – . Furthermore, for each x ∈ K ,

(x) ≤
∫ 



[
b

∣∣x′(t)

∣∣ + F
(
t, x(t)

)]
dt,

∣∣x(t)
∣∣ ≤

m∑
k=

|bk| ≤
√

m

( m∑
k=

|bk|
) 



= r. (.)

At the same time we have, from (.),

F
(
t, x(t)

)
= F

(
t, x(t)

)
– F(t, )

=
∫ 



(∇F
(
t, sx(t)

)
, x(t)

)
ds

=
∫ 




s
(∇F

(
t, sx(t)

)
, sx(t)

)
ds

< –bmπ
∫ 


s
∣∣x(t)

∣∣ ds

= –bmπ∣∣x(t)
∣∣,

which yields
∫ 


F
(
t, x(t)

)
dt < –bmπ

∫ 



∣∣x(t)
∣∣ dt

and

(x) <
b


∫ 



∣∣x′(t)
∣∣ dt – bmπ

∫ 



∣∣x(t)
∣∣ dt

≤ bmπ
∫ 



∣∣x(t)
∣∣ dt – bmπ

∫ 



∣∣x(t)
∣∣ dt

= .
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Then we have

sup
K

 < .

Finally, define the odd mapping G : K → Smn– in the following way. For a function x ∈ K
with the expression

x(t) =
m∑

k=

sin kπ t · bk ,

let x(t) �→ G(x) = ( 
ρ

b, 
ρ

b, . . . , 
ρ

bm), where ρ = (
∑m

k= |bk|) 
 . Then G is a homeomor-

phism between K and Sm–. It is clear that G is an odd mapping.
Then Theorem A gives the conclusion of Theorem .. �

Proof of Theorem . It suffices to show that for any m ∈ N, condition (.) implies that
there is r̂ >  such that the condition holds for r ∈ (, r̂).

In fact, from lim|x|→+ |x|+σ /|x| = +∞, we know that there is r̂ ∈ (, r) such that

d|x|+σ > bmπ∣∣x(t)
∣∣,  < |x| ≤ r̂.

In this case, we have

(∇F(t, x), x
) ≤ –d|x|+σ < –bmπ∣∣x(t)

∣∣,  < |x| ≤ r̂,

which implies, by Theorem ., that BVP(.) has at least mn pairs of distinct nontrivial
solutions. �

Proof of Theorem . Condition (.) implies that for any m ∈N there is r >  such that

(∇F(t, x), x
) ≤ –b(m + )π∣∣x(t)

∣∣ < –bmπ|x|,  < |x| ≤ r.

Then the conclusion comes from Theorem .. �

5 Example
Example . Suppose x, x : (, ) → R. Then the BVP

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x′′
 + x′′

 = [–( + sin t)(x
 + x

)– 
 + ( + t)(x

 + x
) 

 ]x,

x′′
 + x′′

 = [–( + sin t)(x
 + x

)– 
 + ( + t)(x

 + x
) 

 ]x,
x′

() = x( 
 ), x′

() = 
 x( 

 ),
x′

() = x( 
 ), x′

() = 
 x( 

 ),

(.)

has infinitely many solutions.

Proof Let M(t) =
[  

 

]
, α = , β = 

 , ξ = 
 , η = 

 , x =
( x

x

)
, F(t, x) = – 

 ( + sin t)(x
 +

x
) 

 + ( + t)(x
 + x

) 
 , then BVP (.) is a special case of BVP (.) with n = .
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Obviously, the eigenvalues of M are  and , which means

 < a = , b = .

On the other hand, we have

lim|x|→∞ F(t, x) = +∞, F(t, ) = , F(t, –x) = F(t, x),

lim|x|→∞
(∇F(t, x), x)

|x| = –∞,

and

F
(
t, x(t)

) ≥ –


(
x

 + x

) 

 +
(
x

 + x

) 



≥ –


(
 + x

 + x

)

+ 
(
x

 + x

)

– 

=


(
x

 + x

)

–



.

Let c = 
 and M = 

 . Then Theorem . gives the conclusion. �
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